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Abstract

This paper analyses the exercise decision of non-exclusive real options in

a two-player setting. A general model of non-exclusive real options, allowing

the underlying asset to follow any strong Markov process is developed, thus

extending the existing literature, which is mainly based on one-dimensional

geometric Brownian motion. For games with a first-mover advantage it is proved

that an equilibrium with the rent-equalisation property exists. As an example,

a duopoly where two firms can adopt a new technology, whose profitability

follows a two-dimensional, correlated geometric Brownian motion is studied.
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1 Introduction

Ever since the seminal contributions of Brennan and Schwartz (1985), McDonald

and Siegel (1986), and Dixit and Pindyck (1994), the standard approach in invest-

ment appraisal has been to view projects as (real) options, the valuation and optimal

exercise decision of which have, consequently, to be determined by applying the prin-

ciples of (financial) option pricing established by Black/Scholes/Merton.Contrary to

their financial counterparts, however, real options are typically non-exclusive. This

introduces a game theoretic dimension that is absent in standard option pricing

models.

The literature on non-exclusive options has, so far, been relatively sparse. This

is mainly due to the mathematical intricacies of timing games in continuous time.

The main problem is that, in continuous time, the “time instant immediately after

time t” is not well-defined (cf. Simon (1987a), Simon (1987b), and Simon and

Stinchcombe (1989)).

Many situations in which non-exclusive real options arise have a so-called “first

mover advantage”. Consider, for example, two firms that have the option to adopt

a new technology. The firm that adopts first can have an advantage over its rival

due to additional profits that may accrue from the technological innovation. Such a

model has been analysed in a deterministic, continuous time setting by Fudenberg

and Tirole (1985). They show that, in equilibrium, the two firms will try to preempt

each other. In fact, equilibrium strategies are such that both firms’ discounted profit

streams equal that of the case in which they are not the first firm to invest. In other

words, in equilibrium there is rent equalisation.

In the game analysed in Fudenberg and Tirole (1985) a particular coordination

problem arises, as there are situations where the first mover advantage leads to

an environment where it is profitable for one – and only one – firm to invest. In

continuous time there is no easy way to deal with this problem. Essentially there

are only two possibilities: either firm always invests, whereas the other firm never

invests. Both constitute a (pure strategy) equilibrium. These ar, however, not

intuitively appealing. How and why would firms coordinate on either equilibrium?

By using a technique from optimal control theory Fudenberg and Tirole (1985)

introduce the possibility of a mixed strategy, which leads to the result that each firm

invests with probability 1/2, which is an intuitively appealing result. Furthermore,

joint investment occurs with zero probability.

These ideas have also been applied – explicitly or implicitly – to game-theoretic

extensions of real option models.1 The technique used in most models is a direct,

1See, for example, Smets (1991), Grenadier (2000), Huisman (2001), Huisman and Kort (1999),
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or simplified, application of the concepts of Fudenberg and Tirole (1985). In fact,

in many cases the coordination problem mentioned earlier is dealt with by sim-

ply assuming that firms invest with equal probability and that joint investment is

impossible, i.e. firms toss a fair coin to solve the coordination problem.

By default, however, non-exclusive real option models deal with uncertainty and,

hence, with stopping times instead of deterministic time. Therefore, much of the

analysis in Fudenberg and Tirole (1985) is not directly applicable to models with

uncertainty. Furthermore, the actual technique used by Fudenberg and Tirole (1985)

does not have an intuitive interpretation and is merely a tool to obtain results

in continuous time. A first step towards a formal analysis of non-exclusive real

options is provided by Murto (2004), who considers exit in a duopoly with declining

profitability. In that paper, however, the coordination problem does not arise and

an equilibrium in pure strategies can be found. Murto (2004) uses ideas introduced

by Dutta and Rustichini (1995). In this framework, the profitability of each firm

depends (deterministically) on how many firms are present in the industry and a

random part, which follows a geometric Brownian motion (GBM). The firms then

each choose a stopping set and exit as soon as the GBM hits their stopping set.

In this paper, the Dutta and Rustichini (1995) and Murto (2004) framework is

extended in several ways. Firstly, I adapt and embed the method of Fudenberg and

Tirole (1985) to solve the coordination problem in the basic set-up of Murto (2004).

Secondly, I prove existence of equilibrium for non-exclusive real options where the

underlying asset follows a general, possibly higher dimensional, Markov process.

It is shown that there exists an equilibrium in which the rent-equalisation principle

holds for this general class of games. Finally, the equilibrium results are applied to a

situation where two firms can invest in a project. The set-up is similar to Huisman

(2001, Chapter 7), i.e. each firm’s profits consists of a deterministic part, which

depends on the number of firms having invested, and a random part. The novelty

here is that each firm’s profits is subject to different, but possibly correlated, GBMs.

This introduces an asymmetry in an otherwise symmetric model. It is shown that

there are three possible investment scenarios. Two in which one firm acts as if it

were an exogenously determined Stackelberg leader whereas the other firm acts as

a Stackelberg follower, and one in which both firms try to preempt each other. In

the latter case it holds that joint investment occurs with probability zero. A similar

result is well-known for models based on a one-dimensional GBM and is basically

due to the continuous sample paths of GBM. However, the probability with which

each firm invests is not equal to 0.5 (a.s.). This result indicates that one has to be

Weeds (2002), and Thijssen et al. (2006).
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careful with imposing exogenous assumptions on the solution to the coordination

problem (like the “coin toss” mentioned earlier).

1.1 An illustrative example

To obtain some insight in the problem at hand, consider the following example. It

is a basic version of models analysed in Smets (1991), Dixit and Pindyck (1994,

Section 9.3), and Huisman (2001, Chapter 7). There are two symmetric firms, both

of whom can invest in a new technology by investing a fixed cost I > 0. The profits

accruing from this project are driven by two main factors: an underlying geometric

Brownian motion, (Yt)t≥0, and the “investment status” of each firm. Let πkl(Y ),

k, l = 0, 1, denote the profits of a firm where k indicates its investment status (k = 1

if invested, k = 0 otherwise) and l denotes the competitor’s investment status. For

all Y it is assumed that π10(Y ) > π11(Y ) > π00(Y ) ≥ π01(Y ). Furthermore, it is

assumed that there is a first mover advantage: π10(Y )− π00(Y ) > π11(Y )− π00(Y ).

What are equilibrium investment strategies?

The way this question is answered is by drawing an analogy with a Stackelberg

model. There are, basically, three possibilities: a firm invest first (becomes leader),

does not invest first (becomes follower), or both firms invest simultaneously. The

expected discounted profits for these scenarios, if first investment takes place at

time t ≥ 0 equal L(Yt), F (Yt), and M(Yt), respectively. A typical plot is given in

Figure 1.
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Figure 1: Payoff functions.

In Figure 1, the value YF denotes the optimal investment trigger for the follower

and YP denotes the “preemption point”, i.e. the point where each firm prefers to be
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the leader, rather than the follower. In a subgame perfect equilibrium, both firms

will immediately invest as soon as Yt ≥ YF . Conversely, for Yt < YP , neither firm

will invest. The interesting region is Yt ∈ [YP , YF ].

There are two asymmetric equilibria, namely where either firm always invests

as soon as [YP , YF ] is reached and the other never invests. There is, however, no a

priori reason why firms would coordinate on these equilibria. In order to construct a

symmetric equilibrium, one needs what Fudenberg and Tirole (1985) call a “sequence

of atoms”. This can be thought of as an infinitesimal version of the “grab-the-dollar”

game. In each round, firm i invests with a probability αi, until at least one firm

invests. In this way, the possibility of a “coordination mistake” – both firms investing

simultaneously – is not ruled out ex-ante.2 It turns out that in equilibrium

αi(Y ) =
L(Y ) − F (Y )

L(Y ) − M(Y )
.

In particular, this implies that at YP either firm invests with probability 1/2, and si-

multaneous investment does not occur (a.s.). Furthermore, the expected discounted

profit of both firms equals F (Y ), regardless of whether they invest first or not. In

other words, rent-equalisation takes place in equilibrium.

