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Option Pricing under Stochastic Volatility
and Trading Volume

Abstract

This paper presents a pricing formula for European options derived from a model

in which changes in the underlying price and trading volumes are jointly deter-

mined by exogenous events. This speci�cation makes increments to the volatility

depend on the current level of volatility and news and thereby accounts for the

observed persistence in volatility. Moreover, it makes volatility an observable

variable. The model accounts well for time varying volatility smiles and term

structures, and that out-of-sample price forecasts for a sample of call options are

superior to the benchmark ad hoc procedure of plugging implicit volatilities into

the Black-Scholes formula.

JEL Classi�cation: G12; C52; C53

Keywords: option valuation; trading volume; the stochastic volatility and

volume (SVV) model.



1 Introduction

The seminal works of Black and Scholes (1973) and Merton (1973) have contributed a major

step to developing an option pricing model that has become known as the Black-Scholes

(BS) model. However, one of the more �rmly established facts in �nancial economics is that

this BS option pricing formula cannot account for observed market option prices.1

A well known example is the \volatility smile," volatilities implied by the BS formula

are not constant over moneyness (the ratio of the spot price and the strike price). Options

which are deep in- and out-of-the-money show higher implied volatilities than volatilities

at-the-money options. After the 1987 stock market crash the \smile" turned into an asym-

metric shape, a \smirk:" out-of-the money puts and in-the-money calls exhibit higher im-

plied volatilities than in-the-money puts and out-of-the money calls. There also seems to be

a term structure pattern in volatility smiles: the smiles are strongest in short-term options

and atten out monotonically with increasing time-to-maturity.

These empirical biases are not surprising since the BS model is based on the strong as-

sumption that the underlying asset price follows a one-dimensional di�usion process with a

constant, instantaneous volatility parameter. Under this assumption returns on the under-

lying asset are normally distributed while asset returns empirically display strong volatility

clustering, skewness and larger kurtosis in the conditional and unconditional return distrib-

utions than implied by normality.

A number of papers have investigated the implications for option prices of relaxing normal

1Examples of empirical research to test the BS model are Rubinstein (1994) for index options and MacBeth

and Merville (1979) for equity options.
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distribution assumption. Examples include the jump-di�usion BS model of Merton (1976)

and the stochastic volatility models of Hull and White (1987) and Heston (1993). Du�e,

Pan and Singleton (2000) recently developed a particularly versatile class of a�ne-di�usions

with stochastic volatility which yield jumps in volatility.2 These studies show that stochastic

volatility improves the performance of option pricing models and stress the importance of

using an appropriate measure of volatility when pricing options. However, there is a disad-

vantage to stochastic volatility: It involves latent factors, so that one faces the task of using

observations on option prices to not only estimate parameters but also �lter the unobservable

factors. This technique becomes computationally demanding when the sample period grows

since the number of latent volatility parameters to be estimated increases proportionally

with the observation window.

To overcome the unobservability of volatility, some researchers have incorporated the gen-

eralized autoregressive conditional heteroskedastic (GARCH) asset return process of Boller-

slev (1986) into pricing option models. The GARCH process is so desirable to �t empirical

behavior of stock returns that it is capable of producing leptokurtosis and skewness in asset

return distributions. For instance, Duan (1995) develops an option pricing model using local

risk neutralization in which one-period ahead conditional volatility is invariant to a change

in risk neutral measure when the variance of the underlying asset follows a GARCH process.

Since options in this GARCH model are priced only by simulation, it can be computation-

ally demanding in empirical applications. Heston and Nandi (2000) present a closed-form

2Other alternatives to the BS model are the stochastic volatility model with jumps of Bates (1996) and

the stochastic volatility and interest rate models with jumps of Bakshi, Cao and Chen (1997) and Scott

(1997).
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solution of a nonlinear GARCH option pricing. By using S&P 500 index options, they show

that out-of-sample �t of the NGARCH model is superior to that of the ad hoc BS model

of Dumas, Fleming and Whaley (1998) that uses a exible speci�cation of volatility across

strike prices and maturities. Heston and Nandi conclude that the improvement depends on

the ability of the model to simultaneously capture the path dependence in volatility and the

correlation between volatility and asset returns. As it is widely known, GARCH models are

useful in modeling the time series behavior of conditional volatility in asset returns. How-

ever, they are a statistical model and might not explain the structural relationship between

returns and volatility. It is thus important to consider what is a source of the GARCH e�ect.

This issue is discussed in Guidolin and Timmermann (2003) who point out that the

stochastic properties of stock returns and volatility can be explained by learning e�ects con-

cerning economic fundamentals. They show that stochastic volatility, which is endogenously

determined by the path of investors' beliefs on parameters on dividends process, can account

for the anomalies of implied volatility. While learning o�ers an excellent economic explana-

tion of several empirical properties of option prices, the learning model needs to estimate

investors' beliefs for empirical applications. However, data on economic fundamentals are

released at a lower frequency than the daily basis at which asset prices are observed. In

this sense beliefs are unobservable, being analogous to volatility in the stochastic volatility

models.

Several empirical studies have identi�ed a number of persistent patterns in trading volume

and in the behavior of security prices.3 One of the empirical regularities in the literature is

3Karpo� (1987) gives a comprehensive survey of the early literature.
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a strong positive correlation between trading volume and return volatility as in the old Wall

Street adage that \it takes volume to move prices."

In this paper, motivated by a strong connection between trading volume and the volatil-

ity of stock returns, I employ trading volume as an instrument for return volatility to derive

an option pricing formula. This paper provides the following contributions. Firstly, I estab-

lish a stochastic volatility and volume (SVV) model in which a latent common factor for

stock returns, volatility, and volume is represented as information arrivals and modeled as a

discontinuous process. The SVV model is designed so that it captures several empirical reg-

ularities of stock returns, volatility, and volume. An option pricing formula for (European)

vanilla options is then derived based on the assumption of no arbitrage. Option pricing

depends crucially on the volatility of the underlying price process. On its turn, volatility is

formulated as a stochastic process depending on trading volume. In this context, the trad-

ing volume can be a useful instrumental variable for estimating unobservable realizations of

stochastic price volatility. I also examine whether the derived option formula can replicate

the implied volatility patterns documented in the literature.

Secondly, I investigate the in-sample and out-of-sample performances of the SVV model in

comparison to other structural option pricing models such as the Black-Scholes (BS) model,

the jump-di�usion (JD) model of Merton (1976), the stochastic-volatility (SV) model of

Heston (1993), and the stochastic volatility with jumps in returns (SVJ) model of Bates

(1996). Besides these structural option pricing models, I select the ad hoc BS (ahBS) model

of Dumas et al. (1998) that simply smooths the local volatility rate in the BS model across

moneyness and time to maturity while it is not based on a theoretical framework. The ad hoc
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BS model is selected because it is a primary model employed by �nancial practitioners and

was also chosen as a benchmark model for model performance comparisons (S&P 500 index

options) in several articles such as Dumas et al., Guidolin and Timmermann, and Heston

and Nandi. To estimate parameters on these models, I use data on individual equity options

and an index option, on stock prices, an index, and trading volumes. By employing equity

option data, this paper contributes to the literature since very few studies have empirically

investigated the no-arbitrage valuation approaches to equity option prices.

I found two main implications of the SVV model. The �rst implication is that the

SVV model is capable of reproducing several empirical regularities including various types of

implied volatility patterns and signi�cant conditional skewness and excess kurtosis of stock

returns when it is calibrated to reasonable values of parameters. The second implication

results from performing in-sample and out-of-sample tests to evaluate the model's �tting and

one-period-ahead prediction employing data on eight equity options and one index option. I

then �nd that the ad hoc BS model is more exible in �tting data than any of the structural

models. However, predictive performance, which evaluates economic signi�cance in models,

shows that the aggregate pricing errors from the SVV model are lower overall than those

from the other option pricing models. According to this empirical result, I may conclude

that the time-series information in trading volume provides a �rst-order importance in option

valuation.

The literature about the relationship among trading volume, stock prices, and volatility

is extensive both in the theoretical and empirical sense. Several theoretical models consider

the contemporaneous relation of trading volume and price changes. Epps (1975) explores a
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model in which stock returns and trading volume are correlated so that volume on upticks of

prices is greater than volume on downticks. He assumes that there are two groups of market

participants, e.g., optimists and pessimists on a current opinion about an asset. This het-

erogeneity among investors leads trading to occur and price to change since the valuation of

assets di�ers among the investors after they receive the news. This conclusion is reinforced by

Copeland (1976) who develops a model in which information arrives sequentially to investors.

As a statistical explanation of the positive correlation between trading volume and absolute

price changes, Clark (1973), Epps and Epps (1976) and Tauchen and Pitts (1983) propose

the \mixture of distributions hypothesis (MDH)" that posits a joint dependence of returns

and volume on an underlying latent event or information ow variable. The existence of a

common stochastic factor induces positive correlation between volume and the magnitude

of the corresponding price changes. Harris (1987) presents empirical evidence that strong

autocorrelations of trading volume and squared returns are propagated from a common fac-

tor. Andersen (1996) modi�es the MDH based on the microstructure framework in which

informed and uninformed investors exist who di�erently react to arriving information.

Another strand of the literature discusses the dynamic e�ects of trading volume on future

volatility.4 Shalen (1993) examines a noisy rational expectations model predicting a positive

correlation between trading volume and future absolute price changes due to the dispersion

of the future price expectations. Gallant, Rossi and Tauchen (1992) �nd that large price

movements are followed by high volume by applying a semi-nonparametric estimation of the

4Campbell, Grossman and Wang (1993) present a model in which trading volume is primarily determined

by liquidity needs. Their model implies that large trading volume tends to induce negative return autocor-

relations. Alternatively, in the asymmetric information model of Wang (1994), the correlation turns out to

be positive when trading is motivated by speculation.
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joint process of price changes and volume. Lee and Rui (2002) examine the dynamic causal

relation among stock market returns, trading volume and volatility. They �nd that there is

a positive feedback e�ect between volume and volatility while volume does not help predict

the level of returns. This �nding suggests that information in returns is contained in trading

volume indirectly through its predictability of return volatility. If this is the case, trading

volume may be used as a proxy for information ow in the stochastic process generating

volatility.

While there are many studies showing a strong relation among trading volume, stock

prices, and volatility, the implication for derivative pricing has not been pursued yet. Most

option pricing models in the literature are based on some distinguishing speci�cation of the

price process, possibly joint with an assumption on the volatility process, but volume has

been disregarded altogether. The only exception is Howison and Lamper (2001), in which

an option pricing model is developed under the assumption that stock return volatility is

driven by the rate of information arrival. They estimate the rate of information ow from

the number of transactions so that the volatility is observable. It is proven, by calibration,

that the model implies a volatility smile.

