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Abstract 
 
This paper considers a financial market where the asset prices and the corresponding 
volatility are driven by a multidimensional mixture of Wiener shocks and Poisson 
jumps. While implied volatility is characterized by spikes, the existing models rely on 
the restrictive assumption of positive jumps in volatility. To overcome this 
inadequacy, the present paper introduces normally distributed jumps in the log-
variance process. 
The model proposed is able to mimic empirically observed spikes in volatility and, 
consequently, improves upon the existing literature as it replicates the main features 
of both the stock return series and the corresponding option prices. After estimating 
the stock returns via the Efficient Method of Moments, the expression for the 
valuation of a plain vanilla European call option is derived, using the no-arbitrage 
argument. 
S&P500 option prices are used to assess quantitatively the empirical performance 
of the innovative features of the proposed model. The estimates indicate that spikes in 
volatility introduce a significant improvement in option pricing and provide evidence 
for stochastic jump risk premia. 
 
JEL classification: G12, G13, C22, C14 
 



1 Introduction

Since options are derivative securities, their value is strictly tied to the value of the under-

lying asset. This means that an adequate option pricing model ought to have two main

characteristics. On one hand, it should replicate as closely as possible the behavior of the

underlying asset price and it should therefore match not only its mean and variance, but also

the higher moments, such as skewness and kurtosis. On the other hand, it should also be

consistent with the observed option prices, thereby replicating the implied volatility pattern.1

Taking the seminal Black and Scholes model as the starting point, many generalizations

have been introduced in order to improve its pricing performance. These include:

i) Stochastic Volatility in order to account for negative skewness and high kurtosis in the

stock return series;2

ii) Stochastic Volatility and jumps in the stock price process so as to improve the pricing

of short term options;3

iii) Stochastic Volatility and jumps in both the stock price and volatility process in order

to achieve the empirically observed persistence in the impact of jumps.4

A major issue, however, remains unexplored since none of the existing models is capable

of accounting for spikes in the observed implied volatility. More specifically, in Duffie et al.

(2000), volatility is modelled as an affine process that can jump up violently, but that sub-

sequently cannot jump down as observed in the data. Therefore, as Eraker (2003) observes

relying on the assumption of positive jumps in the volatility process, the Duffie et al. (2000)

model can explain the abrupt increase in volatility registered on the day of the crash, but

not the subsequent violent fall.

The present paper proposes a model for asset pricing that allows for spikes in volatility by

constructing a new, more general log-variance model. The key aspects of the model proposed

1While the Black and Scholes model predicts a flat profile for the implied volatility surface, empirical
data indicate that, especially after the 1987 crash, the implied volatility for equity options strongly depends
on the strike price.

2See e.g., Cox (1975, 1996), Hull and White (1987), Scott (1987), Wiggins (1987), Stein and Stein (1991),
Heston (1993), Naik (1993), Duan (1995), Fouque, Papanicolaou and Sircar (2000), Davydov and Linetsky
(2001), Detemple and Tian (2002).

3Bates (1996), Scott (1997), Carr et al. (2003)
4Duffie, Pan and Singleton (2000)



here are the following:

i) stock prices follow a mixture of Brownian motion and multivariate compensated Pois-

son process;

ii) the logarithm of the variance follows an Ornstein-Uhlenbeck process with jumps whose

size is random and whose sign is unrestricted;

iii) the stock price can jump both alone and together with volatility.

Regarding the choice of a framework for the volatility process, I assume that the logarithm

of the variance follows an Ornstein-Uhlenbeck process.5 This choice reflects the ability of

the exponential function to generate high volatility values in a very limited time. Although

many generalizations of the loglinear model have been introduced, there has been so far

no exploration of the possibility of Poisson jumps within this framework.6 The closest

contribution in this direction is the model proposed by Duffie et al. (2000) who introduce

jumps in a Cox, Ingersoll and Ross (CIR) model for volatility (affine process). Compared to

this specification, the model proposed here shows a higher flexibility, since: i) there are no

constraints on the sign of the jumps in the volatility process; ii) the stock price is able to jump

both alone and together with volatility, unlike in Duffie et al. (2000);7 iii) the exponential

function is suitable for modelling moments of market stress, because of its ability to generate

extremely high volatility values. All these features enable my model to price a stock and the

underlying derivatives even in the wake of a major financial crisis.

In an incomplete market setting, the technique for option pricing adopted in the present

paper is the Equivalent Martingale Measure approach (as in Jeanblanc-Picque and Pontier

(1990), Xue (1991), Shirakawa (1992), Bardhan and Cao (1995), Cox and Ross (1976),

Harrison and Kreps (1979)) under which the expected rate of return on any asset is equal

5In discrete time, the counterpart of this model can be found in the EGARCH model of Nelson (1991).
Alternatively, Scott (1987) assumes that the logarithm of volatility (the square root of the variance process)
follows an Ornstein-Uhlenbeck process. Other branches of the literature model volatility as an Ornstein-
Uhlenbeck process where the underlying state variable is Gaussian (Wiggins (1987), Chesney and Scott
(1989), Melino and Turnbull (1990)), as a CIR (Cox , Ingersoll and Ross) process with a reflecting barrier
at zero where the underlying state variable is Gamma distributed (Cox , Ingersoll and Ross(1985), Bailey
and Stulz (1989), Heston (1993))or as a CEV (constant elasticity of variance) process (Cox (1975), Cox and
Ross (1976), Jones (2003)).

6Alizdeh et Al. (2002), Chacko and Viceira (1999), Gallant and Tauchen (1999) consider volatility as a
multifactor diffusion model.

7Duffie et al. (2000) assume that the stock price can jump either by itself or together with the volatility
process.
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to the riskless interest rate.8

The model proposed in this paper is tested empirically using a two stage approach. In

the first stage, I estimate the parameters of the structural model for the stock price dynamics

using the Efficient Method of Moments (EMM) and employing the time series of the S&P500

stock returns . This choice reflects the fact that one can observe a part of the state vector (in

this case, the stock return series), but not its corresponding volatility. This necessarily rules

out estimation approaches such as maximum likelihood (MLE) or the generalized method

of moments (GMM). MLE is intractable, while GMM is infeasible.9 The EMM is based

on indirect inference. The main idea is to replace the initial model with a more tractable,

approximated one. The latter is denoted the auxiliary model and is a descriptive model with

a large number of parameters. Following Gallant and Tauchen (2001), I evaluate the scores

of the auxiliary model using the simulated series of data which derives from the structural

model. In this way, I determine the moment conditions for this problem. The proposed

log-variance model is capable of accommodating the linear aspect and the tail behavior of

the data. In addition, the estimate of the mean of the jumps that affect volatility is negative

and significantly different from zero. This result shows that the assumption of positive jumps

in volatility made by Duffie et al. (2000) is too restrictive.

In the second stage, I address a specific question: are spikes in volatility an important

factor in explaining option price dynamics? I answer this question by investigating whether

option data show any evidence of jumps in volatility and, more specifically, if my model

can mimic more adequately and eventually forecast option prices. Holding the first round

of estimates fixed, I price the risk premia embedded in option prices and I estimate the risk

neutral parameters. For this second application, I use the cross section data on the S&P500

call options. I find that employing a log-variance model with spikes dramatically improves

the pricing performance. In addition, I find evidence for stochastic risk premia.

The outline of this paper is as follows. In section 2, I clarify the core of the entire debate.

Section 3 contains the setup of the model. The relevance of the risk premia and of the binding

8Another approach often used by many authors (e.g.: Bates (1998), Naik and Lee (1990), Aase (1993),
Dieckmann (2002)) is based on a general equilibrium argument and explicitly links the risk premia to the
preference parameters of the representative agent when the markets are incomplete.

9The moment restrictions lack an analytical representation in terms of the observables and unobservables
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no arbitrage condition is addressed in Section 4 which also lays the Equivalent Martingale

Measure approach. In Section 5, I explain the estimation methods adopted in the paper.

