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Abstract

This paper investigates an equilibrium model of the term structure of nominal interest

rates on default-free, zero coupon bonds. In a pure exchange economy with incom-

plete information, a representative agent is unable to observe the expected growth rates

of both exogenous real output and money supply and, therefore, engages in dynamic

Bayesian inference. The dependence of term premia on beliefs allows the model to in-

troduce a GARCH property, which interacts with the volatility of the macro variables.

In particular, the volatility of excess returns is inversely related to noise in the macro

variables, implying that erratic monetary policy may reduce uctuations in interest

rates.
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1 Introduction

A key framework of analysis for the term structure of interest rates on default-free, zero coupon

bonds is based on endogenous, time-varying risk premia determined by rational expectations mod-

els. Lucas (1978) led researchers to consider equilibrium models of the term structure with a

representative agent.1 A model of the Lucas-type exchange economy is elegant and tractable from

an analytical point of view, but they have not performed well in empirical tests. For example,

Backus, Gregory, and Zin (1989) show that a monetary version of the Mehra-Prescott's (1985)

model cannot account for either the sign or the magnitude and the variability of term premia in

holding period returns on US multi-period bonds. Additionally, data produced by simulation from

the model invariably accept the null hypothesis of no ARCH e�ect in the term premium. Another

explanation of the term structure dynamics highlights over- or underreaction of expected future

long rates to changes in short rates (see Froot (1989), Campbell and Shiller (1991), and Hardou-

velis (1994)). Using survey data, Froot (1989) found evidence that when forming their expectations

of future long rates, market participants place more weight on the contemporaneous short rate than

is warranted, thus producing over reaction of the yield spread.

This paper focuses on an idea that contains elements of the previous two explanations. In

this regard, I introduce incomplete information in an equilibrium approach in continuous time, i.e.

learning as a source of time-variations in the term premium and the under- and overreaction of eco-

nomic fundamentals. In an economy with incomplete information, a representative investor cannot

observe expected growth rates of economic fundamentals such as real output and money supply

that depend on the current regime of the economy. Because these drifts are key parameters of

the fundamental processes characterizing the economy, market participants will optimally estimate

them. Due to potential estimation errors, investors may appear to under- or overreact to switches

1Another strand of equilibrium term structure models is developed by Cox, Ingersoll, and Ross (1985a, 1985b),
(henceforth CIR) and Du�e and Kan (1996) in which the yields of zero-coupon bonds are an a�ne function of a set
of state variables. The closed-form solution for yields is found only when the representative agent has a log utility
function. In contrast, the Lucas-type of exchange economy derives the closed form solution under more general
classes of utility functions such as the power and the exponential utility functions.
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of the current economic state although the market's expectations are perfectly rational. Empirical

evidence by Tzavalis and Wickens (1997) suggests the e�ects of combining the under- and overreac-

tion hypothesis with time-varying risk premia are important in developing a term structure model.

Introducing parameter uncertainty into a forecasting model of future interest rates, Ederington and

Huang (1995) show that the model is able to generate an interest rate series that is more consistent

with bond return forecasting of a yield spread than a model without parameter uncertainty. In ad-

dition, a reason for information to be incomplete is found in empirical success of regime-switching

models, in which an unobservable regime is a key driving force of economic dynamics.2

In the incomplete information economy the model obtains closed form expressions for equilibrium

prices of the commodity and nominal bonds and the process of investor's beliefs. Bond prices are

expressed as the weighted average of the state dependent bond prices, and the weights are given

by the investor's beliefs on the unobservable states of the mean growth rates. Discrete changes

in the macro variable volatility induce jumps in bond prices, while bond prices move continuously

and gradually with learning in the unobservable state. Beliefs and random shocks to economic

fundamentals also play an important role in generating time-variation in the conditional volatility of

excess holding period returns. Conditional volatility of the excess returns shows volatility clustering

due to mean-reversion in the process of beliefs. Furthermore, the model implies that the conditional

volatility of the excess returns is inversely related with the volatility parameters in the process of

the economic fundamentals. As a result, a large volatility of the excess returns occurs even with

small uctuations in the economic fundamentals, which is consistent with an empirical fact (see

Schwert (1989)). This volatility feature can be explained in the following way. When the volatility

of the economic fundamentals is low, the investor obtains precious information on the states, thus

their beliefs tend to be updated frequently. These frequent changes in beliefs repeatedly shift the

excess holding period returns, thus resulting in a large volatility. This point addresses the e�ect of

monetary policy conduct on term structure volatility. That is, erratic monetary policy, i.e., higher

variance of money supply shock, does not necessarily lead to greater volatility of either interest

2For examples of regime-switching interest rate models, see Hamilton (1988), Sola and Dri�ll (1994), Gray
(1996), Bekaert, Hodrick, and Marshall (2001), Ang and Bekaert (2002a), Bansal and Zhou (2002), Evans (2003),
and Guidolin and Timmermann (2007).
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rates or term premia.

Most of the existing term structure literature consists of models of real bond prices and relies

on an exogenous process for ination and the Fisher equation to obtain nominal bond returns.

However, the Fisher equation itself may not hold when ination is stochastic.3 A few papers model

continuous time nominal bond prices in equilibrium. For instance, Bakshi and Chen (1996) have

developed a monetary model that addresses the endogenous and simultaneous determination of the

price level and of the term structure of interest rates, both real and nominal. Money in the utility

function (MIUF) formulations are used as a method to incorporate money. They show that the

term structure of real versus nominal interest rates may have completely di�erent properties, which

contrasts with the Fisher framework. Buraschi and Jiltsov (2005) incorporate an endogenously

determined monetary policy and derive closed form solutions for the nominal term structure of

interest rates. Their empirical analysis �nds that the ination risk premium plays an important

role in accounting for rejections of the expectations hypothesis.4

The incorporation of incomplete information into asset pricing theory has been introduced in

the term structure literature. Dothan and Feldman (1986) are the �rst to examine the e�ects

of learning on real bond prices. They demonstrate that, in contrast to a complete information

economy, high volatility of interest rates is not necessarily implied by a highly volatile investment

opportunity set. Stulz (1986) models the e�ects of uncertainty on monetary policy on the nominal

short rate, �nding that this type of uncertainty leads to a higher volatility of the nominal short rate.

Those papers assume similar learning processes characterized by continuous-time Kalman �ltering

in which the unobservable drift of a state variable follows a Gaussian di�usion and is characterized

by a large number (a continuum) of states. In such �ltering problems, the conditional variance of the

investor's estimates evolves deterministically and converges to a constant. Instead, David (1997)

develops a CIR-type model in which the growth opportunities of �rms can switch between two

3Evidence against the Fisher equation is found in Evans (1998) and Buraschi and Jiltsov (2005). Applying the
CIR type term structure model in a monetary economy, Lioui and Poncet (2004) found that ination uncertainty
results in non-neutrality of money.

