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Abstract

This paper presents an extended structural credit risk model that pro-

vides closed form solutions for �xed and �oating coupon bonds and credit

default swaps. This structural model is an "extended" one in the following

sense. It allows for the default free term structure to be driven by the a

multi-factor Gaussian model, rather than by a single factor one. Expected
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default occurs as a latent di¤usion process �rst hits the default barrier,

but the di¤usion process is not the value of the �rm�s assets. Default can

be "expected" or "unexpected". Liquidity risk is correlated with credit

risk. It is not necessary to disentangle the risk of unexpected default from

liquidity risk. A tractable and accurate recovery assumption is proposed.

Key words: structural credit risk model, Vasicek model, Gaussian term

structure model, bond pricing, credit default swap pricing, unexpected de-

fault, liquidity risk.

JEL classi�cation: G13.

1 Introduction and literature

This paper presents a tractable extended structural credit risk model that pro-

vides closed form solutions to price defaultable �xed and �oating rate bonds

and credit default swaps. This model extends the structural credit risk models

in the literature.

Most structural models assume that the default-free yield curve is described

by the one factor Vasicek model (1977). This does not seem satisfactory since

the literature has clearly documented that multi-factor models are needed to

describe the dynamics of the default-free yield curve, see e.g. Dai-Singleton

(2000). Bakshi-Madan-Zhang (2006) recently found that two latent factors

driving default-free yields also enhance the empirical �t of their defaultable bond

pricing model. Similarly Hubner and Pascal (2004) suggest that a two-factor

default-free term structure model may be appropriate also to price defaultable
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bonds. Even the reduced form credit risk models typically assume that default

free yields are driven by two stochastic factors, see e.g. Driessen (2005). Thus

the structural model in this paper assumes that the default-free yield curve is

described by the three-factor Gaussian model of Babbs and Nowman (1999)

which seems to �t the US Treasury yield curve quite well. A fully general

Gaussian model as in Langetieg (1980) and Dai-Singleton (2002) could equally

be assumed without a¤ecting model tractability.

Most structural credit risk models assume that the �rm�s assets value follows

a price process, although this assumption seems di¢ cult to reconcile with the

fact that the �rm�s assets value is not observable. Essentially the whole �rm

has usually been assumed to be a traded asset or to be perfectly equivalent to

a replicating portfolio involving the �rm�s stock, see e.g. Ericsson (1998). Any-

way such assumption has provided a number of interesting corporate �nance

theoretical insights. When assuming that the �rm is a traded asset, promi-

nent models that accommodated stochastic interest rates, such as Bris and de

Varenne (1997), Schobel (1999) or Hubner and Francois (2004), have also made

tractable assumptions about the �rm�s payout policy (typically no payout) and

about the dynamics of the default barrier. Essentially the expected growth rate

of both the default barrier and �rm�s assets value were driven by stochastic

default-free interest rates. In this paper, which is merely concerned about pric-

ing defaultable bonds and credit derivatives, we do not assume that the �rm is

a traded asset. Default still coincides with the time a di¤usion process hits a

barrier and the pricing model still provides closed form solutions. The "distance
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from default" process is latent, but it can at any time be inferred from observed

bond market prices and credit derivatives. The model is akin to a reduced form

credit risk model in so far as it does not use equity market information.

Most structural credit risk models do not explicitly attempt to price liquidity

risk and unexpected default. The concept of unexpected default is familiar from

the reduced form credit risk pricing literature and Cathcart and El-Jahel (2003)

propose that an issuer�s default may be expected, if triggered by the hitting of

a default barrier, or "unexpected", if triggered by a Poisson-type event. The

model of this paper extends this insight to the case where the stochastic inten-

sities that drive unexpected default and liquidity risk have arbitrary correlation

with the factors that drive the default-free yield curve and the barrier hitting

di¤usion process.

The model makes a recovery assumption that proves both very tractable and

quite realistic. A simple approximation in computing the bond recovery value

simpli�es the bond pricing model by capturing with a single latent factor both

the risk of unexpected default and liquidity risk. Thus we need not disentangle

the risk of unexpected default from liquidity risk, both of which drive the short

term yield spreads of defaultable bonds.

Finally, most structural credit risk models, with the notable exception of

Longsta¤ and Schwartz (1995) do not provide closed form solutions for default-

able �oating rate bonds. The model in this paper provides such closed form

solutions, which are much simpler than those in Longsta¤ and Schwartz (1995).