Finally, Section 6 shows the empirical results and corresponding diagnostics and Section 7

concludes.

2 The origins of the debate

When pricing an option, the first task one faces is to value the underlying assets (such as

stocks, futures or currencies) on which the option depends. In the past, the empirically ob-

served absence of significant autocorrelations in the stock returns led to modelling them as

independent random variables, or more precisely, as random walks in discrete time. By ap-

plying the Invariance Principle (Functional Central Limit Theorem), Brownian motion can

be seen as the continuous time counterpart of the random walk process. In 1900, Bachelier

proposed the following very simple model for stock pricing:

St = S0 + σWt

where Wt is a Brownian motion process.

In 1973, a similar setting was adopted by Black and Scholes in their seminal paper for

option pricing:

St = S0 exp (µt+ σWt)

Lately, this approach has been criticized for its failure to capture important features

of both stock and option price data because it relies on the restrictive assumption of in-

dependence of returns. Even though it has been observed that the stock returns are not

autocorrelated, several tests have shown that non linear functions of returns are indeed au-

tocorrelated (see Figure 1). These tests are based upon the analysis of several autocorrelation

functions such as, for example:

i) the autocorrelation function of various powers of returns:

C1τ = corr (|r(t,∆τ)|ε , |r(t+ τ ,∆τ)|ε)
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ii) the autocorrelation of absolute power of returns:

C2τ = corr (ln |r(t,∆τ)| , ln |r(t+ τ ,∆τ)|)

iii) the correlation of returns with subsequent squared returns:

C3τ = corr
¡|r(t+ τ ,∆τ)|2 , r(t,∆τ)

¢
for some given time lag τ .

This stylized fact, often referred to as volatility clustering, represents a clear violation of

the independence assumption and means that large price movements are typically followed

by other large movements.

Furthermore, large downward movements are usually observed more often than their

upward counterparts. Translated in statistical terms, this means that the stock returns

show negative skewness. Since the Black and Scholes model cannot replicate heavy tails in

the distribution of returns (high finite kurtosis) and instead predicts zero skewness, it fails

to capture these important empirical features of the stock returns.

As the model’s ultimate goal is to price options, another way to test its empirical perfor-

mance is to check how precisely it can replicate actual option prices. Given the assumptions

of the Black and Scholes model, if it correctly resembled the option price behavior, the same

implied volatility should characterize all otherwise identical options despite the presence of

different strike prices. Figure 2, which represents the market implied volatility vs. the option

moneyness, shows clearly that, for empirical implied volatilities, this is not the case.

In order to eliminate these biases, many generalizations of the Black and Scholes model

have been introduced. The jumps in the return process allowed for by Merton (1976) im-

proved the tail behavior (skewness and kurtosis). However, unlike the corresponding empir-

ical time series characterized by volatility clustering, the resulting process for stock returns

still retains the property of independent increments. Models with stochastic volatility with-

out jumps, are capable of replicating important features such as the tail behavior of the

stock returns, volatility clustering and leverage effect, and they reproduce realistic implied

volatilities for long maturities. At the same time though, they fail to yield a realistic implied
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volatility pattern for short maturities.10 The latter feature can instead be easily captured

by introducing jumps that reproduce realistic implied volatility smiles at short maturities.11

The evidence from the existing literature seems thus to suggest that the way forward

lies in combining both stochastic volatility and jumps in a model for stock returns.12 One

of the most recent contributions is the model by Duffie et al. (2000) which features jumps

in both volatility and stock return processes. This model can explain violent and persistent

market movements with upward movements in volatility, though it cannot reproduce volatil-

ity spikes. These large market movements, far from being simple outliers, are an important

characteristic of the stock return time series.

The goal of the present paper is to propose a new model for stock pricing that can replicate

spikes in volatility. This model shall be estimated by the Efficient Method of Moment using

stock return series. Finally, after deriving the corresponding call option prices by Monte

Carlo simulation, the risk neutral parameters and the risk premia shall be evaluated by

minimizing the squared deviations from the market implied volatility.

3 Security Market Model

The σ−field Ft represents the information that investors have at each point in time t ∈ [0, 1]
with Fs ⊂ Ft if s ≤ t. Suppose that (Ω, P,F) is the probability space for this model. More
specifically, P is the probability measure which represents the investors’ beliefs, Ω is the set

of states of the world and F ≡ F1 is the set of events that can be seen at the trading horizon.
The filtration F ≡ {Ft; t ∈ [0, 1]} is assumed to be right continuous and P -complete. In this
economy there are N stocks. The price of the stock portfolio St, at time t is assumed to

follow a mixture of Brownian motion and multivariate compensated Poisson process. More

specifically, the stock price process is right continuous (securities are traded ex-dividend)

and left limited13.

10See, for example, Cox (1975, 1996), Hull and White (1987), Scott (1987), Wiggins (1987), Stein and
Stein (1991), Heston (1993), Naik (1993), Duan (1995), Fouque, Papanicolaou and Sircar (2000), Davydov
and Linetsky (2001), Detemple and Tian (2002).
11See, for example, Cox and Ross (1976) and Merton (1976).
12Bates (1996), Scott (1997), Carr et al. (2003)
13One can assume, without loss of generality, that the left limit exists and is finite
Snt− = limu→t Snu
Consequently, the jump of the stock price at time t will be
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Besides the bond Bt = e
−rt, there is a portfolio of risky assets and a stochastic volatility

component

d lnSt = µdt+
p
Vt

·
β12dW2t +

q
1− β212dW1t

¸
(1)

+
q
1− ψ233

Z
R\{0}

ζ1 (Γ)P1 (dΓ, dt) + ψ33

Z
R\{0}

ζ2 (Γ)P2 (dΓ, dt)

where the stochastic part of the corresponding volatility follows the law

Vt = exp(Ut)

dUt =
¡
µU + α22Ut

¢
dt+ β20dW2t +

Z
R\{0}

ζ3 (Γ)P2 (dΓ, dt) (2)

where ζ1 (Γ) ∼ N(ψ11,ψ212) , ζ2 (Γ) ∼ N(ψ13,ψ223) and ζ3 (Γ) ∼ N(ψ21,ψ222).R
R\{0} ζi (Γ)Pj (dΓ, dt)− µζiλjdt for i = 1, 2, 3 and j = 1, 2 are the compensated Poisson

random measures. More specifically,
R
R\{0} ζi (Γ)Pj (dΓ, dt) counts the number of jumps with

random size ζi (Γ) in the set R\ {0} during the small time interval dt. Pj (dΓ, dt) = 1 just
whenever the jump event of size ζi (Γ) happens, Pj (dΓ, dt) = 0 in all the other cases.

The intuition behind these two equations is very simple. The stock price St is allowed to

vary not only over time, but also in response to two kinds of shocks:

i) diffusive shocks such as W1t, W2t which affect the stock price gradually and by small

amounts. Any diffusive shock affecting the volatility process impacts the stock price process

through the “weak leverage effect” β12.

ii) Poisson driven shocks represented by the random measures P1 and P2 which account

for abrupt and huge changes in the stock price. P1 represents the number of jumps, with

stochastic size ζ1, experienced by the stock return over the time interval (0, t]. P2 plays the

same role as P1, but it regulates the time varying impact exerted on the stock price by any

shock to the corresponding volatility. In this case, the jump size is ζ2. We are thus in the

position to replicate the abnormal market movements taking place when volatility is affected

∆Snt = Snt − Snt−
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by huge shocks which are transmitted to the stock price through the “strong leverage effect”

ψ33.

