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Abstract

The English National Health Service was established in 1948, and has therefore
yielded some long time series data on health system performance. Waiting times
for inpatient care have been a persistent cause of policy concern since the creation
of the NHS. This paper develops a theoretical model of the dynamic interaction
between key indicators of health system performance. It then investigates em-
pirically the relationship between hospital activity, waiting times and population
characteristics using aggregate time-series data for the NHS over the period 1952—
2005. Structural Vector Auto-Regression suggests that in the long run: a) higher
activity is associated with lower waiting times (elasticity = -0.9%); b) a higher
proportion of old population is associated with higher waiting times (elasticity
= 1.6%). In the short run, higher lagged waiting time leads to higher activity
(elasticity = 0.2%). We also find that shocks in waiting times are countered by
higher activity, so the effect is only temporary, while shocks in activity have a
permanent effect. We conclude that policies to reduce waiting times should focus
on initiatives that increase hospital activity.
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1 Introduction

Waiting times and waiting lists for health care have been a persistent phenomenon in the

UK National Health Service (NHS) since its inception in 1948. Waiting times have more

recently become a major health policy issue also in other OECD countries like Australia,

Canada, Denmark, Italy, Finland, the Netherlands, Norway, Portugal, Spain and New

Zealand (Siciliani and Hurst, 2005). Average waiting times for common procedures, such

as hip and knee replacement, cataract surgery or varicose veins, vary from three to eight

months. However, it is only in the UK that waiting lists figures have been recorded for

a period as long as fifty years. In this study we exploit for the first time these data in

order to analyse interactions between the average waiting times patients wait to receive

treatment, the volume of activity provided by hospitals, and population demographic

characteristics.

When it was created in 1948, the NHS effectively ‘nationalized’ a previously some-

what anarchic network of hospitals and other providers that were owned and run by

local governments, charities and other not-for-profit institutions. These hospitals were

placed under the management of local Hospital Management Committees answerable to

the national government. The new NHS sought to offer comprehensive health care to all

citizens, free of charge. Most of the funding for the NHS came from national taxation,

and individual hospitals were funded through annual budgets from the regional offices

of the national ministry.

Primary care physicians (general practitioners) remained outside the salaried NHS,

and were instead offered a national contract to care for NHS patients. Almost all general

practitioners (GPs) accepted this contract, as the scope for private practice was now

limited. The NHS gave GPs an important ‘gatekeeping’ role. Every citizen had to

register with a GP, and (except for emergency treatment) none could gain access to a

hospital specialist without a referral from his or her GP.

These arrangements gave rise to three potentially lengthy waits for the patient: the

time between the GP referral and the appointment with the specialist; the time waiting

for the results of any clinical tests and investigations requested by the specialist; and
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the wait for receipt of inpatient treatment once a decision had been reached that such

treatment was required.

Although the NHS has been subject to many structural reforms since 1948, the

founding principles have remained in place largely unchanged in the ensuing sixty years.

The major change of note relevant to this paper was the split between local purchasers

and providers introduced in 1991. Geographically defined local purchasers, in the form

of district health authorities, were given budgets to care for their populations. NHS

providers were split from these authorities and given separated boards of management.

They were then expected to compete for business from the health authorities in an

‘internal market’ of hospital provision. Since 2000 the NHS provider market has been

gradually augmented to embrace a range of other not-for-profit and for-profit hospitals

(Rivett, 1998).

The NHS inherited a waiting list of over 400,000 patients waiting for hospital inpa-

tient treatment in 1948. This waiting list refers to the third of the patient waits described

above: the wait for hospital admission once the need for treatment had been agreed.

Ever since 1948, this waiting list - and the associated waiting times for treatment - have

been a stubborn feature of the NHS that has often become a focus of intense national

political debate and controversy. Furthermore, the NHS has collected annual data on

waiting lists in a broadly consistent format throughout its existence. It is therefore

possible to track the size of the waiting list over time.

On their own, waiting list data are not directly helpful in indicating the real concern

of patients: the length of time they have to wait for treatment. However, it is possible

to calculate a robust indicator of the expected wait for treatment by dividing the size of

the waiting list on an annual census date by the number of hospital admissions in the

year. This gives a measure of the ‘time to clear the waiting list’. Whilst not the same

as the actual waiting time experienced by patients (this has not been collected over the

entire NHS lifetime), it is a good proxy that we use throughout this paper, effectively

adjusting the magnitude of the waiting list for current levels of supply.

