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Abstract

This paper generalizes the goodness of fit tests of Claeskens and Hjort (2004) and

Marsh (2006) to the case where the hypothesis specifies only family of distributions.

Data driven versions of these tests are based upon the Akaike and Bayesian selection

criteria. The asymptotic distributions of these tests are shown to be standard, unlike

those based upon the empirical distribution function. Moreover, numerical evidence

suggests that under the null hypothesis performance is very similar to tests such as

the Kolmogorov-Smirnov or Anderson-Darling. However, in terms of power under the

alternative, the proposed tests seem to have a consistent and significant advantage.



1 Introduction

Recently two papers, Claeskens and Hjort (2004) and Marsh (2006) have introduced

new nonparametric likelihood ratio goodness-of-fit tests. Those tests are essentially

based upon Portnoy’s (1988) test applied in the context of an exponential series

density estimator. The given tests are then the likelihood ratios of that nonparametric

estimate to either a specified parametric density, in Claeskens and Hjort (2004), or

the entropy minimizing approximate density, in Marsh (2006). There, as here, the

choice of dimension of the approximate density is data driven via the selection criteria

of Akaike (1974) and Schwarz (1978).

This paper extends the application of this testing principle to the general case

in which only the general form of a family of distributions is hypothesized, with

the parameters of that family unspecified. The most commonly used tests in this

circumstance are those based upon the empirical distribution function (edf), such as

the Kolmogorov-Smirnov (KS) and Cramér-von Mises (CM) procedures. However, it

is well known that tests based on the edf are generally not asymptotically pivotal.

Indeed, as is clear from the analysis of Stephens (1976) and more recently Babu

and Rao (2004), the asymptotic distribution of such tests may depend not only upon

the hypothesized family of distributions, but also upon the particular parameters of

that family. For example, simply to cover all permutations in the Gaussian family

four sets of critical values are required, see Stephens (1974, 1976). Further critical

values are required for other commonly tested families such as the Gamma (see Pettitt

(1978)), the special cases of the Exponential with unknown mean (Lilliefors (1969))

and also with unknown mean and scale (Spinelli and Stephens (1987)).

The test considered in this paper is shown to be, under standard regularity condi-

tions, asymptotically pivotal. That is the asymptotic distribution is the same within

and across different hypothesized families. Moreover the asymptotics involved are

standard. When appropriately standardized, with respect to the dimension of the

approximating exponential, the test is asymptotically standard normal. Thus the
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asymptotic distribution applies in all relevant cases, unlike that for edf based sta-

tistics. It is also straightforward to establish that the test is consistent against any

fixed alternative. The paper also contains an exhaustive numerical study in which

it is shown that the size properties of a version of the new test are very similar to

those tests based on the edf. However, for cases involving both the Gaussian and

Exponential null hypotheses the new test has a significant relative power advantage.

2 Preliminaries

Suppose that our sample y= {yi}ni=1are i.i.d. copies of a random variable Y having

distribution

Pr[Y ≤ y] = F (y),

and we wish to test the goodness-of fit hypothesis

H0 : F (y) = F (y;β), (1)

where F (., .) is specified up to the unknown k×1 vector β. Let β̂n denote the maximum
likelihood estimator (mle) for β based upon the sample y.

To proceed consider the (possibly composite) function h = h(y;β) : R×Rk →
(0, 1) and suppose that the following assumption holds:

Assumption 1 :

i) The mle is uniformly consistent and

√
n(β̂n − β) = Op(1) (2)

ii) Let Hi(β) = ∂h(Yi; β)/∂β and let B be a ball of radius ε/
√
n for ε > 0, then

lim
n→∞

sup
β∈B

|Hi(β)| ≤ c <∞ for all i = 1, .., n (3)

(iii) Let m be an asymptotic parameter satisfying m = o(n1/3).
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On the basis of Assumption 1, if we define

xi = h(yi; β̂n),

then from a mean value expansion for h(Yi, .)