4There are several monetary models in discrete time to explain term structrure dynamics. Ang and Piazzesi
(2003) relate term structure dynamics using factor models to macro variables. Ellingsen and S�oderstr�om (2001),
Rudebusch and Wu (2004), and Gallmeyer, Holli�eld and Zin (2005) incorporate monetary policy rules into term
structure models.
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distinct values and investors have to infer the unobservable current growth rate. In this �ltering

process, the estimation error exhibits stochastic variation over time.5 With the �ltering process

applied in David (1997), Veronesi and Yared (1999) introduce a partial equilibrium model of the

term structure under the assumption that real consumption and the commodity price follow a joint

log-normal process with unobservable discrete drift rates.6

My research contributes to the term structure literature in several ways. First, among the models

with incomplete information using the �ltering process that generates stochastic estimation errors,

my model is the �rst to endogenously derive the commodity price level, nominal bond prices, and the

process of the investor's beliefs. A monetary model of Bakshi and Chen (1996), in which economic

fundamentals follow a joint stochastic process with constant parameters, can be recovered as a

special case. In Veronesi and Yared (1999), money plays no role. As matter of fact, money is found

to a�ect the term structure in the US market, robust to monetary policy regimes for both pre- and

post-1979 samples of data.7 For example, Ireland (2004) presents empirical evidence supporting the

inclusion of money growth in the interest rate rule for monetary policy. His estimation is the result

of a New Keynesian model showing that money growth helps predict the target nominal short rate.

Additionally, Hur (2005) shows negative relationships between the past history of money growth

rate (M1) and yields of various maturities, con�rming the presence of the short-run liquidity e�ect.

Second, my model incorporates stochastic time-variation in instantaneous growth rate volatilities

and correlations between fundamentals, thus producing time variation in precautionary savings and

in asset pricing functions. Moreover, the speed of learning is allowed to change over time due to the

changing quality of the information content of signals. None of the previous papers on incomplete

information incorporates time-variation in volatility of economic fundamentals, although it is widely

5In a Lucas-type economy, Veronesi (2000) demonstrates that the equity premium tends to increase if the agent
receives more precise signals on the unobserved growth rate of dividends.

6Extending homogeneous belief setting, Basak (2005) studies a pure-exchange economy where investors have
heterogeneous beliefs about the expected growth rates of economic fundamentals.

7The Federal Reserve announced a change in operating procedures from the federal funds rate to nonborrowed
reserves as the operating target in October 1979.
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known that the conditional volatility of �nancial and macroeconomic variables is time-varying.8

The remainder of the paper is organized as follows. Section 2 presents a model where a represen-

tative agent uses money for transaction purposes. Section 3 introduces unobservable time-varying

mean growth rates of economic fundamentals. In this incomplete information economy, the dynamic

process of investors' beliefs is characterized, and commodity and nominal discount bonds are priced.

Section 4 analyzes the properties of the term premium, the conditional volatility of excess holding

period returns on nominal bonds, and the nominal short rate. Section 5 concludes the paper.

2 The model

This section presents a continuous-time variation of Lucas' (1978) pure-exchange economy in which

a single representative agent has a preference over consumption of a non-storable good and wishes

to hold �at money for transaction purposes. The following assets are traded: one risky nominal

stock in unit exogenous supply and n maturities of nominal default-free discount bonds in zero net

exogenous supply. The risky stock is a claim to an exogenous ow of dividends paid in cash. The

nominal bonds pay one dollar at maturity in cash, which involve ination risks. The investor selects

consumption and the fraction of wealth to be invested in the stock and in nominal bonds in order

to maximize a time-separable, power utility function. In equilibrium, the representative investor

consumes dividends paid by the risky asset and invests their whole wealth in the stock. This way,

equilibrium nominal bond prices and commodity price are endogenously determined.

2.1 The stochastic processes of economic fundamentals

Assumption 1 (Exogenous stochastic processes): There are two fundamental variables in the

economy, real output y(t) and money supply M s(t). They follow the stochastic processes:

dy(t) = �(t)y(t)dt+ �y(t)y(t)dZy(t), with y(0) = y0 > 0, (1)

8See Schwert (1989) for empirical evidence for time-varying volatility of a variety of economic variables and
Bollerslev, Chou, and Kroner (1992) for a survey of ARCH models. Lee (1995) found that based on a monetary
equilibrium model the volatility of industrial production and money supply a�ects the term structure of interest
rates.

5



dM s(t) = �(t)M s(t)dt+ �M(t)M
s(t)dZM(t), with M

s(0) =M s
0 > 0, (2)

where fZy(t), ZM(t)g are two-dimensional Brownian motions under a complete probability space

(
, P , F) with instantaneous correlation �(t) (j�(t)j � 1). �(t), �(t), �y(t), �M(t), and �(t) are

exogenously speci�ed bounded Markovian processes. I assume that all necessary and su�cient

conditions hold so that all the stochastic di�erential equations have a unique strong solution f(y(z),

M s(z)); F(z)g0�z�t, where fF(z)g0�z�t is a �ltration of F .9 This economy has several distinctive

features. For instance, the money supply management by the monetary authority is taken as

exogenous. Monetary policy, measured by money supply, is related to the real output representing

the real side of the economy. This is because the real output growth rate and the money growth

rate are correlated due to non-zero correlation of their means and volatilities. Bakshi and Chen

(1996) consider the similar processes of real output and money supply with complete information.

2.2 The optimization problem

Based on the stochastic processes of economic fundamentals (1) and (2), an investor solves an

optimization problem described as follows.

Assumption 2 (Preferences): There exists a representative investor who maximizes expected

utility with preferences given by:

E
�Z 1

0
e��tU (c(t);m(t)) jF(0)

�
dt, (3)

where � is the subjective discount rate, c(t) is the amount of time-t consumption. m(t) �
�
Md(t)
P (t)

�
is the real money demand, where Md(t) is time-t nominal money demand and P (t) is the price of

the consumption good. Furthermore, the time-t utility function is twice continuously di�erentiable,

increasing and concave in both real money demand and consumption, such that Uc > 0, Um > 0,

Ucc < 0, Umm < 0, UccUmm � (Ucm)2 > 0, with the subscripts on U denoting partial derivatives.10

9The necessary and su�cient conditions hold if the coe�cients satisfy Lipschitz and growth conditions (see Liptser
and Shiryaev 2000, p. 134-135).
10Sidrauski (1967) originally establishes a monetary model that puts real balances in the utility function. Feenstra

(1986) shows that this way of incorporating money in the utility function is equivalent to assuming that money
holdings create a transaction service.
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Let S(t) be the time-t price of the stock, and let B(t; �j) the time-t price of a �j-maturity nominal

bond. Let �(t) be the number of equity shares in the investor's portfolio, and �j(t) the number

of units held of the �j-maturity nominal bond. The investor's optimization problem is to select

fc;Md; �; �1; :; �ng in order to maximize the expected utility (3) subject to the budget constraint

dW (t) = (dS(t) + P (t)y(t)dt)�(t) +
nP
j=1
dB(t; �j)�j(t)� P (t)c(t)dt� dMd(t), (4)

where W (t) is the time-t wealth in nominal terms. Because aggregate output is perishable and

exogenous, in equilibrium the rational investor must consume the entire real output (dividends) at

each time: c(t) = y(t). In equilibrium, money supply M s(t) and money demand Md(t) must be

equalized at each point in time: M(t) � M s(t) = Md(t). To �nance this consumption/money-

holding plan, the equilibrium portfolio policy then becomes �(t) = 1; and �j(t) = 0 for j = 1; :::; n.