1.2 Contribution and overview of the paper

The contribution of the paper is two-fold. On the methodological front it presents

an intuitively appealing way to analyse non-exclusive (real) options. The driving

idea behind the development is to separate – as much as possible – the optimal

stopping problems involved in standard (real) options analysis and the game theo-

retic analysis. Essentially I propose a setting where players use pure strategies to

determine when they act, but use mixed strategies to determine what happens at the

time they decide to act. A second contribution is an application of the methodology

to investment under uncertainty. In particular, the tools developed in the paper

allow for the incorporation of higher dimensional stochastic processes, which leads

to several new insights in the investment problem under uncertainty.

Early results in the literature on non-exclusive real options are often obtained

by applying the method developed in Fudenberg and Tirole (1985) as if it were a

deterministic problem.3 However, due to the stochastic nature of Y , one should be

dealing with stopping times. In this paper, an attempt is made to use the ideas from

2Joint investment is referred to as a mistake, because neither firm wants it to happen, since the

leader and follower values are both larger than the value of simultaneous investment.
3A notable exception is Lambrecht and Perraudin (2003), who analyse an incomplete information

game and, therefore, use Bayesian Nash equilibrium.
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Fudenberg and Tirole (1985) to develop a notion of “subgame perfect equilibrium”,

where time is essentially stochastic. In this way one can replicate the results from

the literature in an appropriate framework. In addition, the coordination device

from Fudenberg and Tirole (1985) is given a new interpretation, which makes it

appealing for use in the analysis of non-exclusive real options. A further difference

with Fudenberg and Tirole (1985) is to replace the use of distribution functions as

part of the players’ strategies by stopping sets, as suggested by Dutta and Rustichini

(1995). The strategy and equilibrium concepts are developed in Section 2.

In Section 3 the existence of a symmetric subgame perfect equilibrium is proved

for non-exclusive real options with a first-mover advantage, where the underlying

uncertainty follows a d-dimensional strong Markov process. For such non-exclusive

real options there can exist a subset of the state space where each player wants to

preempt the other. This is called the preemption region. It is in this region that the

coordination device actually comes into play. It is shown that the principle of rent-

equalisation applies in equilibrium in the preemption region. That is, the strategies

are chosen such that their expected payoff equals the expected payoff they would

get if they were not the first player to exercise for sure. More in particular, it is

easily shown that the situation where each player exercises with probability 1/2 in

the preemption region is a pathological case if the stochastic process has continuous

sample paths. This indicates that caution is needed when making (exogenous) as-

sumptions on coordination as frequently happens in the literature (see, for example,

Grenadier (1996), Grenadier (2000), and Weeds (2002)).

Finally, a numerical example is presented in Section 1.1. This example is a

straightforward extension of Smets (1991), Dixit and Pindyck (1994, Chapter 9)

and Huisman (2001, Chapter 7). I consider a model of technology adoption by

firms, where players are completely symmetric up to the uncertainty that they face.

Both firms’ profits are affected by a geometric Brownian motion with equal trend

and volatility. The novelty, however, is that the two processes are not perfectly

correlated. The most important consequence of this asymmetry is that it is not a

priori clear that preemption indeed takes place. In fact, a simulation study shows

that the expected time to first investment increases (roughly) linearly in the instan-

taneous correlation. This implies that the more asymmetric the firms are, the sooner

investment takes place (in expectation). The probability of preemption occurring

in equilibrium, on the other hand, is (roughly) parabolic in the correlation. This

implies, in essence, that the competitive pressure in the market is higher when firms

are either more or less correlated.
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2 Strategies, Payoffs, and Equilibrium

Throughout this section it is assumed that there are two players, indexed by i ∈

{1, 2}. The two players each hold an option of either the call or the put type. The

aim of this section is to define an equilibrium that is the stochastic continuous time

analogue of a subgame perfect Nash equilibrium. From a game theoretic point of

view, the main problem in continuous time modelling is the absence of a well-defined

notion of “immediately after time t” (cf. Simon and Stinchcombe (1989)). Dutta

and Rustichini (1995) solve this problem by viewing time as being parameterised by

two variables.

Definition 1. Time is the two-dimensional set T = R+ × Z+, endowed with the

lexicographic ordering, denoted by ≥L, and the standard topology induced by ≥L.

That is, a typical time element is a duplet t = (s, z) ∈ T , which consists of a con-

tinuous and a discrete part. In the remainder, s refers to the continuous and z to

the discrete component. The continuous component s can be thought of as “real

time”, on which the underlying uncertainty works, whereas z represents “coordina-

tion time”, which is used by players to coordinate their actions.

2.1 The underlying asset

There are two stochastic processes that influence the payoffs of players. The first

is an exogenously given stochastic process – denoted by Y – which represent the

evolution of the “underlying asset” of the non-exclusive option. The second process

– denoted by X – is endogenously determined by players’ strategies and describes the

evolution of the sate of play. Its state space is the set Ξ = {(0, 0), (1, 0), (0, 1), (1, 1)}.

For x ∈ Ξ, it holds that

xi =







1 if Player i has exercised the option

0 otherwise
, i = 1, 2.

More formally, let (Ω,F) be a measurable space, with a given filtration (Ft)t≥L(0,0).

Note that, here, a filtration is a sequence of σ-fields, such that

F(s,z) ⊆ F(s′,z′) ⊆ F ,

if (s, z) ≤L (s′, z′).

For all y ∈ R
d, let Py be a probability measure on (Ω,F) and let (Yt)t≥L(0,0) be

a strong Markov process defined on (Ω,F , Py), such that

1. (Yt)t≥L(0,0) is adapted to (Ft)t≥L(0,0),
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2. (Yt)t≥L(0,0) takes values in (Rd,Bd), where Bd is the d-dimensional Borel σ-

field,

3. for all s ∈ R+ it holds that Y(s,0) = Y(s,1) = · · · ≡ Ys, and

4. Y(0,0) = y, Py-a.s.

So, in essence, (Yt)t≥L(0,0) can be created from a stochastic process in continuous

time, (Ys)s∈R+ – whose sample paths are right-continuous and left-continuous over

stopping times – extended to T , such that condition 3 holds. The process (Yt)t≥L(0,0)

represents the evolution of the value of the asset underlying the real option. For

further reference, define the stopping time

τy(A) := inf{s ∈ R+|Y(s,z) ∈ A, Y(0,0) = y, Py-a.s.},

for all A ∈ Bd. If there is no confusion possible as to the value of y the subscript is

dropped.

2.2 Strategies and the coordination mechanism

For every y ∈ R
d and x ∈ Ξ, a strategy for Player i will consist of two ingredients,

namely a set Si
y,x ⊆ R

d
+, and a probability αi

y,x ∈ (0, 1]. The set Si
y,x is referred to as

Player i’s stopping set, given the initial values (y, x).4 The probability αi
y,x describes

Player i’s exercise intensity at time τ(S i
y,x). The probabilities α1

y,x and α2
y,x together

determine the evolution of a process (Xt)t≥L(0,0), which tracks the exercise status of

both players.

Definition 2. A Markov strategy σi = (σi
y,x)(y,x)∈Rd×Ξ for Player i, i = 1, 2, specifies

for all y ∈ R
d
+ and all x ∈ Ξ a pair σi

y,x = (Si
y,x, αi

y,x), where Si
y,x ⊆ R

d
+ and

αi
y,x ∈ (0, 1], such that

1. Si
y,x = ∅, if xi = 1;

2. αi
y,x = 1, if xj = 1.

These two conditions are merely regularity conditions. The former ensures that

a player can exercise the option only once. The latter condition is imposed in

recognition of the fact that, if Player j has already exercised, Player i faces a decision-

theoretic problem and there is no need for coordination. As a further convention, it

4Note that it is not required, a priori, that the stopping set is connected. So, the model is rich

enough to include situations where the optimal exercise rule is not of the standard “optimal exercise

trigger” form.
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is assumed that τy(∅) = ∞. The set of Markov strategies for player i is denoted by

Si. It is important to note that, typically, αi
y,x can – and will – depend on Yτ(Si

y,x).