h(yi; β̂n) = h(yi;β) +
�
β̂n − β

��
Hi(β

∗
i ),

for each mean value β∗i lying on a line segment joining β̂n and β. We can write

xi = hi + ei,

where xi is as above, hi = h(yi; β) is an i.i.d. random variable, having density q(h),

say, and from (2) and (3) of Assumption 1

ei = ei (F, h,β
∗
i ) = Op(n

−1/2),

so the ei are degenerate random variables depending upon the distribution F , the

function h and the value β∗. By construction h ∈ (0, 1), so that the random variables
xi, hi and ei are bounded as in

xi, hi ∈ (0, 1) ; ei ∈ (−1, 1). (4)

To proceed we shall define three vectors of raw sample moments up to and includ-

ing the mth lying in the sample space Φ ⊂ Rm, with

x̄ = n−1
+

n[
i=1

xji

,m
j=1

, h̄ = n−1
+

n[
i=1

hji

,m
j=1

and ē = n−1
+

n[
i=1

eji

,m
j=1

. (5)

Analogously we can also define the population moments corresponding to these ran-

dom variables as

ξ =
�
ξj
�m
j=1

; ξj =

Sn
i=1E[(xi)

j]

n
≤ ∞

η =
�
ηj
�m
j=1

; ηj = E[(hi)
j] ≤ ∞

ε = {εj}mj=1 ; εj =

Sn
i=1E[(εi)

j]

n
≤ ∞, (6)

with the finiteness of these moments guaranteed by (4).
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3 The Density Estimator

The properties of the exponential series density estimator were first detailed by Crain

(1974), and refined and extended by Barron and Sheu (1991). Suppose that we have

n observations on the i.i.d. hi (for the purposes of this exposition we will simply

assume that the density q(h), defined on (0, 1), satisfies the conditions of Barron and

Sheu (1991)). The exponential series density estimator of the density q(h) is the

maximum likelihood estimator in the (infinite) exponential family,

ph(θ) = exp

+
m[
j=1

θjφj(h)− ψm (θ)

,
, (7)

where Θ is the m dimensional parameter space, the φj(.) are linearly independent

functions spanning Rm and the cumulant function ψm (θ) is given by

ψm (θ) = ln

] 1

0

exp

+
m[
j=1

θjφj(h)

,
dh.

For the sample h = (h1, .., hn), the density estimator is defined by

ph(θ̂) = lim
m,n→∞ ,m/n→0

sup
θ∈Θ⊂Rm

exp

+
m[
j=1

θj

n[
i=1

φj(hi)− nψm (θ)
,
. (8)

Although there are a number of different choices for the functions φj(.) for simplicity

we will assume that they are polynomials. The difference between the set-up here

and that of the papers by Crain (1974) and Barron and Sheu (1991) is that we don’t

observe the hi, but instead the xi. We will also explicitly choose a polynomial basis

with

φj(h) = h
j.

As Marsh (2006) details, choosing polynomials over say trigonometric series has little

numerical effect, in the known parameter case. Since, as far as the estimator itself

is concerned, the effect of estimating nuisance parameters has only a small impact

upon its numerical accuracy, according to evidence presented below, the same is true

in this case also.
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To apply the exponential series density estimator, note that the mle θ̂ given in

(7) can be written as the solution to a set of m equations, as in] 1

0

hj ph
�
θ̂
�
dh = h̄ ; j = 1, ..,m. (9)

Analogously, and since the law of large numbers implies n−1
Sn

i=1 h
j
i →p η0j, then we

can define a value θ0 by] 1

0

hj ph (θ0) dh = η0 ; j = 1, ..,m, (10)

with η0 =
�
η0j
�m
j=1

and ph (θ0) is the minimum entropy estimator for p(h) in the

exponential family. Finally, since in fact we observe {xi}n1 , then we define the value
θ̃ by ] 1

0

hjph
�
θ̃
�
dh = x̄. (11)

Importantly, given the values h̄, η and x̄ in Rm the parameter values θ̂, θ0 and θ̃, are

uniquely determined via the convexity of the exponential likelihood, see Barron and

Sheu (1991).