2.3 Commodity and bond prices in equilibrium

In a continuous-time pure exchange economy, Bakshi and Chen (1996) show that the value of bonds

depends only on the exogenous output and money processes subject to transversality conditions.

In my economy, one transversality condition ensures the existence of an interior optimum, when

deriving equilibrium commodity and bond prices:

e��TE

"
Uc(y(T );m(T ))

Uc(y(t);m(t))

1

P (T )
jF(t)

#
T!1! 0. (5)

If this transversality condition does not hold, investors are expected to obtain positive discounted

(real) values from holding cash at any future time without consuming at a current time. Hence

it is possible that they do not consume at a current time, and thus interior solutions may not be

achieved.

Subjected to the transversality condition, the valuation of assets can be performed without

facing the di�culty of a nonlinear Bellman equation. Applying Bakshi and Chen's (1996) pricing

equation to the pure-exchange monetary economy, the time-t equilibrium commodity price level

satis�es

1

P (t)
= E

"Z 1

t
e��(z�t)

Um(y(z);m(z))

Uc(y(t);m(t))

1

P (z)
dzjF(t)

#
. (6)
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The intuition behind this condition is that the real value of one dollar of cash 1
P (t)

is, in equilibrium,

equal to the total discounted value of future marginal bene�ts resulting from saving one unit of

cash. Notice that Um=Uc represents the marginal rate of substitution between consumption and

real cash holding, and it can be viewed as the marginal bene�t of holding one additional unit of

cash. Thus, in equilibrium, the marginal cost of holding a cash, or the nominal interest rate, must

equal the marginal bene�t Um=Uc. In equilibrium, the time-t prices of the nominal discount bond

B(t; �) are:

B(t; �) = e���E

"
Uc(y(t+ �);m(t+ �))

Uc(y(t);m(t))

P (t)

P (t+ �)
jF(t)

#
. (7)

The pricing formula for the nominal bond implies that its price is the conditional expectation of

the discounted value of one unit of cash paid at maturity, relative to the current discounted value

of one unit of cash.

Next, a speci�c form of the utility function is presented in order to obtain more explicit repre-

sentations for commodity and bond prices. For this purpose, assume that the representative agent

has nonseparable Cobb-Douglas preference in which real cash balances enter directly. This money-

in-the-utility-function formulation (MIUF) captures a more general role of liquidity service than a

cash-in-advance (CIA) constraint. In addition to o�ering transaction motives for holding money,

the MIUF captures precautionary and store-of-value demands for money.

Assumption 3 (Utility function): The utility function is given by

U(c(t);m(t)) =
1

1�  [c(t)
�m(t)1��]1�, (8)

where 0 < � < 1, 0 < .11

The parameter  characterizes the coe�cient of relative risk aversion over the composite good

c(t)�m(t)1�� while 1

represents the elasticity of intertemporal substitution. The parameter �

measures the weight of consumption in the utility function. When � = 1, money holdings do not

provide any transaction services. Notice that for  = 1, the Cobb-Douglas form becomes a separable

11These restrictions on the parameters guarantee increasing and concave features of the utility function.
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logarithmic utility:

U(c(t);m(t)) = � ln c(t) + (1� �) lnm(t). (9)

This separable utility implies that the real balances do not a�ect the marginal utility of consumption

and that consumption does not a�ect the marginal utility of real balances.

3 Learning under incomplete information

Assume that the investor operates under incomplete information about the mean growth rates of

real output and money supply. In this setting the investor's choice problem can be solved in two-

stages. In the �rst stage, the unobserved mean growth rates are estimated. The optimal mean

square estimate is an expectation, conditional on all past realizations of real output and money

supply. In the second stage, employing the estimated mean growth rates, the investor solves their

portfolio problem.12

3.1 The Dynamics of Investors' Beliefs

In this subsection, the dynamics of investors' beliefs are derived. The following results are closely

related to those in Veronesi and Yared (1999), in which signals stem from dividends and the com-

modity price level.

Let s(t) be an index function taking values on the set f1; 2; :::; Ig so that �(t) = �1 and �(t) = �1

when s(t) = 1, �(t) = �2 and �(t) = �2 when s(t) = 2,..., �(t) = �I and �(t) = �I when s(t) = I.

Assumption 4 (Mean growth rates): The investor cannot observe the expected growth rates,

�(t) and �(t). The investor only knows that �(t) can take any of I possible values �1 <

�1; �2; :::; �I < 1 and �(t) can be any of I possible values �1 < �1; �2; :::; �I < 1. �(t) and

�(t) are assumed to follow a joint Markov chain process whose transition probabilities within an

in�nitesimal period � are given by

Pr(s(t+�) = i
0js(t) = i) =

(
1 + �sii�, for i = i

0

�s
ii0
�, for i 6= i0

)
. (10)

12This two-stage optimization procedure is proven viable by Dothan and Feldman (1986).
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Let �s be the in�nitesimal matrix of the Markov chain process so that [�s]ii0 = �
s
ii
0 . Notice that

�sii = �
P
i0 6=i
�s
ii0
for i = 1; :::; I. For i = i

0
, 1 + �s

ii0
� gives the probability of state i0 at time t + �

given state i at t. And, for i 6= i0 , �s
ii0
� gives the probability of state i0 at time t+� given state i

at t.

Assumption 5 (Growth rate volatility): The investor knows that the di�usion parameters �y(t),

�M(t), and �(t) can take any values such that 0 < �y1; �y2; :::; �yJ <1, 0 < �M1; �M2; :::; �MJ <1,

�1 � �1; �2; :::; �J � 1. J denotes the total number of the values of �y(t), �M(t), and �(t). More

important, the investor can observe the true current values of these parameters. The instantaneous

volatility and correlation coe�cients �y(t), �M(t), and �(t) are assumed to follow a joint Markov

chain process whose transition probabilities within an in�nitesimal period � are given by

Pr(v(t+�) = j
0jv(t) = j) =

8<: 1 + �vjj�, for j = j
0

�v
jj
0�, for j 6= j 0

9=; , (11)

where v(t) is an index function taking values in the set f1; 2; :::; Jg with �y(t) = �y1, �M(t) = �M1,

�(t) = �1 when v(t) = 1, �y(t) = �y2, �M(t) = �M2, �(t) = �2 when v(t) = 2, and so on. Call

[�v]jj0 � �vjj0 the in�nitesimal matrix of the Markov chain process. Notice that �
v
jj = �

P
j0 6=j

�v
jj0
for

j = 1; :::; J .

