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Abstract

This paper analyses the accuracy of replicating portfolio methods in predict-

ing asset prices. In a two-period, general equilibrium model with incomplete

financial markets and heterogeneous agents, a computational study is conducted

under various distributional assumptions. We focus on the price of a call option

on an underlying risky asset. There is evidence that the value of the (approxi-

mate) replicating portfolio is a good approximation for the general equilibrium

price for CRRA preferences, but not for CARA preferences. Furthermore, there

is strong evidence that the introduction of the call option reduces market in-

completeness and that the price of the underlying asset is unchanged. There

is, however, inconclusive evidence on whether the availability of the option in-

creases agents’ welfare.
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1 Introduction

Ever since the seminal contributions of Black and Scholes (1973), Merton (1973),

and Harrison and Kreps (1979), there has evolved a whole industry concerned with

asset pricing based on martingale methods. These methods are based on the two

fundamental theorems of finance, the first of which states that, in absence of ar-

bitrage opportunities, there exists a probability measure under which each asset’s

price is the expectation of the future dividends. The second fundamental theorem

then states that this measure is unique in incomplete markets. In a two-period

economy with finitely many future states and one consumption good, the equivalent

martingale measure can be interpreted as a vector of state prices, representing the

price of consumption in each uncertain state in future.

In essence, financial markets are complete if the economy is isomorphic to an

economy with a complete set of contingent contracts (a so-called Arrow-Debreu

economy, see Debreu (1959, Chapter 7)). Completeness allows the market to deter-

mine asset prices in such a way that all agents’ present value vectors are equalised.1

The present value vector of an agent lists her individual valuation of each future

state (in terms of the consumption good) given all asset prices.

From a practical point of view the two fundamental theorems are extremely

useful. If markets are complete then, in order to value a (new) financial asset,

no knowledge whatsoever about preferences or initial endowments is needed. In

complete markets any new asset is redundant and its no-arbitrage value can be

computed as a linear combination of the prices of the existing assets. The weights

are determined by the orthogonal projection of the dividend stream of the new asset

on the market span and are called the replicating portfolio. We call the resulting

price the replicating portfolio value, RPV. In other words, in complete markets, asset

pricing can be achieved by using observable data on prices, without appealing to

portfolio theory and utility maximisation.

In incomplete markets, however, the present value vectors are, generically, not

equal in equilibrium. Only their orthogonal projections on the market span are.

In other words, there are several valid vectors of state prices in equilibrium. This

happens because the dimension of the subspace orthogonal to the market space is

larger than one. This, in turn, implies that new assets are, generically, not redun-

dant. Therefore, no replicating portfolio exists. The best one can hope for is to find

an approximate replicating portfolio via an orthogonal projection on the market

space and, therefore, an approximate value for the new asset. This method has been

1This is nothing more than the famous “price equals marginal rate of substitution” rule taught

in undergraduate microeconomics. Here the substitution is between uncertain future states.
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advocated by, for example Föllmer and Sondermann (1986).

There are mainly two reasons why the RPV might lead to structural errors in

predicting a new asset’s value. One relating to the use of the wrong replicating port-

folio due to market incompleteness, and one relating to the use of the wrong prices

for the existing assets due to changes in the market span. As to the former point,

market incompleteness leads to non-existence of a replicating portfolio. Whether

or not markets are incomplete is open for debate. However, even if markets are, in

fact, complete, asset valuation typically only uses a subset of all traded assets. That

is, asset pricing then takes place as if markets are incomplete.2 This implies that,

generically, for practical purposes the dividend stream of a new asset does not lie

in the market span and only a partial spanning asset, or approximate replicating

portfolio, can be obtained.

Secondly, the introduction of a new asset might change the prices of all other

traded assets in equilibrium as well, due to the resulting change in the market span.

This then leads to an error due to the fact that the “wrong” asset prices are used

to determine the RPV.3 There is empirical evidence that the introduction of new

batches of options has substantially changed asset prices between 1973 and 1986

(see Conrad (1989) and Detemple and Jorion (1990)). Some theoretical papers have

been devoted to this topic. Weil (1992) and Elul (1997) show that the introduction

of a new asset permits agents to better share risk. This weakens the need for

precautionary savings and, hence, leads to a higher interest rate. This, in turn,

reduces the prices of all assets in the economy. Oh (1996) shows that in economies

with mean-variance preference, or CARA preferences and normally distributed asset

payoffs, the price of any risky asset relative to the riskless bond is unaffected by

changes in the market span. In a recent paper, Calvet et al. (2004) show that

in a CARA-normal economy with limited participation relative prices are in fact

influenced by financial innovation.

This paper conducts a computational study to assess these issues. A two-period

economy with three heterogeneous agents is studied. On the financial market two

assets, a riskless bond and a risky asset, are initially traded. Under several distri-

butional assumptions we compare the performance of RPV as a predictor for the

general equilibrium price of a call option on the risky asset for different strike prices.

Agents’ utility functions are either of the CARA or CRRA type. We also study

whether the prices of the existing assets change substantially after the introduction

of the call option.

First of all, we find that the introduction of the call option significantly increases

2See Ross (2005) for an elaboration of this point.
3In fact, this is reminiscent of the “Lucas-critique”, see Lucas (1976).
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the degree of market completeness, which is measured by the fraction of the variance

of total initial endowments that can be traded on the market. Our findings also

indicate that, if agents have CRRA preferences, the RPV is a good predictor for

the general equilibrium value (GEV) of the option. If, however, agents have CARA

preferences, then the RPV is significantly different form the GEV. Furthermore, the

price of the underlying asset does not significantly change after the introduction of

the option. We also find inconclusive evidence on the effect of the introduction of

the option on agents’ welfare, as measured by the equivalent variation. In most

cases we find that the equivalent variation does not change significantly. This seems

to imply that, in equilibrium, the price of the option is such that the increase in

utility resulting from better consumption smoothing over risky states disappears. It

is surprising to see that even richer agents can not benefit from the introduction of

the option. Since the option is in zero net-supply, we do see that richer consumers

sell the option to poorer agents and, hence, provide insurance. Since the richer

agents are risk-averse themselves, however, they need a higher price to take on the

additional risk. On balance these effects seem to cancel out in most cases. Finally,

we find that the prices of existing asset explain the variance in the GEV of the

option substantially better for CARA than for CRRA preferences.