My model di�ers from the model of Howison and Lamper (2001). Firstly, the common

driving factor in my model is a Poisson jump process representing information release while

Howison and Lamper model the rate of the information arrival as a mean-reverting process.

According to Das and Sundaram (1999), a stochastic volatility model with a mean-reverting

volatility process is not able to generate high enough levels of skewness and kurtosis at short

maturities so that the shape of implied volatility becomes too shallow to match the one
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typically observed. Secondly, in my model, there are common jumps among prices, volatility,

and trading volume whereas there are no common jumps in returns and volatility in Howison

and Lamper (2001). Thirdly, Howison and Lamper (2001) do not deliver extensive empirical

exercises, such as the estimation and evaluations of their model.

The remainder of the paper is organized as follows. Section 2 presents the data set

and empirical regularities of implied volatilities, returns, and trading volume of eight indi-

vidual stocks and one index. Section 3 introduces a stochastic volatility-volume model of

price changes, volatility and trading volume. In Section 4 I derive the no arbitrage pricing

formula of a European vanilla option. To study the model's ability to �t empirical regular-

ities in option markets, the volatility patterns implied by the option formula are analyzed.

Additionally, I derive closed-forms for conditional skewness and excess kurtosis of stock re-

turns and show the model's capability of generating a considerable amount of the skewness

and the kurtosis. Section 5 estimates option pricing models and evaluates their valuation

performances. The last section concludes the paper.

2 Empirical Regularities of Call Options, Stock Re-

turns, Return Volatility, and Trading Volume

This section presents data descriptions and provides several empirical regularities of the BS

implied volatility, stock returns, return volatility, trading volume, and their relationships. In

the following section, a stochastic process of the underlying asset and its trading volume will

be constructed so that it qualitatively �ts the empirical facts of underlying assets presented

in this section.
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2.1 Data

My data set includes daily observations on: (1) the most recent trading prices for individual

stocks and the most recent level of an index before the markets close; (2) trading volume for

individual stocks and all stocks in the New York Stock Exchange (NYSE); (3) the bid-ask

midpoint prices for the equity and index call options; (4) the bid-ask midpoint prices for

Treasury bills; and (5) prices for futures contracts of the index. Data for the trading prices

and the trading volume for stocks and data for bid and ask prices of options are obtained from

the homepage of the Chicago Board Options Exchange (CBOE). Because trading volume of

the S&P index is not available, I employ the trading volume of all stocks listed in NYSE

as the proxy. Data source for the trading volume of all stocks in NYSE is the homepage of

NYSE. Data on T-bill prices are obtained from the Wall Street Journal. Futures prices are

collected from the homepage of the Chicago Mercantile Exchange (CME).

I selected eight technology stocks (ticker) and one index: Advanced Micro Devices Inc.

(AMD), AOL Time Warner Inc. (AOL), and International Business Machines Corp. (IBM),

which is traded on the NYSE, and Oracle Corp. (ORCL), Cisco Systems Inc. (CSCO),

Microsoft Corp. (MSFT), Intel Corp. (INTC), and Dell Computer Corp. (DELL), which

are traded on the NASDAQ, and S&P 500 INDEX (SPX).5 The sample period for the nine

underlying assets is September 3rd, 2002 - August 29th, 2003, and the total number of

observation dates is 251. These equity options are American style so that early exercise

may be optimal. Since there is no early exercise advantage for call options unless dividends

are paid out, the prices of European call options and American call options is in this case

5In September 2003, the AOL Time Warner corporate title changed to Time Warner Inc. The ticker also

changed to TWX.
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identical. Since a European option formula is only derived in this paper, I do not use data on

put options for empirical experiments. Among the eight �rms, AMD, AOL, ORCL, CSCO,

and DELL did not pay dividends during the sample period.6 Hence, pricing formulas for

European options are applied to valuing these �rms' call option prices. On the other hand,

IBM and INTC periodically pays dividends, and MSFT paid its �rst dividend, eight cents

per share on January 27th, 2003, which was in the sample period. To employ a European

option formula for pricing IBM, MSFT, and INTC call options, call option contracts whose

expiration date is beyond the dividend payment date were excluded.

In the empirical experiments, I use daily observations for which quotes of stocks and

options at 4:00 pm (EST) and cumulated volumes from 9:00 am to 4:00 pm are recorded

each day. Although the quotes of options are not the daily closing ones, these are used to be

consistent with the daily closing quotes of stocks and level of the index.7 I apply Bakshi et

al. (1997) and Heston and Nandi (2000) by using quote midpoints for options rather than

transaction prices to avoid measurement errors from bid-ask bounce.

The following exclusionary criteria are employed on the original data. Firstly, options

with less than six trading days to expiration are omitted to mitigate expiration-related biases.

In addition, I exclude option contracts whose time to maturity is more than 180 trading days

because the long-term equity options are very thinly traded. Secondly, quoted prices lower

than $3=8 were eliminated due to potential price discreteness-related biases. Thirdly, quotes

violating a number of arbitrage restrictions were dropped.8

6AMD, ORCL, CSCO and DELL actually never paid out any dividends in their history and AOL has

not paid dividends since June 1998.

7Option trading in CBOE ends at 4:15 pm.
8The no-arbitrage conditions are the upper and lower bounds for option prices. To prevent arbitrage, call

10



2.2 Call options

Table 1 provides sample properties of call options of the eight high-tech companies and the

S&P 500 index. In the table, as with terminology in Bakshi et al. (1997), I classify call

option data according to either moneyness or term to maturity. A call option is assigned to

in-the-money (ITM), at-the-money (ATM), or out-of-the-money (OTM) if the ratio of the

spot stock price to the strike price is greater than or equal to 1.03, greater than 0.97 and

less than 1.03, or less than or equal to 0.97. A call option is also referred to short-term or

medium-term if the term to maturity is less than 60 business days or from 60 to 180 trading

days. The table displays the total number of observations as well as the sample averages

of the mid-point of the bid and ask option quotes, of the e�ective bid-ask spread de�ned

as ask price minus the bid-ask midpoint, of daily trading volume. As can be seen in the

table, the nine call options show the following common patterns. In all of the cases, ITM

options preserve more observations than ATM or OTM options after the exclusion criteria

are applied. The liquidities of OTM and ATM options appears higher than the liquidity of

ITM options, showing that the average trading volumes of OTM and ATM calls are larger

and the average depths of OTM and ATM calls are smaller. In this context, short-term call

options of any category of moneyness are more liquid than medium-term counterparts.

prices Ct and put prices Pt must always satisfy max(St � Bt;�K; 0) � Ct � St and max(Bt;�K � St; 0) �

Pt � Bt;�K, where St, Bt;� , and K are the price for the underlying asset, the price for a � -period maturity

bond, and a strike price, respectively. See Epps (2000, p. 167-171).
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2.3 Implied volatility

I present empirical facts of implied volatilities of the nine call options. Firstly, two panels

in Figure 1 show the typical cross-sectional character of implied volatilities for short- and

medium-term call options. As shown in the two �gures, the volatility curves of CSCO and

S&P 500, which are observed on March 27th, 2003, tend to show a strong smirk pattern

(higher volatility for in-the-money option than at- or out-of-the money options). Secondly,

this skewed shape disappears as the time-to-maturity increases. The equity and index option

data reveals various term structure shapes (increasing or decreasing) for the implied volatility

curves. The di�erence between short-term and medium-term options is negatively large

when options are in-the-money. The di�erence appears small in out-of - and at-the money

options. Thirdly, the data show that implied volatilities substantially change over time.

Figure 2 provides signi�cant time variations in daily implied volatility of S&P 500 call options

averaged across contracts. The volatility shows a decreasing trend in the sample period.

Table 2 reports summary statistics of daily implied volatilities. Implied volatilities tend

to decrease with the size of a company, and that they are highly persistent.9 The table

also shows that the sample standard deviations of the daily volatilities are in the order of

percentage points while they would have been zero if the volatilities had been constant. In

sum, the BS assumption of a constant spot volatility might be inconsistent.

9Several studies have found that a AR(1) speci�cation captures time-series properties of implied volatility

of many kinds of options. See, for instance, Sheikh (1993) for stock options, Poterba and Summers (1986)

for index options, and Taylor and Xu (1994) for currency options.
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2.4 Stock returns, return volatility, and trading volume

Table 3 presents descriptive statistics for continuously compounded daily returns for the

eight technology stocks and an index. Because US markets entered a recovery phase in the

sample period after the burst of the information technology bubble, all of the stocks and the

index, on average, reveal positive returns. In this period, stock returns were very volatile,

but return volatilities of large �rms and the index tended to be smaller. For each of the

eight stocks and the index, the �rst-order autocorrelations are not signi�cant, indicating

that stock markets are e�cient. As can been seen, there is evidence of non-normality in

the daily returns. For instance, these series display either positive or negative skewness and

the kurtosises of most of the series are somewhat larger than three. From the statistical

point of view, six returns show non-normality. For example, the Jarque-Bera test rejects

the hypothesis that the six stock return series have normal distributions at least one percent

signi�cance.10

One of the empirical regularities in the literature is a strong positive correlation between

trading volume and changes in returns. The two panels in Figure 3 display the stock price

of CSCO and the S&P 500 index movements and their daily trading volume and notice that

high trading volume simultaneously leads or follows large price movements. The third column

of table 4, in fact, presents high values of the contemporaneous correlation between absolute

changes in prices and volume. In case of seven technology stocks, the correlation coe�cients

10The Jarque-Bera test is an asymptotic test of the null of normality with a joint statistic using skewness

and kurtosis coe�cients. The test statistic represents JB =
N

6

"
S2 +

(K � 3)2

4

#
� �22 Chi-square with

two degrees of freedom, where N is the number of observations, S is a sample skewness and K is a sample

kurtosis.
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are signi�cantly positive at one percent level. In contrast, there is no signi�cant correlation

between returns and trading volume, according to the fourth column of the table. Figure 4

shows cross-correlations patterns for trading volume and a measure of return volatility, such

as the absolute value of returns. As revealed in the �gure, the cross-correlation is strongly

positive at the zero lag. Correlations quickly decay, but they remain slightly positive for

several lags. These empirical facts suggest that there might be a notable dynamic relationship

between price movements and trading volume.