To detail the asymptotic properties of the estimated density ph
�
θ̃
�
, suppose that

we have chosen h so that the log-density lp(h) = log[p(h)] has r − 1 absolutely
continuous derivatives and that its rth derivative, drlp(h)/dhr is square integrable,

i.e. so that lp(h) ∈ W r
2 , the Sobolev space of functions on [0, 1]. Also define the

relative entropy for two densities p1 and p2 by

D[p1 | p2] =
] 1

0

ln

�
p1(h)

p2(h)

�
p(h)dh,

then:

Theorem 1 Let θ̃ denote the estimated exponential parameter determined by (11)

and suppose that the conditions in Assumption 1 are met, then

D[p(h) | ph(θ̃)] = Opr
�
m−2r +m/n

�
.
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Theorem 1, proved in Appendix I, demonstrates that in terms of the density

estimator itself the effect of observing {xi}n1 rather than {hi}n1 is asymptotically neg-
ligible, provided that the conditions of Assumption 1 are met. The rate of convergence

of the estimator in the simpler case is at least of order Op
�
n−

2r
1+2r

�
when m is chosen

optimally so that m ∝ n 1
1+2r . It should not be surprising that the rate of convergence

is unaffected when parameters are replaced by
√
n uniformly consistent estimators.

In the following section the details of the proposed nonparametric likelihood ratio

test will be given along with it’s asymptotic distributions under both the null and

alternative.

4 The Likelihood Ratio Test

As in the simpler goodness-of-fit case the proposed test is the likelihood ratio test

of Portnoy (1988) applied via the density estimator of Crain (1974) and Barron and

Sheu (1991). That is, we replace the goodness of fit hypothesis, with one within the

(infinite) exponential family (7) i.e.,

H0 : F (y) = F (y; β)⇒ H0 : h ∼ lim
m→∞

P (θ0), (12)

where ph(θ0) = dP (θ0) and θ0 is the solution to (10). It is important to note that

P (θ0) represents the distribution of the transformed observations x = h(y, β). How-

ever, given observations on {xi}n1 rather than the unobserved {hi}n1 Portnoy’s (1988)
test becomes

Λm = 2 log

px
�
θ̃
�

px (θ0)


= 2n

��
θ̃ − θ0

��
x̄−

�
ψm

�
θ̃
�
− ψm (θ0)

��
, (13)

where θ̃ is the solution to (11).

For every alternative distribution for Y there is a unique alternative distribution

for h on (0, 1) and associated with that distribution will be another consistent density
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estimator given by say, ph(θ1). In practice, of course, θ1 will neither be known nor

specified. None-the-less, as with analogous tests in the parametric exponential family,

(12) will be rejected for large values of Λm.

The following Theorem, again proved in the appendix gives the asymptotic dis-

tribution of the likelihood ratio test statistic both under the null hypothesis (12) and

also demonstrates consistency against fixed alternatives.

Theorem 2 Suppose that we construct {xi}ni=1 as described above and that the con-
ditions required in Assumption 1 are met, then

(i) Under the null hypothesis H0 : h ∼ limm→∞ P (θ0),

lim
m,n→∞ ; m=o(n1/3)

Λm −m√
2m

∼ N(0, 1) + op(1). (14)

(ii) Under any complementary alternative H1 : h ∼ Q 9= P (θ0), then for any critical
value kα of size α < 1

lim
m,n→∞ ; m=o(n1/3)

Pr

�
Λm −m√
2m

≥ kα
�
= 1. (15)

Theorem 1 applies for any distribution of Y satisfying Assumption 1 and any

function h(y; β) which has a density satisfying the conditions of Barron and Shue

(1991). Consequently, the asymptotic distribution of the test is the same both across

and within families of distributions. This is not so for those tests based on the edf.