From Assumptions 4 and 5, the investor's information set consists of F 0
(t) = fy(z);M s(z);

�y(z); �M(z); �(z)g0�z�t and F
0
(t) � F(t) so that processes f�(t), �(t), Zy(t), ZM(t)g are adapted

to F(t), but not to F 0
(t) due to the unobservability of the drift rates. Although the assumption of

observability of the volatility and its correlation is for analytical tractability only, Merton (1980)

claims that under an Itô process such as (1) and (2), the volatility of the process can be estimated

far more accurately than the expected value. In addition, judging from the success of modeling

volatility dynamics by means of GARCH processes shown in Bollerslev, et al. (1992), the volatility

may be accurately estimated.

Assumption 6 (Independence): The joint Markov processes of �(t) and �(t), and of �y(t), �M(t)

and �(t) are independent. This assumption implies that information on second moments gives no

direct information on the means.

Assumption 7 (Filtering rule): The investor uses Bayes' Law to update her beliefs regarding

10



the current state of the fundamentals' growth rates in the economy.

Under Assumptions 4-7, Proposition 1 presents the stochastic process followed by the investor's

beliefs.

Proposition 1:

(1) The investor's information set, F
0
(t) = fy(z);M s(z); �y(z); �M(z); �(z)g0�z�t is equivalent to

fy(z);M s(z)g0�z�t: In other words, the investor correctly estimates the current volatility parameters

using data for the fundamentals.

(2) Let �i(t) be the representative investor's posterior probability that the state of expected growth

rates is s(t) = i at time t, conditional on their information F
0
(t):

�i(t) = Pr(s(t) = ijF
0
(t)). (12)

Then, �i(t) is the solution of a I-dimensional system of stochastic di�erential equations,

d�i(t) =

 
IP
l=1
�l(t)�li

!
dt

+
�i(t)q
1� �(t)2

24�i �my(t)

�y(t)
+

q
j�(t)j (�i �mM(t))q

�y(t)�M(t)

35 d eZ1(t)
+

�i(t)q
1� �(t)2

24
q
j�(t)j (�i �my(t))q
�y(t)�M(t)

+
�i �mM(t)

�M(t)

35 d eZ2(t) i = 1; :::; I, (13)

where my(t) =
IP
i=1
�i�i(t), mM(t) =

IP
i=1
�i�i(t):

n eZ1(t); eZ2(t)o are independent Brownian motions
adapted to F 0

(t), in other words, they are observable to investors.

According to equation (13), the investor's beliefs follow a two-factor Itô process with mean-reverting

drift terms and stochastic volatility terms. There are two important remarks concerning the sto-

chastic processes of investor's beliefs. According to an argument in Veronesi (2000), information

quality is measured as the inverse of the instantaneous volatility term. When information about

the real output and money supply is of good quality, the noise terms in (1) and (2) are apt to

be small. Therefore, the investor quickly learns the state of the economy. Conversely, learning is

slow if instantaneous volatilities are large. The volatility coe�cients change over time in my model.
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Consequently, the speed of learning also changes over time. Next, the investor's attitudes toward

risk do not a�ect beliefs because the investor's choice problem is conducted in two separate stages.

A simple example intuitively shows the properties of the belief process. Suppose there are two

possible states and there is no instantaneous correlation between the real output and money growth

rates, �(t) = 0. Let �(t) = Pr(s(t) = 1jF 0(t)). Equation (13) can then be written as

d�(t) = (�s12 + �
s
21)

" 
�s21

�s12 + �
s
21

!
� �(t)

#
dt

+�(t)(1� �(t))
" 
�1 � �2
�y(t)

!
d eZ1(t) +

 
�1 � �2
�M(t)

!
d eZ2(t)

#
. (14)

This updating process has two parts. The �rst part shows that the process is mean-reverting. In

the long run, the belief converges to
�s21

�s12+�
s
21
, which is the unconditional probability of the �rst state.

The second part is the sum of the product of the information weights (�(t)(1 � �(t))
�
�1��2
�y(t)

�
and

�(t)(1��(t))
�
�1��2
�M (t)

�
) and new information on the economic fundamentals (d eZ1(t) and d eZ2(t)). The

information weights are at their peak when the investor is more uncertain about current economic

states, i.e. � is close to 0:5. If this is the case, the investor is more likely to revise their beliefs after

receiving new information on fundamentals. On the other hand, when the investor is con�dent on

the identity of the current regime (� � 0 or 1), they will not signi�cantly change their beliefs. For

the same reason, the investor tends to change their beliefs slowly in response to new information

when signals are very noisy, i.e. �y(t) and �M(t) are large. The more each state is signi�cantly

di�erent from other states (j�1 � �2j or j�1 � �2j is larger), the better are the investors' chances to

correctly �gure out the current state.

Under optimally �ltered beliefs, the investor computes the expected growth rates at time t as:

my(t) � E(�jF
0
(t)) =

IP
i=1
�i�i(t), mM(t) � E(�jF

0
(t)) =

IP
i=1
�i�i(t). (15)

Therefore, to the investor's perception the real output process and the money supply process become

dy(t) = my(t)y(t)dt+ �y(t)y(t)d eZ1(t) +qj�(t)j�y(t)�M(t)y(t)d eZ2(t), (16)

dM s(t) = mM(t)M
s(t)dt+

q
j�(t)j�y(t)�M(t)M s(t)d eZ1(t) + �M(t)M s(t)d eZ2(t). (17)

All coe�cients and the two Brownian motions are adapted to the investor's information set F 0(t).
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3.2 The Equilibrium prices of the commodity and of the nominal bonds

Under Assumptions 1-7, it follows that:

Proposition 2: The equilibrium price of the commodity is

P (t) =
�

�

1� �

� 
M(t)

y(t)

! 
IP
i=1

JP
j=1
Aij�i(t)1(v(t) = j)

!�1
, (18)

where 1(:) is an indicator function, and the Aijs are positive constants satisfying the following system

of equations: 
��sii � �vjj + �� (1� )�i +

(1� )
2

�2yj + �i � �2Mj
+ (1� )�j�yj�Mj

!
Aij +

�P
l 6=i
�silAlj �

P
n6=j
�vjnAin = 1. (19)

From price formula (18), the commodity price is a�ected by the current levels of real output, showing

that an increase in real output reduces the commodity price: When output increases and money

supply is �xed, one unit of money can purchase more commodities, thus leading to an increase in

the value of money and a decline in the good price. Additionally, (18) states that the money supply

is directly proportional to the commodity price. This can be explained by the fact that liquidity

in the economy increases with money supply so that demand for the commodity increases. As a

result, the commodity becomes more expensive. By (18), the investor's beliefs also a�ect the good

price, which is higher when the belief gives more weight on a lower value of Aij:

The time-t velocity of money V el(t) can be derived from (18):

V el(t) =
�

�

1� �

� 
IP
i=1

JP
j=1
Aij�i(t)1(v(t) = j)

!�1
. (20)