2.5 The GARCH and trading volume

I also examine a linkage between return volatility estimated by a GARCH and trading

volume. Table 5 reports estimation results of GARCH (1,1) models when volume is included

as an explanatory variable in the conditional variance equation. Trading volume is signi�cant

for all stocks and the index. In addition, the persistence of volatility, as measured by the sum

of the GARCH coe�cients, decreases for the all returns except for returns on S&P 500 when

volume is added in the model.11 Figure 5 and the second column of table 4 indicate that

the �rst-order autocorrelation functions of trading volume slowly decay. This slow decaying

is also one of the GARCH e�ects. These empirical regularities imply that a common factor

might move return volatility and trading volume.

11Lamoureux and Lastrapes (1990) �nd that ARCH e�ects tend to disappear when volume is included as

an explanatory variable in the conditional variance equation.
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3 The Model

In this section I will present the stochastic volatility and volume (SVV) model in which price

changes, trading volume, and volatility follow a trivariate latent process under the physical

probability measure. The next section will derive a European option pricing formula under

this SVV model and the assumption of no arbitrage.

Let (
,F ,P) be a complete probability space, where 
 denotes the set of all outcomes,

F denotes the �-�eld of subsets of 
 and P denotes a probability measure on F . Let also

fFtgt�0 be a �ltration, a non-decreasing sequence of sub-�-�eld (Fs � Ft � F , s � t). Ft

can be interpreted as the information set at time t available to agents. Epps (2000, p. 48

and p. 83) provides a more detailed treatment.

Under the physical probability measure, the price of an underlying non-dividend-paying

risky security, St, follows a di�usion-jump process of the form:

dSt
St�

= (�t � �m)dt+ �tdWt +XdNt,(1)

where St� denotes limits from the left. fWt : t � 0g is a standard Wiener process, fNt : t �

0g is a stochastic Poisson process with an jump-intensity parameter, � such that Pr(dNt =

1) = �dt and Pr(dNt = 0) = 1 � �dt. dWt and dNt are assumed to be independent. The

Wiener process and the Poisson process are de�ned on (
,F ,P) and are adapted to fFtgt�0:

X is the random size of a jump in price and is assumed to be the sum of two random

variables so that ln(1+X) = Y +ZH, where Y is a normal random variable with parameters

(�; �2), Z is a random variable that can take either � (> 0) or �� with probability 0.5,

and H is an exponential random variable with mean  . m represents the mean of the
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jump size in price, X, and it depends on parameters in the two jump variables such that

m � E(X) =
exp(�+�2

2
)

(1�� )(1+� ) � 1. The condition � < 1 satis�es the existence of the mean.

�t denotes the instantaneous expected return per unit of time. It is convenient to write

the price in terms of its logarithm, st = ln(St). From the extended Itô's formula, the price

process (1) can be written as

dst = (�t � �m� �2t
2
)dt+ �tdWt + (Y + ZH)dNt.(2)

dst is interpreted as the continuously compounded return.

Next, the stochastic process of the cumulated trading volume, Vt, is assumed to be

dVt = �2t dt+HdNt,(3)

where  is a positive constant.  is restricted to be positive because the increment in

cumulated volume is nonnegative at any time.

Finally, the instantaneous variance of returns conditional on the jump not occurring is

related to the trading volume so that

�2t = �

Z t

0

e��(t�s)dVs,(4)

where �, � are positive constants. From this volatility speci�cation, an increment in trading

volume as a proxy of information ow thus leads to an increase in volatility. Being represented

as the integral of current and past increments of volume, the volatility could be highly

persistent. The advantage of this speci�cation is that the local volatility is characterized as a

path-dependent model while Dumas et al. (1998) suggest the limitation of path-independent

models. I will derive the process of volatility from the volume process (3) and the variance
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equation (4). Applying the Leibniz 's rule to (4) yields

d�2t = ���2t dt+ �dVt.(5)

Now, substituting (3) into (5) gives

d�2t = �(�� �)�2t dt+ �HdNt.(6)

Notice that the rate of mean reversion, � � � is restricted to be positive since the uncon-

ditional mean of �2t is a �nite positive value,
�� 
��� .

This speci�cation of the trivariate process (2), (3) and (4) (or (6)) nests the Black and

Scholes (1973) and the Merton jump model (1976). The restriction that delivers BS is that

volatility is constant, or � = � = 0, and there is no jump in returns, � = 0. The restriction

that delivers the Merton jump model is that volatility is constant, or � = � = 0. The SVV

model can produce common jumps in returns and volatility. This feature is similar with

the model of Du�e et al. (2000). However, because of stochastic property of Z , news can

a�ect either positively or negatively to the valuation of the underlying asset in my model.

In contrast, the model of Du�e et al. (2000) cannot capture this feature.

Here, I examine the qualitative characters of the latent factor process. Firstly, the volatil-

ity of returns arises from the continuous term and the jump term. For example, the instan-

taneous conditional return volatility is given by

dV ar (dstjFt)
dt

= �2t + �(1� �)(�2 + �2 2).(7)

Secondly, from the return process (2), the size of jumps in returns is composed of two parts.

One is independent of jumps in trading volume (the jump size is Y ) while the other is
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related to jumps in volume (the jump size is ZH). This jump size structure thus allows

jumps to occur in returns but not in trading volume. Thirdly, returns in this process are

not autocorrelated, which is found in the data, because the (continuous and discontinuous)

risk factors are not autocorrelated. Fourthly, in contrast to zero return autocorelations,

volume and volatility are positively autocorrelated because of their drift terms. The positive

autocorrelations are consistent with the empirical �ndings or the GARCH e�ect. Finally,

in the volume process (3) a trade happens due to the jump component which is generally

shared in the return process (2). As a result, the absolute value of return changes and the

trading volume can be positively correlated, which is consistent with empirical �ndings.

The economic intuition supporting these characters of the model can be described in the

following manner. Suppose that there are two kinds of market participants, say informed

traders and noise traders. The noise traders might be uninformed or liquidity traders. The

second and third term of the right hand side of equation (2) represent the (continuous) e�ect

from the noise traders and the (discontinuous) e�ect from the informed traders, respectively.

Suppose that some random piece of information hits the market, i.e. a jump occurs. Then,

trade might occur because the informed traders have di�erent opinions (\bullish" or \bear-

ish") on the information. This e�ect on trading volume is captured by the second term of

the right hand side of equation (3). At the same time, the return might be a�ected by the

jump term. Since the jump size of the trading volume is the sum of the squared jump size

of returns and a positive random variable, the price will change when trade happens. This

feature is consistent with the empirical �nding of positive contemporaneous correlation of

absolute price changes and volume. At this point, the information is gradually noticed by
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the noise traders who will join the trading. Trading by the noise traders a�ects volatility via

equation (4) and also a�ects trading volume via the trend term in (3). This volume formation

is in agreement with Andersen (1996), in which trades occur by noise traders and informed

traders. Since the information gradually spreads, the volatility is positively autocorrelated

(ARCH e�ect) with lagged volume in (4), and the volume is also positively autocorrelated

because of the e�ect of the positively autocorrelated volatility, the trend term in (3). These

positive autocorelations are solid empirical regularities.

For empirical purposes, I discretize the volatility function (4) as

�2t = �
tX

s=�

(
1

1 + �
)t�s(Vs � Vs��), for t � 1, V0 = 0:(8)

where � is a positive integer which represents a unit of time. Notice that the discrete-time

volatility function (8) converges to its continuous-time counterpart (4) as �! 0. Equation

(8) can be rewritten as

�2t = �(Vt � Vt��) + (
1

1 + �
)�2t��, for t � 1, �20 = 0.(9)

This volatility equation is similar to the GARCH(1,1) except that the ARCH term is replaced

by an increment in volume and there is no constant. As seen with GARCH models, this

variance equation characterizes shocks to volatility as decaying over time. Furthermore, the

impact of volume on volatility is symmetric, which is similar to linear GARCH models. For

instance, the size of volume shocks proportionally a�ects volatility so that volatility dampens

at the same rate independently of the size of volume shocks. In contrast with any GARCH

models, the shock arises from a contemporaneous change in trading volume rather than from

the lagged return shock used in GARCH models. In this sense, I compute volatility from

current and past trading volumes while GARCH computes it from the history of asset prices.
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4 Option Pricing

4.1 Derivation

In Section 3, the joint process of the three variables was expressed under the physical prob-

ability measure. At this point, I transform the stochastic process to �nd a risk-neutral

probability measure. To this purpose, I follow Merton (1976) who assumes that jump risks

are diversi�able. Under this assumption and in the absence of arbitrage opportunities, the

market becomes complete so that there exists a unique risk-neutral probability measure, as

pointed out by Harrison and Kreps (1979). The risk neutral process, then, can be derived

by replacing the drift term �t in the return process under the physical measure by the risk-

free rate because the expected return on any asset, under the risk-neutral probability, must

be equal to the risk-free rate to avoid arbitrage opportunities. The risk-neutral process of

returns then follows

dst = (rt � �m� �2t
2
)dt+ �tdcWt + (Y + �H)dcNt,(10)

where rt is the instantaneous spot interest rate, assumed to be deterministic.
12 fcWt : t �

0g and fcNt : t � 0g are a Wiener process and a Poisson process under the risk-neutral

probability, respectively. The risk-neutral process of volume and volatility is the same as the

volume-volatility process under the physical probability equations (3) and (6), except that

the common jump process is a Poisson process under the risk-neutral probability.

12The assumption of deterministic interest rates is realistic for short and medium term options because

the rates do not signi�cantly uctuate. For instance, the annual standard deviation of the continuously

compounded real return on a three-month T-bill is less than two percent. In contrast, the annual standard

deviation of the continuously compounded real return on a US stock market index exceeds 15 percent. See

Campbell (1999).
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Let P (st; �
2
t ; �) be the time t price of a European put option written on the stock with

strike price K and time-to-maturity � . This price also depends on the current price and

volatility of the underlying asset. The absence of arbitrage implies that the discounted price

is a martingale under the risk-neutral probability, bP, such that the conditional expectation
of put option returns is given by bEt dPP = rt. Applying the extended Itô's formula to the

underlying price processes, the option price must satisfy the partial di�erential equation:

0 = �rtP + (r � �m� �2t
2
)Ps � (�� �)�2tP�2 � P� +

�2t
2
Pss

+�[ bEtP (st + (Y + �H); �2t + �H; �)� P (st; �
2
t ; �)](11)

with terminal condition, P (ST ; �
2
T ; 0) � P (ST ) = (K � ST )

+. In Appendix B, it is shown

that the solution to the partial di�erential equation (11) is given by:

P (St; �
2
t ; �;K) = B(t; T )K bF (K;St; �2t ; �)� St bG(K;St; �2t ; �),(12)

where B(t; T ) represents the time t price of a discount bond with maturity � so that

B(t; T ) = e�r(T�t), bF (K;St; �2t ; �) = Pr(ST < KjSt; �2t ; �) is the risk-neutral probability

that the option expires in the money conditional on the current stock price and volatility

and time to maturity, and bG(K;St; �2t ; �) = R K0 sbEST d bF (s;St; �2t ; �) is an alternative condi-
tional probability that the option expires in the money. Notice that the local volatility, �2t

is calculated by equation (9) given parameter values. The explicit form of the characteristic

functions are presented in Appendix B.13 The �rst and second terms on the right hand side

of equation (12) can be interpreted as the present value of the strike price payment and the

13The PDE (12) involves two Fourier inversions which are computationally demanding. To reduce (12) to

one Fourier inversion, Epps (2003) considers a derivative whose value is S&T at expiration for any real number

&. The value of this derivative follows (12). Solving the PDE with the terminal condition, the value of a

European put option is given by
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present value of the underlying stock upon optimal exercise. Once the price of put options is

obtained, the corresponding call option price with the same strike price and term-to-maturity

is easily pinned down by the call-put parity condition,

C(St; �
2
t ; �;K) = P (St; �

2
t ; �;K) + St �B(t; T )K.(13)

4.2 Option price properties

I will now investigate some qualitative implications of the stochastic volatility and volume

(SVV) model for option prices. To this purpose, I will replicate the various surfaces of the

BS implied volatility curves extracted from option prices generated by the SVV model. I

will also analyze the sensitivity of these patterns to parameters entering the option pricing

formula.