The paper is organised as follows. In Section 2, the two-period general equilib-

rium model with incomplete financial markets (GEI) is introduced. In Section 3 the

replicating portfolio approach is described in detail and in Section 4 the computa-

tional study is presented. Section 5 discusses the simulation results, while Section 6

concludes.

2 The GEI Finance Economy

The General Equilibrium model with Incomplete markets (GEI) explicitly includes

incomplete financial markets in a general equilibrium framework. In this paper the

simplest version is used. It consists of two time periods, t = 0, 1, where t = 0 denotes

the present and t = 1 denotes the future. At t = 0 the state of nature is known

to be s = 0. Uncertainty over possible states of nature at t = 1 is modelled by a

probability space S = (S,S, P ), where S is assumed to be a finite set indexed (with

slight abuse of notation) by s = 1, . . . , S. In the economy there are H ∈ N agents, or

investors or households, indexed by h = 1, . . . ,H. There is one consumption good,

which can be interpreted as income. A consumption plan for agent h ∈ {1, . . . ,H} is

a vector xh ∈ R
S+1
+ , where xh

s gives the consumption level in state s ∈ {0, 1, . . . , S}.4

4In general a vector x ∈ R
S+1 is denoted x = (x0, x1) ∈ R×R

S to separate x0 in period t = 0

and x1 = (x1, . . . , xS) in period t = 1.

4



Each agent h = 1, . . . ,H, is characterised by a vector of initial endowments,

ωh ∈ R
S+1
+ , and a utility function uh : RS+1

+ → R. We denote aggregate initial en-

dowments by ω =
∑H

h=1 ωh. Regarding the initial endowments and utility functions

the following assumptions are made.

Assumption 1. The vector of aggregate initial endowments is strictly positive, i.e.

ω ∈ R
S+1
++ .

Assumption 2. For each agent h = 1, . . . ,H, the utility function, uh, is continuous,

strictly monotone and strictly quasi-concave on R
S+1
+ .

Assumption 1 ensures that in each period and in each state of nature there is at

least one agent who has a positive amount of the consumption good. Assumption 2

ensures that each agent’s demand is a continuous function.

It is assumed that the market for the consumption good is a spot market. The

agents can smoothen consumption over time and uncertain states by trading on

the financial market, where J ∈ N financial contracts are traded, indexed by j =

1, . . . , J . The future payoffs (dividends) of these assets are collected in a matrix

A = [dj
s]

j=1,...,J
s=1,...,S ∈ R

S×J ,

where dj
s is the payoff of one unit of asset j in state s. The following assumption is

made with respect to the matrix A.

Assumption 3. There are no redundant assets, i.e. rank(A) = J .

Assumption 3 can be made without loss of generality; if there are redundant

assets then a no-arbitrage argument guarantees that its price is uniquely determined

by the other assets. Let the market subspace be denoted by 〈A〉 = Span(A). That

is, the market subspace consists of those income streams that can be generated by

trading on the financial markets. If S = J , the market subspace consists of all

possible income streams, i.e. markets are complete. If J < S, there is idiosyncratic

risk and markets are incomplete.

A GEI economy is defined as a tuple E =
(

(uh, ωh)h=1,...,H , A
)

. Given a GEI

economy E , agent h can trade assets by buying a portfolio θh ∈ R
J given the

(row)vector of prices q = (q0, q1) ∈ R
J+1, where q0 is the price for consumption in

period t = 0 and q1 = (q1, . . . , qJ) is the vector of security prices with qj the price

of security j, j = 1, . . . , J .5 Given a vector of prices q = (q0, q1) ∈ R
J+1, the budget

set for agent h = 1, . . . ,H is given by

Bh(q) =
{

x ∈ R
S+1
+

∣

∣

∣
∃θ∈RJ : q0(x0 − ωh

0 ) ≤ −q1θ, x1 − ωh
1

= Aθ
}

. (1)

5We follow the convention of denoting prices in row vectors and quantities in column vectors.
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Given the asset payoff matrix A we will restrict attention to asset prices that gen-

erate no arbitrage opportunities, i.e. asset prices q such that there is no portfolio

generating a non-negative income stream. Such asset prices exclude the possibility

of “free lunches”. The link between utility maximisation follows from the following

theorem (see, for example, Magill and Quinzii (1996)).

Theorem 1 (Fundamental Theorem of Asset Pricing). Let E be a finance economy

satisfying Assumption 2. Then the following conditions are equivalent:

1. q ∈ R
J+1 permits no arbitrage opportunities,

2. ∀h=1,...,H : arg max{uh(xh)|xh ∈ Bh(q)} 6= ∅,

3. ∃π∈RS
++

: q1 = πA,

4. Bh(q) is compact for all h = 1, . . . ,H.

The vector π ∈ R
S
++ can be interpreted as a vector of state prices. Condition 3

therefore states that any no-arbitrage price for security j equals the present value

of security j given some vector of positive state prices π. As a consequence of this

theorem, in the remainder we restrict ourselves to the set of no-arbitrage prices

Q = {q ∈ R
J+1|q0 > 0,∃π∈RS

++
: q1 = πA}. (2)

An important consequence of Theorem 1 is that in complete markets state prices are

uniquely determined up to normalisation.6 If one normalises state prices on the unit

simplex, π can be interpreted as a probability measure. Since no-arbitrage prices

are simply the expected value of asset payoffs under π, this probability measure is

usually referred to as the martingale measure. Furthermore, note that Theorem 1

does not require equilibrium considerations at all. So, under complete markets only

Assumption 2 is needed for asset pricing. If markets are incomplete, however, π is

not uniquely determined. This is exactly the reason why asset pricing in incomplete

markets is conceptually much more difficult.