The velocity formula (20) reveals that the beliefs and the growth rate volatilities a�ect the velocity

of money.
�

�
1��

�
( 1
Aij
) can also be interpreted as the state-dependent velocity of money. To see

further implications for the velocity, I impose an assumption that the means and volatilities of the

growth rates do not change frequently and there is no correlation between them, that is, �sil � 0,

for i; l = 1; :::; I, and �vjn � 0, and �j = 0 for j; n = 1; :::; J . Under this assumption, the velocity of
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money has a closed-form expression:

V el(t) =
�

�

1� �

�
IP
i=1

JP
j=1

 
�� (1� )�i + �i +

(1� )
2

�2yj � �2Mj

!
�i(t)1(v(t) = j). (21)

This velocity equation o�ers some implications. First, the velocity of money is positively related to

the mean growth rate of money. Suppose that the consumer expects the mean money growth rate

to increase: Due to a hedging e�ect, the current demand for money falls, which means the velocity

rises. The beliefs on the mean money growth rate also a�ects the velocity. From the equation,

the velocity increases when investors think the mean growth rate is higher. Second, an increase in

the volatility of the money growth rate reduces the velocity, which is consistent with a �nding in

Friedman (1983). He shows that increases in the volatility of money growth increases the level of

money stock relative to nominal income due to precautionary purposes. As a result, the velocity

decreases.13. Lastly, the e�ects of the mean and the volatility of the output growth rate depend on

the investor's attitude towards risk, . If the hedging motive dominates ( > 1), the e�ect of the

mean and the volatility of output growth rate are similar to money growth rate. However, if the

substitution motive dominates ( < 1), the e�ect has the opposite sign. When  = 1, the velocity

is unrelated to the parameters in the real output process since the utility function has a separable

form in output and real balances.

Proposition 3: Under Assumptions 1-7, the nominal price for a � -maturity zero-coupon bond is

given by

B(t; �) =
IP
i=1

JP
j=1
Bij(�)�i(t)1(v(t) = j), (22)

where the positive constants Bij(�) are given by

Bij(�) = E

"
e���

Uc(y(t+ �);m(t+ �))

Uc(y(t);m(t))

P (t)

P (t+ �)
js(t) = i; v(t) = j

#
. (23)

The parameter values are subject to the following condition:

�� (1� )�i +
(1� )

2
�2yj + �i � �2Mj

+ (1� )�j�yj�Mj
> 0, for i = 1; ::; I and j = 1; ::; J .

(24)

13Applying a multivariate GARCH-M model of money growth and velocity, Serletis and Shahmoradi (2006) found
that the variability of money growth (M2) contains information in predicting the velocity over the pre- and post-
October 1979 periods. An increase in the current volatility of M2 growth will decrease the velocity in the following
two (month) periods.
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fBij(�)gi=1;::;I; j=1;::;J represent the investor's expectation on the relative discounted value of one unit

of cash paid at maturity, conditional on the state (value) of the means, volatilities and correlation

of growth rates. I call Bij(�) the state-dependent price of nominal bonds. Condition (24) rules out

negative state-dependent prices as well as negative Aij. These state-dependent prices depend on

maturity, but not on time. A large Bij(�) implies that the investor is willing to pay a high price for

one unit of cash at maturity, relative to a unit of cash in state i; j. From equation (22), the prices

of nominal bonds are shown as weighted averages of the state-dependent prices, Bij(�); and the

weights are given by the beliefs. Time-dependence in prices arises from the dynamics of investor's

beliefs and the dynamics of the instantaneous volatility and the correlation coe�cients. In turn,

these coe�cients also a�ect the evolution of prices through the investor's belief, as can been seen

in the belief equation (13).

Proposition 4:

The instantaneous nominal interest rate is given by

R(t) =
IP
i=1

JP
j=1
hij�i(t)1(v(t) = j), (25)

where

hij = �� (1� )�i +
(1� )

2
�2yj + �i � �2Mj

+ (1� )�j�yj�Mj
> 0 for any i and j. (26)

According to equation (25), the time-variation in the nominal short rate arises from changes in the

investor's beliefs and the covariances of the growth rates of real output and money. Equation (26)

implies that the state-dependent short rate is a function of parameters in the utility function and

the stochastic process of real output and money. The short rate is increasing with the discount

rate and the mean growth rate of money and decreasing with the volatility of the money growth

rate. Also, if investors are su�ciently risk-averse, namely,  > 1, the short rate increases with

the mean growth rate of real output and decreases with the volatility of the output growth rate.

These comparative static properties are supported by the following intuition. When the subjective

discount rate is higher, the consumer favors less future consumption or less future real balances,

thus they demand more bonds. Moreover, a more risk-averse investor prefers to diversify their
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consumption and money over time and also prefers a small amount of uncertainty regarding the

economy. Hence, when the mean output and money growth rates fall or the volatility of the output

and money growth rates rise, the current demand for the (risk-free) bond increases, that is, its

return decreases. These e�ects are strengthened by increasing investor's risk aversion. (25) also

shows that the state-dependent short rate and the mean growth rate of real output (consumption)

are perfectly positively correlated when  > 1. In other words, the state-dependent short rate is

always higher at business cycle peaks than at troughs. If the investor has logarithmic utility, the

nominal rate is independent of the real output growth rate.

4 Properties of the term premium, the conditional volatil-

ity and the short rate

In this section I explore the implications for the ex ante term premium of nominal bonds, for the

conditional volatility of excess holding period returns on nominal bonds, and for the nominal short

rate.

4.1 Term premium for nominal bonds

Applying Itô's formula to the bond price (22) and the short rate (25), I derive the conditional mean

of the instantaneous excess returns on nominal bonds as:

1

dt
E

"
dB(t; �)

B(t; �)
�R(t)dtjF 0

(t)

#
=

1

B(t; �)

"
IP
i=1

JP
j=1
Bij(�)(hij �R(t))1(v(t) = j)�i(t)

+
IP
i=1

P
j;k
(Bij(�)1(v(t) = j)�Bik(�)1(v(t�) = k))�i(t)

#
,
(27)

where v(t�) denotes limits from the left. This ex ante term premium contains the continuous-

time and discontinuous-time parts that arise from the investor's beliefs and jumps in the growth

volatilities, respectively. Assume that the mean and volatility of the growth rates take two possible

values, so that I = 2 and J = 2. With this assumption, the continuous-time part has the following

expression when v(t) = 1:
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(h11 � h21)(B11(�)�B21(�))�1(t)�2(t)
B(t; �)

+ [B11(�)�B12(�)1(v(t�) = 2)] �1(t) + [B21(�)�B22(�)1(v(t�) = 2)] �2(t).
(28)

From this expression the sign of the continuous part of the term premium is determined by the sign

of (h11�h21)(B11(�)�B21(�)). Hence, for the term premium to be positive, the di�erences between

the state-dependent short rates and bond prices are required to have opposite signs. Additionally,

the absolute value of the term premium increases as these di�erences widen. Furthermore, assume

that the mean and the volatility of the growth rates do not change frequently so that �s12; �
s
21 � 0

and �v12; �
v
21 � 0. With this assumption, the continuous part of the term premium always becomes

negative because (h1j � h2j)(B1j(�)�B2j(�)) = (h1j � h2j)(e�h1j� � e�h2j� ) is negative. By taking

account of the e�ect of the discontinuous part, the term premium cannot be positive unless the state-

dependent bond prices, Bij are su�ciently di�erent across the states of the growth volatilities, j. In

addition, because jumps in the growth volatility rarely occur, the e�ect of the discontinuous-time

part on the term premium is small. As a result, it is likely the term premium will be negative for

any time and any maturity when the state does not change frequently and the number of states is

two.
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4.2 The conditional volatility of excess nominal bond returns

Itô's formula implies that the conditional volatility of the excess returns is of the form

d

dt
V ar

 
dB(t; �)

B(t; �)
�R(t)dtjF 0

(t)

!