For implementing these numerical experiments, I choose benchmark parameter values of

the SVV model by calibrating on the price for an underlying asset and trading volume data

and using plausible values found in Bakshi et al. (1997). I need to identify eight structural

parameters in the SVV model and three inputs for the underlying asset and the risk-free rate.

For this purpose, I use information on S&P 500 index. Firstly, the values of � and � follow

directly from the estimates of a regression model for implied volatility and trading volume,

� = 1:26�10�15 and � (= 1
�251

�1) = 1:05�105:14 Secondly, the parameter  (= 8:27�1019)

P (St; �
2
t ; �;K) = B(t; T )

K

2

�
1� 1

�

Z 1

�1

X�i&

i& + &2
	 bF (&; st; �2t ; �)d&

�
,

where 	 bF is derived in Appendix B. We will employ this formula to compute put option prices for empirical
exercises.

14I estimate a regression to �t this relationship IVt = c + � � IVt�1 + � � Vt + "t, where Vt denotes an

increment in trading volume of NYSE all stocks, and IVt represents BS implied volatility of S&P 500 call

options averaged over maturities (5 days < maturity < 180 days) and moneyness (0.9 < moneyness <1.1).
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is chosen so that the rate of mean-reversion of volatility � (= �� �) is 1.0 because Bakshi

et al. (1997) found that plausible values of mean-reversion are positive but in the vicinity of

one. Again, considering parameter estimates of several option pricing models in Bakshi et al.

(1997), I set � (jump intensity) equal to 0:6, � (the mean of jump size in returns) to �0:1, �

(the standard deviation of jump size in returns) to 0:1. Thirdly, the parameter representing

the mean jump size in trading volume  (= 6:49�1013) is set so that the long-term volatilityq
�� 
��� equals the sample standard deviation of S&P 500 index returns from September 3rd,

2002 until August 29th, 2003 (= 0.22). Fourthly, � (the correlation between jump size in

returns and in volatility) is set 3:36� 10�29, for the correlation between returns and trading

volume of S&P 500 index and the model-implied one (the covariance = 2�� 2) to be the

same. Fifthly, the current values of the stock price St (= 877.68) to match the level of

S&P 500 index on September 3rd, 2002. The current instantaneous volatility �t (= 0.32) is

computed as the sample standard deviation of 39 ten-minute returns on September 3rd, 2002

transforming in a yearly basis multiplied by the root of 251�39. Finally, the risk-free rate r

(= 0.016) is set to be the sample mean over time to maturity 2 to 177 days on September

3rd, 2002.

Figure 6 provides a view of the implied volatility surface implicit in SVV call option

prices for a benchmark choice of parameter values. This �gure shows that the SVV model

is capable of replicating a variety of aspects of the implied volatility surface that have been

documented in option markets. Firstly, the smirk shapes of implied volatility appear for

maturities: the volatility is higher for in-the-money than for out-of-the money contracts and

at-the-money contracts for all maturities. Secondly, smirks atten with time-to-maturity.
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Finally, the term structure of implied volatility for at-the-money is upward sloping while it

is downward sloping for out-of-the-money and in-the-money options.

Next, I will explore other implications of the SVV model for the volatility smile. Figure

7 summarizes the e�ects of changes in the parameter values on the implied volatility surface

at a �xed maturity (= 76 trading days). In this �gure, I can observe three distinct groups

of parameters. The �rst consists of parameters that can generate the asymmetric features of

implied volatility smiles. The second group sharply increases the volatility for in-the-money

and out-of-the-money options so that the smile is exacerbated with the level of volatility.

The last group also strengthens the volatility smile, but this smile intensity occurs as the

level of volatility decreases.

In the �rst group, � characterizes the mean jump size in returns independently of volume

and � characterizes the mean jump sizes in returns related to volume. In the �rst panel of

Figure 7, � is set to produce a mean total jump size in returns of -0.18, -0.09 and 0.23 on

an annual basis, resulting in a signi�cant asymmetry in the volatility smile. From Panel

B, changes in � have similar e�ects because a change in the value of � leads to changes

in the average return and � also a�ects the correlation between returns and volume (or

volatility). The incorporation of non-zero mean jump size and correlation between returns

and volatility a�ects the skewness of the conditional return distribution that explains the

asymmetric distortions of the volatility smiles.

The second group of parameters that strengthen the volatility smile contains � (the

volatility of return jump size),  (the mean jump size of volume) and � (the jump intensity).

As revealed in Panels C-E, the degree of the smile curve increases as the level of the volatility
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increases. Since these parameters are positively related to the volatility of volatility, excess

kurtosis increases with the value of �,  and �. The increase in excess kurtosis intensi�es

the \depth" of the volatility smile. Contrary to the parameters in the �rst group, the second

group parameters do not a�ect the sign of skewness, thus leading to no change in asymmetric

volatility pattern.

The third and �nal group of parameters consists of parameters in the volatility function,

�, � and . Panels F-H show that changes in these parameters tend to intensify the implied

volatilities. Unlike the case of the second group parameters, the volatility curvature is

strengthened as the volatility level decreases. This strength in smile results from the fact

that these parameters a�ect the long-term volatility of returns , thus having the e�ect of

shifting the level of implied volatilities.

Next, I will turn to analyze the term structure pattern of implied volatility. Figure 8

displays the implied volatility term structure for at-the-money options. The SVV model

generates upward and downward sloping term structures. As it has been presented, upward

and downward sloping term structures are observed in reality. The term structure depends

on the long-term volatility, which is a function of parameters, �, � and . When long-term

volatility is relatively low (= 0.22) to the current volatility (= 0.26), volatility decreases

with time to maturity. When long-term volatility is relatively high (= 0.50) to the current

volatility, term structure is upward sloping. These term structure patterns can be inter-

preted as such that when current volatility is above long-term volatility, return volatility is

expected to decline over time and thus implied volatility falls with maturity. In contrast,

Das and Sundaram (1999) show that the term structure of at-the-money implied volatilities
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produced by Merton's (1976) jump-di�usion model is always a monotone increasing function

of maturity, which is inconsistent with the data.

4.3 Conditional moments of stock returns

It has been shown that the SVV model is able to replicate several cross-sectional (in terms of

moneyness and time-to-maturity) properties of implied volatility. Das and Sundaram (1999)

show that skewness and excess kurtosis of asset returns (under a risk-neutral probability) are

important factors in creating various shapes of implied volatility. I will thus examine whether

the con�guration of the risk-neutral stochastic process in equity returns assumed by the SVV

model signi�cantly produces conditional 3rd and 4th moments. I, moreover, compare these

moments with those generated by the jump-di�usion model of Merton (1976).

The closed-form expression of skewness and excess kurtosis of stock returns are derived

in Appendix A. It is easily observed that there is no skewness and excess kurtosis if no

jumps occur, or the jump intensity parameter � = 0. Under parameter values already used

as the benchmark in the previous subsection, the SVV model generates skewness of -4.32

for a one-month maturity, of -1.74 for a three-month maturity and of -0.97 for a six-month

maturity; similarly, excess kurtosis is 30.37 for a one-month maturity, 7.81 for a three-month

maturity, and 3.50 for a six-month maturity. In contrast, the jump-di�usion model merely

generates -0.22, -0.13 and -0.09 for skewness of a one-month, a three-month and a six-month

maturity, respectively; 0.56, 0.19 and 0.09 excess kurtosis for a one-month, a three-month

and a six-month maturity, respectively, for the same parameter selection. The SVV model

thus produces roughly ten to twenty times larger skewness in the absolute term and forty

to �fty times larger kurtosis than the jump-di�usion model does. These results show that
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adding jumps in volatility generates signi�cant skewness and excess kurtosis, thus producing

the rich features of implied volatilities.

5 Empirical Exercises

In this section I will describe the empirical methods in order to estimate option pricing

models and to evaluate their economic importance.

5.1 Estimation procedure

The option prices derived in the previous section are a deterministic function of stock and

strike prices, time-to-maturity, the risk-free rate, trading volume, and parameters that ac-

cording to the model should be known. This means that, apart from observation error, the

theory leaves no room for any deviation of observed prices from prices implied by the model.

I use call option prices to estimate the model since the model o�ers the same pricing formula

of European and American calls unless the underlying asset pays dividends as mentioned

in Section 2. Denoting by fCj(St; �j; Kj) the observed price of the jth call option at time

t, I assume that this price is related to the price implied by the model, Cj(St; �
2
t ; �j; Kj)

according to

fCj(St; �j; Kj) = Cj(St; �
2
t ; �j; Kj) + eejt,(14)

where the eejt are independently and identically distributed with mean zero and constant
variance. Following Bakshi et al. (1997) and Dumas et al. (1998), I estimate the eight

parameters � � f�; �; ; �; �; �;  ; �g from each cross-section of option prices, underlying

prices and trading volumes so as to minimize the sum of squared di�erences between observed
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prices and model implied prices:

Min
f�;�;;�;�;�; ;�g

TX
t=1

NtX
j=1

( eC(St; �j; Kj)� C(St; �
2
t ; �j; Kj))

2,(15)

where T and Nt denote the number of observation times in the sample and the number of

options at one point in time t, respectively.15;16 Local volatility is determined by current

and past trading volumes, or current trading volume and the one-lag local volatility in

�2t = �(Vt�Vt�1)+
�

1
1+�

�
�2t�1. In this context, the volatility is observable up to the structural

parameters, and this fact makes the estimation problem easier than in stochastic volatility

models. As in Heston and Nandi (2000), the starting volatility, �0, is held invariant at the

sample standard deviation which is computed from the whole sample of daily continuously

compounded returns appropriately annualized.17

To evaluate the pricing performance of the SVV model, I compare its ability to �t cross-

sectional option prices both in- and out-of sample relative to several alternative option pricing

models in the literature. A natural alternative is of course the BS model. However, the choice

seems to be inappropriate because the BS has only one unknown parameter. I thus select

as an alternative model for comparison the ad hoc BS model of Dumas et al. (1998) and

Christo�ersen and Jacobs (2004), where the volatility of the original BS formula is modeled

as:

� = max(0:01; a0 + a1K + a2K
2 + a3� + a4�

2 + a5K�).(16)

15As mentioned in Section 3, we impose restrictions on the parameter space such that � � 0, � � 0,  � 0,

� � 0, � � 0, ' � 0, �� � > 0:
16I estimate the model at one point in time t when the number of options is more than or equal to eight

that is the number of parameters of the SVV model.