Under Assumption 2, Theorem 1 shows that the demand function xh(q), max-

imising investor h’s utility function uh(x) on Bh(q), is well-defined for all h =

1, . . . ,H, and all q ∈ Q. It can easily be shown that xh(q) and the security de-

mand function, θh(q), determined by Aθh(q) = xh
1
(q) − ωh

1
, are continuous on Q.

Define the excess demand function f : Q → R
J+1 by

f(q) =
(

f0(q), f1(q)
)

=
(

H
∑

h=1

(xh
0 (q) − ωh

0 ),
H

∑

h=1

θh(q) − Θ
)

,

6The space orthogonal to 〈A〉 is one-dimensional.
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where Θ ∈ R
J
+ denotes each asset’s net-supply. A financial market equilibrium

(FME) for a GEI economy E is a tuple
(

(x̄h, θ̄h)h=1,...,H , q̄
)

with q̄ ∈ Q such that:

1. x̄h ∈ arg max{uh(xh)|xh ∈ Bh(q̄)} for all h = 1, . . . ,H;

2. Aθ̄h = x̄h
1
− ωh

1
for all h = 1, . . . ,H;

3.
∑H

h=1 θ̄h = 0.

It is easy to show that q ∈ Q is an FME if and only if f(q) = 0. The following result

is proved in e.g. Hens (1991) and Talman and Thijssen (2006).

Theorem 2. Let E be a GEI economy satisfying Assumptions 1–3. Then there

exists q ∈ Q such that f(q) = 0.

3 The Value of a New Financial Asset

Let S = (S,S, P ) be a (discrete) probability space and let E = (u, ω,A) be a two-

period GEI economy, with J assets. Suppose that a new asset is introduced with

future dividends dJ+1 ∈ R
S . This new asset can be a new financial product which

is actually going to be traded on the financial market, like a derivative security.

It could also represent the risky payoffs of a real investment project of a firm. In

this case the asset will not actually be traded, but the firm might wish to value the

project as the shareholders would if the project were traded.7

In complete markets the new asset is redundant and its payoff can, hence, be

written as a linear combination, θ, of the columns in A. The vector θ is called the

replicating portfolio and the value of the redundant asset should equal θq, where q

is the vector of prices of the J assets in A.

Generically, however, if financial markets are incomplete, then no unique repli-

cating portfolio exists. Following Föllmer and Sondermann (1986) one could use

the orthogonal projection of dJ+1 on 〈A〉 instead. Let θA(dJ+1) denote the (unique)

replicating portfolio of proj〈A〉(d
J+1), where proj〈A〉(x) denotes the projection in

|| · ||2 of x ∈ R
S onto 〈A〉. The value of this approximate replicating portfolio,

denoted by RPV (dJ+1), is then

RPV (dJ+1) = qθA(dJ+1). (3)

From a practical point of view the RPV approach is appealing, since θA(dJ+1)

is essentially obtained by performing a linear regression of dJ+1 on the existing

7See Dixit and Pindyck (1994) for an introduction to the valuation of real investment projects

using financial option pricing techniques.
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assets in A. For example, the matrix A could consist of past observations on the

dividends of the J stocks. If the new asset is, for example, a derivative security,

which is written on one of the assets in A, then dJ+1 can be computed for all

observations, and θA(dJ+1) can be obtained. In complete markets, the derivative

security is redundant and, hence, the aforementioned regression should have R2 = 1.

So, R2 < 1 is an indication of market incompleteness.

The replicating portfolio approach computes the expectation of the price of the

new asset, conditional on the existing market span, using risk-neutral probabilities

that are derived from market prices. A clear advantage of this procedure is that one

only uses observable dividends and prices and no unobservables like preferences and

endowments. However, if markets are incomplete, the replicating portfolio approach

might lead to structural errors if it holds that dJ+1 6∈ 〈A〉. The reasons are two-

fold. Firstly, agents in the economy will, typically, not agree on the valuation of

the residual of dJ+1. This is the orthogonal projection of dJ+1 on the orthogonal

complement of 〈A〉, 〈A〉⊥.8 Secondly, RPV assumes that in the economy with the

new asset the prices of the existing assets do not change. There is, however, no

guarantee that this will happen.

In order to account for market incompleteness and changes in the market span,

〈A〉, let Ã =
[

A dJ+1
]

∈ R
S×(J+1) be the asset payoff matrix after the derivative

security has been introduced in the market. Note that, if initial endowments include

asset holdings and the new security is introduced in non-zero net-supply, then initial

endowments change as well to, say, ω̃. That is, after a security with payoffs dJ+1

has been introduced, the new GEI economy is Ẽ = (u, ω̃, Ã). Let q̃ ∈ R
J+1 be a

vector of equilibrium prices in this economy. Then the general equilibrium value of

the new asset, denoted by GEV (dJ+1), is

GEV (dJ+1) = q̃J+1. (4)

The main difference with the approximate replicating portfolio value is that the

RPV values the investment project in the economy E , whereas the GEV values the

investment in the economy Ẽ . Note that, if the new asset is perfectly correlated with

a linear combination of the J original assets, then GEV (dJ+1) = RPV (dJ+1).

