No. 2007/21

The Taxation of Couples

By

Patricia Apps and Ray Rees

Department of Economics and Related Studies
University of York
Heslington
York, YO10 5DD
The Taxation of Couples

Patricia Apps
University of Sydney and IZA

Ray Rees
University of Munich and University of York

July 3, 2007

Abstract

This paper is concerned with the question of how couples should be taxed. One reason for the importance of this issue is simply that the overwhelming majority of individuals live in households formed around couples, and so it could be argued that empirically, this is the single most important problem in personal income taxation. A second reason is that the economic theory of optimal taxation and tax reform, at least as it is presented in the mainstream literature, provides little guidance on this issue, resting as it does on models of the single person household. An old insight in the earlier public finance literature is that any discussion of the taxation of two-person households necessarily involves the recognition of the importance of household production. In this paper we try to show how a simple model of household production can be used to help the analysis of optimal taxation and tax reform, and to put the "conventional wisdom", which says that it is optimal to tax women on a separate, lower tax schedule than men, on a firmer basis. What emerges clearly from the analysis is how centrally important the relationship between productivity in household production and female labour supply really is, and how little we know about it empirically.

JEL Classification: H21, D13, J22

Keywords: Optimal taxation, household production, labour supply
Acknowledgement:
The research for this paper has been supported by an Australian Research Council DP grant.

1 Introduction

The large growth in female labour force participation that occurred in the 1950’s to 1980’s has made the question of taxing two-earner households one of the central issues in tax policy, yet it is relatively neglected in the theoretical literature.\(^1\) This paper summarises and extends the main results in the (rather small) journal literature, placing some emphasis on the importance of household production and its relevance to the taxation problem.

Attention tends to focus on the relative merits of joint taxation (income splitting), individual taxation and selective taxation. Under the first, incomes are added together, divided by two, and the resulting average income taxed according to a given tax schedule. Under the second, the couple’s incomes are taxed separately but on the same rate schedule. Under the third, not only are incomes taxed separately, but the tax schedules also differ. The paper by Boskin and Sheshinski (1983) is generally regarded as having established the conventional wisdom in this area, namely that selective, and not joint, or even independent, taxation is optimal.\(^2\) That is, not only should women be taxed separately from men, but they should be taxed on a lower rate schedule. This conventional wisdom was challenged by Piggott and Whalley (1996), who argued for the second best optimality of joint taxation, but Apps and Rees (1999b) show that their argument is flawed.

Nonetheless, we suggest in the following section of this paper that, though perhaps intuitively appealing, the Boskin-Sheshinski analysis itself does not establish a solid basis for the conventional wisdom. The general conclusion that tax rates on men and women should differ is almost certainly correct. That is, joint taxation is optimal in a set of cases of measure zero. However, their argument that the tax rate on women should be lower is open to question. In the kind of model that Boskin and Sheshinski use, we cannot rule out the possibility that, although on efficiency grounds alone their result

\(^1\)For example it is not discussed at all in two leading public finance texts, Myles (1995) and Salanié (2003), nor in the survey by Auerbach and Hynes (2002), while it is mentioned as an important issue, but not further analysed, in Atkinson and Stiglitz (1988).

\(^2\)See also Feldstein and Feenberg (1996).
holds,\(^3\) the female tax rate could be a better instrument of income redistribution across households than the male tax rate, and equity effects could outweigh efficiency effects to result in a higher tax rate on women. However, we show that if there is positive assortative matching, in the sense that the female wage rate increases with the male wage rate across households, and if the covariance across households between the marginal social utility of income and the difference between male and female earnings is negative, then the tax rate on men should certainly be higher than that on women. Since the empirical evidence appears to provide support for these conditions, this places the conventional wisdom on a much firmer basis.

However, the model used by Boskin and Sheshinski suffers from the limitation that it ignores household production. Thus in their model household wage income is an accurate indicator of household utility possibilities. If we take account of household production and the considerable across-household heterogeneity in female labour supply that in fact exists, household income becomes a much less reliable indicator of household utility possibilities,\(^4\) and a linear tax system based on market income may generate significant inequities, even if these are not so great as under a joint tax system. We show this in section 4, having developed in section 3 a simple model of household production.