As with the simplest case considered in Claeskens and Hjort (2004) and Marsh

(2006) it is possible to demonstrate the existence of power against local alternatives

of the form

H0 : lim
m→∞

h ∼ P (θ1) ; θ1 = θ0 + c

u√
m

n
, c�c = O(1).

However, since in this more general case the precise parameter values are irrelevant

ascribing significance to such alternatives is difficult. More important will be the

comparative numerical properties of the test, as described in the following section.
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Before proceeding, as with the tests in both Portnoy (1988) and Marsh (2006),

an approximation based upon (14), but utilizing the Chi-square distribution, as in,

lim
m,n→∞ ; m=o(n1/3)

Λm ∼ χ2(m),

will prove a more relevant approximation in finite samples. Moreover, in practical

applications the remaining unresolved issue remaining is the choice of m.

Here we will employ the data driven model selection criteria of Akaike (1974) and

Schwarz (1978). To implement these, define the set of integersM = {1, 2, ..., m̄} , and
let the estimated dimensions based upon these criteria be m̂A and m̂B, respectively,

which satisfy

m̂A = argmax
m∈M

k
log px

�
θ̃
�
−m

l
m̂B = argmax

m∈M

k
log px

�
θ̃
�
−m logn

l
. (16)

As with the simpler case either criteria will deliver a consistent density estimator in

the sense that if we allow m̄ to grow but satisfying m̄ = o(n1/3), then both m̂A and

m̂B will diverge. Although in a finite family m̂A will over-fit, this is not possible in

this, asymptotically, infinite family.

5 Numerical Properties

5.1 Properties of the density estimator with estimated para-

meters

Before detailing the goodness-of-fit test in this circumstance we can enumerate pre-

cisely the effect that having to estimate unknown parameters has on the series density

estimator of Crain (1974). The Kullback-Leibler distance (or relative entropy) from

the true density q(h) to the estimated density ph(θ̃) may be fully decomposed as

D[q(h) | ph(θ̃)] = D[q(h) | ph(θ0)] +D[ph(θ0) | ph(θ̂)] +D[ph(θ̂) | ph(θ̃)]. (17)
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While the first term in (17) may be evaluated explicitly, the last two instead need to

be simulated. To proceed consider two experiments,

(i): Y ∼ Exp(1) and (ii): Y ∼ N(0, 1),

and define

hi =
3
s
F (yi; β) ; xi =

3

t
F (yi; β̂), (18)

where F (y, β) is the distribution function of either case (i) or (ii) and β̂ is the max-

imum likelihood estimator of the parameters of that distribution on the basis of

the sample {xi}n1 . Choosing the cube root in (18) implies that the density of h is
q(h) = 3h2. Given this density for any dimensionm the unique vector θ0 can be found

via (10). From that density the distance D[p(h) | ph(θ0)] can be explicitly calculated,
the values for which are given in Table 1a. Notice that from a purely numerical per-

spective there is very little to be gained from choosing dimensions greater than say

m = 5.

Given samples {hi}n1 and {xi}n1 the respective estimators θ̂ and θ̃ can be deter-

mined from (9) and (11). From the associated density estimators the quantities

D[ph(θ0) | ph(θ̂)] and D[ph(θ̂) | ph(θ̃)] can then be calculated. Replicating these 5000
times over both experiments, for four samples sizes of n = 50, 100, 200, 400 and for

dimensions of m = 1, 2, 3, 4, 5, these distances can be numerically evaluated via the

Monte Carlo sample averages of the replicated distances.