To illustrate how the RPV can provide a poor proxy for the GEV, consider

an economy with two agents, three states of nature and one asset. The asset is

a contingent contract on the second state, i.e. A = [e2], where ei is the i-th unit

vector. So, e2 ∈ R
3 is a basis for 〈A〉. Initial endowments are taken to be ω1 =

(2, 1, 1, 1) and ω2 = (1, 2, 2, 2). Suppose that both agents have identical, time-

separable von Neumann-Morgenstern utility functions with constant relative risk

8See, for example, Magill and Quinzii (1996) for an extensive discussion.
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aversion (CRRA),

uh(x0, x1) = log(x0) + 0.95
3

∑

s=1

1

3
log(xs).

After normalising the price of date 0 consumption to 1, the equilibrium price for

the asset in this economy is q = 0.3246. Suppose now that a contingent contract for

the third state is introduced, i.e. Ã =
[

e2 e3

]

. In this case {e2, e3} is a basis for

〈Ã〉. Since the dividend stream of the new asset is orthogonal to 〈A〉, it immediately

follows that θ〈A〉(e3) = 0, implying that RPV (e3) = 0. Given the same endowments,

the equilibrium prices of the two assets are q̃ = (0.3221, 0.3221). This example makes

clear that RPV can be a bad approximation of the true value of the asset. It also

shows that the prices of existing assets can change when a new asset is introduced.

This example is, of course, an extreme case. Most financial innovations will not

be orthogonal to the existing market span. It does show, however, that in general

it will be difficult to say how accurate the RPV predicts the value that the market

will assign to a financial innovation. In the next section we will, therefore, conduct

some simulation experiments to asses the accuracy of RPV for the introduction of

a particular financial innovation, namely a call option on an existing risky asset.

4 A Simulation Analysis

In this section, the two valuation methods presented in Section 3 are numerically

assessed, under several distributional assumptions, for the introduction of a call

option on the J -th asset. We are interested in a number of empirical questions,

the first of which is the accuracy of RPV (dJ+1) in predicting GEV (dJ+1). We

also want to assess whether the equilibrium price of the underlying asset changes

significantly. This would have important consequences in itself for the practise of

derivative pricing. If, namely, the price of the underlying asset changes significantly

with the introduction of an option, then the standard assumption of an exogenous

and unchanging underlying asset price process (like a geometric Brownian motion)

might be questioned.

Apart from the market value of a financial innovation, however, an important

question is how much better off the agents in the economy are after the introduction

of the new asset. In standard microeconomic models one often uses the equivalent or

compensating variation to measure effects on agents’ wealth of price and/or income

changes. Since the equivalent variation takes current prices – asset prices before the

introduction of the new asset – as the starting point this seems the better approach

in the current setting. The equivalent variation of the new asset, EV (dJ+1), is

9



defined as

EV (dJ+1) =

H
∑

h=1

eh(q, uh) − qθh
1
,

where for all h, eh(q, uh) solves

eh(q, ūh) = min
{θ∈RJ+1|ωh+Wθ≥0}

{q1θ|uh(ωh
0 − q1

q0
θ, ωh

1
+ Ãθ) ≥ ūh},

where W =

[

−q

Ã

]

, q is an equilibrium price vector in the economy E , and ūh is the

utility of agent h at prices q. That is, EV (dJ+1), measures the total amount agents

would want to pay for the new asset under current equilibrium prices and is, as

such, a monetary measure for the welfare change resulting from the introduction of

the new asset.

Markets are incomplete when J < S. In itself, however, this does not give an

indication of the degree of market incompleteness. The possibilities of agents to

trade their initial endowments, for example, give a better indication. Indeed, if an

agent’s endowments lie in the market space, ωh ∈ 〈A〉, then for this agent, market

are effectively complete, because her endowments are uniquely priced. Following

Calvet et al. (2004), we define the degree of market completeness of the economy E

as the fraction of variability in total endowments that is traded on the market, i.e.

α(E) =
V ar

(

proj〈A〉(ω
h
)

V ar(ω)
.

This leads to the following quantities of interest. Let q and q̃ be the equilibrium

price vectors in the economies E and Ẽ , respectively. For all simulations, we will test

the following hypotheses,

H0 : α(E) = α(Ẽ), (5)

H0 : EV h(dJ+1) = 0, all h = 1, . . . ,H, (6)

H0 : qj = q̃j, all j = 1, . . . , J , (7)

H0 : GEV (dJ+1) = RPV (dJ+1), (8)

The first hypothesis tests whether market incompleteness changes significantly by

the introduction of the call option on the risky asset. The second set of hypotheses

test whether the agents in the economy are actually significantly better of with

the new asset. The third hypothesis tests whether the equilibrium price of the

underlying asset changes significantly. Finally, the last hypothesis tests whether

the general equilibrium value and the (approximate) replicating portfolio value are
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significantly different. For each of these tests we compute the asymptotically normal

z-statistic.

Furthermore, we investigate how good the asset prices (in E) predict the equi-

librium option price (in Ẽ). This is achieved by estimating the regression equation

q̃J+1 = β0 +
J

∑

j=1

βjqj + ε, (9)

using ordinary least squares. The R2 of this regression indicates how much of the

variance in GEV (dJ+1) is explained by changes in the prices of the existing assets.

4.1 General Simulation Set-Up

It is assumed that there are J = 2 assets in the economy. The first asset is a riskless

bond with payoff stream d1 = 1S , which is in zero supply. The second asset is a

risky asset with

d2 = βf + (1 − β)ε,

where f ∈ R
S is an economy-wide factor, ε ∈ R

S is an asset-specific shock, and

β ∈ [0, 1] is the asset’s exposure to the economy-wide factor. Throughout, β is

drawn randomly from the interval [0.25,0.75]. The risky asset is assumed to be in

unit supply.