17The annualized volatility is given by the standard deviation of daily log returns multiplied by
p
252,

respectively. As a matter of facts, the year 2002 had 252 trading days.
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While the ad hoc BS model is not theoretically consistent, it serves as a more solid bench-

mark than the original BS model because it is popular with practitioners and its pricing

performance has been used as a benchmark in many papers (e.g., Dumas et al. (1998),

Heston and Nandi (2000), Guidolin and Timmermann (2003)).

As another competing model, I choose Merton's (1976) jump-di�usion (JD) model. The

reason for its selection is that the jump-di�usion model is nested in the SVV model and

thus I may investigate additional e�ects of (1) jumps in volatility and (2) trading volume as

instruments of volatility in option pricing.

Finally, the stochastic volatility (SV) model of Heston (1993) and the stochastic volatility

/ random jumps (SVJ) model of Bates (1996) are also compared in pricing performances

since they are widely investigated in the option valuation literature. Under a risk-neutral

probability, a stochastic structure of continuously compounded returns of the underlying

non-dividend-paying stock for the SVJ model is given by

dst = (rt � �m� �2t
2
)dt+ �tdcWt +XdcNt,(17)

d�2t = (�� �2t )dt+ ��tdcW�t.(18)

where fcWt : t � 0g and fcW�t : t � 0g are Wiener processes with Cov
�
dcWt; dcW�t

�
= �dt,

fNt : t � 0g is a stochastic Poisson process with a jump-intensity parameter, �, X is the

random size of a jump in price, and ln(1 +X) is assumed to be a normal random variable

with parameters (ln(1 + �) � �2

2
; �2). Notice that the SVJ model nests the JD and the SV

models. For example, the SVJ model alters the JD model when � =  = � = 0 and also

converts the SV model when � = � = 0.

29



For each model, I investigate two notions of pricing performance: in- and out-of-sample.

In the case of the in-sample exercise, I rely on call option prices, stock prices, and trading

volumes as inputs to estimate the structural parameters in each model. The estimated

parameters are then used to derive model-based option prices corresponding to the sample

observations. For out-of-sample exercises, the current prices of call option contracts are

computed by using the current stock price and interest rate and the estimates of the time

invariant parameters (including the local volatility) obtained from the previous period. Then,

to evaluate each model's out-of-sample pricing performance, several measures of accuracy

are computed.

The root mean squared valuation error (RMSVE) is the square root of the sample (time)

average of the squared mean (cross-sectional) di�erences of market prices from model's the-

oretical values de�ned as

1

T

TX
t=1

vuuut NtX
j=1

� eC(St; �j; Kj)� C(St; �2t�1; �j; Kj)
�2

Nt

.(19)

The other error matrices have functional form

1

T

TX
t=1

 
1

Nt

NtX
j=1

F ( eC;C)! .(20)

Each metric is determined by the following function F ( eC;C). The mean absolute valuation
error (MAVE) is the sample average of the absolute di�erences between market prices and

the theoretical values, de�ned as

F ( eC;C) = ��� eC(St; �j; Kj)� C(St; �
2
t�1; �j; Kj)

��� .(21)
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The mean percentage pricing errors (MPPE) implies

F ( eC;C) = eC(St; �j; Kj)� C(St; �
2
t�1; �j; Kj)eC(St; �j; Kj)

.(22)

These measurements have been used to assess the quality of the �tted models in major empir-

ical works, including Bakshi et al. (1997), Dumas et al. (1998), Guidolin and Timmermann

(2003), and Heston and Nandi (2000). MPPE is represented as the sum of pricing errors

in terms of percentage points and can take either a negative value or a positive one. As a

result, rather than measuring pricing performance for comparison, MPPE checks whether or

not a model is likely to overvalue option prices. On the other hand, the other two measures

are in terms of dollar values so that they are easily interpreted, but they tend to embed

over-weights on high price options.

5.2 In-sample parameter estimates

Employing the equity and index (call) option data illustrated in Section 2, I estimate the six

option pricing models from the non-least-square estimation, which minimizes the in-sample

sum of squared errors between model option values and market option prices. In addition

to the exclusion criteria described in Section 2, for the estimations I select option contracts

whose time to expiration is less than 100 trading days and spot-strike price ratio is between

0.9 and 1.1. Table 6 provides the square roots of the mean squared valuation errors for the

nine options. Several observations are highlighted. Firstly, as seen in the table, the ad hoc

BS model reveals the most exibility. For example, its valuation performances in terms of

the RMSVE are improved over the BS model by at least 65 percent for the all options (the

highest: 86 percent for MSFT, the lowest: 66 percent for S&P 500). Also, the in-sample
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average of valuation errors of the ad hoc BS model are uniformly smaller than other structural

models. This result is somewhat unexpected because the number of parameters estimated

is smaller for the ad hoc BS model than for the SVJ and the SVV models. For in-sample

estimation, the key element to reduce valuation errors is a cross-sectional model �t across

option contracts, not the model's capture of time-variation in option prices. As a result, the

smoothing volatility function of the ad hoc BS, which is a quadratic form of moneyness and

time to maturity, is able to match cross-sectional volatility patterns of options.18

Secondly, the average pricing error of the SVV model is signi�cantly smaller than that

of the jump-di�usion model, except for AMD. For instance, the RMSVE are reduced by

at least 20 percent. (the highest: 61 percent for AOL, the lowest: 21 percent for INTC).

This empirical evidence indicates that taking stochastic jumps in volatility into account is

of �rst-order importance in improving on the jump-di�usion model. Additionally, the SVV

model does not under-perform the four structural option pricing models in terms of in-sample

model �ttings. Consequently, modeling local volatility as discontinuous jumps could be a

better alternative to continuous local volatility models.

I will now turn to analyzing the stability of the SVV model's parameters. Whether

or not estimated parameters are steady over time is an important element to judge model

speci�cations because model parameters are assumed to be constant. Summary statistics

of parameter estimates obtained for the SVV model are reported in Table 7. As can been

seen in the table, the parameters estimated each day largely uctuate for the nine options.

18According to Christo�ersen and Jacobb (2002), Dumas et al. (1998) and Guidolin and Timmermann

(2003), who use S&P 500 index options for empirical exercises, the ad hoc BS model outperforms structural

models such as a stochastic volatility model, deterministic volatility models, a GARCH model and a Baysian

belief model for in-sample pricing performances.
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For instance, their sample standard deviation divided by the sample mean, for most cases,

very large. There are also outliers of several parameter estimates that considerably a�ect

the sample means so that the means signi�cantly deviate from the mediums. Speci�cally,

the large uctuations in most of the parameters for AMD and S&P 500 are observed. This

evidence shows that the in-sample estimates for the SVV model seem to be unstable. This

instability of parameters and the relatively small in-sample pricing errors for the SVV model

indicate the potential over-�tting of the model. In the next subsection, I will investigate the

economic importance of the SVV, focusing on the model's valuation prediction errors.

5.3 Out-of-sample predictions

I have demonstrated that the in-sample model �ttings are overall in the following order, the

BS, the JD, the SV, the SVJ, the SVV and the ad hoc BS models. This inference may result,

however, not from economic components, but from merely over-�tting of the data because

the in-sample pricing performances tend to improve as the number of parameters increases.

One method to evaluate the economic importance of option pricing models is to explore each

model's out-of-sample cross-sectional price prediction.

Table 8 provides the average one-step-ahead prediction errors in terms of the three mea-

surements. There seems to be a series of regularities in the out-of-sample prediction errors.

Firstly, the prediction performance of the ad hoc BS model is faded compared with its in-

sample �ttings. For example, the out-of-sample RMSVEs increase by 713 percent (IBM)

to 277 percent (S&P500). This signi�cant deterioration suggests that the ad hoc BS model

achieves the in-sample exibility simply by over-�tting the data, which is not surprising
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because the model is not based on any economic considerations.19

Secondly, the aggregate prediction error measures, in general, rank the SVV as the best

model. The SVV model outperforms the ad hoc BS model in the RMSVE and AMVE

and all options except for the AMVE of S&P 500, more importantly the SVV model is the

best in out-of-sample prediction performances except for AMD and S&P 500. For instance,

the SVV model improves the RMSVE of the ad hoc BS model by 3 percent (S&P 500) to

67 percent (IBM). These results suggest that information on trading volume of underlying

assets possibly captures time-variations in return volatility for one-period-ahead predictions

and that incorporating trading volume into option pricing models thus leads to �rst-order

improvement in price predictions. A reason why the SVV fails to beat the other models in

forecasting performances for AMD and S&P 500 options might be due to large instability

in parameters seen in Table 7. In addition, trading volume of all NYSE stocks might not

be a good proxy for trading volume of stocks in S&P 500. Finally, according to MPPE, all

models except for the jump-di�usion model tend to underprice the call options.

6 Conclusion

Based on extant empirical evidence that trading volume provides information on changes

in stock returns, I have derived an option pricing formula established on a joint, trivariate

process for stock returns, trading volumes, and volatility. This model o�ers a novel approach

for option valuation that formulates the volatility and volume of the underlying asset to be

stochastic. Firstly, a key element of the stochastic volatility and volume (SVV) model is

19Using S&P 500 index options, Heston and Nandi (2000) and Guidolin and Timmermann (2003) �nd the

similar result by the ad hoc BS model.
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that a latent factor modeled as a discontinuous process generates a simultaneous jump in

returns, volatility, and volume. Additionally, the SVV model incorporates trading volume as

an instrument of unobservable volatility so that the volatility is computed by using current

and past volumes. Finally, the local volatility parameter is predictable in this model setting.