These values are presented in Tables 1b (for experiment (i)) and 1c (for (ii)). From

Table 1 it is clear that the overwhelmingly significant contribution to entropy, in (17),

is D[ph(θ0) | ph(θ̂)] which measures our ability to estimate the approximate density
ph(θ). Both our ability to approximate p(h) with ph(θ) and the effect to of having to

estimate β, i.e. using θ̃ rather than θ̂ has a relatively small numerical impact. Thus

we may concentrate on providing tests with good statistical properties, i.e. size and

power, rather than on the basis of the density estimator itself.
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5.2 Size and power properties

In this subsection we shall contrast the finite sample numerical behaviour of the

proposed tests based on (13) with those commonly used tests based upon the edf,

specifically the KS, CM and Anderson-Darling (AD) tests. These tests are given in

either Stephens (1976) or Conover (1999), along with the relevant critical values for

all the cases considered here. All of the experiments in this section are based upon the

following procedure. The variables {yi}ni is generated from a particular distribution,

F (y;β), while samples lying in (0, 1) are then constructed from

xi =
3

t
F (yi; β̂),

so that the relevant density is q(h) = 3h2. For a given m, the test statistic Λm is

constructed as described above.

The first set of experiments (based upon 5000 replications and for sample sizes of

n = 100, 200, 400) concern testing the respective null hypotheses,

Ha
0 : Y ∼ Exp[µa],
Hb
0 : Y ∼ N(µb,σ2),

where µa, µb and σ2 are to be estimated. Here we shall first consider the impact

of choosing different values of m for the approximation. Data were generated using

specified values of µa = 1, µb = 0 and σ2 = 1. Tables 2a and 2b give the rejection

frequencies of asymptotic critical values, at both the 5% and 10% significance level,

based upon the χ2(m) approximation for Λm and based upon tabulated values for the

KS, CM and AD tests. Naturally, different critical values are required for the latter

three tests for each of the hypotheses. For hypothesis Ha
0 the values of m = 6, 9, 12

were chosen while for Hb
0, m = 6, 9, 12, 15 are used.

Two salient points are worth highlighting from Table 2. First it is clear that there

are versions of the new test which have very similar size properties to those of the

commonly used tests. Second is that to achieve that, the dimension m needs to be
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quite large. This is particularly so for the second hypothesis, which involves an extra

parameter to be estimated. Indeed for these cases, on the sole basis of finite sample

size, it is necessary that m is larger than for the simpler hypotheses considered in

Claeskens and Hjort (2004) and Marsh (2006). Commensurate with that is that the

approximation is acceptable only for large sample sizes.

From the numerical work of Marsh (2006) and also that to be presented below,

both of the data driven selection criteria in (16) tend to favour model dimensions

significantly below those delivering acceptable finite sample size performance. Con-

sequently, we shall also employ a numerical correction to the resulting statistics Λm̂A

and Λm̂B
, based upon the principle of Bartlett correction. For a given family F (y; β)

and sample size n we can construct an estimator of the mean of Λm via re-sampling

from ỹi ∼ F (y; β̂) where β̂ is the estimator obtained from {yi}n1 . Resampling say R
times and constructing {Λm,r}Rr=1we define, for any m,

υm,R =
1

R

R[
r

Λm,r,

so that as n → ∞, β̂ →p β and as R → ∞, limm υm,R →p limm,nE[Λm] = m.

Consequently, we can construct a numerical Bartlett-type correction, giving

m
�
Λm
υR
− 1
�

√
2m

→d N(0, 1),

and with a Chi-square approximation

lim
m,n→∞ ; m=o(n1/3)

Λ̄m =
mΛm
υR

∼ χ2(m). (19)

It is important to note that no higher-order claim is being made for the approximation

in (19). Moreover, the resampling scheme proposed is not a Bootstrap. Specifically

υR need only be calculated once within any family F (y; β), for each m. Thus the

computational burden is very low compared to a scheme which would resample for

each replication of a simulation study. Although such schemes have been suggested,

for example in Janssen, Swanepoel and Veraverbeke (2005), they were not actually
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applied. Moreover, the evidence here suggests that such schemes, and the computa-

tional cost involved, are not necessary in order to get acceptable behaviour under the

null hypothesis.