A signal of the long-standing political concern with NHS waiting has been the large

number of initiatives launched by the government to reduce the waiting time for treat-
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ment. These include: periodic injections of special finance directed at hospitals with

especially long waits; a 1991 ‘Patient’s Charter’ that guaranteed all patients treatment

within two years (soon reduced to 18 months); experiments with a range of patient choice

models, designed to encourage patients to seek out providers who offer short waits; and

most recently a set of high-profile hospital targets that have since 2001 brought down

the maximum waiting time to six months.

The political concern with waiting lists is matched by a concern with the levels of

expenditure of the NHS. The national government sets an annual budget for the NHS

in the light of national economic circumstances, pressure for public expenditure in other

public services, and demand pressures within the NHS. Waiting lists are an important

signal of those pressures, and are also politically important in themselves. A key role

of the government is therefore to balance the interests of taxpayers and patients, as

expressed in the budget it sets for the NHS.

The optimal balance between waiting and activity might be affected by numerous

uncertainties and shocks, such as changes in national income, demand side shocks and

changes in health care technologies and productivity. It is possible to propose a variety

of causal models of how activity and waiting times interact. For example, activity and

budget changes might be affected in the light of shocks to the waiting time. But equally,

the duration of the waiting time might in time be expected to respond to changes in

activity and budgets.

The long time series of data from the NHS offers a unique resource with which to

explore the long run dynamics of waiting times. This paper applies general time series

methods such as Structural Vector Auto-Regression (SVAR) to investigate the long-run

and short-run dynamics of NHS waiting times. More precisely, using aggregate time-

series data for the English NHS over the period 1952—2005, we investigate the relationship

between activity, waiting times and the proportion of people aged 65 and over (a measure

of demographic pressures). The results suggest that in the long run: a) higher activity

is associated with lower waiting times (elasticity = -0.9%); b) a higher proportion of

the older population is associated with higher waiting times (elasticity = 1.6%). In the

short run, positive shocks in waiting times lead to higher activity (elasticity = 0.2%).
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We also find that while shocks in waiting times have temporary effect, shocks in activity

have permanent effects.

We first give a brief review of the literature in section 2, and present a simple theoreti-

cal framework in section 3. The empirical methods (the structural vector auto-regression

approach) are then described in section 4. The scope of the data we can use are con-

strained by the need for availability over the entire time period. They are described in

section 5. The results are provided in section 6. Finally, we draw some conclusions on

the scientific and policy implications of this study in section 7.

2 Literature review

Economists have traditionally viewed hospital waiting times as a non-monetary rationing

mechanism that reconciles limited supply with less limited demand for surgery (Lindsay

and Feigenbaum, 1984; Cullis, Jones and Propper, 2002). Over the past decade several

studies have sought to estimate models with waiting time affecting both the demand

for and supply of elective care. These studies normally use as a unit of observation

either a local geographical area (such as an electoral ward or district health authority)

or a health care provider (hospital). They are conducted either as static (one-period)

cross-sectional analyses or panel-data analyses (albeit using at most seven years of data).

The characteristics of these studies therefore contrast markedly with those of this paper,

where the analysis is undertaken at the national level with an annual time series of data

stretching back over 50 years to the formation of the NHS.

Previous theoretical studies of the relationship between waits and activity, model the

demand side on a utility maximising consumer who faces a choice between either delayed

access to treatment in the NHS free of charge, or immediate treatment at a financial cost

in the private sector. Supply side models are typically based on a utility maximising

hospital manager whose utility depends positively on the achievement of waiting time

performance (Lindsay and Feigenbaum, 1984; Martin and Smith, 1999; Gravelle, Smith

and Xavier, 2003; Siciliani, 2006).

Depending on data availability, some supply models assume that queue length has
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reached an equilibrium, so that observed demand (additions to the waiting list) equals

supply (the number of inpatient admissions) (Martin and Smith, 1999; Siciliani, 2005).

In this equilibrium model, the theoretical impact of waiting time on supply is positive.

Other studies have access to both demand side data (additions to the waiting list)

and supply side data (hospital admission data), and so do not have to assume equilibrium

(Gravelle, Smith, and Xavier, 2003; Martin, Rice, Jacobs and Smith, 2003). It is then

possible to specify a model in which the hospital manager is concerned about waiting

time (or list) performance at the end of the current period. This can be forecasted as

a function of the waiting time at the beginning of the period, and additions to and

removals from the list in the current period. Increased activity improves the manager’s

end of period performance but induces greater demand in the following period, making it

more difficult to hit future waiting times targets. The impact of waiting time on supply

is ambiguous, depending on how managers discount future utility.