4 Risk neutral pricing

Following the Black and Scholes (1973) and Merton (1973) approach in order to price deriva-

tive securities, the only assumption one needs to make about agents’ preferences is non-

satiation (agents prefer more to less). Therefore, the price of a derivative security must be

the same regardless of the agents’ risk tolerance. This means that, in order to rule out any

arbitrage opportunity, a risk averse economy must price an option exactly in the same way

as a risk neutral economy. In particular, in a risk neutral setting, the expected rate of return

of any asset must be equal to the riskless interest rate r∗ (Cox and Ross (1976)):

EQt

·
dSt
St
+ δdt

¸
= r∗dt

EQt

·
dSt
St

¸
= (r∗ − δ) dt

= rdt

where EQt [.] is the expectation at time t taken with respect to the probability measure

Q adjusted to be consistent with risk neutrality, r ≡ r∗ − δ and δ is the constant dividend

rate. In more detail, the main portfolio is transformed as follows:

d lnSt =

·
r − 1

2
Vt − eγ1λ1 − eγ2λ2¸ dt (3)

+
p
Vt

·
β12dfW2t +

q
1− β212dfW1t

¸
+
q
1− ψ233

Z
R\{0}

eζ1 (Γ) eP1 (dΓ, dt) + ψ33

Z
R\{0}

eζ2 (Γ) eP2 (dΓ, dt)

d lnVt =
³
µU + α22 lnVt − β20ϑ2 + (λ2 − φ3) γ3 − eγ3λ2´ dt
+β20dfW2t +

Z
R\{0}

eζ3P2 (dΓ, dt)
7



dfW1t = dW1t + ϑ1(Vt)dt

dfW2t = dW2t + ϑ2(Vt)dt

Z
R\{0}

³eγ1 eP1 (dΓ, dt)− eγ1eλ1dt´ (4)

=

Z
R\{0}

((γ1P1 (dΓ, dt)− γ1λ1dt) + γ1φ1(Γ)dt)

Z
R\{0}

³eγ2 eP2 (dΓ, dt)− eγ2eλ2dt´ (5)

=

Z
R\{0}

((γ2P2 (dΓ, dt)− γ2λ2dt) + γ2φ2(Γ)dt)

Z
R\{0}

³eγ3 eP2 (dΓ, dt)− eγ3eλ2dt´ (6)

=

Z
R\{0}

((γ3P2 (dΓ, dt)− γ3λ2dt) + γ3φ3(Γ)dt)

where eζ1 ∼ N(eψ11, eψ212) , eζ2 ∼ N(eψ13, eψ223) and eζ3 ∼ N(eψ21, eψ222) , eP1 ∼ Poisson(eλ1)
and eP2 ∼ Poisson(eλ2) and where ϑ1(Vt) and ϑ2(Vt) are the risk premia that compensate the

investor for bearing the diffusive risks W1t and W2t. φ1(Γt) φ2(Γt) and φ3(Γt) are the jump

risk premia that are meant to compensate the investor for facing the risk of abrupt changes

of the stock price and are a function of some general stochastic process Γ. We elaborate

on these terms below. The original sources of randomness (Brownian and Poisson driven

shocks) are now transformed in order to embed proper risk premia as proper adjustment for

risk neutrality.

Q is the probability measure under which fW1t and fW2t are Brownian motions, while eP1t
and eP2t are the Poisson processes respectively. In a more formal manner, Harrison and Kreps
(1979) show that, under Q, the discounted stock price is a martingale:

EQt

·
ST
BT

¸
=
St
Bt
.
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The relation between the initial probability measure P and the risk adjusted counterpart

(Equivalent Martingale Measure) is regulated by the Radon-Nikodyn derivative

ηt = E
P

·
dQ

dP

¯̄̄̄
zt
¸

where

ηt = 1−
Z t

0

ηu− (ϑ1(Vu)dW1u + ϑ2(Vu)dW2u) (7)

−
Z t

0

Z
R\{0}

(Φ1 (Γ)P1 (dΓ, du)− φ1 (Γ) du)

−
Z t

0

Z
R\{0}

(Φ2 (Γ)P2 (dΓ, du)− φ2 (Γ) du)

−
Z t

0

Z
R\{0}

(Φ3 (Γ)P2 (dΓ, du)− φ3 (Γ) du)

This change of probability measure is accomplished by the Girsanov theorem. As pointed

out by Harrison and Kreps (1979), this change in the probability measure consists of a

redistribution of probability mass such that the expected rate of return of every asset becomes

equal to the riskless rate of interest rt and the set of events which initially had positive

probability remains unchanged14. The main point of this probability transformation is to

ensure that all arbitrage opportunities are ruled out. This goal is reached by assuming that ηt

embeds as many risk premia as the number of sources of risk present in this economy.15 φ1(Γ)

, φ2(Γ) and φ3(Γ) simultaneously compensate the investor for the jump size uncertainty and

the jump timing uncertainty. In order to ensure that no arbitrage opportunities are possible,

the whole set of risk premia must respect the following condition:

14Following Harrison and Kreps (1979), the equivalent martingale measure is a probability measure Q on
(Ω,z) such that
i) P and Q are equivalent. This means that the null sets of P and Q coincide or, in other terms, that

P (B) = 0 if and only if Q (B) = 0 for any B ∈ z.
ii) The Radon-Nikodym derivative η = dQ

dP is such that E
¡
η2
¢
<∞.

iii) The discounted stock price eSt ≡ St
Bt
is a martingale over the fields {zt} with respect to Q or, in other

terms, EQ
h eSs ¯̄̄zti = eSt for any s ≥ t.

15The explicit expression for ηt is derived in Appendix F.
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r = r∗ − δ = (8)

= µ+
1

2
Vt + γ1 (λ1 − φ1) + γ2 (λ2 − φ2)

−
p
Vt

µ
β12ϑ2 +

q
1− β212ϑ1

¶
where Vt = f(ϑ2(Vt),φ3(Γ)) and δ is the dividend rate.

Equation (1.8) is simply the translation in mathematical terms of the principle that the

expected rate of return of the stock under consideration is equal to the riskless interest rate

r∗ minus the constant dividend rate δ.

Following Cox and Ross (1976), after neutralizing any source of risk by compensating the

investor with the appropriate risk premia, one can price any derivative security in the way

a risk neutral economy would do. Therefore, the option price is only the expected value of

the total payoffs discounted at the riskless rate r∗ minus the constant dividend rate δ:

Ct = e
−r(T−t)EQt [Max {ST (ξ1, ξ2)−K, 0}]

where

ST = S0 exp

½Z
T

0

·
r − 1

2
Vu − eγ1λ1 − eγ2λ2¸ du

+

Z T

0

p
Vu

·
β12dfW2u +

q
1− β212dfW1u

¸
+
q
1− ψ233

Z T

0

Z
R\{0}

eζ1 (Γ) eP1 (dΓ, du) + ψ33

Z T

0

Z
R\{0}

eζ2 (Γ) eP2 (dΓ, du)¾

ξ1 =
(α10,β12,ψ33,ψ11,ψ12,ψ13,ψ23,ψ13,

α20,α22,β20,ψ21,ψ22,λ1,λ2)

is the vector of the parameters of the stock price and volatility processes and

ξ2 =
³
ϑ2(Vt), eψ11, eψ12, eψ13, eψ23, eψ13, eψ21, eψ22, eλ1, eλ2´

is the vector of the risk adjusted parameters.
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The entire analysis is carried out in an incomplete market setting where the sources of

randomness outnumber the traded assets. The lack of an expression describing all the risk

premia in this economy and the non-uniqueness of the equivalent martingale measure are

overcome by means of the empirical estimation of those premia.

5 Estimation Method

In principle, this model could be estimated using maximum likelihood estimation (MLE) and

Semi Non Parametric (SNP) methods. Since volatility is a latent variable, MLE would be

too demanding and intensive from the computational point of view. Indeed, volatility ought

to be integrated out of the likelihood function and the dimension of this integral would be as

large as the number of observations in the time series. For similar reasons, SNP procedures

are also not easily implemented. Monte Carlo simulation methods allow us to evaluate the

GMM criterion when, as in this case, a closed form specification of the moment conditions is

not available. These methods show a greater flexibility as they can be easily used to estimate

a wide range of different models and, at the same time, they provide useful diagnostics about

the model specification.