In recent years structural credit risk models have been extended in a number
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of ways, but the focus of this paper is closer to those models that accommodate

a stochastic default-free yield curve, since this seems a key requirement for prac-

tical bond pricing purposes. Among such a subset of structural models, those

of Longsta¤ and Schwartz (1995), Bris and de Varenne (1997), Schobel (1999),

Cathcart and El-Jahel (1999, 2003), Dufresne and Goldstein (2001), Hubner and

Pascal (2004) stand out. Like in Cathcart and El-Jahel (1999, 2003) in this pa-

per the barrier hitting di¤usion process is not the value of the �rm�s assets. Like

in Longsta¤ and Schwartz (1995), Bris and de Varenne (1997), Schobel (1999),

Dufresne and Goldstein (2001), Hubner and Pascal (2004), the barrier hitting

di¤usion process is instantaneously correlated with the instantaneous interest

rate. Like in Cathcart and El-Jahel (2003) default can expected or unexpected.

Like in Longsta¤-Neis-Mittal (2005) both credit and liquidity risk are modelled.

For clarity of exposition the following sections present increasingly general

formulations of the bond pricing model. The conclusions follow.

2 The basic model with constant interest rates

This section introduces the model in the most basic setting. For now we assume

that the default-free short interest rate r is constant over time, only to relax

this assumption later. The assumptions are similar to those in the literature.

As in Cathcart and El-Jahel (1998, 2003) default risk is triggered by a latent

process S. S is not the value of a traded asset and we leave it un-identi�ed.

Although we do not observe S, we can infer S from observed bond prices. In
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the risk-neutral world S follows the process

dS = S � (�� �s�) � dt+ S � � � dws (1)

where �; �s; � are constant and dws is the di¤erential of a Wiener process. �

is the growth rate of S in the real world, �s is the market price of S-risk, � is

the volatility parameter. Default occurs the �rst time S hits the barrier level

K from above. The fact that S is latent and is not the value of the �rm�s

assets entails that, unlike most other structural credit risk models, this model

does not make use of equity market information for estimation or calibration

purposes. Instead, like reduced form credit risk models, this model only makes

use of bond and credit derivative market information for parameter calibration

or estimation. For pricing purposes all we need to know is the magnitude of

ln
�
S
K

�
, not also the identity of S and K. ln

�
S
K

�
is a measure of "distance from

default" that can be inferred from the prices of bonds and credit derivatives. As

S is a non-identi�ed latent factor, nothing prevents us from applying the model

also to price the credit risk of sovereign or sub-sovereign bonds or government

agencies. In other words, by renouncing to assign a theoretical interpretation

to S and K, we gain �exibility and still have a viable pricing model.

An issuer, which may be a �rm or a government or an agency, has issued

a discount bond with face value of 1, with maturity T and with market value

D (t; T ) at time t. D (t; T ) depends on S and time. For now we make the

"recovery of Treasury assumption", thus the bond recovery value a fraction �

(with 0 � � � 1) of the bond face value and � is received at time T , which
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is the maturity date in the bond contract. From past literature we know that

under these assumptions

D (t; T ) = e�r(T�t) � (� + (1� �) � P (t; T )) (2)

where

P (t; T ) = N

 
ln
�
S
K

�
+
�
�� �s� � 1

2�
2
�
(T � t)

�
p
T � t

!
(3)

�
�
S

K

�(1� 2(���s�)
�2

)
N

 
ln
�
K
S

�
+
�
�� �s� � 1

2�
2
�
(T � t)

�
p
T � t

!
:

N (d) is the cumulative standard normal distribution function with upper limit

of integration equal to d. P (t; T ) is the survival probability in the risk-neutral

world over the period ]t; T ] when default can only occur as S hits the barrier

K.

3 The model when interest rates are stochastic

This section generalises the previous bond pricing model by introducing stochas-

tic interest rates. Following Babbs and Nowman (1999), we now assume that

the default-free short interest rate r is driven by three Gaussian latent factors.