Let σ = (σ1, σ2) ∈ S1 × S2. For all y ∈ R
d and x ∈ Ξ, the exercise intensities

α1
y,x and α2

y,x will determine the evolution of a process
(

X
σy,x

t

)

t≥L(0,0)
describing the

evolution of the exercise status of both players in the following way. First of all,
(

X
σy,x

t

)

t≥L(0,0)
is operating in discrete time:

X
σy,x

(s,0) = lim
z→∞

X
σy,x

(s−,z), (1)

for all s ∈ R
d.

Let τy := τ(S1
y,x) ∧ τ(S2

y,x). For all s < τy no player exercises the option and,

therefore,

X
σy,x

(s,z) = x, for all z ∈ Z+ and s < τy,x. (2)

At τy, the players start playing a game in coordination time to determine who

exercises the option at time τy. In each round of this coordination game, Player i,

i = {1, 2}, exercises the option with probability αi
y,x. Play continues until at least

one player exercises the option, which happens at time

ζy,x := inf{z ∈ Z+|X
σy,x

(τy ,z) ∈ A},

where A = {(1, 0), (0, 1), (1, 1)} is the set of absorbing states. After that, the state

of play changes and, hence, a new subgame starts. Therefore,

X
σy,x

(τy ,z) = X
σy,x

(τy ,ζy,x), for all z > ζy,x, and (3)

X
σy,x

(s,z) = X
σy,x

(τy ,ζy,x), for all s > τy and z ∈ Z+. (4)

At time τy, the state of play changes with constant transition probabilities. In

particular, if x = (0, 0), the transition probabilities for (X
σy,x

(τy ,z))z∈N are denoted by

Qσy,x(·) and defined as follows:

Qσy,x
(

X
σy,x

(τy,x,z) = (0, 0)|X
σy,x

(τy,x ,z−1) 6∈ A
)

= (1 − α1
y,x)(1 − α2

y,x)

Qσy,x
(

X
σy,x

(τy,x,z) = (1, 0)|X
σy,x

(τy,x ,z−1) 6∈ A
)

= α1
y,x(1 − α2

y,x)

Qσy,x
(

X
σy,x

(τy,x,z) = (0, 1)|X
σy,x

(τy,x ,z−1) 6∈ A
)

= (1 − α1
y,x)α2

y,x

Qσy,x
(

X
σy,x

(τy,x,z) = (1, 1)|X
σy,x

(τy,x ,z−1) 6∈ A
)

= α1
y,xα2

y,x

Qσy,x
(

X
σy,x

(τy,x,z) = X
σy,x

(τy,x,z−1)|X
σy,x

(τy,x,z−1) ∈ A
)

= 1.

(5)

So, the process
(

X
σy,x

t

)

t≥L(0,0)
is essentially a Markov chain, which is supported by

some probability measure P σy,x on (Ω,F), such that X
σy,x

(0,0) = x, P σy,x-a.s. From the
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transition probabilities in (5) it then follows that

p
σy,x

10 ≡ P σy,x
(

X
σy,x

(τy+,0) = (1, 0)
)

=
α1

y,x(1 − α2
y,x)

α1
y,x + α2

y,x − α1
y,xα2

y,x

p
σy,x

01 ≡ P σy,x
(

X
σy,x

(τy+,0) = (0, 1)
)

=
(1 − α1

y,x)α2
y,x

α1
y,x + α2

y,x − α1
y,xα2

y,x

p
σy,x

11 ≡ P σy,x
(

X
σy,x

(τy+,0) = (1, 1)
)

=
α1

y,xα2
y,x

α1
y,x + α2

y,x − α1
y,xα2

y,x

.

(6)

It is easy to see that P σy,x(ζy,x < ∞) = 1, so that play in coordination time is

finite, P σy,x-a.s. In fact, this construction allows for the exercise intensities to be

interpreted as mixed strategies in a particular normal form game, where each player

has two pure strategies, namely exercise and don’t exercise. The probabilities needed

to compute the expected payoffs in this normal form game follow from the probability

measure in (6). This re-interpretation will be crucial in the equilibrium existence

proof in Section 3.

For x = (1, 0) and x = (0, 1), one player, say Player j, has already exercised the

option. This implies that τy = τ(Si
y,x), and, consequently, that αj

y,x = 0. At time

τ(Si
y,x), the resulting Markov chain has only one absorbing state, namely (1, 1),

which is reached in finite time as well, because αi
y,x = 1. A final remark on the

construction of Markov strategies and the resulting evolution of
(

X
σy,x

t

)

t≥L(0,0)
is

that players essentially use pure strategies to determine when they act (they choose

a stopping set), but use mixed strategies to determine what happens via the exercise

intensity.

To summarise we get the following definition.

Definition 3. Let σ = (σ1, σ2) ∈ S1 × S2 and (y, x) ∈ R
d × Ξ. The exercise

process induced by σ is a process
(

X
σy,x

t

)

t≥L(0,0)
, which satisfies (1)–(5), with induced

probability measure P σy,x . Furthermore, Xσ
(0,0) = x, P σ

y,x-a.s.

The class of all induced exercise processes and the family of induced probability

measures are denoted by

X =
(

(

X
σy,x

t

)

t≥L(0,0)

)σ∈S1×S2

(y,x)∈Rd×Ξ
and P = (P σy,x)σ∈S

1×S2

(y,x)∈Rd×Ξ
,

respectively.

2.2.1 Payoffs and Equilibrium

Given the strategies σ = (σ1, σ2), the starting point (y, x) ∈ R
d × Ξ, and the state

of the stochastic processes (Yt, X
σy,x

t )t∈T the instantaneous payoff to Player i at
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time t is given by V i
X

σy,x
t

(Yt) ∈ R. For all x ∈ Ξ it is assumed that V i
x(·) is strictly

increasing. Since Y only changes in the continuous “real time” dimension of time,

this formulation implies that, for given x, payoffs are realised in real time only. Note

that the instantaneous payoffs are assumed to be Markovian in the sense that they

only depend on the current state of the processes Y and Xσy,x .

In addition to the instantaneous payoffs, it is assumes that Player i incurs a sunk

cost I i > 0, if she exercises the option. Finally, players discount payoffs according

to a discount factor
(

Λi
t

)

t≥L(0,0)
, which is adapted to (Ft)t≥L(0,0), and constant over

(discrete) “coordination time” (just like the process (Yt)t≥L(0,0)). A non-exclusive

real option game can now be defined as follows.

Definition 4. A two-player non-exclusive real option game (NERO) is a collection

Γ =
(

(Yt)t≥L(0,0) ,
(

Si, V i, Ii,
(

Λi
t

)

t≥L(0,0)

)

i=1,2
, (X ,P)

)

.

For x = (0, 0), the expected discounted payoff of the strategies (σ1, σ2) ∈ S1×S2

to Player 1, under Py and P σy,x is then equal to

V 1
y,x(σ

1
y,x, σ2

y,x) = IEPy

[

∫ τy

0
Λ1

t V
1
00(Yt)dt

+ 11τy≡τ(S1
y,x)<τ(S2

y,x)

(

∫ τ(S2
Yτy ,(1,0)

)

τy

Λ1
t V

1
10(Yt)dt

+

∫ ∞

τ(S2
Yτy ,(1,0)

)
Λ1

t V
1
11(Yt)dt − Λ1

τy
I1

)

+ 11τy≡τ(S
2
y,x)<τ(S1

y,x)

(

∫ τ(S1
Yτy ,(0,1)

)

τy

Λ1
t V

1
01(Yt)dt

+

∫ ∞

τ(S1
Yτy ,(0,1)

)
Λ1

t V
1
11(Yt)dt − Λi

τ(S1
Yτy ,(0,1)

)I
1
)

+ 11τy≡τ(S
1
y,x)=τ(S2

y,x)W
1
Yτy

(σ1
y,x, σ2

y,x)
]

,

where

W 1
y,x(σ1

y,x,σ2
y,x) = p

σy,x

11 IEPy

[

∫ ∞

0
Λ1

t V
1
11(Yt)dt − I1

]

+ p
σy,x

10 IEPy

[

∫ τ(S2
y,(1,0)

)

0
Λ1

t V
1
10(Yt)dt

+

∫ ∞

τ(S2
y,(1,0)

)
Λ1

t V
1
11(Yt)dt − I1

]

+ p
σy,x

01 IEPy

[

∫ τ(S1
y,(0,1)

)

0
Λ1

t V
1
01(Yt)dt

+

∫ ∞

τ(S1
y,(0,1)

)
Λ1

t V
1
11(Yt)dt − Λ1

τ(S1
y,(0,1)

)I
1
]

.