Consequently, all further experiments are performed on the basis of choosing the

dimension m via (16), optimizing over M = {1, 2, 3, 4} and correcting the resulting
statistics via (19) with R = 250. For each family, each correction factor υm,R took

between 1 and 2 minutes to compute on a Pentium IV 3.0Ghz. The experiments

presented in Tables 3a and 3b are entirely analogous those presented in Tables 2a

and 2b, excepting that the sample sizes are now n = 25, 50 and 100. Tables 4a

and 4b repeat these experiments but with data generated by Exp[5] and N [1, 2]

random variables, respectively. Once again the tables indicate that the new test,

albeit with this numerical Bartlett-type correction, has size broadly comparable with

those commonly used tests. In fact for small samples perhaps the new tests performs

slightly better, particularly so compared to the KS test. In addition there is nothing

to choose between either of the dimension selection criteria.

The final set of experiments concern the relative power of all of the tests. First

we shall test

H0 : Y ∼ Exp[1] vs. H1 : Y ∼ Γ(v, 1),

where Γ(v, 1) denotes a Gamma random variable. Values for values of v ranging

from −1.44 to 0.56 were used, with the null hypothesis implying that v = 1. Fixing
the sample size at 100, simulated critical values were taken from the experiments

used to generate Table 2a. Then those experiments were repeated, but with the

data generated under the alternative hypothesis. The rejection frequencies of those

simulated critical values are recorded in Table 5. Similar experiments were conducted

for tests of

H0 : Y ∼ N(0, 1) vs.

 Ha
1 : Y ∼ χ2(v)− v
Hb
1 : Y ∼ t(v)

,

where χ2(v) − v and t(v) are centered Chi-square and Student-t random variables,

respectively. Rejection frequencies under the alternatives are presented in Tables 6a
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and 6b, respectively, for ranges of values of v.

Under these alternatives there are now significant differences in the performances

of the tests. While there is still nothing to choose between the dimension selection

criteria, either produces a new test which is significantly more powerful than any of

those based upon the empirical distribution function.

6 Conclusions

This paper has extended the nonparametric likelihood ratio goodness-of-fit tests of

Claeskens and Hjort (2004) and Marsh (2006) to cover all cases involving estimated

parameters. Specifically it has been demonstrated that having to estimate unknown

parameters does not affect the rate of convergence of either the density estimator of

Crain (1974) and Barron and Sheu (1991), nor of the associated likelihood ratio test

of Portnoy (1988). Moreover it is therefore straightforward to so that the new test

has an asymptotic distribution which depends upon neither the family being tested,

nor the particular member of that family. Thus the test has significant theoretical

advantages over those based upon the empirical distribution function.

Numerical evidence suggests that the impact of having to estimate parameters on

the density estimator is quite negligible. In terms of the associated new test, initially

it was found that the dimension of the model needed to be quite large in order that

asymptotic critical values had usable finite sample properties. In order to deliver

a more practical procedure data driven dimension selection criteria were employed.

Utilizing a very simple and efficient numerical correction practical versions of the

new test were demonstrated to have very competitive performance under different

null hypotheses. Moreover, under relevant alternatives the new tests were shown to

be significantly more powerful.
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Appendix I: Proofs
In order to avoid any ambiguity throughout this appendix the order of magnitude

symbol O(.) is defined by

an,m = O (bn,m)⇐⇒ lim
m,n→∞ ; m3/n→0

an,m
bn,m

≤ c1 <∞,

and analogously for the probabilistic versions Op(.) and op(.). If the quantity un-

der scrutiny does not depend upon the dimension m then the condition m3/n → 0

becomes redundant.