A possible reason for the intuitive appeal of the conventional wisdom, apart from the evidence on male and female labour supply elasticities, may be an assumption about the within-household income distribution. It may be thought that a system in which, however low her income, the tax rate on the first dollar a wife earns is that paid on the last dollar the husband earns\(^5\) in some way worsens the allocation of household resources that the wife obtains. For example, it reduces her net wage and therefore her terms of trade within the household.\(^6\) Anyone wanting to argue along these lines has to construct a household model that shows how the within-household income distribution is determined, and how this is affected by the tax system. A problem here is that no consensus appears to exist on such a model among the economists working in this area, and no comprehensive or robust empirical estimates

\(^3\)Consistent with the intuition of Munnell (1980) and Rosen (1977).
\(^4\)As recognised by Munnell (1980).
\(^5\)At least to a close approximation. There may be a tax-free allowance on an initial band of the wife’s earned income, as in Germany.
\(^6\)See Apps (1982), for development of this point in the context of a Walrasian model. For an approach based on Nash bargaining, see Gugl (2004).
exist of the parameters we would need to know.

From the point of view of the optimal linear tax analysis carried out in the next section, if we took account of the household’s internal resource allocation, terms representing the effects of changes in the tax rates on the distribution of income within the household would appear in the first order conditions that determine the optimal tax rates. The planner’s social welfare function is defined on individual utilities, but these can only be influenced indirectly, via the effect of the tax instruments on the household’s allocation process. In Apps and Rees (1988) we show that the assumption allowing us to ignore these terms is that the household distributes its income in exactly the way that the central planner would wish it to.\(^7\) By making this assumption, we can sidestep the issue of the within-household income distribution. This implies in turn that it is sufficient to follow Boskin and Sheshinski in using a "household utility function" as the representation of household preferences. This can be done as long as we want only to focus on how the across-household income distribution affects optimal tax rates. We would argue that the problem of clarifying the relationships among female labour supply, household production, household utility possibilities and optimal taxes is sufficiently complex as to justify postponing analysis of the use of the tax system as a means of influencing the within-household income distribution.

2 The Boskin-Sheshinski Model

This model, based on the optimal linear income tax analysis of Sheshinski (1972), could be viewed as making the smallest possible extension to the model of the individual worker/consumer just necessary to analyse taxation of two-person households. Its main contribution is to make precise the intuition that selective taxation could be optimal because the elasticity of female labour supply is higher than that of male labour supply.

A household has the utility function \(u(y, l_f, l_m) \), where \(y \) is a market consumption good, and \(l_i \geq 0, \ i = f, m, \) is the labour supply of household

\(^7\)This is called "non-dissonance" in Apps and Rees (1988).
The household faces the budget constraint

\[y = a + \sum_{i=f,m} (1 - t_i) x_i \]

where \(a \) is the lump sum transfer in a linear tax system and \(t_i \) is the marginal tax rate on \(i \)'s gross income \(x_i = w_i l_i \), with \(w_i \) the exogenously given gross market wage. Thus a household is characterised by a pair of wage rates \((w_f, w_m)\), otherwise households are identical. Since this is a linear tax problem we do not have to assume that a household’s wage pair is observable.

There is a given population joint density function \(f(w_f, w_m) \), everywhere positive on \(\Omega = [w^0_f, w^1_f] \otimes [w^0_m, w^1_m] \subset \mathbb{R}_+^2 \), which tells us how households are distributed according to the innate productivities in market work of their members, as measured by their market wage rates.

To focus attention on what we regard as the most important aspects of the results, we assume that the household utility function\(^9\) takes the quasilinear form

\[u = y - u_f(l_f) - u_m(l_m) \quad u' > 0, u'' > 0, \quad i = f, m \]

which, however, we find more convenient to write in terms of gross incomes

\[u = y - v_f(x_f) - v_m(x_m); \quad v_i(x_i) \equiv u_i(\frac{x_i}{w_i}) \quad i = f, m \]

Solving the household’s utility maximisation problem yields demands \(y(a, t_f, t_m), x_i(t_i) \) and the indirect utility function \(v(a, t_f, t_m) \) such that

\[\frac{\partial v}{\partial a} = 1; \quad \frac{\partial v}{\partial t_i} = -x_i \frac{\partial v}{\partial w_i} = (1 - t_i) l_i \]

Note that

\[x'_i(t_i) = w_i \frac{dl_i}{dt_i} \]

is a compensated derivative, because of the absence of income effects. For the same reason, it is straightforward to confirm that labour supplies and gross incomes are strictly increasing in the wage rate and decreasing in the

\(^8\) Although it could just as well be thought of as referring to a single individual with two sorts of labour supply or leisure.