Early evidence on NHS demand elasticities with respect to waiting time is provided

by Goddard and Tavakoli (1998) who estimate a demand function for NHS treatment

using panel data for 15 Scottish Health Board areas over 12 quarterly observations

(1990-92) for six specialties. They model the number of additions to the waiting list as

a function of the expected waiting time for NHS treatment. They find some dynamic

effects, necessitating the inclusion of a lagged explanatory waiting time variable, which

they suggest indicates the existence of a partial adjustment from one quarter to the

next. Elasticities exhibit the anticipated negative sign for all six specialties, ranging

from -0.017 for general surgery to -0.096 for orthopaedic surgery.

Martin and Smith (1999) estimate a similar demand model based on a more extensive

dataset. This empirical analysis is based on population data for all the routine surgical

specialties for 1991-92 and employes about 5,000 electoral wards as the unit of analysis.

The model assumes equilibrium in supply and demand and yields an elasticity of inpa-

tient demand with respect to the waiting time of about -0.21. In a subsequent study,

Martin and Smith (2003) apply the same model to a panel of seven years’ data. The

elasticity of demand with respect to the waiting time for all routine surgery is estimated

as -0.23 when the demand model is estimated in first difference form. Analogous models
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for individual specialties yield demand elasticities of -0.17 for general surgery, -0.14 for

orthopaedics, and -0.17 for ophthalmology.

Studies by Gravelle, Dusheiko and Sutton (2002), Gravelle, Smith and Xavier (2003)

and Martin, Jacobs, Rice and Smith (2007) apply the same type of demand model to

panel data. They do not need to assume equilibrium between demand and supply, as

separate data on admissions from and additions to the list are available. Static and

dynamic models can therefore be estimated for a number of specialties, and using a

number of estimation methods. Demand elasticities with respect to waiting time are

broadly in line with previous studies, in the range -0.1 to -0.2.

On the supply side, there are fewer estimates of the responsiveness of inpatient supply

to waiting times. Using an equilibrium model, Martin and Smith (1999) report an

elasticity of supply with respect to waiting time for all routine surgical specialties of

2.93. A later dynamic specification yields an elasticity of 5.29 (Martin and Smith,

2003). These estimates are rather large and subsequent studies in which the assumption

of equilibrium is dropped, yield markedly lower elasticities, in the range 0.07 to 0.18

(Martin, Rice, Jacobs and Smith, 2007).

Where separate supply and demand data are available, Gravelle, Smith and Xavier

(2003) estimate an elasticity of supply of 0.083 with respect to mean waiting time, a

similar figure to the one reported by Martin, Jacobs, Rice and Smith (2003). In a

study of a single hospital in Scotland over the period 1997-2001, Windmeijer, Gravelle

and Hoonhout (2005) report a slightly higher positive elasticity of overnight inpatient

admissions with respect to waiting times (0.40) and a more modest response for day

cases (with an elasticity of 0.13).

3 Theoretical framework

The dynamic behaviour of waiting times can be modelled in a variety of ways. In

this section we develop a very simple but quite general model to help motivate the

subsequent empirical work. Define zt, wt and st respectively as activity, waiting time
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and the proportion of older people at time t. The demand for care at time t is

D(wt, st) + udt

where udt denotes a shock on the demand. We assume that: a) demand is decreasing

in waiting time (Dw < 0): the higher the wait, the higher is the number of patients

who opt for the private sector or give up the treatment (Lindsay and Feigenbaum, 1984;

Martin and Smith, 1999);1 b) demand is increasing in the proportion of older people

(Ds > 0): we use the proportion of older people s as a proxy for medical needs in the

population. Technological development is also likely to increase demand, but it is likely

to be captured by the same variable s as this is a trending variable.

Waiting times act as a non-monetary price which helps to bring the demand for and

the supply of heath care in equilibrium. We assume that the market for health care does

not clear instantaneously, so that an excess demand in one period increases waiting time

in the following period, while an excess supply reduces the waiting time. The speed of

adjustment of waiting times is denoted with θ. Analytically,

wt+1 − wt = θ
¡
D(wt, st) + udt − zt

¢
(1)

We assume that the dynamics of the proportion of elderly people, our proxy of

medical needs in the population, is given by:

st+1 = st + cs + ust (2)

where cs is a positive constant and ust is a shock.