11



For x ∈ {(1, 0), (0, 1), (1, 1)}, the expected discounted payoffs are

V 1
y,(1,0)(σ

1, σ2) =IEPy

[

∫ τ(S2
y,(1,0)

)

0
Λ1

t V
1
10(Yt)dt

+

∫ ∞

τ(S2
y,(1,0)

)
Λ1

t V
1
11(Yt)dt

]

,

V 1
y,(0,1)(σ

1, σ2) =IEPy

[

∫ τ(S1
y,(0,1)

)

0
Λ1

t V
1
01(Yt)dt

+

∫ ∞

τ(S1
y,(0,1)

)
Λ1

t V
1
11(Yt)dt − Λ1

τ(S1
y,(0,1)

)I
1
]

,

and

V 1
y,(1,1)(σ

1, σ2) =IEPy

[

∫ ∞

0
Λ1

t V
1
11(Yt)dt

]

,

respectively. The payoffs for Player 2 are defined equivalently.

A subgame perfect equilibrium is now readily defined as follows.

Definition 5. Let Γ be a two-player NERO. A collection of strategies (σ̄1, σ̄2) ∈

S1 × S2 constitutes a subgame perfect equilibrium (SPE) if it prescribes a Nash

equilibrium for all (y, x) ∈ R
d
+ × Ξ, i.e.

∀i∈{1,2}∀σi∈Si∀(y,x)∈Rd
+×Ξ : V i

y,x(σ̄i, σ̄j) ≥ V i
y,x(σi, σ̄j).

M

Note that in standard extensive form games, the notion of subgame perfectness is

defined over time. Due to the strong Markov property of (Yt)t≥L(0,0), the definition

of SPE above could equivalently be defined over stopping times. The definition over

states, however, is more convenient due to the Markovian nature of the problem.

3 NEROs with a First Mover Advantage

In this section American-type perpetual non-exclusive call options are studied. In

the analysis that follows, several particular discounted payoff functions play an im-

portant role. For x = (0, 1), the follower value, F i(y), for Player i is defined to be

the value of her optimal stopping problem, given Y(0,0) = y equals y. That is,

F i(y) = sup
τ∈M

IEPy

[

∫ τ

0
Λi

tV
i
01(Yt)dt +

∫ ∞

τ

Λi
tV

i
11(Yt)dt − Λi

τ I
i
]

= sup
τ∈M

IEPy

[

∫ τ

0
Λi

tV
i
01(Yt)dt + Λi

τ IEPYτ

(

∫ ∞

0
Λi

tV
i
11(Yt)dt − I i

)]

,

(7)

12



where M is the set of Markov times adapted to (Ft)t≥L(0,0). Let Si
F (y) denote the

optimal stopping set resulting from (7).5

Let x = (0, 0). The leader value, Li(y), for Player i is the expected discounted

payoff stream if Player i exercises the option at time t = (0, 0), with Y(0,0) = y, given

that Player j exercises the option at time τ(Sj
F (y)). That is,

Li(y) = IEPy

[

∫ τ(Sj
F

(y))

0
Λi

tV
i
10(Yt)dt +

∫ ∞

τ(Sj
F

(y))
Λi

tV
i
11(Yt)dt − I i

]

. (8)

Furthermore, let Si
L(y) be the optimal stopping set of the problem

L̄i(y) = sup
τ∈M

IEPy

[

∫ τ

0
Λi

tV
i
00(Yt)dt +

∫ τ(Sj
F

(Yτ ))

τ

Λi
tV

i
10(Yt)dt

+

∫ ∞

τ(Sj
F

(Yτ ))
Λi

tV11(Yt)dt − Λi
τ Ii

]

= sup
τ∈M

IEPy

[

∫ τ

0
Λi

tV
i
00(Yt)dt + Λi

τL
i(Yτ )

]

.

(9)

The optimal stopping time τ in (9) is the time at which Player i would exercise

the option, if she knew that Player j could not preempt her. Preemption may take

place, however in the region S i
P (y) := {y ∈ R

d|Li(y) ≥ F i(y)}.

The Markovian nature of (Yt)t≥L(0,0), together with the infinite horizon have an

important implication for the optimal stopping sets S i
F (y) and Si

L(y). Intuitively

speaking, the process (Yt)t≥L(0,0) always “starts afresh”. Consider the optimal stop-

ping problem for the leader. Fixing ω ∈ Ω and following the sample path t 7→ Yt(ω)

one can observe the following. Evaluating Li(Yt(ω)) gives Player i enough informa-

tion to optimally decide whether to exercise the option or to wait. In other words,

the state space R
d can be split in a set C, the continuation set, and a stopping set

D = R
d \C, where the option is exercised. The sets C and D are independent of the

starting point y of the process (Yt)t≥L(0,0). So, Si
F (y) = Si

F and Si
L(y) = Si

L, for all

y ∈ R
d. So, in order to find a subgame perfect equilibrium, we only have to find a

pair (Si, αi) which induces a Nash equilibrium for all x ∈ Ξ, which greatly simplifies

the analysis that follows. Note that, of course, the actual optimal stopping time

does depend on the starting point, so the optimal leader value does as well. The

following assumption is made on the optimal stopping sets.

Assumption 1. For all players i, the optimal stopping sets S i
F and Si

L are non-

empty.

5Note that it is possible that Si
F (y) = ∅.
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Thirdly, let M i(y) denote the expected discounted value to Player i if x = (1, 1)

and Y(0,0) = y, i.e.

M i(y) = IEPy

[

∫ ∞

0
Λi

tV
i
11(Yt)dt − I i

]

. (10)

Let Si
M = {y ∈ R

d|M i(y) ≥ F i(y)} be the set of payoffs where simultaneous invest-

ment has a higher expected discounted payoff than the follower value. Finally, let

Si
N = (Si

P ∪ Si
L ∪ Si

F )c.

The following assumptions are made with respect to the instantaneous payoff

functions and the optimal stopping sets.

Assumption 2. For every Player i, i ∈ {1, 2}, it holds that

1. V i
kl : Rd → R is continuous for all k, l = 0, 1,

2. Si
F ⊆ Si

L ⊆ Si
P .

The second condition ensures that, for each player, there are values for y, where

she wants to be leader rather than follower. In other words, there is a first mover

advantage.

For further reference, let S̄i
P = Si

P \S
i
L (which could be an empty set) and

ϕi(y) =
Li(y) − F i(y)

Li(y) − M i(y)
,

for all y ∈ R
d, such that Li(y) 6= M i(y).

Theorem 1. Let G be a two-player NERO satisfying Assumptions 1 and 2. Let y ∈

R
d
+ and x ∈ Ξ. Then σ̄ = (σ̄1

y,x, σ̄2
y,x)(y,x)∈Rd×Ξ ∈ S1 × S2, with σ̄i

y,x = (S̄i
y,x, ᾱi

y,x)

constitutes a SPE, where

(S̄i
y,x, ᾱi

y,x) =





































(

Si
P , ϕj(y)

)

if y ∈ S1
P ∩ S2

P

(Si
L, 1) otherwise

, if x = (0, 0),

(S̄i
y,x, ᾱ

i
y,x) = (Si

F , 1), if x = (0, 1), and

(S̄i
y,x, ᾱ

i
y,x) = (∅, 0), otherwise.