\(^9\) Clearly the model can say nothing about the within-household welfare distribution, as discussed in the Introduction.
tax rate. Thus household utility is strictly increasing in household income. Note that the choice of utility function sets the effects of one partner’s wage on the labour supply of the other to zero. This makes it much easier to derive the main insights of the analysis without doing too much injustice to the facts.\footnote{Empirical evidence seems to suggest no significant effects of a wife’s wage on husband’s labour supply and only very weak negative effects of husband’s wage on wife’s labour supply.}

To find the optimal tax system we introduce the social welfare function \(W(.), \) which is strictly increasing, strictly concave and differentiable in the utility of every household, and the planner’s problem is then

\[
\max_{a,f,t,m} \int \int \limits_{\Omega} W[v(a, tf, tm)] f(w_f, w_m) dw_f dw_m
\]

subject to the tax revenue constraint

\[
\int \int \limits_{\Omega} [tf x_f + tm x_m] f(w_f, w_m) dw_f dw_m - a - G \geq 0
\]

where \(G \geq 0 \) is a per household revenue requirement. The first order condition with respect to the lump sum \(a \) can be written

\[
\int \int \limits_{\Omega} \frac{W'}{\lambda} f(w_f, w_m) dw_f dw_m = 1
\]

where \(\lambda > 0 \) is the marginal social cost of tax revenue and \(W'/\lambda \) the marginal social utility of income to a household with characteristic \((w_f, w_m)\). Thus the optimal \(a \) equates the average marginal social utility of income to the marginal cost of the lump sum. We denote a household’s marginal social utility of income \(W'/\lambda \) by \(s \), and its mean by \(\bar{s} \). Thus the condition sets \(\bar{s} = 1 \). Because of the assumptions on \(W(.) \), households with relatively low wage pairs will have values of \(s \) above the average, those with relatively high wage pairs, below.

The first order conditions on the marginal tax rates, using the above condition, can be written as

\[
t^*_i = \frac{Cov[s, x_i]}{\bar{x}_i} \quad i = f, m
\]
where
\[
\text{Cov}[s, x_i] = \int \int_{\Omega} \left(\frac{W'}{\lambda} - 1 \right) x_i f(w_f, w_m) dw_f dw_m
\]
is the covariance of the marginal social utility of household income and the gross household income of individual \(i\), and

\[
\bar{x}_i' = \int \int_{\Omega} x_i'(t_i) f(w_f, w_m) dw_f dw_m
\]
is the average compensated derivative of gross income with respect to the tax rate, and is negative.

Now the argument that \(t_f^* < t_m^*\) is based on the empirical evidence suggesting that \(-\bar{x}_f' > -\bar{x}_m'\), but this clearly considers only part of the optimal tax formula, and is in general neither necessary nor sufficient for the result. In other words, though taxing women at a given rate creates a higher average deadweight loss than taxing men at the same rate, the policy maker’s willingness to trade off efficiency for equity might imply that the tax rate on women could optimally be higher than that on men, if the covariance between the marginal social utility of household income and women’s gross income is in absolute value sufficiently higher than that of men, so that the corresponding redistributive effects make that worthwhile.

This indeterminacy is also of course present in Boskin and Sheshinski’s paper, though the greater generality and complexity of their model perhaps makes it less obvious. In order to be able to say something more definite, they take a model based on specific social welfare and household utility functions and "plausible" parameter values, and solve numerically for the marginal tax rates. The result is that the male marginal tax rate is higher than the female.

One example seems to us to constitute a very inadequate basis for an entire conventional wisdom. It is certainly true that equality of the marginal tax rates appears as a highly special case, requiring equality of the ratios of equity and efficiency terms in each case, and so joint taxation is almost certain to be suboptimal, but the results of this model so far do not make a conclusive case for taxing women at a lower rate than men. The optimal tax analysis suggests a departure from income splitting, but it does not tell us much about the appropriate direction of this departure. In fact, the analysis is unnecessary to give the basic result, since joint taxation amounts to imposing on the optimal tax problem the constraint that the marginal
tax rates be equal, and such a constraint cannot increase the value of the objective function at the optimum.