Finally, we assume that activity evolves over time according to:

zt+1 = zt + cz + γ (wt − wt−1) + uzt (3)

1We provide a reduced-form specification of the demand function. A more general specification
which models the choice of individual patients in terms of different alternatives (public treatment,
private treatment and no treatment) is possible but would make the presentation more complex without
providing any additional insights.
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where cz is a positive constant, uzt is a supply shock and γ denotes the responsiveness

of activity to past variations in waiting times. This formulation implies that when

policy makers observe an increase in waiting time in one period, they are more willing

to fund increases in supply the subsequent period. Alternatively, providers might be

willing to work harder when waiting times increase either because of altruism or because

of financial or non-financial incentives attached to waiting-time targets. Supply shocks

might be caused by changes in technology or efficiency in organization, following reforms

in payment schemes for healthcare providers (for example a switch from fixed budgets

to activity-based funding).

In the long-run equilibrium, waiting times do not vary over time (dwt = dwt−1 = 0)

so that demand for and supply of treatment have reached equilibrium (D(wt, st) = zt).

4 Methods

Our data naturally constitute a vector of time series, so we analyse them using the

popular Structural Vector Auto-Regression (S-VAR) approach (Hamilton, 1994). To

allow for the nonstationarity generated by potential unit roots, we distinguish between

long and short-term dynamics. For a generic vector of n variables yt = [y1t, y2t, ..., ynt]0,

we assume a representation

yt =

pX
j=1

Φjyt−j + ut (4)

where ut is an independent, identically distributed sequence, with E (ut) = 0, E (utu0t) =

Ω (full rank), for a finite p (notice that Φj is a matrix with dimension n× p). This is a

generalisation to a vector of a standard AR(p) model, and it is known as VAR(p). We

assume that the elements of yt are subject to at most one unit root.2 The model in

(4) does not include any deterministic component, like an intercept or a time trend, for

example. As such, yt can be considered as a model for the deviations from a deterministic

term, usually a mean or a trend. If the data are not stationary, then the Φj in (4)

implicitly differentiates the data, so the introduction of the constant in (4) generates a

2In this case, an initial condition like yt = 0 for all t ≤ 0 is also specified.
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linear trend in the levels yt, and a linear trend in (4) generates a quadratic trend in the

levels yt.

The elements on the diagonals of Φj describe the dependence of each variable on its

own past, while those off the diagonal describe the interaction with the past of the other

variables. To disentangle and distinguish the different contributions, the dynamics of

the VAR are expressed as a function of the original shocks ut. A stationary yt can be

expressed in general as

yt =
∞X
j=0

Ψjut−j. (5)

Let Ψ(kl)j be the element in the k-th row, l-th column of Ψj: a plot of Ψ(kl)j against

the lags (j) is known as Impulse Response Function (IRF). The matrices Ψj describe

the effect of past shocks.3

Another useful tool is the Forecast Error Variance Decomposition (FEVD), which

describes how much of the variation of each variable in yt is generated by shocks of any

variable: formally, indicating by byt+d|t the forecast of yt+d made at time t, the FEVD is4
V
¡byt+d|t¢ = d−1X

j=0

ΨjΩΨ
0
j. (6)

If the multivariate process yt is stationary, the shocks have only temporary effects,

and the process reverts to zero (or, more in general, to the mean) over time. If yt is not

stationary, the shocks may have permanent effects as well. Even under nonstationarity,

however, there may nevertheless be some non-trivial vectors a of dimension n× 1 such
that a0yt is stationary: in that case the deviations from the linear relation a0yt are only

3When Ω is a diagonal matrix, Ψ(kl)j is the effect of a shock to the lth variable on the kth variable
j periods ahead when the interactions embedded in the model are taken into account. However, when
Ω is not diagonal, shocks that affect ylt influence ykt as well, so a further hypothesis is necessary to
attribute the simultaneous movement to ult or ugt: this may be done by introducing the independent
vectors εt = Ω−1/2ut, where Ω−1/2 is the Choleski decomposition of Ω = Ω1/2Ω1/20, so that E (εt) = 0,
E (εtε

0
t) = I (identity matrix). The elements of εt then identify shocks of each variable. Transforming

(5) as yt =
P∞

j=0Υjεt−j , where Υj = ΨjΩ
1/2, a plot of the matrices Υj against time gives the

Orthogonalised Impulse Response Function. Notice that, contrary to the matrices Ψj , the matrices Υj
depend on the ordering of the elements of ut.