Proof. Let y ∈ R
d. First, note that, for all y ∈ R

d,

M i(y) = IEPy

[

∫ ∞

0
Λi

tV
i
11(Yt)dt − I i

]

≤ sup
τ∈M

IEPy

[

∫ τ

0
Λi

tV
i
01(Yt)dt +

∫ ∞

τ

Λi
tV

i
11(Yt)dt − Λi

τ Ii
]

= F i(y),

14



since Player i can always choose τ = 0. Hence, S i
M ⊆ Si

F and Si
M = {y ∈

R
d|M i(y) = F i(y)}. Also, the case where xi = 1 is trivial. Consider the follow-

ing cases.

1. xi = 0, xj = 1.

Since Player j has already exercised the option, Player i faces the decision theoretic

problem (7). The optimal stopping set for this problem is S i
F . The definition of

Markov strategies prescribes that αi
y,x = 1. So, (S̄i

y,x, ᾱi
y,x) = (Si

F , 1) is a weakly

dominant strategy.

2. x = (0, 0), y ∈ Si
L.

The optimal stopping problem (9) takes into account that Player j exercises as soon

as Sj
F , which is a weakly dominant strategy for Player j. Therefore, if y ∈ S i

L,

exercising immediately is a weakly dominant strategy, which is implemented by

(S̄i
y,x, ᾱi

y,x) = (Si
L, 1).

3. x = (0, 0), y ∈ S̄i
P ∩ S̄j

P .

In this case it holds that τy = 0. In order to determine whether it pays for Player i

to deviate from σ̄i
y,x to σ̃i

y,x = (S̃i
y,x, α̃i

y,x), two possible deviations have to be con-

sidered:

1. Player i wants to exercise immediately, by choosing a stopping set S̃i
y,x such

that τ(S̃i
y,x) = 0, but chooses α̃i

y,x 6= ᾱi
y,x, and

2. Player j chooses a stopping set S̃i
y,x, such that τ(S̃i

y,x) 6= 0.

Consider the former deviation. In this case, the players are effectively playing the

game depicted in Figure 2. The cell (continue, continue) has no payoff, since this

Exercise Continue

Exercise M 1(y),M2(y) L1(y), F 2(y)

Continue F 1(y), L2(y)

Figure 2: The coordination game.

outcome is impossible under the Markov chain (5). When σ i
y,x = (Si

y,x, αi
y,x) and

σj
y,x = (Sj

y,x, αj
y,x) are such that τ(Si

y,x) = τ(Sj
y,x), Py-a.s., then V i

y,x(σi
y,x, σj

y,x) =

W i
y,x(σi, σj). Note that

W i
y,x

(

(Si
y,x, 1), (Sj

y,x, αj
y,x)

)

= (1 − αj
y,x)Li(y) + αj

y,xM i(y),
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and

W i
y,x

(

(Si
y,x, 0), (Sj

y,x, αj
y,x)

)

= F i(y),

for all αj
y,x ∈ [0, 1]. We have that

W i
y,x

(

(Si
y,x, 1), (Sj

y,x, αj
y,x)

)

> W i
y,x

(

(Si
y,x, 0), (Sj

y,x, αj
y,x)

)

⇐⇒ αj
y,x < ϕi(y).

In other words, the best-response correspondences,
(

Bi(αj
y,x), Bj(αi

y,x)
)

, for both

players can be depicted as in Figure 3. The point
(

ϕj(y), ϕi(y)
)

is the only mixed

-

6

αi
y,x

αj
y,x

1

1

0 ϕj(y)

ϕi(y)

Bj(αi
y,x)

Bi(αj
y,x)

Figure 3: Best response correspondences.

strategy Nash equilibrium6 and, hence, unilateral deviations do not lead to higher

expected utility.

Furthermore, note that Player j’s strategy is such that Player i is indifferent

between exercising and not exercising. This immediately implies that the strategies

σ̄ lead to an expected payoff

V i
y,x(σ̄i

y,x, σ̄j
y,x) = W i

y,x((S̄
i
y,x, 0), σ̄j

y,x) = F i(y). (11)

On the other hand, let σ̃i 6= σ̄i be such that τ(S̃i
y,x) 6= 0. Then Player j exercises

immediately, and Player i faces the optimal stopping problem (7). Therefore,

V i
y,x(σ̃i

y,x, σ̄j
y,x) = V i

y,(0,1)

(

(Si
F , 1), σ̄j

y,(0,1)

)

= F i(y).

So, Player i has no incentive to deviate.

4. x = (0, 0), y ∈ (Si
N ∪ S̄i

P ) ∩ Sj
L.

In this case τy = τ(S̄j
y,x, ᾱj

y,x) = 0. Moreover, Player j invests with probability

ᾱj
y,x = 1. Note that

V i
y,x(σ̄

1
y,x, σ̄2

y,x) = V i
y,(0,1)(σ̄

1
y,(0,1), σ̄

2
y,(0,1)) = F i(y).

6Note that there are two pure-strategy equilibria as well; one where Player i becomes leader and

Player j follower with probability one, and the symmetric counter-part.
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Suppose that Player i deviates to σ̃i
y,x = (S̃i

y,x, α̃i
y,x), with τ(S̃i

y,x) = 0. For all

α̃i
y,x ∈ (0, 1], it then follows from (6) that

V i
y,x(σ̃1

y,x, σ̄2
y,x) = W i

y,x(σ̃
1
y,x, σ̄2

y,x)

= 0 · Li(y) + (1 − ã1
y,x)F i(y) + α̃i

y,xM i(y)

≤ M i(y).

For any deviation such that τ(S̃i
y,x) 6= 0, it follows that

V i
y,x(σ̄

1
y,x, σ̄2

y,x) = V i
y,(0,1)(σ̄

1
y,(0,1), σ̄

2
y,(0,1)) = F i(y).

So, Player i has no incentive to deviate.

5. x = (0, 0), y ∈ S̄i
P ∩ (Sj

N ∪ S̄j
P ).

Note that, in this case τy is the first hitting time of Θ = S i
L ∪ Sj

L ∪ (S̄1
P ∩ S̄2

P ). So,

what remains to be shown is that, for all elements of Θ, waiting until Θ is hit is an

equilibrium. From the above analysis it follows that, under σ̄, the expected payoff

to Player i equals

V i
y,x(σ̄

i
y,x,σ̄j

y,x) = IEPy

[

∫ τy

0
Λi

tV00dt + Λi
τy,x

V i
Yτy ,x(σ̄i

Yτy ,x, σ̄
j
Yτy ,x)

]

=







IEPy

[

∫ τy

0 Λi
tV00dt + Λi

τy
Li(Yτy)

]

if τy = τy(S
i
L),

IEPy

[

∫ τy

0 Λi
tV00dt + Λi

τy
F i(Yτy)

]

otherwise.

The only deviation σ̃i of σ̄i that could possibly lead to a higher payoff has S̃i
y,x such

that τ(S̃i
y,x) < τy(Θ). But, by definition, τ(S̃i

y,x) does not solve (9). Hence, waiting

to exercise the option is weakly dominant.

As a corollary, suppose that firms are symmetric, i.e. V 1
kl = V 2

kl ≡ Vkl, all

k, l ∈ {0, 1}, and I1 = I2 ≡ I. In that case all stopping regions are the same and

the following result follows immediately from Theorem 1.

Corollary 1. Let G be a symmetric two-player NERO satisfying Assumptions 1

and 2. Let y ∈ R
d
+ and x ∈ Ξ. Then σ̄ = (σ̄1

y,x, σ̄2
y,x)(y,x)∈Rd×Ξ ∈ S1 × S2, with

σ̄i
y,x = (S̄i

y,x, ᾱi
y,x) constitutes a SPE, where

(S̄i
y,x, ᾱi

y,x) =





































(

SP , ϕ(y)
)

if y ∈ SP

(SF , 1) otherwise
, if x = (0, 0),

(S̄i
y,x, ᾱi

y,x) = (SF , 1), if xi = 0, xj = 1, and

(S̄i
y,x, ᾱi

y,x) = (∅, 0), otherwise.