To make this a little more precise, write

\[Cov[s, x_i] = \rho_i \sigma_i \sigma_s \ i = f, m \]

with \(\rho_i \) the correlation coefficient between \(s \) and \(x_i \), \(\sigma_i \) the standard deviation of \(x_i \), and \(\sigma_s \) the standard deviation of \(s \). Then we have

Proposition 1:

\[t_f^* < t_m^* \iff \frac{\rho_f \sigma_f}{\rho_m \sigma_m} < \frac{x_f'}{x_m'} \]

It is an open question empirically, whether this condition is satisfied. All we can really conclude from Boskin and Sheshinski’s example is that the assumed functional forms and parameter values lead to satisfaction of this condition.

However, we can take the discussion further and put the conventional wisdom on a firmer foundation if we assume:

Assortative matching: across households, the female wage is a monotonic increasing function of the male wage;

Diverging incomes: as the male wage increases, the couple’s earnings difference \(x_m - x_f \) increases monotonically.

Then we have

Proposition 2: Assortative matching and diverging incomes are sufficient (given \(-\bar{x}_f > -\bar{x}_m\)) to ensure \(t_f^* < t_m^* \).

Proof: We can write

\[
Cov[s, x_m] - Cov[s, x_f] = Cov[s, x_m - x_f] = \int \int_{\Omega} (s-1)[x_m - x_f] f(w_f, w_m) dw_f dw_m
\]

(1)

Given assortative matching, we know that \(s \) is falling monotonically with \(w_m \) while given diverging incomes we know that \(x_m - x_f \) is increasing monotonically with \(w_m \), thus \(Cov[s, x_m - x_f] < 0 \), and so

\[-Cov[s, x_m] > -Cov[s, x_f] \]

(2)

and the male covariance is higher in absolute value. Hence the male tax rate is both more effective as a redistributive instrument and less costly in terms of deadweight loss, and so it will be optimally higher than the female.
The empirical evidence11 suggests that, at least in the most developed countries, assortative matching and diverging incomes are reasonable assumptions, and so we have a more solid foundation for the conventional wisdom.

An important limitation of the Boskin-Sheshinski model, as our discussion in the introduction suggests, is that it omits household production. Why should this matter? After all, it could be argued, all that is really important are the labour supply (gross income) derivatives and the covariance of gross income with the marginal social utility of household income. Whether substitution at the margin is between market work and leisure, or market work and household production, is, on this argument, just a matter of detail that does not really have substantive implications.

What makes this argument untenable is the large variation across households in female labour supply12 and the implication that gross income may well not correctly reflect utility possibilities. In the Boskin-Sheshinski model, the household’s utility possibilities necessarily increase with household market income, which is therefore an appropriate welfare measure for purposes of income taxation. A central consequence of taking account of household production, in a way that also explains the empirical evidence on female labour supply, is that household income may be a poor, and possibly negative, indicator of household welfare, which in turn should have important policy implications. In the next section we set up a simple household model incorporating household production, and use it in the rest of this paper to explore issues in the taxation of couples, beginning with an extension of the optimal linear taxation model.

\section{The Household Production Model}

We introduce domestic goods z_i produced respectively by $i = f, m$, with each being consumed by both members of the household, and write the household utility function now as

\[u = y + \phi(z_f) + \mu(z_m) \]