4As for the IRF, the decomposition is only in terms of ut, so the individual shocks may potentially
be correlated with each other: in order to attribute the shocks to one source only an identification
assumption is necessary.
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temporary, and a0yt emerges as a stable relation in the long run. The variables in yt that

have non-zero coefficient in a0yt are then co-integrated, and a is called a cointegrating

vector. For an n × 1 vector yt, there may be h (such that h < n) non-trivial, linearly

independent vectors a: these may be indexed as a1, ..., ah, and may be stacked in a h×n

cointegrating matrix A = [a1, ..., ah]. h is then the rank of A and it is also known as the

cointegrating rank.

Finding the h stable long-run relationships is of interest for their potential interpre-

tation in terms of economic theory. But there are also statistical reasons to motivate

the cointegration analysis: when yt is not stationary, the estimate of the VAR in (4),

of the IRF and the FEVD, are still consistent, but less efficient, unless integration and

cointegration are properly taken into account.

Inference in a potentially cointegrated VAR is often done rewriting (4) as a Vector

Error Correction Mechanism (VECM): under cointegration, any VAR(p) may indeed be

expressed as

∆yt =

p−1X
j=1

αj∆yt−j +BAyt−1 + ut (7)

for a n× h matrix B. In this representation, long and short-run dynamics are modeled

separately, and the matrix B is the link between the two, because it expresses the effect

of a deviation from the long term equilibrium Ayt−1 on the short term dynamics ∆yt.

The matrices αj then express the short-term interactions among the variables of interest.

When the cointegration rank h is known, simultaneous estimation of αj, B and A,

and inference in (7), can be obtained following Johansen (1991). When the cointegration

rank is not known, it must be estimated in advance: Johansen (1991) shows that it is

possible to test the null hypothesis that the cointegration rank is actually h against

the alternative that it is h + 1 (maximum eigenvalue test) or against the alternative

that it is n (trace test) (when h = n, the data are actually stationary). These tests

however require at least some preliminary knowledge of a potential h: when this is not

available, the tests are usually applied sequentially, starting from h = 0 and increasing

the cointegration rank that is being tested as long as the null hypothesis is rejected.
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5 Data

All of the data employed have been extracted from the Compendium of Health Statistics

2005-06 published by the Office of Health Economics (Yuen, 2005). Unless otherwise

stated, the data cover the period 1952 to 2003 and relate to England and Wales.

Two indicators of the need for health care have been constructed: the all-age resident

population (which increases from 44 million in 1952 to 51.8 million in 2003) and the

percentage of the resident population aged 65 years and over (which rises from 11% in

1952 to 16% in 2003). Figure 1 also shows how the number of individuals aged 65 years

and over (measured in millions) rises from 5.8 millions in 1952 to 10.6 in 2003.

As a measure of NHS activity we employ the number of discharges and deaths (for

1952 to 1986) and then the number of finished consultant episodes adjusted for multiple

episodes within a single spell of care (from 1987 to 2003) both divided by the all-age

resident population. This generates a measure of hospital activity per 1000 population

which varies between 74.4 discharges in 1952 and 261.1 discharges in 2003. Figure

1 shows how NHS activity (in 1’000s) rises from 3,414 thousands in 1952 to 11,658

thousands in 2003.

Waiting time has been calculated as the number of patients on the waiting list

(overnight and day cases) as at the annual census date divided by either the num-

ber of discharges and deaths (1952 -1986) or the number of finished consultant episodes

adjusted for multiple episodes within a single spell of care (from 1987 to 2003). This

provides an indicator of the "time to clear the waiting list", albeit only a proxy mea-

sure, as waiting list admissions comprise less than one half of all hospital admissions.

Although the waiting list has increased since 1952 — rising from just under 500,000 to a

peak of 1.25 million in 1997 — hospital capacity has increased at a faster rate so that the

time to clear the list (the list divided by annual activity) has declined from 1.7 months
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in 1952 to one month in 2003 (see Figure 1).5

[Figure 1 here]

Three indicators of the volume of NHS inputs are also employed: first, the average

daily number of available NHS hospital beds across all specialties, which declines from

467,000 in 1951 to 198,000 in 2003; second, the number of medical doctors employed in

NHS hospitals, which increases from 13,639 in 1951 to 73,761 in 2003; and third, the

number of nursing and midwifery staff, which rises from 162,000 in 1951 to over 416,000

in 2003. All three variables were standardised by the size of the resident population

so that in the analysis they track changes in physical inputs per 100,000 population.

Average inpatient length of stay in NHS hospitals across all specialties has declined

from 44 days in 1952 to 5 days in 2003.

Total NHS expenditure (available only at UK level) includes NHS charges paid by

patients for prescription medicines and dental charges, and has been adjusted to constant

(1949) prices using the GDP deflator. National income is measured as GDP at constant

(1949) market prices.