=
1

[B(t; �)]2

8><>:
24 IP
i=1

JP
j=1

�i(t)q
1� �2j

0@�i �my(t)

�yj
+

q
j�jj (�i �mM(t))
p
�yj�Mj

1ABij(�)1(v(t) = j)
352

+

24 IP
i=1

JP
j=1

�i(t)q
1� �2j

0@
q
j�jj (�i �my(t))
p
�yj�Mj

+
�i �mM(t)

�Mj

1ABij(�)1(v(t) = j)
352

+
P
j 6=k

"
IP
i=1
(Bij(�)�Bik(�))�i(t)1(v(t) = j)

#2
�vkj

9=; . (29)

Equation (29) gives several implications. First, the model captures GARCH e�ects, or volatility

clustering, and identi�es the sources of GARCH in the investor's beliefs that exhibit mean reversion.

Time-variations in the conditional volatility also stem from random shocks (conditional volatility

in the growth rates). The �rst two terms on the right hand side of the conditional volatility result

from the unobservability of the mean growth rates. On the other hand, the last term arises from

(observable) time-varying volatility of growth rates.14 Second, unlike the ex ante term premium,

the conditional volatility contains no jump. Finally, the conditional volatility of the excess returns

and the volatility parameters of the economic fundamentals are inversely related. Consequently,

the volatility of the excess returns can be large although macro variable volatility is small, which

has been noticed by Schwert (1989). This fact suggests that interest rates can be stable even in

a volatile period of monetary policy. In order to con�rm the inverse relationship between noise

parameters in economic fundamentals and the conditional volatility of bond returns, Panel A of

Figure 1 plots the conditional volatility (29) for the calibrated parameter reported in Table 1.

This �gure o�ers insightful observations. First, it highlights the inverse relationship between the

conditional volatility of term premium and macroeconomic growth. Second, the �gure shows that

14If mean growth rates are observable, �i �my(t) = �i �mM (t) = 0 for all i and the �rst two terms vanish. If
volatility is constant, �vkj = 0 for k 6= j and the last term vanishes.
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the conditional volatility of bond returns is largest at the point of maximum uncertainty, �(t) = 0:5:

In other words, the more uncertain on economic conditions the investor is, the more volatile the

bond market becomes. Let us next look at the impact of risk aversion on the volatility of term

premium. Panel B of Figure 1 plots the conditional volatility in relation to investor's belief given the

value of the coe�cient of relative risk aversion, : In this �gure, given an investor's beliefs about the

mean growth rates of real output and money the conditional volatility monotonically increases with

, implying that the investor's risk attitude and beliefs independently a�ect volatility. This result

should not be surprising due to the two-stage optimization process (the estimation of unobservable

mean economic growths and the maximization of utility).

4.3 The nominal short rate

Next, applying Itô's formula to the short rate (25) gives the process of the short rate:

dR(t) =
IP
i=1

JP
j=1
hijd�i(t)1(v(t) = j) +

IP
i=1

P
j;k
(hij1(v(t) = j)� hik1(v(t�) = k))�i(t); (30)

where v(t�) denotes limits from the left.

The stochastic process of the short rate is given by the sum of two terms. The �rst term arises

from learning e�ects, resulting in smooth changes in the short rates. This term can be represented

as a Markov switching process, which is somewhat similar to the regime switching model of Ang

and Bekaert (2002b). While Ang and Bekaert (2002b) exogenously specify the regimes in the level

of short rate, the short rate regimes in the incomplete information model are derived by the regimes

in the mean growth rates in real output and money supply. The belief process (13) demonstrates

that the instantaneous volatility of beliefs becomes larger as the investor becomes more uncertain

about the economic states. If the uncertainty is small when the mean real output growth is high

(this is possible if the mean and the volatility of the real output growth are negatively correlated),

then the conditional volatility of the short rates is negatively correlated with the mean growth

rate or business cycle. This negative correlation has been empirically observed by Den Haan and

Spear (1998), who explain this short rate property introducing �nancial frictions quanti�ed using

the spread between borrowing and lending rate into their equilibrium model. On the other hand, I
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have shown that the investor's beliefs may represent an alternative key to understand this feature

of the conditional short rate volatility over the business cycles.

The second term is driven by jumps in the volatility of growth rates in which the jump size is

also stochastic. According to Das (2002), jump processes o�er a good empirical description of the

short rate behavior, which cannot be explained by i.i.d. Gaussian models. He claims the jumps are

caused by surprises in information releases, such as economic news announcements. However, in

the incomplete information model, jumps in short rates are endogenously determined by discrete

shifts in economic fundamentals. In sum, the stochastic processes of the short rate in incomplete

information (30) can be recognized to belong to the class of jump models mixed with Markov

switching processes.

5 Conclusion

In this paper I have developed a dynamic equilibrium model of the term structure of nominal

interest rates for a monetary economy with incomplete information. In this economy, investors

cannot observe the mean growth rates of fundamentals. Therefore, they infer the current state

of the drift coe�cients by Bayes' rule. Closed form solutions for bond prices and a commodity

price have then been derived. The dynamic properties of prices depend on investors' beliefs on the

current state and random shocks to fundamentals. An interesting feature in the model is that a

GARCH e�ect in excess bond returns results from time-variations in beliefs. In addition, calibrating

the model for US output and money supply data shows that the conditional volatility of a bond

return is maximum when investors are most uncertain about economic fundamentals. The model

also implies that noisy monetary policy can decrease the volatility in bond markets.

The incomplete information model in this paper o�ers superior tractability for pricing several

asset classes. First, the model can be used to infer structural parameters from real interest rates.

Evans (1998) discusses several stylized facts regarding indexed bonds in the UK market. It would be

useful to check whether the model can replicate these empirical �ndings, some of which di�er from

those of nominal rates. For instance, the UK real term structure is, on average, downward sloping
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and the real long-term rates appear to be highly stable. Furthermore, the analysis in this article can

be applied to price stocks. For instance, the relationship between stock returns and ination and

between stock returns and bond returns could be investigated. There are some intriguing empirical

�ndings on these issues. For instance, Fama (1981) has found a negative relation between stock

returns and ination. Shiller (1982) has stressed the failure of bond prices to move with stock

prices.