Proof of Theorem 1:

Consider the vectors given in (5)

x̄ =
1

n

#
n[
i=1

xi, ...,
n[
i=1

xmi

$�

h̄ =
1

n

#
n[
i=1

hi, ...,
n[
i=1

hmi

$�
,

and the Euclidean distance between them

��x̄− h̄�� = �����1n
#

n[
i=1

(xi − hi) , ...,
n[
i=1

(xmi − hmi )
$������ .
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Taking a typical element, the jth, and noting xi = hi + ei

1

n

n[
i=1

�
xji − hji

�
=

1

n

n[
i=1

j[
s=0

�
j!

s!(j − s!)h
j−s
i esi − hji

�

=
1

n

n[
i=1

j[
s=1

j!

s!(j − s!)h
j−s
i esi .

Since hi = Op(1) and hi ∈ (0, 1) while ei = Op(n−1/2) and ei ∈ (−1, 1) then

hj−si = Op(1) and esi = Op(n
−s/2)

and so
j[
s=1

j!

s!(j − s!)h
j−s
i esi = Op(n

−1/2) for all j,

and hence

1

n

n[
i=1

�
xji − hji

�
=
1

n

n[
i=1

j[
s=1

j!

s!(j − s!)h
j−s
i esi = Op(n

−1/2).

Consequently and from the definition of Euclidean distance we have,

��x̄− h̄�� =
yxxw m[

j=1

#
1

n

n[
i=1

�
xji − hji

�$2
= Op

�u
m

n

�
. (20)

Considering now the population moment vector η, then from the triangle inequal-

ity we have

|x̄− η| ≤ ��h̄− η
��+ ��x̄− h̄�� = Op�um

n

�
, (21)

which follows from (20) and the same order of magnitude applies for the first distance,

see Barron and Sheu (1991).

Extending the decomposition of the Kullback-Leibler divergence of Barron and

Sheu (1991) we obtain,

D[p(h)|ph(θ̃)] = D[p(x)|ph(θ0)] +D[ph(θ0)|ph(θ̂)] +D[ph(θ̂)|ph(θ̃)]. (22)

From Barron and Sheu (1991) the first two terms are, respectively, O(m−2r) and

Op(m/n). Application of Lemma 5 in Barron and Sheu (1991), which holds for any

two values in Rm, uniquely defined by equations as in (9) and (11) implies

O(D[ph(θ̂)|ph(θ̃)]) = Op
���h̄− x̄��2� = Op �m

n

�
,
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and hence

O(D[p(h)|ph(θ̃)]) = O (D[p(x)|ph(θ0)) +Op
�m
n

�
= O(m−2r) +Op

�m
n

�
,

as required.

Proof of Theorem 2:

Part (i): To proceed we have defined

Λm = 2n

��
θ̃ − θ0

��
x̄−

�
ψm

�
θ̃
�
− ψm (θ0)

��
,

where θ̃ solves (11), or alternatively

ψ�m
�
θ̃
�
=

∂ψm

�
θ̃
�

∂θ

������
θ=θ̃

= x̄. (23)

Similarly the value θ0 is defined by

ψ�m (θ0) = η0 = E(h̄). (24)

Since the exponential log-likelihood is strictly convex then the mapping

θ(η) : ψ�m (θ) = η

is one-to-one between the parameter space Θ and sample space Φ and application of

both (5.6) of Lemma 5 in Barron and Sheu (1991) and also (21) gives

O(|θ̃ − θ0|) = O (|x̄− η0|) = Op
�u

m

n

�
. (25)

As a consequence of both (25) and (21) we have that

O(|θ̃ − θ0|) = O
�
|θ̂ − θ0|

�
and O(|x̄− η0|) = O

�|h̄− η0|
�
.

Now let U = V − Eθ0[V ], V ∼ pv (θ0) , then the moment conditions (2.4) and (3.2)
of Portnoy (1988) are trivially satisfied since here the elements of V = {vj}mj=1 are
bounded, i.e. vj ∈ (0, 1). Moreover the expansions provided in Portnoy (1988) in the
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proofs of Theorem 3.1 and 3.2 apply for any two pairs of values in
�
θ̃, θ0

�
and (x̄, η0)

given the orders of error satisfy (25).