I analyze the model's implications for the implied volatility surface. Under plausible values

of the parameters, I show that the SVV model provides a good description of cross-sectional

properties and a term structure of the implied volatility.

I also have conducted empirical evaluations of the model by investigating the in-sample

�tting and out-of-sample option price prediction from data on prices of the eight equity and

one index options and have compared it with other option pricing models including the BS,

the ad hoc BS, the jump-di�usion and stochastic volatility models. In terms of in-sample

pricing errors, the SVV model is superior to other structural models, while the estimated

parameters are considerably unstable in the sample. Despite this instability of the parameter

estimates, the SVV model is, in most of the cases, the best in one-period ahead predictions

of option prices. These empirical �ndings suggest that incorporating stochastic jumps in

volatility and trading volume is important to option valuation.

There is a course for future research projects applying the SVV model. I may estimate the

parameters in the model using time-series data on returns and volume, putting aside option

data. The SVV model has the advantage that the closed forms of conditional characteristic

function enable this estimation to be tractable, using estimation methods developed by

Singleton (2001). I can then compare the estimated parameters on the physical probability

measure with those on the risk-neutral probability measure estimated in this paper.
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Appendix

A Derivation of Conditional Skewness and Kurtosis

Let 	(&; st; �
2
t ; �) be the characteristic function of a return at time t+ � conditional on the

current log price and current instantaneous volatility of an underlying asset. Notice that

& is a real number. Under the process of returns (2) and the volatility process (6), the

Kolmogorov backward equation of the conditional characteristic function is given by

0 = �	� + (�t � �m� �2t
2
)	s � (�� �)�2t	�2 +

�2t
2
	(A1)

+�[ bEt	(&; st + (Y + ZH); �2t + �H; �)�	(&; st; �2t ; �)],

with initial condition 	(&; st; �
2
t ; 0) = eist& :(A2)

Next, I guess and verify that the solution is of the form

	(&; st; �
2
t ; �) = eg(� ;&)+h(� ;&)�

2
t+i&st .(A3)

Substituting equation (A3) into (A1) and (A2) yields the system of ordinary di�erential

equations �
g� (� ; &) = (�t � �m)i& + �E[eh(� ;&)�H+i&(Y+ZH) � 1]

h� (� ; &) =
i&
2
(�1 + i&)� (�� �)h(� ; &)

(A4)

with g(0; &) = h(0; &) = 0. The solutions are

g(� ; &) = (�t � �m)i&� + �E[ei&(Y+ZH)
Z �

0

eh(s;&)�Hds� � ],(A5)

h(� ; &) =
i&(1� i&)fe��� � 1g

2�
.(A6)
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Hence I have inserted back the proposed solution into the PDE (A1) and con�rmed that the

solution satis�es the PDE.

A standard argument (see, Epps (2000, p. 62 and p. 64)) establishes now that the mean,

variance, skewness, and excess kurtosis of returns are

Mean =�1, Variance = �2, Skewness =
�3

�
3
2
2

, Excess Kurtosis =
�4

�22
,(A7)

where �k =
dk ln	
d&k

���
&=0
. Since the characteristic function has an exponential-a�ne form,

the expressions for the moments in Proposition are given by the derivatives of g(� ; &) and

h(� ; &) with respect to &. Notice that computing the integral in equation (A5) becomes less

cumbersome after taking derivatives of g(� ; &).

The closed-form expression of skewness and excess kurtosis of stock returns conditional on

the current price and current volatility level in the di�usion term are given by, respectively,

�f8(EX3)�+[24(EXH)�12(EX2H)]�A1+6[(EXH2)+16(EH2)]�2A2�(EH3)�3A3g

8[A0�2t+�f(EX2)�+[(EH)�(EXH)]�A1+ 1
2
(EH2)�2A2g]

3
2

(A8)

�f(EX4)�+[128(EX2H)�8(EX3H)]�A1+48[EH2(1+2X+0:5X2)]�2A2�8[EH3(3�X)]�3A3+(EH4)�4A4g

16[A0�2t+�f(EX2)�+[(EH)�(EXH)]�A1+ 1
2
(EH2)�2A2g]

3
2

(A9)

where

� = �� �; � =
�

�
; A0 =

1� e���

�
; A1 = � � 1� e���

�
; A2 = � � 3� 4e

��� + e�2��

2�
;

A3 = � � 11� 18e
��� + 9e�2�� � 2e�3��

6�
;

A4 = � � 25� 48e
��� + 36e�2�� � 16e�3�� + 3e�4��

12�
:

X = Y + �H and H represent the sizes of jumps in returns and in volume, respectively.
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B Derivation and Solution of the Partial Di�erential

Equation

To derive a solution to the partial di�erential equation (PDE) of a European put option

price, I follow the characteristic function based method in Heston (1993), Bates(1996) and

Epps (2000). Firstly, I guess a solution of the PDE (11) as

PE(st; �
2
t ; �) = B(t; T )K

Z K

0

d bFt(S; st; �2t ; �)� St

Z K

0

dcGt(S; st; �
2
t ; �)(B1)

= B(t; T )K bF (K; st; �2t ; �)� St bG(K),
where bF (K) � bFt(K; st; �2t ; �) and bG(K) � cGt(K; st; �

2
t ; �). Substituting the conjectured

solution (B1) into equation (11) gives the PDEs that are satis�ed by bF and bG
0 = � bF� + (rt � �m� �2t

2
) bFs � (�� �)�2t bF�2 + �2t

2
bFss(B2)

+�[ bEt bF (st + (Y + �H); �2t + �H; �)� bF (st; �2t ; �)],
0 = � bG� + (rt � �m+

�2t
2
) bGs � (�� �)�2t

bG�2 +
�2t
2
bGss(B3)

+�[ bEt(1 +X) bG(st + (Y + �H); �2t + �H; �)� bG(st; �2t ; �)],
with boundary conditions

bFt(K; sT ; �2T ; 0) = cGt(K; sT ; �
2
T ; 0) = 1[0;K)e

sT .(B4)

From the de�nition, the conditional characteristic functions for bF and bG are determined as

	 bJ (&; st; �2t ; �) =
Z 1

�1
ei&sd bJ(s; st; �2t ; �),(B5)
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where bJ 2 f bF ; bGg. The corresponding characteristic functions also satisfy the similar PDEs
(B2) and (B3):

r bJ	 bJ (&; st; �2t ; �) = 0,(B6)

where r bJ = � @
@�
+(rt��m+a bJ �2t2 ) @@s � (���)�2t @

@�2
+

�2t
2

@2

@s2
+�[ bEtb bJ bJ(st+(Y +�H); �2t +

�H; �)� bJ(st; �2t ; �)], and a bJ = �1 for bJ = bF , +1 for bJ = bG, b bJ = +1 for bJ = bF , 1 +X for

bJ = bG, the initial conditions are 	 bJ (&; sT ; �2T ; 0) = ei&sT .

In a similar manner as in Appendix A, to solve for the characteristic function explicitly,

I consider the functional form

	 bJ (&; st; �2t ; �) = exp[g bJ (� ; &) + h bJ (� ; &)�2t + i&st],(B7)

Now consider of the case of bJ = bF . Since the PDE is satis�ed for any st and �2t , inserting
the functional form equation (B7) into the PDE (B6) yields

g
0

bF (� ; &) = (rt � �m)i& + � bE[expf(h bF (� ; &)�H + i&(Y + �H)g � 1],(B8)

h
0

bF (� ; &) =
i&

2
(�1 + i&)� �h bF (� ; &),(B9)

where � = �� �. The initial condition (B4) implies that

g bF (0; &) = h bF (0; &) = 0.(B10)

Solving the resulting system of ordinary di�erential equations (B8) and (B9) with its initial

condition (B10) produces

g bF (� ; &) = (r � �m)i&� +� bF (h bF (� ; &)),(B11)
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h bF (� ; &) =
i&(1� i&) (e��� � 1)

2�
,(B12)

where

� bF (h bF (� ; &)) = �

(
�

 
ei&��

&2�2

2

A(&)
� 1
!
+ ln

����A(&) +B(&)e���

A(&) +B(&)

����
 
ei&��

&2�2

2

�A(&)

!)
,.

A(&) = 1� i� & +
i� &(1� i&)

2�
, B(&) = �i� &(1� i&)

2�
, h bF (� ; &) =

i&(1� i&) (e��� � 1)
2�

.

In a similar way, I can derive

g bG(� ; &) = (r � �m)i&� +� bG(h bG(� ; &)),(B13)

h bG(� ; &) =
i&(1 + i&)f1� e���g

2�
,(B14)

where

� bG(h bG(� ; &)) = �

(
�

 "
e(i&+1)�+

(i&+1)2�2

2

A(&)

#
�m� 1

!

+ ln

����A(&) +B(&)e���

A(&) +B(&)

����
 
e(i&+1)�+

(i&+1)2�2

2

�A(&)

!)
,.

A(&) = 1�i� (&�i)� i� &(1 + i&)
2�

, B(&) = �i� &(1 + i&)
2�

, h bG(� ; &) =
i&(1 + i&)f1� e���g

2�
.

Hence I have inserted back the \guess" into the PDEs and con�rmed that the \guess" satis�es

the PDE. As a result, I can con�rm that the \guess" is the conditional characteristic functions

for bF and bG. Given the conditional characteristic functions, bF and bG are recovered by using
the following inversion formula:

bF (K; st; �2t ; �) = 1

2
� lim

c!1

Z c

�c

exp(�i& ln(K))
2�i&

	 bF (&; st; �2t ; �)d&,(B15)

bG(K; st; �2t ; �) = 1

2
� lim

c!1

Z c

�c

exp(�i& ln(K))
2�i&

	 bG(&; st; �2t ; �)d&.(B16)
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Table 1: Descriptions for Call Options Data 
 
This table reports the total number of observations and sample averages for daily quoted bid-
ask midpoint prices, effective bid-ask spreads computed as the ask price minus the bid-ask mid 
point, and daily trading volume. The averages are computed over the whole sample period, that 
is September 3rd, 2002 - August 29th, 2003. Short-Term and Medium-Term stand for short-
term (more than 5 and less than 61 trading days) contracts and medium-term (more than 60 
days and less than 181 trading days) contracts, respectively. OTM denotes out-of-the-money 
options satisfying that the spot-strike price ratio (= Spot/Strike) is less than or equal to 0.97, 
ATM represents at-the-money options satisfying that the spot-strike price ratio is more than 
0.97 and less than 1.03, ITM is in-the-money option satisfying that the spot-strike ration is 
more than or equal to 1.03. 
 