The economy consists of H = 3 agents with time-separable von Neumann–

Morgenstern utility functions

uh(x0, x1) = vh(x0) + δh
S

∑

s=1

ph
svh(xs),

where δh is the discount rate of agent h and ph
s is the probability which agent h

assigns to state s. Throughout, we take δh = 0.95 and, unless otherwise stated,

ph
s = 1/S, all h = 1, . . . ,H and s = 1, . . . , S. The function v(·) is either of the

CARA or the CRRA type, i.e.

vh(x) = 1 − e−γhx, or vh(x) =
x1−γh

− 1

1 − γh
,

where the rate of risk aversion, γh, is randomly drawn from {1, . . . , 6}, all h =

1, . . . ,H.

Initial endowments consist of labour income (wages) and dividend income. For

agent h, labour income is equal to

Lh = ζhf + (1 − ζh)lh,
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where lh ∈ R
S is an agent specific wage shock and ζh is the exposure of agent h’s

wages to the economy-wide factor. Throughout we take ζh = 0.5, all h = 1, . . . ,H.

The initial portfolios, θh
0 , of risky asset holdings are θ1

0 = 0, θ2
0 = 1/3, and θ2

3 = 2/3.

Endowments are assumed to consist for 2/3 of wages and for 1/3 of asset income,

i.e.

ωh
1

=
2

3
Lh +

1

3
d2θh

0 .

Date 0 initial endowments are given by ω0 =
[

2/3 1 4/3
]

.

We consider the valuation of a call option on the risky asset, i.e.

d3 = max{0, d2 − d2
K1S},

where the strike price, d2
K , is the K-th percentile of d2. Finally, every run consists

of 100 simulations. All equilibria are computed using a differentiably implementable

homotopy algorithm, constructed by Herings and Kubler (2002). 9

4.2 Tri-Nomial Shocks

As a first model, we study economies where the factor and the asset and wage specific

shocks form a tri-nomial tree. That is, we take

f ∈ {0.89, 1.02, 1.15}

ε ∈ {0.89, 1.02, 1.15}

lh ∈ {0.92, 1.02, 1.12} all h = 1, . . . ,H.

This implies that IE(d2) = IE(Lh) = 1.02, which represents an average 2% increase

in wages and a dividend rate of 2%. Also, σ(Lh) = 0.125, where σ(·) is the standard

deviation. The variance of d2 depends on the, randomly generated, factor loading

β. For all simulations we take K = 0.5.

The results of the tests (5)-(8) as well as the point estimates, t-values and R2

of the regression (9) are reported in Table 1 of Appendix B. Both for CARA and

CRRA utility, the coefficients in the regression (9) of the prices of the riskless and

the risky assets are negative and positive, respectively, and are significant at the

99% level. The R2 is substantially higher, though, for the CARA regression.

Furthermore, in both cases the introduction of the option does not change the

degree of market completeness (5) significantly. However, GEV (d3) is significantly

different from RPV (d3) in both cases (at the 1% and 10% level for CARA and

CRRA, respectively). The equivalent variation is only significant (at the 1% level)

for agent 3 (the richest agent) in the CRRA simulations. This could indicate that

9see Appendix A for a description of the algorithm.
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the additional utility that agents derive from better opportunities for risk-sharing

due to the presence of the option are largely offset by the price they pay for this

asset. Only agent 3 benefits significantly, possibly because this agents finds herself

to be the provider of consumption smoothing possibilities over risky states to the

other, less well-off, agents.

Finally, in either case, the price of the underlying asset does not significantly

change after the introduction of the option. Only for the CRRA case does the price

of the riskless asset change significantly (at the 10% level).

4.3 Uniform Shocks

In the second model, we study economies where the factor and the asset and wage

specific shocks are uniformly distributed. That is, we take

f ∼ U(0.8, 1.24)

ε ∼ U(0.8, 1.24)

lh ∼ U(0.85, 1.2) all h = 1, . . . ,H.

Again, this implies that IE(d2) = IE(Lh) = 1.02 and that the variance of labour

income is lower than the variance of asset income. In the finite setting that is

considered in this paper, these distributions are achieved by simulating 500 obser-

vations on f , ε, and lh, according to the distributions specified above.10 For these,

and the following, simulations the option’s strike price K is drawn randomly from

the interval [0.25,0.75].

The results of the tests (5)-(8) as well as the point estimates, t-values and R2

of the regression (9) are reported in Table 2 of Appendix B. Both for CARA and

CRRA utility, the coefficients in the regression (9) of the prices of the riskless and

the risky assets are negative and positive, respectively, and are significant at the

99% level. The R2 is substantially higher, again, for the CARA regression.

In both cases, the introduction of the option changes the degree of market com-

pleteness (5) significantly at the 1% level. However, GEV (d3) is significantly differ-

ent from RPV (d3) (at the 1% level) only for the CARA specification. The equivalent

variation is now only significant (at the 1% level) for agents 1 and 2 in the CARA

specification, but not for agent 3 at all.

Finally, for either utility function, the price of the underlying asset does not

significantly change after the introduction of the option. Only for the CRRA case

does the price of the riskless asset change significantly (at the 5% level).

10That is, S = 500.
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4.4 Log-Normal Shocks

In the third model, we study economies where the factor and the asset and wage

specific shocks are log-normally distributed. We simulate, as before, 500 draws for

f , ε, and lh, where

f ∼ LN(1.02, 0.01) (10)

ε ∼ LN(1.02, 0.01) (11)

lh ∼ LN(1.02, 0.0025) all h = 1, . . . ,H. (12)

Again, we assume that all random variables grow at an average rate of 2%, with a

smaller variance for labour income than dividends.

All empirical results are reported in Table 3 of Appendix B. Again, the coef-

ficients in the regression (9) of the prices of the riskless and the risky assets are

negative and positive, respectively, and are significant at the 99% level. The R2 is

substantially higher, again, for the CARA regression.