Other possible approaches which involve the use of semi-nonparametric procedures are

very problematic to use when volatility is unobservable.16

A possible alternative to this approach would involve the use of both series of data, the

stock return series and the cross section of option prices at the same time. However, while

this technique appears more intuitive for its ability to supply directly the estimates of the

risk premia, it is vulnerable to the critique that the Efficient Method of Moments (EMM)

estimates based on a multidimensional auxiliary model (see Duffee and Stanton 2001) suffer

from poor finite sample properties. Moreover, the use of return and option data at the same

time is computationally so intensive that its implementation typically involves the use of very

short data sets. An example can be found in Chernov and Ghysels (2000) who estimate the

Heston model by EMM using stock and option data at the same time. The multidimensional

approach is also employed by Pan (2001) who estimates a square root model with jumps by

GMM, by Eraker who evaluates the Duffie et al. model by the Markov Chain Monte Carlo

16See, for example, Hansen (1995), Ait-Sahalia (1996), Jiang and Knight (1997) and Johannes (1999).
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(MCMC) technique and Jones (2000) who chooses a CEV (Constant Elasticity of Variance)

model. Alternatively, the unidimensional approach (where only the stock return series is

used) is chosen by Andersen et al. (2002) and Chernov, Gallant, Ghysels and Tauchen

(2003) who use the EMM to estimate the parameters of many possible models for the stock

return process. Eraker et al. (2003), instead, estimate the Duffie et al. model by the MCMC

technique.

A two stage method will be adopted in this paper. In the first stage, the parameters

of the structural model for stock pricing will be estimated using the Efficient Method of

Moments. The choice of this method is due to the complex form of the structural model

which shall be replaced by an approximated counterpart (auxiliary model) which is easier

to handle. This auxiliary model has mainly a descriptive function and does not have an

interpretation in terms of the structural model. It usually contains a very large number of

parameters for purposes of calibration. As the number of these parameters increases, the

auxiliary model gives a good approximation for the distribution of the data with the potential

to reach asymptotic efficiency. In the second stage, holding the estimates of the structural

parameters fixed, this paper estimates the risk premia embedded in the call option prices so

as to minimize the implied volatility mean squared residuals.

5.1 Stage one: estimating the stock return and volatility param-
eters by EMM

In the initial stage, the parameters of the stock price and volatility processes will be estimated

via the Efficient Method of Moments. Specifically, the vector of parameters to be estimated

at this point is (see equations [1] and [2]):

ξ1 =
(α10,β12,ψ33,ψ11,ψ12,ψ13,ψ23,ψ13,

α20,α22,β20,ψ21,ψ22,λ1,λ2)

Since the stochastic volatility is unknown, this latent variable must be integrated out in

the computation of the loglikelihood. In this case, the dimension of the integral is the same

as the sample size. Therefore, the direct evaluation of the likelihood function is either com-

putationally intensive or infeasible. This is the main reason why several authors (see Gallant

and Tauchen (1996), Pan (2002), Chernov, Gallant, Ghysels and Tauchen (1999), Ander-
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sen et al., (2000)) have employed EMM, thus avoiding direct estimation of the likelihood

function.

The key aspect of this method is the efficiency of the standard GMM (Generalized Method

of Moments). This efficiency is associated with a careful choice of the moment conditions

based upon a detailed analysis of the main features of the observed data. As a result, the

EMM is a methodology for the estimation and analysis of non linear systems of partially

observable variables. This method is based on the simulation of the state vector.

The initial step consists in choosing an appropriate transition density called auxiliary

model, which is a close approximation of the data generating process. The parameters of

this density are estimated by QMLE (Quasi Maximum Likelihood Estimation). The score

of this model represents the score generator for EMM.

5.1.1 Choice of the auxiliary model

The EMM is based on indirect inference. The main idea is to replace the initial model with

an approximated one that is more tractable. This model, denoted the auxiliary model, is

a descriptive model with a large number of parameters. In particular, its parameters do

not have any structural interpretation, but are only used for calibration purposes. As their

number increases, asymptotic efficiency is reached.

Following Gallant and Tauchen (2001), the auxiliary model is derived by using the so-

called SNP (Semi-Non-Parametric) approach. This method is considered to lie halfway

between the parametric and non parametric inference procedures, since classical parametric

estimation is applied to models with truncated series expansions. The main purpose of

this section is to find an auxiliary model that closely approximates the density of the data.

The corresponding density function is then approximated using a Hermite expansion, whose

leading term is a standard Gaussian density. The higher order terms of this expansion will

accommodate any deviation from Gaussianity as, for example, high kurtosis and negative

skewness.

Let

yt = 100[ln(S1t)− ln(S1t−1)]

be the daily stock return for our estimation problem and {y1, y2, ......, yn} the data set

13



available and characterize as

xt−1 ≡ {yt−L, yt−L+1, ......, yt−1}

the L lagged values of the realization of the time series {yt}∞t=−∞.
Denote by H the finite dimensional Euclidean space where the likelihood functional is

characterized. The likelihood can therefore be written as

"
nY
t=1

p (yt|xt−1, ξ1)
#Z

p (y, x0, ξ10) dy

where

p (yt|xt−1, ξ1) =
p (yt, xt−1, ξ1)R
p (y, xt−1, ξ1) dy

and ξ1 is the parameter vector of this model.

Following Gallant and Tauchen (2001), by expanding [p (y, xt−1)]
1
2 in an Hermite series

and deriving the transition density of the truncated expansion, it is possible to calculate the

transition density fK (yt|xt−1) where

yt = Rzt + µxt−1

and R is an upper triangular matrix

vech(Rxt−1) = ρ0 +
LrX
i=1

Pi

¯̄̄
yt−1−Lr+i − µxt−2−Lr+i

¯̄̄
+

+

LgX
i=1

diag(Gi)vech(Rxt−2−Lg+i)

and

µx = b0 +Bxt−1

14



is the location function where b0 is a vector and B is a matrix. The resulting standardized

residual will be

zt = R
−1 (yt − b0 −Bxt−1)

with corresponding density function

hK (zt|xt−1) = [P (zt, xt−1)]
2R

[P (u, xt−1)]
2 φ (u) du

where P (zt, xt−1) is the Hermite polynomial with rectangular expansion

P (zt, xt−1) =
KzX
j=0

KxX
i=0

aij (xt−1)
i zjt

where a0 = 1 in order to have identification. P (zt, xt−1) is a polynomial in z of degree Kz

whose coefficients are polynomials of degree Kx. Kz is the order of the polynomial expansion

that allows for deviations of the tails of the distribution from the Normal density. In the

extreme case that Kz = 0, this density is simply the Normal density. φ (.)is the standard

normal density and the normalization term

Z
[P (u, xt−1)]

2 φ (u) du

is such that the SNP density integrates to one. Using this SNP model, it is possible to derive

the conditional density of yt as

fK (yt|xt−1) = hK [R
−1
x (yt − µx)|xt−1]
det (Rx)

The Hermite expansion consists of a polynomial in z (which represents the innovation)

multiplied by the standard Gaussian density. The flexibility of this model is the main reason

why this might be considered as the best choice in order to approximate the data generating

process. In fact, if Kz = 0, then this density function is just a standard Gaussian density

and any deviation from that, if any, can be taken care of just by allowing for Kz > 0.
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In the case that the coefficients ai are considered not as functions of xt−1but as constants,

the density function of the innovation will be

hK (zt) =

hPKz

i=0 aiz
i
t

i2
φ (zt)R hPKz

i=0 aiu
i
i2

φ (u) du

this density will generate a Gaussian VAR if Kz = 0, while any departure from Gaussianity

will be accommodated just by setting Kz > 0.