Thus

r = �0 � x: (4)
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where � =(1; 1; 1) and x =(x1; x2; x3)
0. x1; x2; x3 are three latent factors whose

respective risk-neutral processes are

dx1 = k1 (�1 � x1) dt+ �1dw1 (5)

dx2 = k1 (�2 � x2) dt+ �2dw2 (6)

dx3 = k3 (�3 � x3) dt+ �3dw3 (7)

where ki; �i; �i are constant and dwi are di¤erentials of Wiener processes for

i = 1; 2; 3. S is instantaneously correlated with x1; x2; x3, i.e.

dws � dw1 = �1dt; dws � dw2 = �2dt; dws � dw3 = �3dt:

Moreover x1; x2; x3 are also correlated, i.e.

dw1 � dw2 = �1;2dt; dw1 � dw3 = �1;3dt; dw2 � dw3 = �2;3dt:

Employing a similar notation we can write �1;1 = 1, �2;2 = 1 and �3;3 = 1. As

the three factors (x1; x2; x3) are latent, we set �2 = �3 = 0, which are conditions

equivalent to those in Babbs and Nowman (1999) to guarantee the econometric

identi�cation of the model. This term structure model is essentially the one put

forward by Babbs and Nowman (1999). This choice is also motivated by the

good empirical performance of multi-factor Gaussian models in �tting the US

yield curve, as documented in Dai-Singleton (2002). Moreover Gaussian models
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do not su¤er from the admissibility restrictions that a¤ect general a¢ ne model

speci�cations as explained in Du¢ e-Kan (1996). On the other hand even a �at

and constant yield curve may be good enough when pricing credit default swaps,

so that this extended structural model is of more interest to price defaultable

bonds than credit default swaps.

In this setting the value of a zero coupon bond is denoted as D (S;x; t)

or more simply as D. Z (x; t) denotes the value of a default-free zero coupon

bond with the same maturity and face value as D (S;x; t). For now we retain

the "recovery of Treasury" assumption, in keeping with other structural models

that assume a stochastic default free term structure, see e.g. Longsta¤ and

Schwartz (1995) or Cathcart and El-Jahel (1998). Then the absence of arbitrage

opportunities implies that D now satis�es the following equation

@D

@t
+
@2D

@S2
�2S2 +

@D

@S
(�� �S�)S � (x1 + x2 + x3)D (8)

+
@2D

@x1@S
�1�1�S +

@2D

@x2@S
�2�2�S +

@2D

@x3@S
�3�3�S

+
@2D

@x1@x2
�1;2�2�1 +

@2D

@x1@x3
�3;1�3�1 +

@2D

@x3@x2
�3;2�3�2

+
@2D

@x23
�23 +

@D

@x3
k3 (�3 � x3) +

@2D

@x22
�22 +

@D

@x2
k2 (�2 � x2) +

@2D

@x21
�21 +

@D

@x1
k1 (�1 � x1) = 0

subject to
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D (S !1;x; t)! Z (x; t) (9)

D (K;x; t) = Z (x; t) � � (10)

D (S;x; T ) = 1: (11)

The �rst condition states the as S ! 1 default becomes impossible and the

valueD (S;x; t) of the defaultable bond approaches the default-free value Z (x; t).

The second condition states that when S = K default is triggered and the bond

value equals the recovery value Z (x; t) � � according to the "recovery of Trea-

sury" assumption. The last condition is the usual terminal condition for a bond

with face value of 1. The solution to equation 8 and to its conditions is

D (S;x; t) = Z (x; t) �
�
� + (1� �) � PT (t; T )

�
(12)

where

Z (x; t) = exp

�
A (t; T )�

3P
i=1

xi �Bi (t; T )
�

Bi (t; T ) =
1� e�ki(T�t)

ki

and A (t; T ) solves the ODE
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@A (t; T )

@t
+
1

2

P3
i=1

P3
j=1Bi (t; T )Bj (t; T ) �i;j�i�j = 0 (13)

and

PT (t; T ) = N

 
ln
�
St
K

�
+ �

R T
t
� (u) du

�
p
T � t

!
�
�
St
K

�� 2
�

R T
t

�(u)du

T�t

N

0@ ln
�
K
St

�
+ �

R T
t
� (u) du

�
p
T � t

1A
(14)

where N (d) is the cumulative standard normal distribution function with upper

limit of integration equal to d and with

R T
t
� (u) du =

�
m

�
� �s �

1

2
�

�
(T � t)�

X3

i=1

�i�i
ki

�
T � t� 1� e

�ki(T�t)

ki

�
:

The solution to ODE 13 can be quickly computed numerically through the

Rounge-Kutta method or in closed form. PT (t; T ) is the survival probability

over the period [t; T ] in a world that is forward risk neutral with respect to

Z (x; t). We notice that when �1 = �2 = �3 = 0, PT (t; T ) in equation 14

becomes equal to the more familiar survival probability in the risk-neutral world

given in equation 3. In this setting the credit spread implied by the defaultable

zero coupon bond value D (S;x; t) is � ln(�+(1��)�PT (t;T ))
T�t . Although the above

formulae give the value of a defaultable zero coupon bond, they can immediately

be used also to value a coupon bond, since a coupon bond is equivalent to a

portfolio of zero coupon bonds. We notice that equation 14 is still valid even
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when �1 is chosen to be a deterministic function of time to be calibrated to the

default-free yield curve as shown in Hull and White (1990).