In both cases, the introduction of the option changes the degree of market com-

pleteness (5) significantly at the 1% level. However, GEV (d3) is significantly differ-

ent from RPV (d3) (at the 1% level) only for the CARA specification. In this model,

the equivalent variation is now significant at the 1% level for agent 1 in both specifi-

cations, and at the 5% level for agent 3 only for the CRRA specification. This time,

the equivalent variation for agent 1 is insignificant for both specifications. Finally,

for either utility function, the prices of both the riskless asset and the underlying

asset do not change significantly after the introduction of the option.

4.5 Log-Normal Shocks with Downward Jumps

One implication of assuming preferences exhibiting risk aversion is that agents not

only care about mean and variance, but also about higher moments. In order to

ascertain the influence of such higher moments, we study simulations where the

dividends and wages are skewed. This is achieved in the following way. After

drawing 500 observations for f , ε, and lh according to (10)–(12), respectively, we

randomly draw 25 observations of f , which we replace by the smallest draw of f .

This then represents a log-normal distribution with downward jumps.

All empirical results are reported in Table 4 of Appendix B. Again, the coef-

ficients in the regression (9) of the prices of the riskless and the risky assets are

negative and positive, respectively, and are significant at the 99% level. The R2 is

substantially higher, again, for the CARA regression.

The degree of market completeness again changes significantly at the 1% level.

Also, most equivalent variations are, again, insignificant. The general equilibrium
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value, GEV (d3), is significantly different from RPV (d3) at the 1% level only for

the CARA specification, and the change in the price of the underlying asset is

insignificant. At the 10% level, the price change for the riskless asset in the CARA

specification is significant.

4.6 Heterogeneous Beliefs

Finally, we look at the influence of heterogeneous beliefs. So far, it has been assumed

that all agents believe that all states s = 1, . . . , S, are equally likely. In this simula-

tion run we allow beliefs to be heterogeneous. Wages and dividends are constructed

in the same way as in the previous model. In addition, three different types of beliefs

are assumed: uniform, pessimistic, and optimistic. An agent with uniform beliefs

attaches equal probabilities to all states of nature. An agent with pessimistic beliefs

assigns higher probabilities to states of nature with a low outcome. This is achieved

in the following way. The 33% of states with the lowest 33% of values for the factor

f are assigned a probability twice as high as the 33% of states with the highest 33%

of values for f . An agent with optimistic beliefs constructs beliefs just the other

way around. In every simulation round and for every agent, the belief type is drawn

randomly.

All empirical results are reported in Table 5 of Appendix B. Again, the coef-

ficients in the regression (9) of the prices of the riskless and the risky assets are

negative and positive, respectively, and are significant at the 99% level. The R2 is

substantially higher, again, for the CARA regression.

The degree of market completeness again changes significantly at the 1% level.

For the CRRA specification, all agents equivalent variations are significantly different

from zero (at the 5% or 1% level). The general equilibrium value, GEV (d3), is

significantly different from RPV (d3) at the 1% level only for the CARA specification.

The changes in the prices of both the riskless asset and the underlying asset are

insignificant.

5 Discussion

Based on the simulations, several observations can be made on the effects on the

model economy of the introduction of new financial assets. We can also say some-

thing on the robustness of the (approximate) replicating portfolio method as a proxy

for the general equilibrium value of a new asset in economies with heterogeneous

agents and incomplete financial markets. A first observation is that, apart from the

tri-nomial model, the introduction of a call option on the risky asset significantly
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changes (at the 1% level) the degree of market completeness as defined in (5). Since

all zα are positive, this implies that in an economy with risk-averse agents, the new

asset should have positive value. If, however, the welfare change of the agents is as-

sessed using the equivalent variation, no clear picture for this value emerges. Only in

some models, for some preference specifications and for some agents the equivalent

variation is significantly different from zero. This implies that the price for addi-

tional consumption smoothing over risky states that the new asset provides is such

that no agent actually makes a profit on it; not even the richest agent. This might

happen because all agents are risk averse and, therefore, have a positive demand for

additional consumption smoothing. Since the option is in zero supply, however, the

richer agent will provide this product to the poorer ones, but needs a higher price

to compensate for the loss of her own consumption smoothing resulting from selling

the option (i.e. from taking on more risk).11

Secondly, the price of the existing risky asset does not significantly change due

to the introduction of the new asset, even though the new asset is not perpendicular

to the existing risky asset. In other words, the demand for the risk sharing oppor-

tunities provided by the risky asset remains unchanged. The price of the riskless

asset also remains unchanged in virtually all models. From this it can be concluded

that in economies with incomplete markets and heterogeneous risk averse agents,

the demand for a new asset is solely determined by the additional market span it

provides.

Thirdly, for all distributions, the CARA specification leads to significantly dif-

ferent general equilibrium values compared to the RPV (at the 1% level). For the

CRRA specification, however, the difference is not significant (at the 1% level) for

any distribution. This seems to indicate that RPV is a better predictor for CRRA

than for CARA preferences. This result might be explained by the following fact. It

is well-known (cf. Magill and Quinzii (1996, Section 16)) that if agents have identical

CRRA preferences, then the date 1 consumption of each agent is proportional to

total endowments. Since initial endowments do not change after the introduction

of the option in our simulated economies (the option is in zero supply), linearity of

the consumption pattern with respect to initial endowments in E will not change in

Ẽ . This linearity might imply that the orthogonal projection of the dividend stream

of the new asset on the existing market stream leads to a good proxy of the new

asset’s price. Apparently, heterogeneity of the rate of relative risk aversion does not

11A crucial assumption for this result might be that options are in zero supply. If options are

in unit supply (managerial stock options for example) then they change initial endowments and

might give their owners a possibility to insure non-owners against risk without a loss of utility to

themselves.
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change this result too much.

Finally, consider the regression (9). For all models the following results hold.