17



In the case that (Yt)t≥L(0,0) is one-dimensional, a typical plot of the payoff func-

tions would look like Figure 1, where y < YF , SF = [YF ,∞), SN = [0, YP ), and

S̄P = [YP , YF ). If, in addition, x = (0, 0), y ∈ SN , and (Yt)t≥L(0,0) has continuous

sample paths, then τy = τy(S̄P ) and each player exercises the option at time τy with

probability p
σy,x

10 = p
σy,x

01 = 1
2 , since

ατy,x =
L(YP ) − F (YP )

L(YP ) − M(YP )
= 0.

Note that if (Yt)t≥L(0,0) exhibits jumps, there can be a positive probability that both

players exercise simultaneously in the preemption region.

From Theorem 1 it follows that there are four possible exercise scenarios, depend-

ing on which subset of the state-space R
d is reached first. For a two-dimensional

underlying asset, the regions could look like in Figure 4. Firstly, it is possible that

0
0

Y
1

Y
2

S1
N
 ∩ S2

L

S1
P
 ∩ S2

P

S1
L
 ∩ S2

N
S1

N
 ∩ S2

N

S1
L
∩ S2

LS1
P

∩ S2
L

S1
P

∩ S2
N

S1
L
∩ S2

P

S1
N

∩ S2
P

Figure 4: Exercise regions with a two-dimensional underlying asset.

both players exercise simultaneously if Yτ ∈ S1
L ∩ S2

L. In such cases the option is

so deep in the money that it becomes optimal for each player to exercise regardless

of the actions of the other player. Since strategic considerations do not play a role

in this scenario I refer to it as monopolistic simultaneous exercise. Note that, if the

sample paths of Y are continuous and Y0 6∈ S1
L ∩ S2

L, this scenario will not occur

(a.s.).

Secondly, either player may exercise at her optimal time. This happens if Yτ ∈

Si
L ∩ (Sj

L)c. In this case, Player i exercises the option as if she was an exogenously

determined leader. It is referred to as monopolistic sequential exercise.
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If Yτ ∈ S̄1
P ∩ S̄2

P ,7 neither player finds the option deep enough in the money to

optimally exercise. Due to the threat of preemption, however, at least one player

exercises along every equilibrium path. Therefore, this set is called the preemp-

tion region. Note that from (11) it follows that, in equilibrium, expected payoffs

in the preemption region are equal to the follower payoffs for both players. This

phenomenon is called rent-equalisation. So, ex ante, both players expect their fol-

lower payoff. In every realisation, however, three possible outcomes occur. In two

outcomes one player exercises first, while the other players waits until the option is

deep enough in the money to be the follower. These scenarios are called preemptive

sequential exercise. Finally, it is possible that both players exercise simultaneously

(if p11 > 0). In that case there is preemptive simultaneous exercise.

4 Technology Adoption in an Industry with Asymmet-

ric Uncertainty

Consider a market with two firms, both of whom have an option to invest in a new

technology. It is assumed that the discounted profit stream of Firm i equals

πi(y, x) = ΛiV i
x(y),

and that uncertainty is driven by a two-dimensional geometric Brownian motion

(GBM),
[

dY1/Y1

dY2/Y2

]

=

[

µ1

µ2

]

dt +

[

σ11 σ12

σ21 σ22

][

dz1

dz2

]

,

where z1 and z2 are independent Wiener processes. Let σ2
k = σ2

k1 + σ2
k2, k = 1, 2, be

the total instantaneous variance of Yk. The instantaneous correlation between Y1

and Y2 equals

ρ =
1

dt
IEPy

(dY1

Y1

dY2

Y2

)

=
σ11σ21 + σ12σ22

σ1σ2
.

The discount factor for Firm i, i = 1, 2, is assumed to follow

dΛi

Λi
= −µΛidt − σΛi

1
dz1 − σΛi

2
dz2.

The instantaneous profits are taken to be linear in yi, so V i
kl(Y ) = DklYi, for

all Y ∈ R
2
+, and k, l ∈ {0, 1}. Note that the deterministic parts are assumed to be

equal for both firms and are taken such that

1. D10 > D11 > D00 ≥ D01,

7Recall from the proof of Theorem 1 that S̄i
P = Si

P \Si
L.

19



2. D10 − D00 > D11 − D01.

These are standard assumptions to model a game with a first-mover advantage (cf.

Huisman (2001)). Finally, sunk costs are the same for both firms and equal to

I > 0. That is, firms are symmetric up to the uncertainty that underlies their

profits – which, in turn, are correlated – and their discount factors.

The uncertainty driving the discounted profit stream to Firm i follows the SDE

dΛiYi

ΛiYi
=

dYi

Yi
+

dΛi

Λi
+

dYi

Yi

dΛi

Λi

= − (µΛi + σi1σΛi
1
+ σi2σΛi

2
− µi)dt

+ (σi1 − σΛi
1
)dz1 + (σi2 − σΛi

2
)dz2

≡− δiidt + (σi1 − σΛi
1
)dz1 + (σi2 − σΛi

2
)dz2,

(12)

where δii is the convenience yield of Firm i with respect to Yi. Also define the

convenience yield of Firm i with respect to Yj ,

δij = µΛi + σΛi
1
σj1 + σΛi

2
σj2 − µj.

It is assumed throughout that δii > 0 and δij > 0. From (12) it follows that the

value of simultaneous exercising of the option to Firm i equals

M i(y) = IEPy

[

∫ ∞

0
Λi

tD11Yitdt
]

=
D11

δii
yi − I.

4.1 Follower Value

First, I derive the follower value, F i(Yi), for Firm i. Note that this value does not

depend on Yj, since Firm j has already exercised her option. The value of exercising

the option – the option’s “strike price” – at y ∈ R
2
+ is M i(y). Denote the value the

option to exercise at y by C i
F (y). Then, the no-arbitrage value (relative to Λi) of

Ci
F (·) should satisfy (cf. Cochrane (2005)),

ΛiD01Yidt + IEPy [dΛiCi
F ] = 0

⇐⇒ D01Yidt + IEPy [dC i
F ] + IEPy

[

Ci
F

dΛi

Λi

]

= −IEPy

[dΛi

Λi
dCi

F

]

.
(13)

From Ito’s lemma it follows that

dCi
F =

∂Ci
F

∂Yi
dYi +

1

2

∂2Ci
F

∂Y 2
i

(dYi)
2

=
(1

2

∂2Ci
F

∂Y 2
i

σ2
i Y

2
i + µi

∂Ci
F

∂Yi
Yi + D01Yi

)

dt

+
∂Ci

F

∂Yi
Yi(σi1dz1 + σi2dz2).
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Substitution in (13) gives a second order PDE with general solution

Ci
F (y) = Ai

Fyβii

i + Bi
Fyγii

i +
D01

δii
yi,

where Ai
F and Bi

F are constants and βii > 1 and γii < 0 are the roots of the equation

Qii(ξ) ≡
1

2
σ2

i ξ(ξ − 1) + (µΛi − δii)ξ − µΛi = 0.

Under the standard boundary condition, limyi↓0 Ci
F (y) = 0, and the value-matching

and smooth-pasting conditions (cf. Peskir and Shiryaev (2006)) it is obtained that

Si
F = {Y ∈ R

2
+|Yi ∈ [Y i

F ,∞)}, where

Y i
F =

βii

βii − 1

δii

D11 − D01
I.

The follower value is then equal to

F i(y) =







1
βiiδii

(Y i
F )1−βiiyβii

i + D01
δii

yi if yi < Y i
F

D11
δii

yi − I if yi ≥ Y i
F .

4.2 Leader Value

Having established the value for the follower I now turn to the leader value. In de-

riving the leader value I assume that Firm j cannot invest before Firm i. Therefore,

the leader value for Firm i can only be computed when yj < Y j
F . If Firm i becomes

the leader, then, by definition, Firm j becomes the follower. The exercise decision

of Firm j, which depends on yj, as we saw, influences the profit of Firm i. Hence,

her leader value depends on yi and yj.