3.1 Quasi recovery of face value assumption and CDS val-

uation

So far we have maintained the tractable "recovery of Treasury" assumption.

Now we introduce a more accurate assumption about the bond recovery value

upon default, an assumption that is as tractable as the "recovery of Treasury"

assumption and that approximates as the more accurate "recovery of face value"

assumption. We call this assumption "quasi recovery of face value" (QRF). If

today�s date is t and T is the bond maturity date, the period [t; T ] is the bond

residual life. We set m dates during [t; T ] such that t � T1 < T2 < :: <

Tm = T and such that (Tk � Tk�1) is constant for k = 2; 3; ::m. Denote with

R (t; Tk�1; Tk) the value at time t � T1 of a claim that pays 1 at time Tk if

default occurs in the time interval ]Tk�1; Tk]. It follows that

R (t; Tk�1; Tk) = Z (t; Tk) � Ekt
�
1�>Tk�1 � Z (Tk�1; Tk)

Z (Tk�1; Tk)

�
�D (t; Tk) (15)

where Ekt (::) denotes time t conditional expectation in the Z (t; Tk) forward risk

neutral measure, where � is the default time, where 1�>Tk�1 is the indicator func-

tion of the survival event � > Tk�1 and where Z (t; Tk) �Ekt
�
1�>Tk�1 �Z(Tk�1;Tk)

Z(Tk�1;Tk)

�
is the present value of a defaultable claim that pays o¤Z (Tk�1; Tk) at Tk. Then
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notice that

Ekt

�
1�>Tk�1 � Z (Tk�1; Tk)

Z (Tk�1; Tk)

�
= Ekt

�
1�>Tk�1

�
= P k (t; Tk�1) (16)

and P k (t; Tk�1) is the survival probability up to time Tk�1 in the Z (t; Tk)

forward risk neutral measure. It follows that we can write

R (t; Tk�1; Tk) = Z (t; Tk)
�
P k (t; Tk�1)� P k (t; Tk)

�
: (17)

The expression P k (t; Tk�1) � P k (t; Tk) denotes the probability calculated at

time t in the Z (t; Tk) forward risk neutral measure that default will occur in

the time interval ]Tk�1; Tk]. We can now determine the present value of what

bond holders expect to recover upon default. At time t such present value is

equal to the value of a claim that pays � at Tk if default time � falls during the

interval ]Tk�1; Tk] for k = 1; 2; ::m, and it is equal to

�
Pm

k=1R (t; Tk�1; Tk) : (18)

We can readily compute this expression since we have closed form solutions for

Z (t; Tk) and P k (t; Tk) from above. Thus this QRF assumption is as tractable

as the "recovery of Treasury" assumption. Moreover as the bond residual life

[t; T ] is partitioned in a greater number m of sub-intervals, the bond recovery

value approaches the recovery value we obtain under the proper "recovery of

face" assumption, which is commonly regarded as the most realistic and least

tractable recovery assumption. According to the "recovery of face" assumption

13



� is received at the exact time of default, rather than later. We conclude that

the recovery assumption that gives �
Pm

k=1R (t; Tk�1; Tk) seems a good and

tractable approximation to the "recovery of face" assumption. Then the value

of a defaultable �xed coupon bond with face value of 1 and which promises to

pay coupons at times Ti for i = 1; 2; ::n equal to c (Ti � Ti�1) is

C (t) =
nX
i=1

c (Ti � Ti�1)D (t; Ti) +D (t; Tn) + �
mX
k=1

R (t; Tk�1; Tk) : (19)

Notice also that we can readily derive the following closed form solution for CDS

spreads

scds =
(1� �) �

Pm
k=1R (t; Tk�1; Tk)Pm

k=1 (Tk � Tk�1) �D (t; Tk)
: (20)

In stating this formula for a CDS spread we retain all previous assumptions, in

particular the assumption about the bond recovery value to be received at times

Tk. Although not necessary, we also assume, for simplicity and without much

loss in accuracy, that the CDS fee payment dates are also Tk, so that each fee

payment amounts to c (Tk � Tk�1).