11See Apps and Rees (2008).
12See for example Rees (2007) for the case of Germany and Apps and Rees (2008) for the additional four countries USA, UK, Sweden and Australia.
The household good z_f is produced according to the production function

$$z_f = kh_f$$

where the productivity parameter $k \in [k_0, k_1] \subset \mathbb{R}_+$ *varies across households*, and h_f is the time f spends in domestic production. We assume that males in all households are equally productive in household production, because we want to take the primary effect of productivity variation across households to be on female labour supply. By choice of units, we can therefore set the time spent by m in household production, to be

$$13h_m = z_m.$$

The implicit price, p, of the domestic good z_f, is equal to its marginal cost, given by

$$p = \frac{(1 - t_f)w_f}{k}$$

and so

$$\frac{\partial p}{\partial t_f} = -\frac{w_f}{k}.$$

The price of z_m is $q = (1 - t_m)w_m$. The individuals have time constraints

$$l_i + h_i = 1 \quad i = f, m$$

where total time is normalised at 1. The household budget constraint is

$$y = a + (1 - t_f)w_f l_f + (1 - t_m)w_m l_m$$

which, using the time constraints, can be written as

$$y + p z_f + q z_m = Y$$

where $Y \equiv a + (1 - t_f)w_f + (1 - t_m)w_m$ is the household’s *net full income*. From this budget constraint it is clear that two households with identical male and female wage rates and differing values of k will have differing utility possibilities, with the household with the lower value of p, *i.e.* the higher female productivity in domestic production, having the higher budget constraint.

This is made explicit if we solve the household’s utility maximisation problem to obtain the demand functions $y(p, q, Y)$, $z_f(p)$, $z_m(q)$ and its indirect utility function $v(p, q, Y)$, with

$$\frac{\partial v}{\partial p} = -z_f; \quad \frac{\partial v}{\partial q} = -z_m; \quad \frac{\partial v}{\partial Y} = 1$$

What distinguishes z_m from "leisure" is that it is consumed by both individuals. It may, but need not, be a household public good.
Then obviously the higher the value of \(k\) and therefore (for equal female wage rate) the lower is \(p\), the higher the household’s utility. For the interpretation of the tax analysis it is also useful to note that

\[
\frac{\partial v}{\partial a} = 1; \quad \frac{\partial v}{\partial t_i} = -w_i l_i \quad i = f, m
\]

Of key importance is the relation between female market labour supply, and therefore household market labour income, and the productivity parameter \(k\). Unfortunately, this is in general ambiguous. Thus we have

\[
l_f = 1 - \frac{z_f(p)}{k}
\]

and so

\[
\frac{\partial l_f}{\partial k} = \frac{z_f}{k^2} - \frac{z'_f(p)}{k} \frac{\partial p}{\partial k}
\]

The first term is positive, and reflects the effect of increasing productivity in reducing the time required to produce a given domestic output. The second term is negative, since demand for domestic output increases as its price falls, and increasing \(k\) reduces the price of the domestic good. Thus increasing productivity reduces the time needed to produce a given level of domestic output but increases the demand for it, so the net outcome depends on the relative strength of these two effects. Noting that \(\partial p/\partial k = -p/k\), we can write this as

\[
\frac{\partial l_f}{\partial k} = \frac{z_f}{k^2} (1 - e)
\]

where \(e\) is the price elasticity of demand of the domestic good. Thus if this demand is elastic \((e > 1)\), female labour supply decreases with productivity, while it increases in the converse case. Moreover, we can derive a very simple relationship between the elasticity of female labour supply with respect to the net wage, \(e_{w_f}\), and this elasticity of demand for the domestic good, which is

\[
e = e_{w_f} \frac{l_f}{h_f}
\]

Thus if we know a household’s female labour supply elasticity and the ratio of market to domestic labour supply, we can predict how variations in its domestic productivity affect female labour supply.
4 Optimal Linear Taxation

Turning now to the optimal linear tax analysis,14 we extend the Boskin-Sheshinski model in the simplest possible way. First, we adopt the assumption of \textit{assortative matching}, as set out in the previous section. Because of this we from now on write the male wage simply as \(w \in [w_0, w_1] \subset \mathbb{R}_+ \). We also assume we have the joint density function \(f(k, w) \) defined on \(\Delta = [k_0, k_1] \otimes [w_0, w_1] \subset \mathbb{R}_+^2 \). A value of the male wage \(w \) corresponds now to a pair of wage rates. Recall that the higher is \(k \), the lower is the implicit price of the household good and so the higher must be the household’s utility possibilities.