Firstly, the coefficient of the price of the riskless asset is negative and significant at

the 1% level. Secondly, the coefficient of the price of the underlying risky asset is

positive and significant at the 1% level. In other words, the higher the interest rate12

or the price of the underlying asset, the higher the price of the option. Also, the

R2 of the simulations for the CARA specification is consistently and substantially

higher than for the CRRA specification. So, for CARA preferences, the variability in

the prices of the riskless and underlying risky assets explain more of the variability

in the option’s price than for CRRA preferences. This seems puzzling since existing

asset prices predict the option’s price better via RPV for CRRA preferences than

for CARA preferences.

6 Conclusions

Over the past decades, the literature on asset pricing has developed separately from

the literature on optimal portfolio choice. For a large part this is due to the two

fundamental theorems of asset pricing. The first fundamental theorem tells us that,

in the absence of arbitrage opportunities, asset prices are a linear combination of the

assets’ dividends. The coefficients are called state prices. The second theorem, in

addition, establishes that if markets are complete then these state prices are unique.

This has led to an entire industry which computes the value of new assets based

on the assumptions of no-arbitrage and market completeness. The big advantage

of these assumptions is that asset prices can be computed without any knowledge

of the agents’ preferences and endowments. Since each new asset is redundant in

complete markets, there exists a unique replicating portfolio, the value of which

should be the no-arbitrage price of the new asset.

If, however, markets are incomplete, then the vector of state prices is not uniquely

determined and there is no replicating portfolio. As a result, there is no clear-cut

way in which to obtain the arbitrage-free price of a new – and as yet non-traded –

asset. Instead, there is a plethora of prices, each sustained by a state price vector

which does not admit arbitrage opportunities. If one still assumes that in such

circumstances the orthogonal projection of the dividends of the new asset on the

market span is the replicating portfolio, then one risks making a systematic error in

determining the asset’s value.

A simulation study shows that under several distributional assumptions this is

12The interest rate, r, can be computed from the price of the riskless asset, q1, in the following

way, q1 = 1

1+r
.
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indeed the case if agents have CARA preferences. For CRRA preferences, how-

ever, the approximation via the (approximate) replicating portfolio is statistically

insignificantly different from the general equilibrium value.

Several additional points can be raised, however. In this paper – and in most

of the literature – it is assumed that option payoffs are a function of variables

whose distributions are exogenously determined. In the Black-Scholes world, for

example, the underlying asset’s price follows a geometric Brownian motion. In this

paper, the option’s payoffs is determined by the underlying asset’s dividends, which

are endogenously determined. In reality, however, option payoffs are endogenously

determined by the underlying asset’s equilibrium price. This could provide a channel

through which asset prices might change after the introduction of options, which is

a well-recorded empirical phenomenon (see Conrad (1989) and Detemple and Jorion

(1990)). This is a topic for future research.

One can take this point even further. Since most empirical research in asset

pricing uses cross-sectional analyses based on the iid assumption,13 such studies

might make a systematic error either if changes in the composition of listed firms

occur (due to bankruptcies or mergers and acquisitions), or if listed firms engage

in investment projects during the sample period. In such cases, the market span is

likely to change and, hence, so does the underlying probability space.

Appendix

A Homotopy Methods in GEI Analysis

The equilibria in this paper are computed by using a homotopy method developed in

Herings and Kubler (2002). This is a differentiable homotopy obtained by replacing

excess demand functions by the first order conditions of utility maximisation, an

approach proposed by Garcia and Zangwill (1981). The advantage of this approach

is that the number of agents, H, and the number of assets, J , determine the dimen-

sionality of the homotopy instead of the number of states, S, which is typically very

large. Furthermore, there is no need to explicitly compute agents’ demand function

and the set of no-arbitrage prices Q, both typically non-trivial. Instead one merely

needs the Jacobians of the utility functions.

The Herings-Kubler (HK) homotopy is designed for two-period GEI economies

with no consumption at t = 0. A standard way of transforming any GEI economy E

to an economy with no consumption at time is presented in Hens (1991) and consists

13See, for example, Campbell et al. (1997) for an overview.

18



of replacing the asset payoff matrix A by the matrix

Ā =















1 0 . . . 0

0 A1
1 . . . AJ

1
...

...
. . . · · ·

0 A1
S . . . AJ

S















.

That is, t = 0 consumption is translated to t = 1. by introducing an artificial state

s = 0 and an artificial asset j = 0. The analysis that follows is concerned with the

economy Ē = (u, ω, Ā).

The following additional assumption is made with respect to investors’ prefer-

ences.

Assumption A.1. For all h = 1, . . . ,H, the utility function uh is three times

continuously differentiable such that for all x ∈ R
S
++ it holds that

1. ∂uh(c) ∈ R
S
++;

2. ∀y 6=0:∂uh(c)y=0 : y>∂2uh(c)y < 0;

3. {c̃ ∈ R
S
++|u

h(c̃) ≥ uh(c)} is closed in R
S.

Let f̂ and q̂ denote the excess demand function and an asset price system, re-

spectively, with the first entry removed. The algorithm starts from an initial price

system q0 in Q, with the price of t = 0 consumption normalised to 1. Equilibria of

Ē are computed by the homotopy H : [0, 1] × Q → R
J

H(t, q) = tf̂(q) + (1 − t)(q̂0 − q̂). (A.1)

Herings and Kubler (2002) prove the following theorem.

Theorem A.1. Let Ω ⊂ R
HS
++ be an open set with full Lebesgue measure. For all

initial endowments ω ∈ Ω it holds that

1. H−1({0}) is a compact C2 one-dimensional manifold with boundary H−1({0})∩

({0, 1} × Q);

2. there is an odd number of solutions in H−1({0}) ∩ ({1} × Q);

3. there is one solution in H−1({0}) ∩ ({0} × Q);

4. there is no sequence (tn, qn)n∈N in H−1({0}) with limit (t, q) ∈ [0, 1] × ∂Q or

such that ||(tn, qn)||2 → ∞.
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That is, generically, there exists a path from q0 to an FME q; there is only one

solution at q0; there is an odd number of solutions; and the algorithm does not

diverge or converge to the boundary.