6 Results

We have tried a number of specifications which included NHS expenditure, staff (doctors

and nurses), beds and GDP, but we found that these variables did not have a significant

role in explaining variations of waiting times over time. Also, they did not always lead to

stable models. We therefore excluded them from the final specification. A more detailed

discussion of the specification can be found at the end of this section.

In our preferred specification presented below, we analyse the dynamics and the

5Note that the use of day case surgery has become increasingly common for many procedures previ-
ously requiring inpatient treatment, and waits for day case treatment have been included in the NHS
waiting list data since 1987. We estimated the relatively small number of patients awaiting day case
treatment before 1987. This estimate was based on the number of day case admissions as a proportion
of ordinary (overnight) admissions. The estimated number of day case patients awaiting admission
was added to the official figure for inpatients awaiting overnight admission to derive a total awaiting
admission figure (Martin, Jacobs, Rice and Smith, 2003).

13



interactions of waiting times w, hospital’s activity z (measured as discharges per capita)

and a demographic variable s (percentage of the population older than 65 years), over

the years between 1952 and 2003.

All the variables are in logarithms, in order to reduce the risk of heteroskedasticity.

Since our data are collected on a yearly basis, we have 51 observations for each time

series: with such a small sample, the reliability of the estimations and tests, that are

based on asymptotic theory, may sometimes be only approximative. We however feel

that this problem is mitigated by the fact that the data refer to a long period of over

fifty years: since the system has evolved a lot over such a long span of time, it should

make it easier to detect the presence of long-term characteristics.

All tests assume a critical value of 5%. We consider a VAR augmented with a

constant: since we suspect that each element of yt = [st, zt, wt]
0 is subject to a unit root,

this corresponds to having a linear trend in the levels of the data.

We define the order of lags by estimating the VAR by OLS and then test if the last

lag is not significant with a likelihood ratio test: this procedure selects three lags (p = 3).

We also check that the residuals of the VAR(3) are not subject to heteroskedasticity and

do not exhibit structural instability in the equations.

We then test for cointegration. The test statistic and its limit distribution depend on

the nature of the deterministic component: given that the data exhibit a linear trend, we

assume a model with a deterministic trend. Since we have no preliminary information

on the potential number of cointegrating relations, we estimate the cointegration rank

iterating the cointegration test starting from h = 0: summary statistics for the maximum

eigenvalue and the trace tests are in Table 1; both tests indicate h = 1.

In this case, both A0 and B are 3× 1 vectors (recall that B expresses the effects of

deviations from the long-term equilibrium Ayt−1). Notice that vector A (the weights

that characterize the long-term equilibrium) is only identified up to a scaling parameter,

because if A0yt is stationary, then for any non-trivial scalar k, kA0yt is also stationary.

Therefore, we normalise the estimated cointegrating relation for the waiting times. This

is also in accordance with the estimate of vector B, which describes how the cointe-

grating errors affect the short-run dynamics. In our case, deviations from the long-run
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equilibrium do not seem to affect the short-run dynamics of the old populations and the

discharges: the coefficients that correspond to the weights of the population and of the

discharge short-run dynamics, are jointly not significant (summary statistics of this test,

including the restricted estimate of vector B are in Table 2).

The estimated cointegrating equation is, under this assumption,

bwt = 12.03− 0.89
(0.14)

zt + 1.64
(0.30)

st (8)

Standard errors are in parenthesis. In the long run, the waiting time w is lower when the

volume of discharges z is higher and is higher when the fraction of old population s is

higher. Since the model is in logarithms, the coefficients in (8) can be interpreted as long-

run elasticity. Therefore, a 1% increase in activity is associated in the long term with

0.9% reduction in waiting times. Equation (8) also suggests that a 1% increase in the

older population is associated with 1.6% increase in waiting times: a larger proportion

of older people is likely to increase need and demand, driving up waiting times.

Our theoretical model in section 3 suggests that in the long-run equilibrium we have

wt+1−wt = 0 so that D(wt, st) = zt. After differentiation we obtain ∂w = 1
Dw

∂z, which

combined with the second coefficient in (8) provides Dw =
1

−0.89 = −1.12. This suggests
a long-run demand elasticity of just above 1.1: an increase in waiting time of 1% implies

a reduction in demand of 1.1%.

Similarly, ∂w = Ds

−Dw
∂s which implies that the elasticity of demand with respect to

the proportion of elderly people is Ds = 1.64∗1.12 = 1.83: an increase in the proportion
of older people of 1% implies an increase in demand of 1.8%.