21



Appendix

1. Proof of Proposition 1

Theorem 7.17 in Liptser and Shiryayev (2000, p. 286) presents explicit equations of optimal �ltering

when an unobservable process takes discrete values. David (1997), Veronesi (2000), and Veronesi

and Yared (1999) apply the theorem in case of constant di�usion terms. I extend the case of

constant di�usion terms to stochastic di�usion terms, described in Assumption 5 (Growth rate

volatility). To apply the theorem on optimal �ltering in Liptser and Shiryayev (2000) I need to

show that the stochastic di�usion terms are adapted to F 0
(t) = fy(z);M s(z)g0�z�t, that is, the

current di�usion terms are observable to investors. Indeed, the quadratic variation of the process

(1) and (2) gives correct current di�usion terms. Hence, Theorem 9.1 in Liptser and Shiryayev

(2000, p. 355) can be applied in the stochastic di�usion case, obtaining the required di�erential

equation (13) in Proposition 1.

2. Proof of Proposition 2

From the equilibrium condition for the commodity price (6) and investors' utility function (8),

1

P (t)
=
�
1� �
�

� 
y(t)

M(t)

!
IP
i=1

JP
j=1
�i(t)1(v(t) = j)� E

�Z 1

t
e��(z�t) :

�
 
y(z)

y(t)

!�(1�)  
M(z)

M(t)

!���(1��)  
P (z)

P (t)

!(1��)(1�)
dzjs(t) = i; v(t) = j

35 .
(A.1)

Next, guess the functional form of the commodity price in the following way,

1

P (t)
= By(t)aM(t)b

 
IP
i=1

JP
j=1
Aij�i(t)1(v(t) = j)

!c
, (A.2)

where a, b, c, B and Aij are indeterminate coe�cients. Substituting (A.1) into (A.2) and comparing

both sides of the equation yields the coe�cients as follows:

a = 1, b = �1, c = 1, B = 1� �
�

, Aij = E

"Z 1

t

f(z)

f(t)
dzjs(t) = i; v(t) = j

#
, (A.3)

where f(t) � e��ty(t)1�M(t)�1
 

IP
l=1
Alj�l(t)

!(1��)(1�)
.
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A system of equations for Aij (19) will be derived in the following manner. First, let Vij(t) (� Aij)

be

Vij(t) = E

"Z 1

t

f(z)

f(t)
dzjs(t) = i; v(t) = j

#

= E

"Z t+�

t

f(z)

f(t)
dzjs(t) = i; v(t) = j

#
+ E

"Z 1

t+�

f(z)

f(t)
dzjs(t) = i; v(t) = j

#
, (A.4)

and � denotes an in�nitesimal interval, the limit of which will be taken as � ! 0 below. The

discontinuous vector processes s(t) and v(t) are assumed to be right-continuous. Thus, the proba-

bility that a shift from one state to the other occurs in [t; t+�] is of order o(�). This means that

as �! 0, its probability of changing states goes to zero.

Next, I will evaluate the two conditional expectations in (A.4). For this, I will obtain the stochastic

process of f(t), given s(t) = i; v(t) = j. As explained above, s(t) = i and v(t) = j do not change

during the in�nitesimal period �. Thus, Pr(s(z) = i) = 1; and 1(v(z) = j) = 1 at any z in

[t; t + �]: With this result, the Bayes formula presented in Liptser and Shiryayev (2000, p. 314)

implies �l(t) = 1 for l = i and �l(t) = 0 for l 6= i during the small period of time. Hence, (in the

small period, given s(t) = i; v(t) = j) the processes of the three random variables, �l(t), y(t) and

M(t) are

d�l(t) = 0; for any l, (A.5)

dy(t) = �iy(t)dt+ �11jy(t) eZ1(t) + �12jy(t) eZ2(t), (A.6)

dM(t) = �iM(t)dt+ �21jM(t)d
eZ1(t) + �22jM(t)d eZ2(t), (A.7)

where �11j = �yj; �12j = �21j =
q
j�jj�yj�Mj; �22j = �Mj.

n eZ1(t); eZ2(t)o are independent Brownian
motions adapted to F 0

(t). Using (A.5)-(A.7) and applying Itô's formula to log f give

d log f =

"
�kij �

f�(1� )�11j + �21jg2
2

�
f�(1� )�21j + �22jg2

2

#
dt

+[�(1� )�11j + �21j ]d eZ1(t)� [�(1� )�21j + �22j ]d eZ2(t), (A.8)
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where

kij = �� (1� )�i +
(1� )

2
�2yj + �i � �2Mj

+ (1� )�j�yj�Mj
(A.9)

Taking the integral of the both sides of (A.8) from t to t+� gives

f(t+�)

f(t)
= exp

("
�kij �

f�(1� )�11j + �21jg2
2

�
f�(1� )�21j + �22jg2

2

#
�+

+
h
�(1� )�11j + �21j

i h eZ1(t+�)� eZ1(t)i
�[�(1� )�21j + �22j ]

h eZ2(t+�)� eZ2(t)io (A.10)

By applying Fubini's theorem and using (A.10), the �rst conditional expectation in (A.4) can be

written as

E

"Z t+�

t

f(z)

f(t)
dzjs(t) = i; v(t) = j

#
=

Z �

0
E

"
f(t+ h)

f(t)
js(t) = i; v(t) = j

#
dh

=
1� exp(�kij�)

kij
. (A.11)

In a similar manner, the second conditional expectation in (A.4) can be rewritten as:

E

"Z 1

t+�

f(z)

f(t)
dzjs(t) = i; v(t) = j

#
= exp(�kij�)

h
(1 + �sii�+ �

v
jj�)Vij(t+�)

+�
X
l 6=i
�silVlj(t+�) +�

X
n6=j
�vjnVin(t+�)

35 (A.12)

Substituting (A.11) and (A.12) into (A.4) and applying Taylor's theorem (Vln(t + �) = Vln(t) +

�V
0
ln(t) + o(�) where V

0
denotes the �rst derivative of V with respect of time t.) give

Vij(t) =
1� exp(�kij�)

kij
+ exp(�kij�)

n
(1 + �sii�+ �

v
jj�)Vij(t)

+�V
0

ln(t) + �
X
l 6=i
�silVlj(t) + �

X
n6=j
�vjnVin(t) + o(�)

9=; : (A.13)

Taking the limit �! 0 on (A.13) obtains the following di�erential equations

V
0

ij(t) = (��sii � �vjj + kij)Vij(t)�
X
l 6=i
�silVlj(t)�

X
n6=j
�vjnVin(t)� 1, for i = 1; :::; I and j = 1; :::; J .

(A.14)
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Because V does not directly depend on t (Remind Vij(t) = Aij just depends on states i and j),

V
0
ij(t) = 0. As a result, (A.14) can be rewritten as 
��sii � �vjj + �� (1� )�i +

(1� )
2

�2yj + �i � �2Mj
+ (1� )�j�yj�Mj

!
Aij

�
X
l 6=i
�silAlj �

X
n6=j
�vjnAin = 1. (A.15)

where i = 1; :::; I and j = 1; :::; J: By solving the system of linear equations (A.15), Aij can be

obtained.