Moreover, in order to model an important aspect of the data such as the presence of

conditional heteroschedasticity, it will be useful to assume that these coefficients ai are

actually functions of xt−1:

ai (xt−1) =
KxX
j=0

aijx
j
t−1

This further generalization introduces a nonlinear conditional shape variation with xt−1.

The conditional density of the innovations in this case will be

hK (zt) =

hPKz

i=0

³PKx

j=0 aijx
j
t−1
´
zit

i2
φ (zt)R hPKz

i=0

³PKx

j=0 aijx
j
t−1
´
ui
i2

φ (u) du

The only restriction, in this case, is that the dimension of a (the parameter vector of

the auxiliary model) is greater or equal to the dimension of the parameter vector of the

structural model ξ1.

5.1.2 Estimation of the parameters of the auxiliary model

The parameter vector a will be estimated by the QMLE method. Hence, baQMLE will be such
that

1

n

nX
t=0

∂

∂a
ln fK (yt|xt−1,ban) = 0

At this point, it is useful to characterize the score function of the auxiliary model whose

role will be crucial for the next steps:

sf (Yt,ban) ≡ ∂

∂an
ln fK (yt|xt−1,ban)
16



Following Gallant and Long (1997), a consistent estimator of the asymptotic covariance

matrix of the sample score vector may be obtained by the following formula:

bVn = 1

n

nX
t=1

sf (Yt,ban) sf (Yt,ban)0 .
5.1.3 Simulated Method of Moments

Fixing the parameter vector ξ1, it is possible to simulate a series of data by using the

structural model

bYT (ξ1) = {by1 (ξ1) , by2 (ξ1) , ............., byT (ξ1)}
Evaluating the score functions at this simulated series of data and keeping the parameters

of the auxiliary model fixed at baQMLE, the moment conditions for this problem will be

mT (ξ1,ban) ≡ 1

T

TX
t=1

sf
³bYt (ξ1) ,ban´

where

sf
³bYt (ξ1) ,ban´ ≡ ∂

∂an
ln f

K
(byt| bxt−1 (ξ1) ,ban)

The EMM estimator bξ1nwill be such that
bξ1n = minnmT (ξ1,ban) bV −1n mT (ξ1,ban)0o

It has been shown (see Gallant and Tauchen (1996), Gallant and Long (1997), Tauchen

(1997)) that if the auxiliary model closely approximates the true data generating process,

then

i) the QMLE becomes a sufficient statistic;

ii) the efficiency of the EMM is close to that of the MLE.

5.1.4 Diagnostics

The main tool for evaluating the capability of the model to mimic the salient features of the

data is represented by the test for overidentifying restrictions

mN

³bξ1,ba´0 bI−1N mN

³bξ1,ba´ −→ χ2
¡
la − lξ1

¢
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under the null hypothesis that the structural model is the “true data generating process”

where la is the length of the vector of parameters of the auxiliary model and lξ1 is the

length of the vector of parameters of the structural model. In case of rejection of the model

specification, the individual elements of the score vector may provide useful information

regarding the dimensions in which the structural model fails to replicate the main features

of the data. Another powerful tool for testing the model is represented by the t-statistics

of the individual elements of the score vector mN

³bξ1,ba´. High values of these statistics
for a given parameter mean that the structural model is unable to account for that specific

parameter of the auxiliary model

btN = ndiag hbINio− 1
2
√
NmN

³bξ1,ba´
In general, a value of this statistics higher than 2 indicates the failure to fit the corresponding

score.

5.2 Stage two: estimating the risk premia for jumps and diffusive
shocks contained in the volatility process

The main purpose of this section is to estimate the risk neutral parameters and the risk

premia embedded in the call option prices. For this purpose, I minimize MSE of the B&S

implied volatility. More specifically, it is possible to express the call option price as a function

of the future stock price and the strike price

Ct = e
−r(T−t)EQt

h
Max

n
ST

³bξ1EMM
, ξ2

´
−K, 0

oi
where

bξ1EMM
=
(α10,β12,ψ33,ψ11,ψ12,ψ13,ψ23,ψ13,
α20,α22,β20,ψ21,ψ22,λ1,λ2)EMM

is the vector of estimates from the first stage, while ξ2 contains the risk premium for diffusive

shocks in the volatility process and the risk adjusted parameters

ξ2 =
³
ϑ2(Vt), eψ11, eψ12, eψ13, eψ23, eψ13, eψ21, eψ22, eλ1, eλ2´

The jump risk premia can be derived from equations (5), (6) and (7) in Section 4.
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ξ2 is estimated by minimizing the MSE of the B&S implied volatility as in Broadie,

Chernov and Johannes (2004)

IVMSE(ξ2) =
1

n

nX
i=1

(σi − σi(ξ2))
2

where σi = BS
−1(Ci, Ti,Ki, S, r) and σi(ξ2) = BS

−1(Ci(ξ2), Ti, Ki, S, r) with BS
−1 indi-

cating the inverse of the B&S call option formula. More specifically, σi is the B&S implied

volatility series observed in the market, while σi(ξ2) is the implied volatility series derived

from the model simulation. The choice of this objective function appears to be the most

natural and intuitive given that the main purpose of the present paper is to find a model

that can replicate the observed spikes in Implied Volatility. Minimizing this specific loss

function is also particularly interesting considering the widespread convention of quoting

option prices in terms of volatility. Moreover, this specific objective function allows me to

avoid the heteroschedasticity problem that is related to other possible choices.17

6 Empirical Results

In this section, I initially describe the data set I am using and explain the way in which I

estimated the auxiliary model; in the second part, I proceed to present my estimation results

and the corresponding statistical tests.

6.1 Stage one: estimation of the stock return parameters by EMM

The data consist of 4299 daily observations from January 3, 1980 to December 31, 1996 on

the percentage return

yt = 100[ln(St)− ln(St−1)]

where S1t is the S&P500 index.
18 Since this series presents a mild autocorrelation while the

series of squared returns is quite persistent (see Fig.1), I used the augmented Dickey-Fuller

17See Christoffersen and Jacobs (2004) for a comment on the possible objective functions.
18The same data set is used by Andersen, Benzoni and Lund (2003) while they also propose estimates for

a longer time frame (January 2, 1953 to December 31, 1996). Eraker, Johannes and Polson (2003) estimate
affine models using the S&P 500 index data from January 2, 1980 to December 31, 1996.
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statistics to test for the presence of unit roots and I strongly rejected the null hypothesis

(see Table 1). This autocorrelation, which might be caused by nonsynchronous trading, has

not been prefiltered as in Andersen et al. (2002) because it might be a key factor in the

second stage of the empirical application where I estimate the risk premia embedded in the

option prices.

As already stated, the first step is to choose an auxiliary model whose main parameters

are the following:

Lu number of lags in the location function µx
Lg number of lags in vech(Rxt−1)
Lr number of lags in vech(Rxt−1)
Lp number of lags in the xt−1 part of the polynomial P (zt, xt−1)
Kz degree of the polynomial P (zt, xt−1)
Kx degree of the polynomial P (zt, xt−1)

Following Chernov, Gallant, Ghysels and Tauchen (2003), I choose the values of these

parameters that minimize the BIC (Schwarz or Bayes information criterion). The final non-

linear-non-parametric auxiliary model I select is characterized by

Lu = 1 Lg = 1 Lr = 1 Lp = 1 Kz = 8 Kx = 1

This is a GARCH(1,1) process with an eighth-degree Hermite expansion as a non-

parametric error density function.19

The EMM estimation is based on the simulation of the return sequence and variance

process. Using the standard Euler discretization scheme, my simulation involves a sampling

frequency of one step per day as well as daily scaling for the parameters (dt = 1). More

specifically, the EMM estimation of my model is based on two simulations of 75, 000 sample

paths for the stock returns and for the stochastic factor which drives the volatility process.20

The initial 5, 000 observations are eliminated in order to avoid the impact of the initial

values.