3.2 Valuation of �oating rate bonds

The above results also imply convenient closed form solutions to price default-

able �oating rate bonds. Consider such a bond with face value of 1 and promising
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to pay coupons at times Tk for k = 1; 2; ::n equal to

Lk�1 � (Tk � Tk�1)

where Lk�1 is the Libor rate for the period [Tk�1; Tk]. t is today�s date, T1

is the next coupon payment date and the bond maturity date is Tn = T . For

simplicity we compute the bond value at time t net of the value of the coupon

payment due at time T1. At t � T1 the value of the defaultable �oating rate

bond C 0 (t) is

C 0 (t) =
nX
k=1

F (t; Tk�1; Tk)D (t; Tk) (21)

+D (t; Tn) + �

nX
k=1

R (t; Tk�1; Tk) :

where F (t; Tk�1; Tk) =
�
Z(t;Tk�1)
Z(t;Tk)

� 1
�
denotes the default-free forward rate at

time t for the period [Tk�1; Tk]. We notice that F (Tk�1; Tk�1; Tk) = Lk�1 �

(Tk � Tk�1). Again P k (t; Tk) is the survival probability in the Z (t; Tk) for-

ward neutral measure. The �rst line of equation 21 is the present value of the

defaultable �oating rate coupon payments. To clarify the �rst line notice that

the time Tk�1 value of a defaultable �oating rate coupon that is set at time

Tk�1 and paid at time Tk is
�

1
Z(Tk�1;Tk)

� 1
�
provided no default occurs until

Tk. Thus, since the present value at time t of a default-free �oating coupon is

Z (t; Tk�1) � Z (t; Tk) = Z (t; Tk) � F (t; Tk�1; Tk), the value of the defaultable
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�oating coupon is

(Z (t; Tk�1)� Z (t; Tk)) � P k (t; Tk) = Z (t; Tk) � P k (t; Tk) � F (t; Tk�1; Tk)(22)

= D (t; Tk) � F (t; Tk�1; Tk) :

Of course this formula assumes that default entails the entire loss of all coupon

payments.

3.3 Comparative static

Without much loss in generality, in Exhibit 1 we concentrate on credit spreads

on zero coupon bonds for various maturities. The base case assumes S
K = 3,

m = 0:05, � = 0, � = 0:3, �1 = 0:01, � = 0, k = 0:1, � = 0:5 and it assumes for

simplicity that r = x1. The other columns assume the same parameters as in the

base case, but for the di¤erent parameter values shown in the respective column

headings. As expected credit spreads rise with �, the volatility of S. This

emerges from comparing the right-most column with heading "� = 0:3" with

the base case column, which assumes � = 0:2. We can interpret the results in

the other columns in a similar way. To do so notice that equation 14 implies that

credit spreads decrease as � (u) rises for t � u � T . We recall that
R T
t
� (u) du =�

m
� � �s �

1
2�
�
(T � t)�

P3
i=1

�i�i
ki

�
T � t� 1�e�ki(T�t)

ki

�
and that, when �1 =

�2 = �3 = 0, PT (t; T ) in equation 14 becomes equal to the more familiar

survival probability in the risk-neutral world of equation 3.
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Then as the correlation parameter �1 rises and as k1 > 0,
R T
t
� (u) du de-

creases and credit spreads rise. In other words, credit spreads rise with the de-

gree of correlation between the default free short interest rate r and the latent

default process S. This is shown in the columns "�1 = �0:5" and "�1 = 0:5".

The sensitivity of credit spreads to �1 and k1 depends on the sign of the instan-

taneous correlation �1.

When �1 > 0 (�1 < 0) credit spreads increase (decrease) in �1. This emerges

by comparing the columns headed "�1 = 0:5" and "�1 = 0:5; �1 = 0:02". When

�1 > 0 (�1 < 0) credit spreads decrease (rise) as the mean reversion speed k1

rises, i.e. as the conditional and unconditional variance of the instantaneous

interest rate r decreases. This is shown in the columns headed "�1 = 0:5" and

"�1 = 0:5; k1 = 0:5". Generally, as the time to maturity (T � t) increases,R T
t
� (u) du becomes more sensitive to changes in the parameters �1, �1 and k1

and so do credit spreads.