 OTM ATM ITM OTM ATM ITM 
 Short-Term Medium-Term 
AMD       
Midpoint of Ask and Bid ($) 0.94 0.72 2.64 0.90 1.49 3.35 
Effective B-A spread 0.07 0.07 0.12 0.07 0.10 0.13 
Daily trading volume 217 170 40 103 168 27 
Number of observations 95 98 1076 673 89 1027 
AOL       
Midpoint of Ask and Bid ($) 0.63 0.89 5.38 0.93 1.76 6.02 
Effective B-A spread 0.06 0.07 0.11 0.07 0.09 0.14 
Daily trading volume 895 877 128 194 240 34 
Number of observations 134 180 2060 754 172 1997 
ORCL       
Midpoint of Ask and Bid ($) 0.59 0.78 4.26 0.86 1.48 4.82 
Effective B-A spread 0.04 0.04 0.09 0.06 0.06 0.10 
Daily trading volume 862 877 148 180 153 24 
Number of observations 143 135 1483 776 183 1891 
IBM       
Midpoint of Ask and Bid ($) 1.36 3.23 20.52 2.46 7.11 22.59 
Effective B-A spread 0.08 0.11 0.27 0.11 0.16 0.30 
Daily trading volume 416 645 53 69 87 12 
Number of observations 767 519 3377 2170 419 3024 
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Table 1: Descriptions for Call Options Data (continued) 
 

 OTM ATM ITM OTM ATM ITM 
 Short-Term Medium-Term 

CSCO   
Midpoint of Ask and Bid ($) 0.63 0.90 5.99 0.96 1.84 6.38 
Effective B-A spread 0.04 0.04 0.10 0.05 0.07 0.11 
Daily trading volume 1748 2188 205 479 520 42 
Number of observations 171 130 1927 796 112 1861 
DELL       
Midpoint of Ask and Bid ($) 0.86 1.29 7.27 1.36 2.89 9.14 
Effective B-A spread 0.06 0.07 0.12 0.08 0.11 0.13 
Daily trading volume 430 595 117 130 87 14 
Number of observations 383 320 2468 1525 342 2908 
INTC       
Midpoint of Ask and Bid ($) 0.72 1.09 6.02 1.13 2.32 7.11 
Effective B-A spread 0.05 0.05 0.09 0.06 0.07 0.10 
Daily trading volume 821 1149 156 192 196 22 
Number of observations 277 202 1958 1092 182 1975 
MSFT       
Midpoint of Ask and Bid ($) 1.07 1.89 10.77 1.78 4.24 11.54 
Effective B-A spread 0.06 0.07 0.11 0.08 0.11 0.14 
Daily trading volume 1293 1319 117 357 176 24 
Number of observations 427 390 3543 1395 316 3074 
S&P 500       
Midpoint of Ask and Bid ($) 10.38 25.17 148.95 15.85 53.38 193.98 
Effective B-A spread 0.40 0.79 1.11 0.60 1.01 1.12 
Daily trading volume 787 1360 106 181 522 26 
Number of observations 4540 3692 9518 5576 1335 5709 
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Table 2: Summary Statistics of the BS Implied Volatility 
 
BS implied volatility is calculated from filtered call options data. Observations of implied 
volatility are restricted on 0.9 < Spot/Strike < 1.1. Mean, StDev, and A(1) refer to the sample 
mean, the sample standard deviation, and the sample first-order autocorrelation coefficient of 
implied volatility. Obs. indicates the number of date contains at least one observation. The 
sample period is September 3rd, 2002 - August 29th, 2003. The total number of observation 
dates is 251. 
 

 Mean StDev A(1) Obs. 
AMD 0.750 0.149 0.963 161 
AOL 0.492 0.119 0.958 242 
ORCL 0.518 0.115 0.958 231 
IBM 0.344 0.077 0.973 251 
CSCO 0.489 0.120 0.969 245 
DELL 0.384 0.076 0.964 251 
INTC 0.487 0.099 0.959 251 
MSFT 0.383 0.069 0.955 251 
S&P500 0.249 0.052 0.949 251 
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Table 3: Empirical Properties of Daily Returns on Technology Stocks and an Index 
 
Mean, StDev, A(1), Skewness, and Kurtosis are sample statistics such as the mean, the 
standard deviation, the first-order autocorrelation, the skewness, the kurtosis of daily returns, 
respectively. JBstat refers to a test statistic that evaluates the hypothesis that returns have a 
normal distribution with unspecified mean and variance against the alternative that they do not 
have a normal distribution. The test scores in bold numbers indicate a 1 percent significance of 
the test. The sample period is September 3rd, 2002 - August 29th, 2003. The returns are not 
adjusted for dividend payments. The transaction prices are used as the prices for all stocks. 
 

 Mean StDev A(1) Skewness Kurtosis JBstat 
AMD 0.0010 0.054 -0.02 -1.25 16.5 1937.2 
AOL 0.0011 0.030 0.01 -0.99 7.4 240.8 
ORCL 0.0012 0.031 -0.14 0.10 3.1 0.5 
IBM 0.0003 0.022 -0.07 0.74 7.1 191.9 
CSCO 0.0013 0.029 -0.05 -0.27 4.0 12.8 
DELL 0.0008 0.020 -0.04 0.49 4.8 41.5 
INTC 0.0022 0.032 -0.18 -0.75 8.3 312.0 
MSFT 0.0003 0.021 -0.14 0.16 3.6 4.8 
S&P500 0.0004 0.014 -0.15 0.15 3.4 2.6 
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Table 4: Autocorrelation of Trading Volume and Correlation between Trading Volume and 
Returns 
 
A(1) is the first-order autocorrelation of trading volume. C(r,tv) and C(|r|,tv) indicate the 
contemporaneous correlation between returns and volume and between the absolute value of 
returns and volume, respectively. The corresponding Spearman's rank correlation coefficients, 
which are used for nonparametric tests of association of two random variables, are shown in 
parentheses on the fifth and sixth columns. The test scores in bold numbers indicate a 1 %-
level rejection of the test of the null hypothesis of no correlation between returns and volume 
or of no positive correlation between the absolute value of returns and volume. See Appendix 
Table 11 in Kendall and Gibbons (1990) for the test statistics. The sample covers September 
3rd, 2002 - August 29th, 2003. The returns are not adjusted for dividend payments. The 
transaction prices are used as the prices for all stocks. 
 

 A(1) C(|r|,tv) C(r,tv) 
AMD 0.59 0.48 (0.37) 0.01 (0.09) 
AOL 0.37 0.46 (0.29) -0.12 (0.16) 
ORCL 0.37 0.45 (0.41) -0.04 (0.03) 
IBM 0.54 0.64 (0.36) 0.05 (0.05) 
CSCO 0.66 0.56 (0.49) -0.00 (0.02) 
DELL 0.52 0.52 (0.39) 0.10 (0.09) 
INTC 0.41 0.50 (0.33) 0.08 (0.17) 
MSFT 0.64 0.15 (0.07) 0.13 (0.14) 
S&P500 0.48 0.28 (0.18) 0.17 (0.10) 
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Table 5: Maximum Likelihood Estimation of GARCH (1,1) with and without Trading Volume 
 
This table reports maximum likelihood estimates of GARCH (1,1) with (γ ≠ 0) and without 
trading volume (γ = 0). The GARCH (1,1) model with volume is: 
 

r(t) = c + (h(t)0.5 )ε(t), 
 

h(t) = ω + αε(t-1)+βh(t-1)+γV(t), 
 

where r(t) is the continuously compounded daily return, V(t) is daily cumulated trading 
volume, c, ω, α, β, γ are constants, and ε(t) ~ i.i.d.(0,1). This specification is the same 
estimated by Lamoureux and Lastrapes (1990). The inferences use standard errors robust to the 
distributional assumptions on ε(t). α+β measures the degree of mean reversion of the volatility 
process. Bold numbers indicate a 1 %-level rejection of the test of the null hypothesis of 
negative or zero coefficients. The sample period is September 3rd, 2002 - August 29th, 2003. 
 

 α β  γ (×10-9) α + β Log-liklihood 
AMD (γ = 0) 0.026 0.961  0.987 401.3 
 0.236 0.102 0.278 0.338 444.3 
AOL (γ = 0) -0.019 1.014  0.995 549.8 
 -0.011 -0.160 0.061 -0.171 565.6 
ORCL (γ = 0) -0.005 0.997  0.992 540.8 
 0.150 0.113 0.027 0.263 545.5 
IBM (γ = 0) 0.085 0.893  0.978 634.4 
 0.106 0.621 0.024 0.727 651.0 
CSCO (γ = 0) -0.014 1.013  0.999 558.9 
 0.059 0.411 0.009 0.471 571.2 
DELL (γ = 0) -0.012 1.015  1.003 628.1 
 0.047 -0.132 0.023 -0.085 648.2 
INTC (γ = 0) -0.014 1.009  0.994 532.1 
 -0.020 -0.249 0.024 -0.270 542.0 
MSFT (γ = 0) -0.019 0.999  0.981 624.1 
 0.136 -0.037 0.010 0.099 620.8 
S&P500 (γ = 0) 0.026 0.965  0.991 731.6 
 0.032 0.962 0.0000054 0.994 731.7 
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Table 6: Model's Valuation Errors from Non-Linear Least Square Estimates Using Data on 
Daily Call Option Prices 
 
This table reports the aggregate in-sample valuation errors of option pricing models using eight 
equity call options and one index call option. The reported valuation errors are the root mean 
squared error (RMSVE). BS, ahBS, JD, SV, SVJ and SVV are represented as the BS, the ad 
hoc BS, the Merton jump model, the stochastic volatility model, the stochastic volatility-jump 
model, and the stochastic volatility-volume model. Average Price, Contracts, and Dates denote 
the average of call option prices in dollar, the total number of call option contracts, and the 
total dates, used for estimation, respectively. The sample period is September 3rd, 2002 - 
August 29th, 2003, 251 days. Bold numbers indicate the smallest for each option.  
 

 BS ahBS JD SV SVJ SVV 
Average 
Price ($) Contracts\Dates

AMD 0.095 0.019 0.060 0.076 0.057 0.055 1.98 407\40 
AOL 0.099 0.018 0.051 0.052 0.034 0.020 3.03 1687\150 
ORCL 0.062 0.014 0.027 0.037 0.02 0.017 2.38 1219\126 
IBM 0.335 0.057 0.134 0.092 0.089 0.070 13.92 5991\251 
CSCO 0.081 0.019 0.034 0.042 0.032 0.021 3.34 1727\173 
DELL 0.156 0.031 0.058 0.059 0.050 0.044 5.38 4351\247 
INTC 0.093 0.018 0.039 0.058 0.033 0.031 3.73 2675\239 
MSFT 0.197 0.028 0.067 0.059 0.051 0.048 8.35 4713\215 
S&P500 2.020 0.679 1.196 0.956 0.739 0.717 90.27 20699\251 
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Table 7: Summary Statistics for Parameters Estimates of the SVV Model 
 
This table provides sample means, medians, the fifth and the ninety-fifth percentiles and 
sample standard deviations of the SVV model's parameters estimated daily in the sample 
periods using the non-linear least squares. 
 