The homotopy H has the advantage that one does not have to compute the set

Q explicitly. Unfortunately, however, it is usually non-trivial to compute the excess

demand function f analytically. One can use (A.1), but at every step n, the function

value f̂(qn) has to be computed numerically, which is highly time consuming. Instead

one can replace H with the diffeomorphic implementable homotopy H∗ : [0, 1]×Q×

RH(J+1)×R
H
→ R(H+1)(J+2)−2, defined by

H∗(t, q, θ, λ) =



















t
∑H

h=1 θh
j + (1 − t)(q0

j − qj), j = 1, . . . , J
(

∂uh(ωh + Āθh)Ā
)>

− λhq>, h = 1, . . . ,H

qθh, h = 1, . . . ,H,

(A.2)

where λ is the vector of Lagrange multipliers obtained from utility maximisation.

We have the following result.

Theorem A.2 (Herings and Kubler (2002)). (H∗)−1({0}) is C2 diffeomorphic to

H−1({0}).

This implies that, generically, the homotopy H∗ converges to an FME. The ho-

motopy (A.2) is implemented in Matlab via a four-step Adams-Bashforth predictor-

corrector method.

B Empirical Results of Simulations

In all tables below, zα denotes the z-value of (5), zEV h denotes the z-value of (6),

all h = 1, . . . ,H, zqj
denotes the z-value of (7), all j = 1, . . . , J , and zRPV denotes

the z-value of (8). Significance at the 10%, 5%, and 1% level is indicated by ∗, ∗∗,

and ∗ ∗ ∗, respectively. Also reported are the point estimates, t-values, and R2 of

the regression (9).
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CARA CRRA

|zα| 0.2775 1.4840

|zEV 1 | 0.0597 1.0672

|zEV 2 | −0.2999 1.0050

|zEV 3 | 0.2537 3.1744∗∗∗

|zq1
| 1.3287 1.8498∗

|zq2
| 0.2718 0.5368

|zRPV | 3.7077∗∗∗ 1.7521∗

β0

0.0597∗∗∗ −0.0079

(7.1162) (−1.1781)

β1

−0.2999∗∗∗ −0.2489∗∗∗

(−31.4897) (−14.2343)

β2

0.2537∗∗∗ 0.2854∗∗∗

(16.6493) (13.1762)

R2 0.9290 0.6703

Table 1: Results from the simulations with tri-nomial shocks.

CARA CRRA

|zα| 6.5163∗∗∗ 5.7539∗∗∗

|zEV 1 | 3.5240∗∗∗ 1.0924

|zEV 2 | 4.0834∗∗∗ 1.1292

|zEV 3 | 1.0051 0.9379

|zq1
| 1.5128 2.2863∗∗

|zq2
| 0.4182 0.0975

|zRPV | 2.9002∗∗∗ 0.8231

β0

0.0804∗∗∗ 0.0557∗∗∗

(4.3275) (4.0394)

β1

−0.3216∗∗∗ −0.1854∗∗∗

(−18.2227) (−14.2343)

β2

0.2628∗∗∗ 0.1616∗∗∗

(10.0558) (5.1843)

R2 0.7713 0.4698

Table 2: Results from the simulations with uniform shocks.
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CARA CRRA

|zα| 5.3582∗∗∗ 5.7658∗∗∗

|zEV 1 | 0.0925 1.5532

|zEV 2 | 6.2474∗∗∗ 2.8028∗∗∗

|zEV 3 | 1.1347 2.2927∗∗

|zq1
| 0.2992 1.3780

|zq2
| 1.0109 0.9918

|zRPV | 3.7591∗∗∗ 0.1496

β0

0.0572∗∗∗ 0.0053

(4.1619) (0.7220)

β1

−0.2478∗∗∗ −0.1654∗∗∗

(−13.3233) (−6.3322)

β2

0.2018∗∗∗ 0.1860∗∗∗

(6.9699) (7.8222)

R2 0.7278 0.4194

Table 3: Results from the simulations with log-normal shocks.

CARA CRRA

|zα| 9.5549∗∗∗ 10.5868∗∗∗

|zEV 1 | 3.0290∗∗∗ 1.6352

|zEV 2 | 1.0052 1.0077

|zEV 3 | 2.6206∗∗∗ 1.1950

|zq1
| 1.9190∗ 1.0112

|zq2
| 0.1150 1.6057

|zRPV | 3.8904∗∗∗ 0.6204

β0

0.0744∗∗∗ −0.0331∗∗∗

(5.3914) (−3.7909)

β1

−0.1822∗∗∗ −0.1122∗∗∗

(−11.9330) (−4.7600)

β2

0.1167∗∗∗ 0.1780∗∗∗

(3.9683) (6.7325)

R2 0.8201 0.3900

Table 4: Results from the simulations with log-normal shocks and downward jumps.
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CARA CRRA

|zα| 11.6678∗∗∗ 11.5432∗∗∗

|zEV 1 | 1.6561∗ 2.3374∗∗

|zEV 2 | 1.0051 2.7879∗∗∗

|zEV 3 | 1.0050 2.6024∗∗∗

|zq1
| 0.6767 1.2342

|zq2
| 0.1511 1.2020

|zRPV | 2.8618∗∗∗ 0.1424

β0

0.0004 0.0356∗∗∗

(0.0409) (4.0974)

β1

−0.2508∗∗∗ −0.1430∗∗∗

(−10.0304) (−3.5832)

β2

0.2788∗∗∗ 0.1307∗∗∗

(9.5215) (3.7760)

R2 0.5016 0.1259

Table 5: Results from the simulations with log-normal shocks, downward jumps,

and heterogeneous beliefs.
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