[Exhibit 1 here]

We notice that, although we have assumed a constant default barrier K, ap-

proximate closed form solutions are still available if K follows the process dK =

� (t)Kdt. In such case in the risk-neutral world d
�
S
K

�
= S

K (�� �s� � � (t)) dt+

S
K�dws and at most only

R T
t
� (u) du may have to be computed numerically,

while equation 14 would still be valid.
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4 Unexpected default and liquidity risk

So far we have assumed that default can only take place in an "expected" way as

the latent process S hits the barrier K and we have omitted any bond liquidity

risk considerations. Now we introduce the possibility of "unexpected" default as

well as the pricing of liquidity risk. These two extensions to the above structural

model are presented together since both "unexpected" default and liquidity risk

seem to drive short term yield spreads of defaultable bonds. Although not

necessary to retain tractable solutions, for the sake of simplicity of exposition

we now assume that r = x1 and the two other latent factors x2 and x3 will be

re-interpreted below. We retain all the other assumptions as above. We also

make the following two additional conjectures.

Conjecture 1 Unexpected default.

Default can not only occur in an "expected" way as S hits K, but also in an

"unexpected" way. As in Cathcart and El-Jahel (2003), in any in�nitesimal time

period dt there is a probability �dt that default may unexpectedly occur. When

pricing bonds or credit derivatives � is the risk-neutral default intensity, i.e. the

intensity in the risk-neutral world. Unexpected default may correspond to the

discovery of substantial misgivings in the �rm�s accounts or other unforeseen

adverse event. If the risk of unexpected default has no systematic component,

such risk commands no premium and the real and the risk-neutral intensity of

unexpected default are the same. We assume that � = x2,which implies that

� may turn negative and is correlated with S. The possibility of negative �
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seems tolerable and the correlation between � and S is likely to be negative if

the probability of unexpected default tends to rise S decreases. As we assume

�2 6= 0, � seems unlikely to turn negative and, even when � does turn negative,

overall credit spreads are unlikely to. Whether the default event is expected or

unexpected, the recovery value of the bond is a fraction � of the bond face value,

with 0 � � � 1. For now we make the "recovery of Treasury assumption", i.e.

we assume that � is received at time T , the bond contractual maturity date.

Conjecture 2 Liquidity risk.

It is well documented by now, see e.g. Perradin and Taylor (2003), that bond

prices are also a¤ected by liquidity risk, i.e. the risk for an investor of having

to sell the bond at a discount if the need to immediately sell the bond should

suddenly arise. To price liquidity risk we assume that during any in�nitesimal

period dt there is a risk-neutral probability ldt of an investor suddenly needing

to sell the bond for a discounted price equal to (1� q), where q is a constant

such that q � 0 and expressed the discount as a fraction of the bond market

value. We assume that lq = x3 and that �3 6= 0. Again this implies that l may

turn negative and that l is correlated with S, r and �. A negative l is not so

worrying since a negative liquidity premium seems possible when the bond to

be valued is not very liquid.

Under these assumptions, in order to take unexpected default and liquidity

risk into account, the value of a defaultable and not perfectly liquid zero coupon

bond becomes
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D (S;x; t) = Z (r = x1; lq = x3; t)��+(1� �)�Z (r = x1; � = x2; lq = x3; t)�PT (t; T )

(23)

where Z (r = x1; lq = x3; t) is the same as Z (x; t) when x = (r; 0; lq)
0 and

Z (r = x1; � = x2; lq = x3; t) is the same as Z (x; t) when x = (r; �; lq)
0. Z (r = x1; lq = x3; t)

is the value of a default-free zero coupon bond that is exposed to liquidity risk.

Z (r = x1; � = x2; lq = x3; t) is the value of a defaultable zero coupon bond that

is exposed to both liquidity risk and "unexpected" default, but not to "expected"

default risk. Z (r = x1; � = x2; lq = x3; t) �PT (t; T ) is the value of a defaultable

zero coupon bond that is exposed to liquidity risk, "unexpected" default risk

and "expected" default risk and that recovers nothing in case of default. The

last formula for D (S;x; t) re�ects the fact that bond holders recover � at time

T in case of default, whether default is expected or unexpected, and it suggests

that we need to disentangle unexpected default risk from liquidity risk. One

single stochastic factor set equal to (lq + �) cannot capture both "unexpected"

default risk and "liquidity risk" at once.