Notice that although activity may respond to variations in waiting times in the short

run (see equation (3)), this is not the case in the long run. Since by assumption in the

long run wt+1 − wt = 0, then the supply equation reduces to zt+1 = zt + cz + uzt .

The short-term dynamics can be analysed through the orthogonalised Impulse Re-

sponse Function (IRF, see Figure 2) and the relative importance of the shocks in the
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orthogonalised Forecast Error Variance Decomposition (FEVD, see Figure 3).

[Figure 2 here]

In Figure 2, s, z and w refer respectively to the proportion of older people, discharges

and waiting times. Every diagram plots the response of each variable against itself and

the other two variables for a time lag that goes from 1 to 10 years.

Given that we have three variables, we need three restrictions to identify the orthog-

onalised IRF. We assume that the proportion of the elderly s is not affected by either

discharges z and waiting times w at least at the same time (first and second restriction),

which is plausible: while we expect the proportion of older people to affect discharges

and waiting times, the proportion of older people should be exogenous. Graphically,

these identification restrictions are reflected in the second and third figure in the first

row of Figure 2 where the estimated coefficient at t = 1 is equal to zero. We also as-

sume that discharges do not react to waiting times simultaneously but only with a lag

(third restriction, third figure in the second row of Figure 2 at t = 1). This may seem

a more arbitrary restriction as we also may expect waiting times to affect discharges

simultaneously. However, if we impose the alternative restriction that discharges have

no simultaneous effects on waiting times, we still find that waiting time has no simul-

taneous effect on discharges. In contrast if we impose the restriction that waiting times

have no simultaneous effect on discharges, discharges have a negative simultaneous effect

on waiting times (see second figure in third row of Figure 2 at t = 1). Therefore, our

chosen restriction appears empirically to be more appropriate.

The long-run relation of the cointegrating equation (8) can be observed by looking

at the three diagrams in the last row of Figure 2. Response of w to s: the waiting time

increases in the long run when the old population increases; and in Response of w to z :

the waiting time decreases in the long run, when the discharges increase.

Another relevant result is that a shock that increases the waiting time is countered in

the short term by an increase in activity (see Response of z to w), and that the waiting-

time shock is quickly absorbed (see Response of w to w), after which the increase of
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discharges reverts to zero. At t = 2 the elasticity of discharges with respect to waiting

time is 0.2.6 Once a waiting-time shock occurs, the providers react by raising activity

to counter that shock so that the waiting time reverts to the mean within two or three

years. As soon as the waiting-time shock is reabsorbed, activity also goes back to the

original level.

While waiting-time shocks have only a temporary effect (see again Response of w to

w), the effect of changes of discharges is permanent, as suggested by the Response of z

to z : a shock on activity (for example due to a technological innovation or to a policy)

has a permanent effect on activity so that activity settles to the new level (changes in

policy that affect activity may indeed be permanent too).

Activity responds positively to the size of the older population in the long run,

as suggested by the Response of z to s. Finally, the proportion of elderly population

responds only to shocks of itself (which is consistent with our identification strategy)

and these shocks have a permanent effect: when the proportion of the elderly increases

it is unlikely to reduce afterwards.

All these results are also supported by the tests summarised in Table 3. The first

column suggests that the short-term dynamics of the elderly population does not depend

on activity and waiting time (test statistics are respectively 1.08 and 0.56 against a

critical value of 5.99). The second column suggests that the short-term dynamics of

activity does not depend on the dynamics of the elderly population but the positive

effect of waiting time is statistically significant (test statistics are respectively 1.90 and

8.11). The third column suggests that the short-term dynamics of waiting time does

not depend on the past short-term dynamics of the elderly population and activity

(test statistics are respectively 1.84 and 3.88). The reaction of waiting times to the

proportion of the elderly and activity is either instantaneous (as it is assumed for the

orthogonalisation of the IRF and the FEVD) or as a form of adjustment to the long-run

relationship.

6This is obtained as ∂zt+1/∂u
d
t

∂wt+1/∂udt
.
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[Figure 3 here]

The relative importance of the shocks can be analysed through the orthogonalised

FEVD (see Figure 3). With the same identification of the IRF for the contemporaneous

shocks, more than 50% of the variation of waiting time can be attributed in the long

run to changes in the proportion of old population and to discharges (more than 20%

and of 30% respectively). The reverse effect, from waiting time to discharges, is rather

small.

The above analysis focuses on three variables only. This is mainly due to sample

size which obliges us to keep the number of variables limited. In order to consider al-

ternative specifications we also estimated and simulated a variety of non-nested models.