We set up essentially the same optimal tax problem as before

\[
\max_{a, t_f, t_m} \int_{\Delta} W[v(a, t_f, t_m)]f(k, w)dkdw
\]

subject to the revenue constraint

\[
\int_{\Delta} [t_f w_f l_f + wt_m l_m]f(k, w)dkdw - a - G \geq 0
\]

The first order condition with respect to the lump sum \(a \) can now be written as

\[
\int_{\Delta} \frac{W'}{\lambda} f(k, w)dkdw = 1
\]

and so, again denoting the marginal social utility of income to a household by \(s \), we have its expected value \(\bar{s} = 1 \). The condition with respect to the \(i \)'th tax rate can be written as

\[
t_i^* = \frac{Cov[s, x_i]}{\bar{x}_i} \quad i = f, m
\]

14See Sandmo (1990) for an analysis of optimal linear income taxation in the presence of household production. The key differences to the present paper are that he was concerned with single-person households and assumed the household good was a perfect substitute for a market good.
with now

\[Cov[s, x_i] = \int \int_{\Delta} (\frac{W'}{\lambda} - 1)x_i f(k, w)dkdw \]

\[\bar{x}'_i = \int \int_{\Delta} x'_i f(k, w)dkdw \]

Superficially, the results look very similar to those derived in the Boskin-Sheshinski model. While however the denominator terms have the same meanings as before, in fact there are crucial differences, essentially to do with the distributional terms in the numerators.\(^{15}\) The male tax rate is unaffected by the introduction of household production, because \(x_m\) does not vary with \(k\). However, the value of \(Cov[s, x_f]\) now depends crucially first, on the relationship between \(w\) and \(k\), and secondly, on that between female labour supply, and hence \(x_f\), and \(k\). We can distinguish four cases:

- **Case 1**: \(w\) and \(k\) vary positively with each other, and \(l_f\) varies positively with \(k\).

 This is the case in which the female’s productivity in market and in household production are positively related, and where her higher domestic productivity allows her to supply more time to the market.\(^{16}\) Then, as in the Boskin-Sheshinski model, \(Cov[s, x_f] < 0\), and \(t_f > 0\). We can also derive the counterpart of Proposition 2: \(t_f < t_m\) if \(x_m - x_f\) increases with \(w\). So in this case nothing much qualitatively is added by introducing household production.

- **Case 2**: \(w\) and \(k\) vary positively with each other, and \(l_f\) varies inversely with \(k\).

 In this case, the elasticity of demand for the household good is sufficiently high that female labour supply falls as \(k\) increases, other things being equal. This will therefore reduce the extent to which \(x_f\) increases as \(w\) increases, and so strengthens Proposition 2. Moreover, it is even possible that \(Cov[s, x_f]\) becomes positive, implying a negative female tax rate. For this to happen, the effect of increasing \(k\) on reducing \(l_f\) must be sufficiently strong that gross

\(^{15}\)This does tell us that introduction of household production is not essential as long as our only concern is with deadweight loss, i.e. efficiency rather than equity. On the other hand the fact that substitution between market work and non-market work is what really determines female labour supply elasticities may well have implications for econometric model specifications.

\(^{16}\)Recall the discussion in section 2 earlier.
income x_f actually falls as w and k increase, therefore causing s and x_f to move in the same direction across households. In this case, a positive female tax rate would be a regressive instrument of welfare redistribution.

Case 3: w and k vary inversely with each other, and l_f varies positively with k.

This is the case in which a woman’s market and household productivity vary inversely\(^{17}\). It seems plausible to assume that the increase in wage rates would outweigh the falling k in raising household utility and so reducing s. Reducing k will at least partially offset increasing w in increasing x_f, so, as in Case 2, we have a strengthening of Proposition 2, with even the possibility of a negative optimal tax rate for women.

Case 4: w and k vary inversely with each other, and l_f varies inversely with k.

Assuming, as in Case 3, that with increasing w we still have falling s, we also now have that x_f is certainly increasing, and so this case is essentially similar to case 1.

Finally, we have the result that the kind of vertical inequity in the joint taxation system pointed out by Munnell (1980) does not disappear in the optimal linear tax system, though it would be moderated. Thus consider, in a joint taxation system, two households with the same gross income. They pay the same tax under this system. Suppose however that one household has zero female labour supply and the entire income is earned by the male spouse, while in the other both labour supplies are positive. Given that the first household has a higher wage, it must have the lower marginal social utility of income, unless female labour supply increases with household productivity, and the value of k is so much higher in the second household than the first, that it has the higher utility possibilities. If this is not the case, joint taxation is regressive.