The no-arbitrage value of Li(y) follows

D10Yidt + IEPy [dLi] + IEPy

[

Li dΛi

Λi

]

= −IEPy

[dΛi

Λi
dLi

]

. (14)

From Ito’s lemma it follows that8

dLi =Li
idYi + Li

jdYj +
1

2
Li

iidY 2
i +

1

2
Li

jjdY 2
j + Li

ijdYidYj

=
(1

2
σ2

i Y
2
i Li

ii +
1

2
σ2

j Y
2
j Li

jj + ρYiYjL
i
ij + µiYiL

i
i + µjYjL

i
j

)

dt

+ (σi1YiL
i
i + σj1YjL

i
j)dz1 + (σi2YiL

i
i + σj2YjL

i
j)dz2

Substitution in (14) leads to a second order PDE with general solution

Li(y) = AL
iiy

βii

i + BL
iiy

γii

i + AL
ijy

βij

j + BL
ijy

γij

j +
D10

δii
yi − I,

8For f(x1, x2), let fi(·) = ∂f(·)
∂xi

and fij = ∂2f(·)
∂xi∂xj

.
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where AL
ii, AL

i,j , BL
ii , and BL

ij are constants and βij > 1 and γij < 0 are the roots of

the quadratic equation

Qij(ξ) ≡
1

2
σ2

j ξ(ξ − 1) + (µΛi − δij)ξ − µΛi = 0.

If yj = 0, then the threshold Y j
F will never be reached and, hence, Firm i will

receive D10 over the time interval [0,∞). This leads to the boundary condition

limyj↓0 Li(y) = D10
δii

yi − I. This implies that AL
ii = BL

ij = 0. Also, if yi = 0,

then Firm i only incurs the sunk costs. This leads to the boundary condition

limyi↓0 Li(y) = −I, which implies BL
ii = 0. Finally, if yj = Y j

F , then both firms exer-

cise simultaneously. Therefore, another boundary condition is given by Li(yi, y
j
F ) =

M i(y) = D11
δii

yi − I. Solving for Aij then gives

Li(y) =
D10

δii
yi −

D10 − D11

δii

( yj

Y j
F

)βij

yi − I. (15)

Note that the second term in (15) is a correction for the possibility that Firm j may

exercise its option as well at some time in the future.

The value function in (15) is the strike price of the option to Firm i of becoming

the leader and can, therefore, be used to derive the optimal stopping set S i
L in the

following way. For y ∈ Si
N , let C i(y) denote the option value of Firm i of exercising

the option with strike price governed by (15). The no-arbitrage value of C i(y) follows

D00Yidt + IEPy [dC i] + IEPy

[

Ci dΛi

Λi

]

= −IEPy

[dΛi

Λi
dCi

]

. (16)

From Ito’s lemma it follows that

dCi =Ci
idYi + Ci

jdYj +
1

2
Ci

iidY 2
i +

1

2
Ci

jjdY 2
j + Ci

ijdYidYj

=
(1

2
σ2

i Y
2
i Ci

ii +
1

2
σ2

jY
2
j Ci

jj + ρYiYjC
i
ij + µiYiC

i
i + µjYjC

i
j

)

dt

+ (σi1YiC
i
i + σj1YjC

i
j)dz1 + (σi2YiC

i
i + σj2YjC

i
j)dz2

Substitution in (16) leads to a second order PDE with general solution

Ci(y) = Aiiy
βii

i + Biiy
γii

i + Aijy
βij

j + Bijy
γij

j +
D00

δii
yi,

where Aii, Ai,j , Bii, and Bij are constants. If y = (0, 0), then the sets S i
L, Sj

L,

Si
F , and Sj

F will never be reached and, hence, Firm i will receive D00 over the time

interval [0,∞). This leads to the boundary condition limy↓(0,0) Ci(y) = D00
δii

yi. This

implies that Bii = Bij = 0. The value-matching and smooth-pasting conditions, in

this case, are


















Ci(y) = Li(y)

∂Ci(y)
∂yi

= ∂Li(y)
∂yi

∂Ci(y)
∂yj

= ∂Li(y)
∂yj
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Solving this system of equations leads to the optimal stopping set

Si
L =

{

Y ∈ R
2
+|Yj ≤ Y j

F , Yi ∈ [Y i
L(Yj),∞)

}

where

Y i
L(Yj) =

βiiδii

(βii − 1)(D10 − D00) + (D10 − D11)(Yj/Y j
F )βij

I.

The following lemma establishes the existence of a first-mover advantage.

Lemma 1. For i ∈ {1, 2} and Yj ≤ Y j
F , it holds that Si

F ⊂ Si
L.

Proof. Let Yj = Y j
F . Since D10 ≥ D11, and D10 − D00 > D11 − D01 it immedi-

ately follows that

Y i
L(Y j

F ) =
βiiδii

(βii − 1)(D10 − D00) + (D10 − D00)
I

≤
βii

βii − 1

δii

D10 − D00
I

<
βii

βii − 1

δii

D11 − D01
I = Y i

F .

Furthermore, it is easy to see that
∂Y i

L(Yj)
∂Yj

≤ 0, for Yj < Y j
F . Hence, for all Yj ≤ Y j

F ,

it holds that Y i
L(Yj) < Y i

F .

For every Yj ≤ Y j
F , let Y i

P (Yj) be the solution of the equation Li(Y i
P (Yj), Yj) =

F i(Y i
P (Yj)). It is then easy to see that

Si
P =

{

Y ∈ R
2
+|Yj ≤ Y j

F , Yi ∈ [Y i
P (Yj),∞)

}

.

By construction of (15) it holds that Y i
P (Yj) ≤ Y i

L(Yj), for all Yj ≤ Y j
F . Therefore, it

holds that Si
P ⊆ Si

L. In other words, the conditions in Assumptions 1–2 are satisfied

and Theorem 1 provides an equilibrium for this NERO.

A further result can be obtained. Recall that S̄i
P = Si

P\S
i
L is the preemption

region. The following lemma establishes that this region is non-empty.

Lemma 2. It holds that S̄1
P ∩ S̄2

P 6= ∅.

Proof. Let A = [0, Y 1
L (Y 2

F )] × [0, Y 2
L (Y 1

F )] and define the function f : A → R
2,

where, for i = 1, 2, fi(y) = F i(yi)−Li(y). Note that for i = 1, 2 and Yj ∈ [0, Y 2
L (Y 1

F )],

by Lemma 1, it holds that

fi(Y
i
L(Y j

F ), yj) < F i(Y i
F ) − Li(Y i

F , yj) = 0 (17)

fi(0, yj) = I > 0 (18)
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Since A is a convex and compact set, and f is a continuous function, there exists a

stationary point on A (cf. Eaves (1971)), i.e.

∃y∗∈A∀y∈A : yf(y∗) ≤ y∗f(y∗). (19)

Let i ∈ {1, 2}. Suppose that y∗
i > 0. Then there exists ε > 0, such that y =

y∗ − εei ∈ A, where ei is the i-th unit vector. From (19) it then follows that

yf(y∗) − y∗f(y∗) = −εfi(y
∗) ≤ 0 ⇐⇒ fi(y

∗) ≥ 0. (20)

Similarly, if y∗
i < Y i

L(Y j
F ), there exists ε > 0, such that y = y∗ + εei ∈ A. Therefore,

yf(y∗) − y∗f(y∗) = εfi(y
∗) ≤ 0 ⇐⇒ fi(y

∗) ≤ 0. (21)

Hence, from (20) and (21) it follows that f(y∗) = 0, if y∗ ∈ A\∂A.