4.0.1 QRF assumption and no need to disentangle unexpected de-

fault and liquidity risk

We now consider that, as we make the QRF assumption instead of the "recovery

of Treasury assumption", it is no longer necessary to disentangle "unexpected"

default and liquidity risk. Thus we now assume that � is to be received at time
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Tk as assumed above according to the QRF assumption. As the number m of

time intervals used to compute the bond recovery value rises, we can employ

the following accurate approximation

R (t; Tk�1; Tk) = Z (t; Tk)
�
P k (t; Tk�1)� P k (t; Tk)

�
(24)

w D (t; Tk�1)�D (t; Tk) :

This approximation makes it not necessary to disentangle "unexpected" default

risk from liquidity risk, which seems an interesting simpli�cation for pricing

defaultable bonds. In other words, in order to take "unexpected" default and

liquidity risk into account, we just need to employ an instantaneous discount

rate equal to r + (lq + �) and we need not disentangle unexpected default risk

from liquidity risk. One single stochastic factor set equal to (lq + �) can capture

both "unexpected" default risk and liquidity risk at once. This consideration

applies to the pricing of bonds, but it does not so much apply to the pricing

of credit default swaps, as Longsta¤-Neis-Mittal (2005) highlighted how credit

default swap spreads are not driven by liquidity risk.

5 Conclusions

This paper has presented an extended structural credit risk model that provides

closed form solutions to price �xed and �oating rate bonds and credit default

swaps. In its most general formulation the model has "extended" previous struc-
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tural credit risk models as follows. The default-free term structure is described

by a multi-factor Gaussian rather than by a more restrictive single factor model.

The latent factors that drive the default-free term structure are correlated with

the default process. The default process is latent and is not the �rm�s assets

value. Default may be expected or unexpected. Unexpected default and liquid-

ity risks are correlated with the other factors driving "expected" default and the

default-free yield curve. A tractable and accurate recovery assumption is pro-

posed. To price defaultable bonds, it is not necessary to disentangle unexpected

default from liquidity risk, both of which drive short term credit spreads.

6 Appendix: derivation of formula

Substituting the solution D (S;x; t) = Z (x; t) �
�
� + (1� �) � PT (t; T )

�
into 8,

we �nd that P k (t; Tk) satis�es

@PT (t; T )

@t
+
@2PT (t; T )

@S2
1

2
�2S2+

@PT (t; T )

@S
S

�
m� �s� �

P3
i=1 �i��i

1� e�ki(T�t)
ki

�
= 0

(25)

subject to limS!1 P
T (t; T ) ! 1, limS!K P

T (t; T ) ! 0, PT (T; T ) = 1.

PT (t; T ) is the survival probability in the Z (x; t) forward risk-neutral world.

To solve this PDE de�ne X = 1
� ln

�
S
K

�
. Then using Ito�s lemma we obtain

dX = � (t) dt+ dw (26)
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with

� (t) =

�
m

�
� �s �

P3
i=1 ��i

1� e�ki(T�t)
ki

� 1
2
�

�
: (27)

Let ST denote S at at time T and St denote S at time t. Xt and XT have

similar meaning. The probability at time t that, given St, ST > K is denoted

by

P [ST > K;St] = P [XT > 0; Xt] :

Now we de�ne infXt;T = min (Xu; t � u � T ) and P [XT � 0; infXt;T � 0; Xt]

as the probability that XT > 0 and infXt;T � 0 given Xt. Then

P [XT � 0; infXt;T > 0; Xt] = P [XT � 0; Xt]� P [XT � 0; infXt;T � 0; Xt] :

If � (t) = 0, dX is a Brownian motion and by the re�ection principle

P [XT � 0; infXt;T > 0; Xt] = P [XT > 0; Xt]� P [XT < 0; Xt] :

This is the probability of ST > K and St > K for t � u � T assuming that

� (t) = 0. Similarly we obtain the probability density
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p [XT ; infXt;T > 0; Xt] = n

�
XT �Xtp
T � t

�
� n

�
�XT �Xtp

T � t

�
(28)

=
1p

2� (T � t)
e�

(XT�Xt)
2

2(T�t) � 1p
2� (T � t)

e�
(XT+Xt)

2

2(T�t) :

When � (t) 6= 0, we can �nd P [XT � 0; infXt;T > 0; Xt] using the Girsanov

theorem, according to which, if dw is a standard Brownian motion under the

p [XT ; infXt;T > 0; Xt] measure, then dw� � (t) dt is a Brownian motion under

the p� [XT ; infXt;T > 0; Xt] measure such that

p� [XT ; infXt;T > 0; Xt] = p [XT ; infXt;T > 0; Xt] � e
R T
t
�(u)dwu� 1

2

R T
t
�(u)2du (29)