Under selective taxation, the second household would face a lower tax bill than the first, because the male in this household would pay less tax on his lower gross income, and the female would pay less tax still, both because of her lower gross income and because $t_f < t_m$. Thus moving from joint to selective taxation (though not to independent taxation in a simple linear tax system, since this is equivalent to joint taxation) would go some way

\(^{17}\text{We may think this case to be empirically less likely, because the higher the household’s wage rates the higher might be its physical capital as well as the wife’s human capital, both of which might be expected to increase her productivity in household production, but a priori we cannot rule the case out.}\)
to correcting the regressivity of the joint tax system in this regard. Note that the introduction of household production is what allows us to reject gross household income as an adequate measure of the household’s utility possibilities. In the next section we look more closely at the effects of a switch from joint to independent taxation by presenting it as a problem in tax reform.

Finally, even under optimal selective taxation, in the case where female labour supply varies inversely with domestic productivity, there could still be a great deal of vertical inequity in the tax system, essentially because the female income tax rate captures the effects of variation in domestic productivity only very imperfectly. Take two households with the same wage rates and therefore male gross incomes. The household with the lower female gross income, and therefore smaller total tax bill, will actually have the higher level of utility possibilities. The importance of such inequity in reality obviously depends on the direction and strength of the relation between domestic productivity and female labour supply, about which nothing is known empirically.

5 Tax Reform

The optimal tax analysis can provide important insights, but from the point of view of actual tax policy, an analysis of tax reform, i.e. the search for welfare improving directions of change from an initial non-optimal position, may be more relevant. In this section we consider two examples of tax reform problems, using them again to highlight the central importance of the relation between female labour supply and productivity in household production in determining the conclusions.

5.1 The Flat Rate Case

We use the model of the previous section to analyse a tax reform consisting of a (local) revenue neutral movement away from a position where all households face the same tax rate, i.e. we initially have a flat rate tax system, which is also of course a joint taxation system. We shall relax this assumption below, but for the moment it is useful to highlight certain aspects of the results.

18We draw here on Apps and Rees (1999a), to which the reader is referred for more extensive discussion and analysis of further possible cases.
Thus the marginal tax rates t_f and t_m are equal initially, and we consider differentials $dt_f < 0 < dt_m$ which, because of revenue neutrality, have to satisfy

$$dt_f = -\beta dt_m$$

where

$$\beta = \frac{\int \int \Delta [x_m + t_m x'_m]f(k, w)dk dw}{\int \int \Delta [x_f + t_f x'_f]f(k, w)dk dw} = \frac{\bar{x}_m + t_m \bar{x}'_m}{\bar{x}_f + t_f \bar{x}'_f}$$

Since we assume both $\bar{x}_f < \bar{x}_m$ and $\bar{x}'_f < \bar{x}'_m < 0$ we will have $\beta > 1$. Any one household is made better off by this reform if and only if

$$dv = (\beta x_f - x_m)dt_m > 0$$

i.e. iff

$$\beta > \frac{x_m}{x_f}$$

Thus a household is more likely to be made better off the lower its ratio of gross male to gross female income, and it is straightforward to show that all households could be better off, and at least some households must be. For the latter, we have

Proposition 3: For the given tax reform, on the assumptions $\bar{x}_f < \bar{x}_m$ and $\bar{x}'_f < \bar{x}'_m < 0$ at least some households are made better off.

Proof: Suppose to the contrary that all households are made worse off. Then we must have for all households

$$\beta < \frac{x_m}{x_f}$$

$$\Rightarrow\beta < \frac{\bar{x}_m}{\bar{x}_f}$$

$$\Rightarrow\frac{\bar{x}'_m}{\bar{x}'_f} > \frac{\bar{x}_m}{\bar{x}_f}$$

which contradicts the assumptions.

It is possible to construct special cases in which the condition is satisfied for all households, but it has to be accepted that empirically, since x_f may be
zero for some households, we should expect some households would be made worse off. Again, however, the welfare effects depend on the relationship between household productivity and female labour supply, since this determines whether the households which may be made worse off by this reform, the ones with a sufficiently high ratio x_m/x_f, are in fact higher or lower in the initial welfare distribution.