Table 2 shows the parameter estimates with the corresponding t-ratios (based on Wald

type standard errors) in parenthesis for the models belonging to the log-variance class while

19ABL (2002) use an EGARCH(1,1), Kz(8)−Kx(0) auxiliary model after prefiltering the data.
20This is the minimum number of simulations necessary in order to have a stable objective function in

presence of jumps and in order to obtain robust results (see Gallant and Tauchen 2003)
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Table 3 reports the corresponding results for the affine models. For each model, the value

of the χ2 test for overidentifying restrictions is provided. Figure 3 and Figure 4 report the

quasi t-ratios of individual SNP scores.

6.1.1 Black and Scholes model

In order to have an initial benchmark, I estimate the Black and Scholes model (see Table

2).21 Considering the value of the χ2 test, this model is clearly rejected. As one clearly sees,

the rejection reflects this model’s inability to satisfy any of the SNP moment conditions as

indicated by the values of the quasi t ratios on the individual SNP scores (see Figure 3).

This model is thus unable to fit the tail behavior of the S&P 500 stock returns, as it violates

the moment conditions associated with the Hermite polynomial coefficients. It also scores

poorly in replicating the GARCH volatility persistence and the AR nature of the data. My

findings are in line with Gallant, Hsieh and Tauchen (1997).

6.1.2 Stochastic volatility (log-variance) model (SV1)

This specification, focusing on the logarithm of the variance process, represents a variation

of Scott (1987) who models the logarithm of volatility (square root of the variance) instead.

Analyzing the empirical results (see Table 2), the value of the χ2 statistics drops dra-

matically, as the negative and highly significative “leverage effect” coefficient β12 makes the

model capable of replicating the negative skewness of the data.22 The model is nevertheless

rejected, as explained easily by checking the t ratios of the SNP scores (see Figure 3). The

model fails to capture the tail behavior (excess kurtosis) of the data controlled by the Her-

mite polynomial moment conditions. Moreover, it cannot accommodate the linear aspect of

the data, as the t statistics on the moment conditions associated with the AR parameters

are quite large.

6.1.3 Stochastic volatility (square root) model (SV2)

This model was first proposed by Cox, Ingersoll and Ross (1985) and Heston (1993).

21The estimate of α10 is in line with ABL (2002) while my estimate of β10 (0.92767) is higher than their
0.7176 and more in line with the sample volatility (0.9623853)
22All the parameter estimates are very close to the ones proposed by ABL(2003).
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The χ2 test for overidentifying restrictions (see Table 3) indicates that the model is

rejected by the data because of its inability to capture their tail tickness and their AR

behavior as indicated by the t ratios on the SNP moment conditions (see Figure 4).23

6.1.4 Stochastic volatility (log-variance) model with jumps in the return process
(SV1J)

The model which incorporates both jumps and stochastic volatility dramatically improves

upon the previous specification. The χ2 test for overidentifying restrictions (see Table 2)

indicates that the model is not rejected by the data at a significance level of 5%; however,

this result does not hold as the test becomes more demanding with a significance level of

10%.24 The reason can be easily found in the t ratios on the specific moment conditions (see

Figure 3). This model fails in fact to capture the linear aspect of the data as the high t

statistics on one of the moment conditions associated with the AR parameters testifies.

6.1.5 Stochastic volatility (square root) model with jumps in the return process
(SV2J)

This model has been introduced by Bates (1996) and Scott (1997). This model is rejected

by the data as indicated by the χ2 test for overidentifying restrictions (see Table 3). More

specifically, it fails to mimic all the salient features of the data as indicated by the t ratios

on the SNP moment conditions (see Figure 5).25

6.1.6 Stochastic volatility (log-variance) model with jumps in the return and
in the variance processes (SV1CIJ)

In this specification, I allow for contemporaneous and independent jumps in the stock price

and in the volatility processes, the correlation between contemporaneous jumps being reg-

ulated by the leverage effect coefficient ψ33. The χ2 test for overidentifying restrictions

23All the parameter estimates are very close to their counterparts in EJP(2003), the slight differences are
definetly due to their choice of a different data set (January 2, 1980 to December 31, 1999).
24The estimated leverage effect (β12) is much lower than the estimate proposed by ABL (2003). This

difference might be due to their transformation of the data. By the same token, my estimates of the
jump size parameters (ψ11 and ψ12) are much higher (ψ11 = −1.75806 vs ABL (2003) -0.000235445 and
ψ12 = 1.63595 vs ABL (2003) 0.0217)
25The only parameter estimate which substantially differs from the EJP(2003) counterpart is the standard

deviation of the jump size (0.698 vs. theirs 4.072).
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indicates that this model is not rejected by the data at the 10% significance level. Checking

the magnitudes of the quasi t ratios on the moment conditions reveals that the success of

the model is due to its capability to simultaneously accommodate the linear aspect and the

tail behavior of the data. Moreover, it credibly mimics the moment conditions relative to

the GARCH volatility persistence.

The main findings resulting from the EMM estimation of my model are the following. It

is worth noting that the only parameters which are not significantly different from zero are

ψ12 (the standard deviation of the size of the independent jumps in the stock process) and

ψ13 (the mean of the size of the contemporaneous jumps in the stock process). Moreover, bψ21,
the estimate of the mean of the size of the jumps in volatility, is negative and significantly

different from zero. This result clearly contradicts the assumption of positive jumps in

volatility made by Duffie et al.(2000).

6.1.7 Stochastic volatility (square root) model with jumps in the return and in
the volatility processes (SV2IJ)

Although the χ2 test for overidentifying restrictions shows that the SVJ model is not rejected

by the data, the t ratios on the specific moment conditions reveal very clearly that this model

fails to accommodate the GARCH volatility persistence behavior of the S&P500 returns.

This problem is completely solved by my new model. In fact, not only the p-value of the χ2

test is higher than in any other model, but the t ratios on the SNP moment conditions also

show that this new model can mimic all the salient aspects of the data.

6.2 Option pricing implications

Although this first stage of estimation already shows remarkably powerful results in favor of

the model proposed in this paper, the ongoing debate in the recent literature on this topic

calls for further investigation of the jumps in the volatility process. To be more precise,

Andersen et al. (2002) show that the SVJ model is not rejected by the S&P500 stock

return data, thus, implicitly, they do not find evidence for jumps in volatility; nevertheless,

they recognize that this model cannot account for violent market movements such as the

October 1987 crisis. Moreover, these results can be due to their choice of prefiltering the

data using a MA(1) model for the S&P500 daily returns in order to accommodate their
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mild serial correlation. Chernov , Ghysels, Gallant and Tauchen (CGGT) (2003) choose

instead not to prefilter the data, because, by doing so, some important features necessary

for pricing options might be removed. Their empirical application does not point toward a

specific choice between a model with or without jumps in volatility. While Eraker (2003)

and Eraker et al. (2003) find strong evidence for jumps in volatility, Pan (2003) does not.

More recently, Broadie, Chernov and Johannes (BCJ) (2004) stress that option data provide

strong evidence supporting jumps in volatility. Therefore, in order to place my contribution

in this debate, I investigate whether option data show any evidence of jumps in volatility

and, more specifically, if the new model I propose can mimic more adequately and eventually

forecast option prices. First of all, it is worth noting that the B&S market implied volatility

for the ten years period (1987-1997) is characterized by spikes. As Eraker (2003) points out,

this feature cannot be captured by the Duffie et al. model which allows only for positive

jumps in volatility. This is not an issue for the model I propose, since no restrictions are

imposed on the sign of the jumps in the volatility process. Following the two stage procedure

proposed by Benzoni (2002) and adopted by BCJ (2004), I hold the parameter estimates,

obtained in the EMM stage, fixed in order to estimate the jump and diffusion risk premia of

the volatility process embedded in the option prices.