3. Proof of Proposition 3

From the equilibrium condition for bond prices (7), investors' preference (8), and commodity price

(18), bond prices are given by

B(t; �) = e���E

"
Uc(y(t+ �);m(t+ �)

Uc(y(t);m(t))

P (t)

P (t+ �)
jF 0
(t)

#
=

IP
i=1

JP
j=1
Bij(�)�i(t)1(v(t) = j)

(A.16)

where

Bij(�) � E
"
Uc(y(t+ �);m(t+ �)

Uc(y(t);m(t))

P (t)

P (t+ �)
jF 0
(t)

#
(A.17)

Bij(�) can be interpreted as the state-dependent price of nominal bonds.

Let g(t) � e��ty(t)1�M(t)�1
"
IP
l=1

JP
n=1

Aln�l(t)1(v(t) = n)

#1+(1��)(1�)
: (A.17) can then be written

as

Bij(�) = E

"
g(t+�)

g(t)

g(t+ �)

g(t+�)
js(t) = i; v(t) = j

#
, (A.18)

where � is an in�nitesimal period of time. As in Proof of Proposition 2, s(t) = i; v(t) = j do not

change during the in�nitesimal period � so that in [t; t +�] the processes of �l(t), y(t) and M(t)

are given in (A.5)-(A.7). Then, applying Itô's formula to g(t); its stochastic process can be derived:

dg

g
= �h

ij
dt� �11jd eZ1(t)� �12jd eZ2(t), (A.19)
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where hij = �� (1� )�i+ (1�)
2
�2yj +�i��2Mj +(1� )�j�Y j�Mj; �11j = �yj; �12j =

q
j�jj�yj�Mj.n eZ1(t); eZ2(t)o are independent Brownian motions adapted to F 0

(t). Integrating the di�erential

equation (A.19) from t to t+� yields

g(t+�)

g(t)
= exp

(Z t+�

t
[�h

ij
ds� �11jd eZ1(s)� �12jd eZ2(s)]ds

)

= exp

(
[�h

ij
� (�11j)

2

2
� (�12j)

2

2
]�� �11j[ eZ1(t+�)� eZ1(t)]

��12j[ eZ2(t+�)� eZ2(t)]o : (A.20)

Taking the conditional expectation on (A.20) gives

E

"
g(t+�)

g(t)
js(t) = i; v(t) = j

#
= exp(�h

ij
�). (A.21)

Using the fact that g(t+�)
g(t)

and g(t+�)
g(t+�)

are independent and applying Taylor's theorem;

Bij(�) = E

"
g(t+�)

g(t)

g(t+ �)

g(t+�)
js(t) = i; v(t) = j

#

= E

"
g(t+�)

g(t)
js(t) = i; v(t) = j

#
E

"
g(t+ �)

g(t+�)
js(t) = i; v(t) = j

#

= exp(�h
ij
�)

"
Bij(�)��B

0

ij(�) + �
IP
l=1
�silBlj(�) + �

JP
n=1

�vjnBin(�)

#
+ o(�),(A.22)

where B
0
ij(�) denotes the �rst derivative of Bij(�) with respect of the term to maturity � . Taking

the limit on (A.22) as � �!1 and rearranging,

B
0

ij(�) = (�
s
ii + �

v
jj � hij)Bij(�) +

P
l 6=i
�silBlj(�) +

P
n6=j
�vjnBin(�) for i = 1; :::; I and j = 1; :::; J .

(A.23)

(A.23) represents the system of �rst-order di�erential equations for Bij(�) with constant coe�cients.

Writing (A.23) in vector form,

B
0
(�) = �B(�), (A.24)

where B(�) is a (I � J) vector and � is a (I � J)�(I � J) constant matrix. Note that the initial

condition for the di�erential equations is given by Bij(0) = 1 for any i and j. Hence, applying the
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solution method of the system of �rst-order di�erential equations with constant coe�cients gives

the solutions: B(�) = �

0B@ exp(!1�)
:

exp(!I�J�)

1CA, where !n for n = 1; :::; I � J and � are the eigenvalues
and the normalized eigenvectors of �, respectively.

4. Proof of Proposition 4

Applying L'Hôspital's Rule,

R(t; �) = � lim
�!0

ln(B(t; �))

�

= �

IP
i=1

JP
j=1

"
(�sii + �

v
jj � hij) +

P
l 6=i
�sil +

P
n6=j
�vjn

#
�i(t)1(v(t) = j)

IP
i=1

JP
j=1
�i(t)1(v(t) = j)

=
IX
i=1

JX
j=1

h
ij
�i(t)1(v(t) = j), (A.25)

To derive the last equation in (A.25), I use the following facts: �sii +
P
l 6=i
�sil = 0, for any i and

�vjj +
P
n6=j
�vjn = 0, for any j and

IP
i=1

JP
j=1
�i(t)1(v(t) = j) = 1.
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Table 1: Parameter values employed for illustrating volatility graphs:

The table summarizes the selection of parameter values in the model used for developing Figure 1.

Transition probabilities are on a monthly basis while the other parameters are on a yearly basis.

The parameter values in the fundamental process are estimated by a two-state regime switching

model by Hamilton (1989), and the parameter values in the utility function are chosen such that the

model-implied mean short rate is roughly matched to its actual sample mean. For this calibration

I employ monthly US data for industrial production as real output, M2 as money supply, and a

yield on the 3-month Treasury bill as the short rate. All of the series are obtained from the o�cial

release of the Federal Reserve Board of Governors. The sample spans from January 1960 through

December 2005.

Parameters Values

� : Weight of consumption vs. real balances 0.57

 : Coe�cient of relative risk aversion 0.6

e�� : Subjective discount rate 0.99

�L, �L : First (Low) state of the mean growth rate 3.2%, 2.9%

�H , �H : Second (High) state of the mean growth rate 4.4%, 8.0%

�yL, �ML, �L : First (Low) state of covariances 1.5%, 0.4%, -0.09

�yH , �MH , �H : Second (High) state of covariances 3.2%, 1.0%, 0.10

�sLH , �
s
HL : Transition probabilities of mean growth rates 6.7%, 3.2%

�vLH , �
v
HL : Transition probabilities of covariances 2.7%, 4.7%
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Figure 1: Conditional volatility of excess bond returns and investor’s beliefs: 
 
This figure illustrates the conditional volatility of excess (two-year maturity) bond 

returns (Equation (29)) as a function of an investor’s beliefs on the current economic 

state, implied by the parameters in Table 1. The term of jump effects on the volatility 

is ignored. The two plots depend on the conditional covariance (noise parameter) of 

real output and money growths, σy, σM, and ρ (Panel A), and on the coefficient of 

relative risk aversion, γ (Panel B). For Panel B, the covariances of growth rates of 

fundamentals are set as high. 
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Panel B: Relationship between bond volatility and risk aversion 
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