 β (×10-9) λ γ (×109) µ φ θ ψ (×109) ρ (×10-9)
AMD         
Mean 546.03 258.05 0.00 -2.40 0.31 1.20 0.52 3.97 
StDev 3367.30 1625.70 0.01 6.93 1.20 1.68 1.10 16.57 
5th percentile 0.30 0.00 0.00 -18.42 0.00 0.00 0.00 0.00 
Median 1.26 0.01 0.00 -0.39 0.00 0.38 0.00 0.00 
95th percentile 59.21 7.18 0.01 -0.04 0.79 3.32 2.73 18.22 
AOL         
Mean 5.19 1.84 0.06 -1.95 0.13 0.82 89.43 7.47 
StDev 6.67 3.49 0.57 5.48 0.68 0.98 830.00 80.29 
5th percentile 0.20 0.02 0.00 -18.42 0.00 0.11 0.00 0.00 
Median 1.88 0.43 0.00 -0.54 0.00 0.52 0.00 0.00 
95th percentile 17.20 6.76 0.19 -0.10 0.44 2.96 2.64 2.10 
ORCL         
Mean 4.07 3.38 0.22 -1.12 0.05 1.53 796.19 0.04 
StDev 5.24 7.94 1.89 3.63 0.24 1.77 6335.90 0.15 
5th percentile 0.14 0.04 0.00 -1.93 0.00 0.10 0.00 0.00 
Median 2.89 1.84 0.00 -0.44 0.00 0.98 0.04 0.00 
95th percentile 10.08 7.88 0.32 -0.11 0.24 4.63 1.32 0.19 
IBM         
Mean 7.30 3.18 0.04 -0.29 0.03 2.22 0.26 0.34 
StDev 7.43 5.02 0.12 1.08 0.07 2.79 3.00 4.55 
5th percentile 0.44 0.12 0.00 -0.46 0.00 0.42 0.00 0.00 
Median 4.91 1.36 0.00 -0.23 0.00 1.30 0.03 0.00 
95th percentile 20.53 10.21 0.27 -0.05 0.20 5.99 0.32 0.02 
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Table 7: Summary Statistics for Parameters Estimates of the SVV Model (continued) 
 

 β (×10-9) λ γ (×109) µ φ θ ψ (×109) ρ (×10-9)
CSCO         
Mean 2.83 6.03 0.06 -1.04 0.05 1.15 0.28 1.04 
StDev 2.99 13.42 0.21 3.17 0.11 1.28 0.85 9.26 
5th percentile 0.23 0.25 0.00 -1.76 0.00 0.12 0.00 0.00 
Median 2.17 2.46 0.00 -0.39 0.00 0.78 0.06 0.00 
95th percentile 6.85 18.06 0.71 -0.12 0.32 3.98 0.72 1.05 
DELL         
Mean 2.94 2.83 0.06 -0.70 0.04 1.46 0.16 0.08 
StDev 2.42 4.48 0.15 2.89 0.16 1.12 0.25 1.02 
5th percentile 0.30 0.15 0.00 -0.66 0.00 0.23 0.00 0.00 
Median 2.18 1.35 0.00 -0.24 0.00 1.20 0.09 0.00 
95th percentile 7.50 7.90 0.39 -0.09 0.22 3.71 0.60 0.02 
INTC         
Mean 1.96 1.67 0.08 -0.72 0.04 0.71 0.18 0.09 
StDev 1.32 1.50 0.19 1.59 0.15 0.59 0.48 0.26 
5th percentile 0.29 0.25 0.00 -1.34 0.00 0.05 0.00 0.00 
Median 1.71 1.14 0.00 -0.47 0.00 0.56 0.01 0.00 
95th percentile 4.20 4.17 0.49 -0.14 0.20 1.62 0.95 0.55 
MSFT         
Mean 1.42 1.93 0.14 -0.66 0.05 1.29 2.37 0.02 
StDev 1.26 2.40 0.33 2.36 0.14 1.48 29.14 0.08 
5th percentile 0.10 0.06 0.00 -1.07 0.00 0.07 0.00 0.00 
Median 1.10 0.98 0.00 -0.28 0.00 0.84 0.11 0.00 
95th percentile 4.07 6.19 0.96 -0.09 0.27 3.66 1.31 0.11 
S&P 500         
Mean 0.03 8.63 6.80 -1.76 0.12 1.28 4571.90 0.13 
StDev 0.03 29.67 47.08 4.50 0.62 2.05 6128300 1.41 
5th percentile 0.00 0.00 0.00 -15.43 0.00 0.04 0.00 0.00 
Median 0.03 3.04 0.00 -0.26 0.00 0.69 0.00 0.00 
95th percentile 0.06 23.85 23.94 -0.03 0.14 4.34 50.68 0.03 
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Table 8: Out-of-Sample Prediction Errors 
 
This table presents the aggregate out-of-sample prediction errors for the six models and eight 
equity and one index call options. Four measures are reported. RMSVE, AMVE, MPPE 
represent the root mean squared valuation error (in $), the absolute mean valuation error (in $), 
the mean percentage pricing error (in %), respectively. Bold numbers indicate the smallest for 
each option’s RMSVE and AMVE.  

 BS ahBS JD SV SVJ SVV 
AMD       
RMSVE 0.059 0.065 0.057 0.058 0.055 0.057 
AMVE 0.050 0.049 0.044 0.048 0.045 0.044 
MPPE -0.007 0.010 -0.012 -0.010 -0.013 -0.015 
AOL       
RMSVE 0.103 0.099 0.068 0.066 0.055 0.045 
AMVE 0.086 0.071 0.056 0.055 0.044 0.037 
MPPE -0.015 -0.020 0.012 -0.009 -0.002 -0.003 
ORCL       
RMSVE 0.067 0.084 0.040 0.049 0.038 0.037 
AMVE 0.057 0.064 0.033 0.041 0.032 0.031 
MPPE -0.008 -0.026 0.003 -0.003 0.001 0.000 
IBM       
RMSVE 0.348 0.406 0.170 0.151 0.147 0.134 
AMVE 0.288 0.279 0.131 0.122 0.118 0.107 
MPPE -0.058 -0.043 0.002 -0.012 -0.012 -0.005 
CSCO       
RMSVE 0.090 0.052 0.055 0.061 0.057 0.048 
AMVE 0.074 0.039 0.042 0.049 0.046 0.038 
MPPE -0.011 -0.003 0.004 -0.005 -0.005 -0.001 
DELL       
RMSVE 0.165 0.142 0.086 0.090 0.087 0.081 
AMVE 0.133 0.098 0.064 0.070 0.066 0.061 
MPPE -0.033 -0.019 -0.004 -0.008 -0.007 -0.006 
INTC       
RMSVE 0.099 0.101 0.059 0.075 0.059 0.054 
AMVE 0.083 0.076 0.048 0.063 0.049 0.046 
MPPE -0.018 -0.020 0.002 -0.013 -0.008 -0.005 
MSFT       
RMSVE 0.206 0.134 0.096 0.098 0.092 0.087 
AMVE 0.168 0.100 0.078 0.080 0.075 0.071 
MPPE -0.036 -0.014 -0.003 -0.006 -0.005 -0.006 
S&P 500       
RMSVE 2.360 1.883 1.862 1.726 1.662 1.816 
AMVE 1.768 1.377 1.385 1.303 1.271 1.428 
MPPE -0.048 -0.014 -0.006 -0.026 -0.019 -0.018 



  

Figure 1: BS Implied Volatility 
 

The two panels show BS implied volatility of CSCO and S&P 500 index call options over 
moneyness observed on March 27th, 2003. The legends indicate time to expiration of option 
contracts in terms of trading days.  
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Figure 2: Dynamics of Implied Volatility of S&P 500 Index Call Option 
 

The figure illustrates time-variations in BS implied volatility of S&P 500 index call options. Daily 
implied volatility is computed as the average over moneyness (0.9 < Spot/Strike <1.1) and time to 
expiration (more than 5 trading days and less than 181 trading days). The sample period is 
September 3rd, 2002 - August 29th, 2003. The total number of observation dates is 251. 
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Figure 3: Stock Price or Index and Trading Volume (CSCO, SPX)  
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Figure 4: Correlations between Trading Volume (t + i) and Absolute Value of Returns (t)  
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Figure 5: Autocorrelation Function of Trading Volume  
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Figure 6: Call Implied Volatility Surface Generated by the Stochastic Volatility and Volume 
Model 

 
A Benchmark Selection of Parameters: β = 1.26×10-15, λ = 1.05×105, γ = 8.27×1019, θ = 0.60, µ = 
-0.10, φ = 0.10, ψ = 6.49×1013, ρ = 3.36×10-29. The current price of the underlying stock, the 
current annual volatility of the return, and the annual risk-free rate are set to be 41.22 (the close 
level of S&P 500 index on September 3rd, 2002), 0.32 (the daily standard deviations on 
September 3rd, 2002 for returns on the S&P 500 index, and the daily standard deviations are 
computed as sample standard deviations of 10 minute returns on September 3rd, 2002 
transforming in a yearly basis by multiplied by the root of 252×39), 0.016 (the average of the 
midpoint of ask and bid T-bill rates on September 3rd, 2002 over time to maturity 2 to 176 days), 
respectively.  
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Figure 7: Effects of Parameters in the SVV Model on Implied Volatility 
 

In each figure, the value of a parameter in the SVV model is changed. The other parameter values 
are the same with the benchmark selection. The current price of the underlying stock, the current 
volatility of the return, and the risk-free rate are kept the same values in Figure 6. The time to 
expiration is set as 76 trading days. 
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Figure 7: Effects of Parameters in the SVV Model on Implied Volatility (continued) 
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Figure 7: Effects of Parameters in the SVV Model on Implied Volatility (continued) 
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Figure 8: Term Structure of Implied Volatilities 
 

The implied volatilities are those of at-the-money call options with the ratio of the spot price to 
strike rate of one. LVOL denotes the long-term volatility in an annual rate. The selection of 
parameters corresponds to the benchmark choice in Figure 6, except for λ. Two λs are set so that   
the long-term volatility is 0.22 (the benchmark selection) and 0.5.  
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