Preliminary investigations in these models was based only on robust, possibly inefficient

procedures. The most interesting result is that the effect of NHS expenditure on waiting

times seems at most weak, and that NHS expenditure does not seem to react to waiting

times. Indeed, funding constraints may have played a more important role in deter-

mining the amount of NHS expenditure, because NHS expenditure seems to be more

convincingly linked to variations in GDP. The numbers of doctors, nurses and beds have

no material effect on waiting times, nor do they react to it. The inclusion of length of

stay in the basic model suggests that lower length of stay decreases waiting times in the

long run (possibly due to the higher efficiency of healthcare providers) and that in the

short run higher waiting times may reduce length of stay (providers work harder when

waiting times are higher). However, the inclusion of this variable comes at the cost of

inducing instability in the estimated model (in which case all the estimates would be

altogether inconsistent), so we excluded length of stay from our final specification.

7 Conclusions

This study has examined the short-run and long-run relationships between certain im-

portant policy variables within the UK health system over a fifty year period. The

relatively small number of observations means that we have had to be parsimonious in
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the model specification. We found that the three most salient variables in modelling the

dynamics of the NHS were waiting times, hospital activity and the demographic profile.

Other variables like total NHS expenditure, the supply of hospital beds and medical and

nursing staff did not seem to affect the dynamics of waiting times for treatment and

were therefore excluded from the final specification.

Our favoured model includes a clearly exogenous demographic variable (proportion

of elderly people) and the two endogenous variables, inpatient activity and waiting time.

The role of the demographic variable is straightforward: other things equal, it increases

waiting time in the long run (elasticity is 1.6%).

The most interesting policy findings relate to the interaction between activity and

waiting time. In the long run, higher activity is associated with lower waiting times

(elasticity is -0.9%), while in the short run, positive shocks in waiting times lead to

higher activity (elasticity is 0.2%). We also find that while shocks in waiting times are

likely to be temporary, shocks in activity are permanent. Furthermore, we find that

alternative specifications of the model, in which NHS expenditure is substituted for

activity, do not exhibit such effects, suggesting that specific initiatives to increase NHS

activity are likely to be more successful in reducing waiting times than general injections

of extra expenditure.

Compared to the existing literature, our implied demand elasticity (-1.12) is higher

in absolute values than suggested by existing cross-sectional or panel-data studies, which

find an elasticity between -0.1 and -0.2. Therefore, a further policy conclusion is that

the reduction in waiting times arising from increases in supply may in the long run be

smaller than expected from previous studies. One possible explanation for this result is

that over time doctors might change their referral patterns. For example, when more

resources are made available to the NHS, doctors might relax the severity threshold for

referring patients for treatment, thereby muting the contribution of extra NHS resources

to reductions in waiting times.
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Tables

Table 1: summary statistics for the maximum eigenvalue and for the trace tests

Hypothesized h bλ Pbω 5% c.v. bω 5% c.v.
h = 0 0.419734 37.67 29.68 27.21 20.97
h = 1 0.140614 10.46 15.41 7.58 14.07
h = 2 0.056027 2.88 3.76 2.88 3.76

Note: bλ, estimated eigenvalue; bω, Max-eigenvalue statistic;Pbω, Trace statistic; 5% c.v. = 5% critical value
Trace test indicates 1 cointegrating equation

Max-eigenvalue test indicates 1 cointegrating equation.

Table 2: estimated restricted SVAR model

∆yt = bc+ 2X
j=1

bαj∆yt−j + bB bAyt−1 + but, yt = [st, zt, wt]
0

bc bB bA
0.008661
(0.00381)

0∗ −1.637722
(0.29787)

0.012898
(0.00633)

0∗ 0.892054
(0.14364)

−0.027191
(0.01845)

−0.440155
(0.08541)

1#

Note: standard errors in parenthesis;
∗ indicates the restrictions imposed; # indicates the normalisation imposed.

LR test statistic: 3.93 (5% critical value, 5.99).

Table 3: tests on the short term dynamics (pairwise Granger Causality tests)
Test Statistic
Dependent variable

Excluded dst dzt dwt

dst 1.90 1.84
dzt 1.08 3.88
dwt 0.56 8.11
Note: 5% critical value, 5.99.
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 Figure 1. Dynamics of elderly population (millions of individuals aged 65 or older), 
NHS activity (thousands of patients treated) and waiting time (months) 
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Figure 2. IRF when cointegration and restrictions are imposed 
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Figure 3. FEVD when cointegration and restrictions are imposed 
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