6.3 Stage two: estimation of the risk premia for jumps and diffu-
sive shocks contained in the volatility process

In this stage I address a specific question: are spikes in volatility an important factor in

explaining option price dynamics?

I answer this question by comparing the performance of a model which only allows for

positive jumps in volatility proposed by Duffie et al. (2000) (SV2IJ ) versus a model where

volatility can suddenly increase as easily as it can violently fall (SV1CIJ ). The last specifi-

cation is meant to reflect the implied volatility dynamics observed over the entire ten year

period 1987-1997 (see Figure 5).

6.3.1 Estimating the implied volatility dynamics

The experiment I conduct involves the use of option price data for the 1987 period for the

in-sample estimates of the parameter vector
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ξ2 =
³
ϑ2(Vt), eψ11, eψ12, eψ13, eψ23, eψ13, eψ21, eψ22, eλ1, eλ2´

which includes the premium for diffusive risk in volatility and the risk neutral parameters.26

Once ξ2 is estimated, the jump risk premia can be priced using equations (5), (6) and

(7) in Section 4. The data relative to 1988 are used in order to evaluate the out-of-sample

performances of the two models (SV1CIJ and SV2IJ).

Stochastic volatility (log-variance) model with jumps in the return and in the

variance processes (SV1CIJ) The model I propose performs better than the existing

ones both in sample and out of sample (see Table 4,Table 6 and Figure 8). My findings

differ from the existing ones in two main ways: first of all, the premium for diffusive risk in

volatility ϑ2(Vt) is significantly different from zero (see Table 4).
27 Secondly, I find evidence

for stochastic jump premia (see Figure 6).28

Stochastic volatility (square root) model with jumps in the return and in the

volatility processes (SV2IJ) The assumption of positive jumps in volatility (as in Duffie

et al. 2000) turns out to be too restrictive when pricing options. More specifically, this model

is not capable of replicating the main features of the market implied volatility, as shown by

both the in sample and out of sample performances (see Table 5, Table 6 and Figure 9). BCJ

(2004) estimate the Duffie et al. (2001) model in the case of contemporaneous jumps in the

stock price and in the volatility process; in line with their results, I find that the premium

for diffusive risk in volatility is statistically insignificant even when independent jumps are

allowed. However, unlike in BCJ (2004), I find evidence for stochastic jump risk premia.

7 Implied volatility curves

Figure 6 shows the implied volatility smiles for the SV1CIJ and SV2IJ models and market

implied volatility data for the randomly selected day, January 7 1987. Those curves are

26For more details, see section 5.2
27BCJ (2004), while estimating the DPS (2000) model with contemporaneous jumps in the stock process

and in volatility, find that this premium is statistically insignificant.
28BCJ (2004) find evidence for time varying, deterministic jump risk premia.
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based on the call option prices which derive from the simulation of the corresponding model.

For each maturity, the market implied volatility (IV) is derived as a term of comparison.

I selected a random trading day from the entire sample (January 7, 1987). The graphs

clearly show that spikes in volatility play a key role in explaining the behavior of IV as a

function of the moneyness (strike to spot price ratio). More specifically, when there are 9

days to maturity, the SV1CIJ model performs slightly better than the SV2IJ counterpart

for in the money (ITM) call options. The behavior of the two models is almost the same

for at the money (ATM) and out of the money (OTM) options. In the case of 44 days to

maturity, the SV1CIJ model performs much better than the SV2IJ counterpart especially

for in-the-money and at-the-money call options. The behavior of the two models overlaps

for the out-of-the-money options. For higher maturities, again the SV1CIJ model does a

better job in replicating the behavior of the market IV.

8 Conclusions

Market implied volatility is characterized by spikes which cannot be replicated by existing

models. The present paper aims to fill the gap in the current literature by proposing a new

model for option pricing which allows for spikes in implied volatility. The two key aspects

of the model proposed here are the following:

i) the logarithm of the variance follows an Ornstein-Uhlenbeck process with jumps whose

size is random and whose sign is unrestricted;

ii) it incorporates two scenarios where the stock price can jump both alone and together

with volatility.

Unlike the existing literature, the main characteristic of this volatility function is the

absence of restrictions in the paths it can follow. Its driving factor can either rise or fall

rapidly, while the entire process always remains positive due to the use of an exponential

function.

This new model is then tested following a two step procedure. The results show an

improvement over the existing literature in pricing stock portfolios and the corresponding

options. The estimate of the mean of the jumps that affect volatility is negative and sig-

nificantly different from zero. This result shows that the assumption of positive jumps in
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volatility made by Duffie et al. (2000) is too restrictive.

Time series and cross section S&P500 option prices are used to assess quantitatively

the empirical performance of the innovative features of the proposed model. The estimates

indicate that spikes in volatility introduce a significant improvement in option pricing and

provide evidence for stochastic jump risk premia.29

29BCJ (2004) find evidence for time varying, deterministic jump risk premia.
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Table 1

Augmented Dickey-Fuller test for a unit root in the percentage return series

Dickey-Fuller test for unit root Number of obs = 4298

–––- Interpolated Dickey-Fuller –––

Test Statistic 1% Critical Value 5% Critical Value 10% Critical Value

––––––––––––––––––––––––––

Z(t) -62.120 -3.430 -2.860 -2.570

––––––––––––––––––––––––––

∗ MacKinnon approximate p-value for Z(t) = 0.0000

>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>

Augmented Dickey-Fuller test for a unit root in the squared percentage return series

Dickey-Fuller test for unit root Number of obs = 4298

–––- Interpolated Dickey-Fuller –––

Test Statistic 1% Critical Value 5% Critical Value 10% Critical Value

––––––––––––––––––––––––––

Z(t) -58.786 -3.430 -2.860 -2.570

––––––––––––––––––––––––––

∗ MacKinnon approximate p-value for Z(t) = 0.0000
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Table 2 EMM estimates for the sample period 1/ 3/1980 - 12/ 31/1996: loglinear model.

SV1 Models d lnSt = α10dt+
√
Vt
h
β12dW2t +

p
1− β212dW1t

i
+
p
1− ψ233

R
R\{0} ζ1 (Γ)P1 (dΓ, dt) + ψ33

R
R\{0} ζ2 (Γ)P2 (dΓ, dt)

ζ2 ∼ N(ψ13,ψ223) ζ1 ∼ N(ψ11,ψ212) P1 ∼ Poisson(λ1) P2 ∼ Poisson(λ2)
Vt = exp(Ut) dUt = (α20 + α22Ut) dt+β20dW2t+

R
R\{0} ζ3 (Γ)P2 (dΓ, dt) ζ3 ∼ N(ψ21,ψ222)

parameter BS SV1 SV1J SV1CIJ

α10
0.06670

[37.78]

0.046913

[5.14874]

0.06359

[9.7740]

0.06083

[5.05158]

α20
-0.016023

[-5.1551]

-0.01741

[-21.6589]

-0.01975

[-4.8051]

α22
-0.02987

[-25.634]

-0.03190

[-16.3033]

-0.05711

[-6.8572]

β10
0.92767

[32.8282]

β12
-0.44965

[-32.9623]

-0.05387

[-15.0947]

-0.27036

[-15.0535]

β20
0.20664

[26.4605]

0.20862

[31.8522]

0.23563

[10.0198]

ψ11
-1.75806

[-6.5088]

-3.79328

[-3.9009]

ψ12
1.63595

[7.64080]

2.84778

[1.8652]

ψ21
-1.20728

[-2.8043]

ψ22
1.12440

[4.83]

ψ13
0.13162

[1.89]

ψ23
0.91416

[7.4911]

ψ33
-0.82133

[-6.81598]

λ10
0.00678

[2.3331]

0.0045

[3.2472]

λ20
0.01205

[3.71899]

χ2 test [d.f.] 99.3733 [20] 34.9 [17] 21.7998 [14] 9.0135 [8]

10% critical value 28.41 24.77 21.06 13.36

5% critical value 31.41 27.59 23.68 15.51
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Table 3 EMM estimates for the sample period 1/ 3/1980 - 12/ 31/1996: affine model.