=
1p

2� (T � t)

�
e�

(XT�Xt)
2

2(T�t) � e�
(XT+Xt)

2

2(T�t)

�
� e
R T
t
�(u)dXu� 1

2

R T
t
�(u)2du

=
e�

0@XT�Xt�
R T
t

�(u)du

1A2
2(T�t)p

2� (T � t)
� e

�2XtXT
T�t

e�

0@XT�Xt�
R T
t

�(u)du

1A2
2(T�t)p

2� (T � t)
.

where in the last line we have made use of the fact that (XT +Xt)
2
=

(XT �Xt + 2Xt)2 = (XT �Xt)2 + 4XtXT . It also follows that

P � [XT � 0; infX0;T > 0; X0] =

Z 1

0

p�T [XT ; infX0;T > 0; X0] dXT (30)

=

R1
0
e�

0@XT�Xt�
R T
t

�(u)du

1A2
2(T�t) dXTp

2� (T � t)
�
R1
0
e
�2XtXT

T�t e�

0@XT�Xt�
R T
t

�(u)du

1A2
2(T�t) dXTp

2� (T � t)
:

We notice that
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R1
0
e�

0@XT�Xt�
R T
t

�(u)du

1A2
2(T�t) dXTp

2� (T � t)
= N

 
Xt +

R T
t
� (u) du

p
T � t

!

and

R1
0
e
�2XtXT

T�t e�

0@XT�Xt�
R T
t

�(u)du

1A2
2(T�t) dXTp

2� (T � t)
= e�

2Xt
T�t

R T
t
�(u)duN

 R T
t
� (u) du�Xtp
T � t

!
:

Thus

P � [XT � 0; infXt;T > 0; Xt] = N
 
Xt +

R T
t
� (u) du

p
T � t

!
�e�

2Xt
T�t

R T
t
�(u)duN

 R T
t
� (u) du�Xtp
T � t

!
:

P � [XT � 0; infXt;T > 0; Xt] is the same as PT (t; T ) where

PT (t; T ) = N

 
ln
�
St
K

�
+ �

R T
t
� (u) du

�
p
T � t

!
�
�
St
K

�� 2
�

R T
t

�(u)du

T�t

N

0@ ln
�
K
St

�
+ �

R T
t
� (u) du

�
p
T � t

1A
(31)

and where
R T
t
� (u) du =

�
m
� � �s �

1
2�
�
(T � t) �

P3
i=1 �i�i

1�e�ki(T�t)
ki

. This

gives the result shown in the text.

QED
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(Tt) in years Base case ρ1=0.5 ρ1=0.5 ρ1=0.5, σ1=0.02 ρ1=0.5, k1=0.5 σ=0.3
1 0.00% 0.00% 0.00% 0.00% 0.00% 0.01%
2 0.04% 0.04% 0.04% 0.04% 0.04% 0.57%
3 0.21% 0.21% 0.22% 0.23% 0.22% 1.03%
4 0.37% 0.36% 0.39% 0.40% 0.38% 1.17%
5 0.47% 0.45% 0.49% 0.50% 0.48% 1.18%
6 0.51% 0.49% 0.53% 0.56% 0.52% 1.14%
7 0.53% 0.51% 0.55% 0.58% 0.54% 1.09%
8 0.53% 0.50% 0.55% 0.58% 0.54% 1.04%
9 0.52% 0.49% 0.55% 0.57% 0.53% 1.00%

10 0.51% 0.48% 0.53% 0.56% 0.52% 0.96%
11 0.49% 0.47% 0.52% 0.55% 0.50% 0.92%
12 0.48% 0.45% 0.51% 0.53% 0.49% 0.89%
13 0.46% 0.44% 0.49% 0.52% 0.47% 0.86%
14 0.45% 0.42% 0.48% 0.51% 0.46% 0.83%
15 0.44% 0.41% 0.46% 0.49% 0.45% 0.81%
16 0.43% 0.40% 0.45% 0.48% 0.44% 0.79%
17 0.42% 0.39% 0.44% 0.47% 0.42% 0.76%
18 0.41% 0.38% 0.43% 0.46% 0.42% 0.74%
19 0.40% 0.37% 0.42% 0.45% 0.41% 0.73%
20 0.39% 0.37% 0.41% 0.44% 0.40% 0.71%

EXHIBIT 1
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