Suppose that y∗i = 0, and let y ∈ A be such that yj = y∗j . Then (19) implies that

(y − y∗)f(y∗) = yifi(y
∗) ≤ 0 ⇐⇒ fi(y

∗) ≤ 0, which contradicts (18). Similarly,

supposing that y∗
i = Y i

L(Y j
F ), and taking y ∈ A such that yi = y∗i , it is obtained that

(y − y∗)f(y∗) = (yi − y∗i )fi(y
∗) ≤ 0 ⇐⇒ fi(y

∗) ≥ 0, which contradicts (17). Hence,

there exists y∗ ∈ A\∂A, such that Li(y∗) = F i(y∗i ), i = 1, 2.

4.3 A Numerical Illustration

Consider the case with payoffs, sunk costs, and parameters as given in Table 1.

It is assumed that both firms have the same discount factor, Λ1 = Λ2 ≡ Λ. It

(D10, D11, D00, D01) = (8, 5, 3, 1) I = 100

µΛ = 0.04 σΛ = (0.05, 0.05)

µY = (0.03, 0.03) ΣY =

[

0.1 0

0.1 0.1

]

Table 1: Model characteristics.

is, furthermore, assumed that Firm 1 is only influenced by z1, whereas Firm 2’s

payoffs are influenced by both shocks. This could correspond to a situation where

Firm 1 is a domestic firm, with an option to invest in a new product, and Firm 2

is a foreign firm with a similar option. The Wiener process z2 can represent, for

example, exchange rate risk.

The resulting optimal stopping regions and the preemption region are depicted

in Figure 4. Starting at Y0 = y ∈ S1
N ∩S2

N , note that, since Y has continuous sample

paths, in equilibrium there is always one firm which does not exercise the option at

time τy(Θ), a.s.9 It is, however, not the case that in the preemption region both

9Recall that Θ = Si
L ∪ S

j
L ∪ (S̄1

P ∩ S̄2
P ).
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firms exercise with probability 0.5, as is the case in papers where it is assumed that

firms toss a fair coin to determine who exercises first in the preemption region.10 In

fact, conditional on τy(Θ) = τy(S̄
1
P ∩ S̄2

P ), the probability that both firms exercise

with probability 0.5 is equal to 0. This is the case since P (X
σy,x

(τy ,ζy,x) = (1, 0)) =

P (X
σy,x

(τy ,ζy,x) = (0, 1)) only if ϕ1(Yτy(Θ)) = ϕ2(Yτy(Θ)) = 0, because there is always

one firm for whom ϕi(Yτy(Θ)) = 0. There is only one point where this happens,

namely at the intersection of Y 1
P (Y2) and Y 2

P (Y1). Due to absolute continuity, this

point is reached with zero probability.

So, three investment scenarios can occur with positive probability. These are

(i) monopolistic sequential investment (by either firm), (ii) preemptive sequential

investment (by either firm), and (iii) preemptive simultaneous investment. The pre-

cise probabilities of each scenario occurring depend on the underlying fundamentals.

This analysis shows that is difficult to judge the competitiveness of a market based

on ex post observed investment behaviour. For example, simultaneous investment is

not necessarily a sign of tacit collusion. It could very well happen in a preemptive

environment.

To examine the influence of the instantaneous correlation between z1 and z2

on investment timing and competition, the following simulation experiment is con-

ducted. The same parameter values as before are chosen, with σΛi,j = 0.05, all

i, j = 1, 2, σ11 = 0.2, and σ12 = 0. This time, however, it is assumed that σ2 = 0.2,

but that the loadings on z1 and z2 vary with ρ. So, firms are symmetric, but for the

loading of the respective risk they face on the factors z1 and z2.

For every value ρ ∈ (−1, 1), 1,000 sample paths of Y are generated. The starting

point of the process Y is always taken to be (0.15, 0.15). In Figure 5, the expected

time to (first) investment and the probability of preemption (as opposed to a scenario

where either firm acts as if it were a monopolist) are plotted as functions of ρ.

The correlation between shocks can indicate what kind of industry is being in-

vestigated. If shocks are perfectly negatively correlated, for example, one might be

dealing with a situation where both firms offer goods that are perfect substitutes.

The profit of one firm goes up when the profit of the other goes down. Conversely, if

shocks are perfectly positively correlated, one might be looking at an industry with

homogenous goods. If the shocks are uncorrelated, the two firms seem to operate in

unconnected markets.

Firstly, the left-panel of Figure 5 indicates that the expected time to first in-

vestment increases with ρ. So, the more integrated the industry, the longer it takes

– in expectation – until (first) investment takes place. The right-panel of Figure 5

10See, for example, Grenadier (1996) or Weeds (2002)
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Figure 5: Expected investment time (left-panel) and probability of preemption

(right-panel) as a function of the instantaneous correlation ρ.

shows the probability of investment scenarios (ii) or (iii) occurring. That is, the

probability that Yτy ∈ S̄1
P ∩ S̄2

P . Intuitively, it measures the preemptive pressure in

the industry. It appears that preemptive pressure is lowest if the two markets are

uncorrelated. This is of course what one would expect. It is, however, striking that

there is no one-to-one relation between the expected time of first investment and the

preemptive pressure in the industry. If, namely, goods become more substitutable

(−1 < ρ < 0 and decreasing) expected time to investment goes down, while preemp-

tive pressure goes up. This is what one would intuitively expect. If, however, goods

become more homogenous (0 < ρ < 1 and increasing) expected time goes up even

though preemptive pressure increases.

5 Conclusion

In this paper a general model for two-player non-exclusive real option games with

first mover advantages has been introduced. The strategy and equilibrium concepts

are based on ideas from Dutta and Rustichini (1995) and Fudenberg and Tirole

(1985). The advantage of using a coordination device in the spirit of Fudenberg and

Tirole (1985) is that it allows one to endogenously solve for a particular coordination

problem that often arises in preemption games. The basic idea is that if a coordina-

tion problem arises, the two players engage in a game in “coordination time”, which

leads to an absorbing Markov chain. The probabilities with which each player ex-
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ercises the option are then simply given by the limit distribution of this chain. The

main result of the paper, Theorem 1, proves the validity of the rent-equalisation

principle in NEROs with first-mover advantages, where uncertainty is governed by

a strong Markovian stochastic process.

Most of the present literature on game-theoretic real option models assumes that

uncertainty is represented by a one-dimensional geometric Brownian motion. This

paper shows that the qualitative results change significantly if a two-dimensional

GBM is used. In fact, in much of the literature on non-exclusive real options the co-

ordination device is not used, but exogenous assumptions are made on the resolution

of the coordination problem instead. Usually it is argued that a fair coin is tossed

and each player exercises with probability 1/2. It seems that such assumptions are

based on Fudenberg and Tirole (1985) who show that this is the case in the particular

(deterministic, symmetric players) model they study. In a purely symmetric model

with non-exclusive real options and one-dimensional GBM this is indeed true. With

a two-dimensional GBM, however, the coordination problem arises as well and, in

equilibrium, neither player exercises with probability 1/2 (a.s.). Furthermore, both

players exercise with unequal probability (a.s.). It is still the case, however, that

both players do not exercise simultaneously (a.s.) as is a standard result (or indeed

assumption) in the current literature. This is due to the continuous sample paths of

GBM.

The analysis in this paper opens up several avenues for future research. Firstly,

the actual behaviour of the model for particular stochastic processes can be exam-

ined. Of particular interest would be the situation where Y follows a jump-diffusion

process. In the models currently studied in the literature the probability of both

players jointly exercising is zero, due to continuity of sample paths. This property

would be lost in jump-diffusion model. This might consequently lead to an additional

value of waiting.

Secondly, the model in Section 4 could be used to analyse specific economic prob-

lems. A straightforward one is the question whether currency unions, or currency

pegging, accelerates investment. In the setting of Section 4 one can think of two

firms, a domestic one and a foreign one. The domestic firm is exposed to one source

of risk, say product-market risk due to demand fluctuations, whereas the foreign firm

is also exposed to exchange rate risk. A monetary union would take away the latter

source of risk and lead to a duopoly as analysed in Huisman (2001, Chapter 7). The

expected first and second exercise times could be simulated and a welfare analysis

could be made to compare both situations.
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