BS model d lnSt = α10dt+ β10dW1t

SV2 Model Ny
t ∼ Poisson(λ10) Nv

t ∼ Poisson(λ20) ξv ∼ exp(ψ13)
d lnSt = α10dt+

√
Vt−dW1t + dJ

y ξy ∼ N(ψ11,ψ212)
dVt = α20 (α22 − Vt−) dt+

√
Vt−β20

h
β12dW1t +

p
1− β212dW2t

i
+ dJv

parameter BS SV2 SV2J SV2IJ

α10
0.06670

[37.78]

0.058

[9.981]

0.05537

[5.1541]

0.07238

[5.12157]

α20
0.03828

[3.57119]

0.04936

[1.79703]

0.06278

[14.93309]

α22
0.70203

[10.3787]

0.54402

[8.3145]

0.47929

[13.1494]

β12
-0.10570

[-1.47636]

-0.43776

[-2.4735]

-0.23624

[-2.70949]

β10
0.92767

[32.8282]

β20
0.120144

[13.27315]

0.11609

[4.73288]

0.1

[2.8272]

ψ11
-2.10765

[-10.5544]

-1.761021

[-3.05230]

ψ12

0.69822

(0.37092)

[1.8823]

0.71992

(0.727699)

[0.9893]

ψ13

1.03010

(2.4599)

[0.41874]

λ10
0.01128

[11.28]

0.013107

[1.60941]

λ20
0.00724

[3.874836]

χ2 test [d.f.] 99.3733 [20] 53.9184 [17] 36.47 [14] 19.7858 [12]

10% critical value 28.41 24.77 21.06 18.55

5% critical value 31.41 27.59 23.68 21.03
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Table 4 In sample pricing errors obtained by minimizing the IVMSE and

parameter estimates (t ratios are reported in parenthesis): logvariance model

(SV1CIJ) d lnSt =
h
r − 1

2
Vt − eγ1λ1 − eγ2λ2i dt+√Vt hβ12dfW2t +

p
1− β212dfW1t

i
+
p
1− ψ233

R
R\{0}

eζ1 (Γ) eP1 (dΓ, dt) + ψ33
R
R\{0}

eζ2 (Γ) eP2 (dΓ, dt)eγ1 ≡ exp³p1− ψ233

³
µeζ1 + 1

2
σ2eζ1
´´
− 1 eγ2 ≡ exp³ψ33 ³µeζ2 + 1

2
σ2eζ2
´´
− 1

d lnVt =
³
µU + α22 lnVt − β20ϑ2 + (λ2 − φ3) γ3 − eγ3λ2´ dt+β20dfW2t+

R
R\{0}

eζ3P2 (dΓ, dt)
γ3 ≡ exp

³
µζ3 +

1
2
σ2ζ3

´
− 1 eγ3 ≡ exp³µeζ3 + 1

2
σ2eζ3
´
− 1

dfW1t = dW1t − ϑ1(Vt)dt dfW2t = dW2t − ϑ2(Vt)dteP1 ∼ Poisson(eλ1) eP2 ∼ Poisson(eλ2)eζ1 ∼ N(eψ11, eψ212) eζ2 ∼ N(eψ13, eψ223) eζ3 ∼ N(eψ21, eψ222)
parameter estimateeψ11 -5.739

[-3.7758]eψ12 1.9647

[0.39525]eψ13 0.08844

[0.1713]eψ23 0.9097

[0.5576]eψ21 -0.42257

[-3.668]eψ22 2.8227278

[24.481]eλ1 0.0081

[7.977]eλ2 0.02078

[20.985]

ϑ2
-0.0260

[-3.82]

IVMSE with jump risk premia 0.0039925

IVMSE without jump risk premia 0.019811
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Table 5 In sample pricing errors obtained by minimizing the IVMSE and

parameter estimates (t ratios are reported in parenthesis): affine model (Duffie

et al. 2000).

d lnSt =

·
r − 1

2
Vt −

³
eµξy+

1
2
σ2
ξy − 1

´
λξy

¸
dt

+
p
Vt−dfW1t + eξyd eNy

dVt =
£
α20 (α22 − Vt−) +

¡
λξv − φξv

¢
µξv
¤
dt

−
p
Vt−β20

·
β12ϑ1 +

q
1− β212ϑ2

¸
dt

+
p
Vt−β20

·
β12dfW1t +

q
1− β212dfW2t

¸
+ eξvd eNv − eµξveλξvdt

dfW1t = dW1t − ϑ1(Vt)dt

dfW2t = dW2t − ϑ2(Vt)dt³
e
eξy − 1´ d eNy −

³
eeµξy+ 1

2
eσ2ξy − 1´eλξydt

=
¡
eξ

y − 1¢ dNy −
³
eµξy+

1
2
σ2
ξy − 1

´ ¡
λξy − φξy

¢
dteξvd eNv − eλξveµξvdt

= ξvdNv − µξv
¡
λξv − φξv

¢
dt

eNy
t ∼ Poisson(eλy) eNv

t ∼ Poisson(eλy) eξy ∼ N(eµy, eσ2y) eξv ∼ exp(eµv)
parameter estimateeµy -2.76102

[-4.5504]eσy 11.71993

[8.7505]eµv 8.0301

[ 1.7076]eλy 0.013107

[ 3.5721]eλv 0.0723955

[8.314]

ϑ
0.001

[0.0078751]

IVMSE with jump risk premia 0.017529

IVMSE without jump risk premia 0.030024
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Table 6 Out of sample pricing errors using the data on European Call options on

the S&P500 quoted in 1988

Model IVMSE
SV1CIJ 0.0024584

SV2CJ 0.0059667
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Figure 1: Autocorrelation functions on the percentage return series and of the squared
percentage returns.
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Figure 2: Market implied volatilities for the randomly selected day October 31, 1994.
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Figure 3: Log variance models: t-ratios on the SNP moment conditions (auxiliary model).
A level of any of these ratios higher than 2 indicates the failure of the structural model to
capture that specific aspect of the data. The moment conditions labeled with “A” control
the ability to fit the tail thickness of the data (kurtosis). The moment conditions labeled
with “Psi” are linked to the AR characteristic of the data. Finally, the moment conditions
related to the GARCH parameters are labeled with “Tau”.
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Figure 4: Affine models: t-ratios on the SNP moment conditions (auxiliary model). A level
of any of these ratios higher than 2 indicates the failure of the structural model to capture
that specific aspect of the data. The moment conditions labeled with “A” control the ability
to fit the tail thickness of the data (kurtosis). The moment conditions labeled with “Psi”
are linked to the AR characteristic of the data. Finally, the moment conditions related to
the GARCH parameters are labeled with “Tau”.
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Figure 5: Spikes in the historical market implied volatility series.
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Figure 6: Implied volatility smiles for the SV1CIJ and SV2IJ models and market implied
volatility data for the randomly selected day, January 7 1987
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Figure 7: The top panel represents the market implied volatility series for the year 1987. The
second panel contains the simulated IV series when the affine model (SV1CIJ) is adopted
and jump risk premia are allowed. The case when these premia are set equal to zero is
represented in the last panel.
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Figure 8: The top panel represents the market implied volatility series for the year 1987.
The second panel contains the simulated IV series when the affine model (SV2IJ) is adopted
and jump risk premia are allowed. The case when these premia are set equal to zero is
represented in the last panel.
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Figure 9: Log-variance model: jump risk premia (see equations 5, 6 and 7 in Section 4)
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Figure 10: Affine model with independent jumps in the stock process and in the volatility
process: jump risk premia.
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