5.2 A Progressive Joint Tax System

Suppose we start with a tax system in which there is income splitting, and the marginal tax rate increases with joint household income. We want to consider the desirability of progressive income taxation in this context. To simplify, we assume that there are just two household types, $h = 1, 2$, distinguished by different values of household productivity k_h. Also, we take initially the case in which everyone, both male and female, has the same market wage, w. Thus the differences in female labour supply are due entirely to differences in domestic productivity, as are the differences in household pre-tax utility possibilities. Both men will have the same labour supplies and gross incomes x_m, and we assume that household 2 has the higher female labour supply and gross income, $x_{f2} > x_{f1}$. Each household receives the same lump sum, a, but household h pays a marginal tax rate t_h, with $t_2 > t_1$. There are n_h households of type h. The government revenue constraint is now

$$\sum_{h=1}^{2} n_h [t_h \sum_{i=f,m} x_{ih} - a] - R \geq 0$$

where $R \geq 0$ is an aggregate revenue requirement. We take the social welfare function as having the same general form as that used in the optimal tax analysis, specialised to this simple case:

$$S = \sum_{h=1}^{2} n_h W[v_h(t_h)] \quad W' > 0, W'' < 0$$

We consider a tax reform consisting of revenue neutral changes in the tax rates, dt_h. The question of interest is: When is a reduction in the progressivity of the tax system social welfare enhancing?

Note first that the tax rate changes must satisfy

$$dt_1 = -\gamma dt_2$$
where
\[\gamma = \frac{n_2 \sum_i (x_{i2} + t_2x_{i2}')}{n_1 \sum_i (x_{i1} + t_1x_{i1}')} \]

We then ask, under what condition will the change \(dt_2 < 0 \) satisfy
\[dS = -2 \sum_{h=1}^{2} n_h W'_h \sum_{i=f,m} x_{ih} dt_h > 0 \]
so that a reduction in progressivity is welfare increasing. This is given by the simple condition
\[\frac{W'_2}{W'_1} > \frac{1 - e_2}{1 - e_1} \]
where
\[e_h \equiv -\frac{t_h}{\sum_i x_{ih}} \sum_i \frac{\partial x_{ih}}{\partial t_h} > 0 \]
is an aggregate household elasticity of gross income with respect to the tax rate. Now if these elasticities are equal, a necessary and sufficient condition for a reduction in progressivity is that female labour supply be inversely related to domestic productivity. However, Heckman (1993) argues that the evidence on male and female labour supply elasticities suggests that higher female labour supply elasticities result from the fact that labour supplies are more elastic for individuals, of either gender, who have low labour supply. Thus it may well be the case that household 1 will have a higher elasticity than household 2, in which case the condition becomes more stringent. On the other hand, if \(x_{f1} = 0 \), and \(\frac{\partial x_{f1}}{\partial t_1} = 0 \), and the male labour supply elasticities are just equal, then we certainly have \(e_2 > e_1 \), and overall welfare could be increased even if \(W'_2 < W'_1 \), which could be the case for example if a small difference in domestic productivities leads to a substantial increase in female labour supply.

6 Conclusions

This paper has been concerned with the question of how couples should be taxed. One reason for the importance of this issue is simply that the overwhelming majority of individuals live in households formed around couples. A second reason is that the economic theory of optimal taxation and tax
reform, at least as it is presented in the mainstream literature, provides little guidance on this issue, resting as it does on models of the single person household. An old insight in the earlier public finance literature is that any discussion of the taxation of two-person households necessarily involves the recognition of the importance of household production. In this paper we have tried to show how a simple model of household production can be used to help the analysis of optimal taxation and tax reform, and to put the "conventional wisdom", which says that it is optimal to tax women on a separate, lower tax schedule than men, on a firmer basis. What emerges clearly from the analysis is how centrally important the relationship between productivity in household production and female labour supply really is, and how little we know about it empirically.

The analysis of optimal taxation was carried out entirely within the framework of linear taxation. Though central to the literature, this is a somewhat restricted framework. In further work, we intend to explore the issues discussed in this paper in the context of non-linear\(^{19}\) and piecewise linear tax systems.

References

\(^{19}\)In the sense of Mirrlees (1971).