As there without loss of generality we may assume that the exponential family is

parameterized such that

ψ�m (θ0) = η0 = Eθ0 [h̄] = 0 and ψ��m (θ0) = V arθ0[h̄] = Im, (26)

that is it is h̄ which is assumed to be standardized not x̄. None-the-less using (23) and

exploiting (26) we have expansions analogous to (3.5) and (3.6) of Portnoy (1988),

|θ̃ − θ0|2 =
�
θ̃ − θ0

��
x̄− 1

2
Eθ0

��
θ̃ − θ0

��
U

�2
+Op

�
m2

n2

�
�
θ̃ − θ0

��
x̄ = |x̄0|2 −−1

2
Eθ0

%��
θ̃ − θ0

��
U

�2
x̄�U

&
+Op

�
m2

n2

�
.

Then arguments identical to those giving Theorem 3.1 of Portnoy (1988) yields,

|θ̃ − θ0 − x̄| = Op
�m
n

�
,

and consequently

Λm = 2n

��
θ̃ − θ0

��
x̄−

�
ψm

�
θ̃
�
− ψm (θ0)

��
= n

%
|x̄|2 − |θ̃ − θ0 − x̄|2 + 1

6
Eθ0

��
θ̃ − θ0

��
U

�3&
+Op

�
m2

n

�
,

and so

λm =
Λm −m√
2m

=
n|x̄|2 −m√

2m
+ op(1)

=
n|h̄+ ē|2 −m√

2m
+ op(1)

≤ n|h̄|2 −m√
2m

+
n|ē|2√
2m

+ op(1)

=
n|h̄|2 −m√

2m
+ op(1),

the latter following since the elements ei are degenerate random variables as n→∞.
Since by construction E(h̄) = 0 and V ar(h̄) = Im, then application of the martingale
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central limit theorem as in Portnoy given immediately the asymptotic distribution.

Part (ii): Suppose that under the fixed alternative the density of h̄ is qA(h) and

let θ1 be the unique solution to] 1

0

hj ph (θ1) dh =

] 1

0

hj qA(h)dh ; j = 1, ..,m.

Now |θ0 − θ1| = O(
√
m), while the mle is consistent for θ1 in that

���θ̃ − θ1

��� =
Op
�s

m/n
�
. Writing,

n
�
θ̃ − θ0

��
x̄ =
√
n

m[
j=1

(θ̃j − θ0j)
1√
n

n[
i=1

xji ,

where we have put θ̃ =
�
θ̃1, ..θ̃m

��
and θ0 = (θ01, .., θ0m) , and noting that since the

xji are i.i.d., then for each j
1√
n

n[
i=1

xji = Op(1),

and consequently

n
�
θ̃ − θ0

��
x̄ = Op

�
m
√
n
�
. (27)

Furthermore, from the definition of the exponential density ψm (θ0) is O(1), while

ψm(θ̃) is Op(1), and hence

n
�
ψm

�
θ̃
�
− ψm (θ0)

�
= Op(n). (28)

Together (27) and (28) imply that under any fixed alternative

Λm = Op
�
m
√
n+ n

�
,

and hence

lim
m,n→∞ ; m=o(n1/3)

Pr

�
Λm −m√
2m

≥ kα
�
= 1.
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Appendix II Tables

Table 1a: Kullback-Leibler distances

m 1 2 3 4 5 6 7

D [q(h) | ph(θ0)] .0186 .0115 .0028 .0023 .0008 .0007 .0007

Table 1b: Monte Carlo Kullback-Leibler distances for Y ∼ Exp[1]
i) D

k
ph(θ0) | ph(θ̂)

l
n 50 100 200 400

m

1 .0213 .0198 .0192 .0188

2 .0183 .0145 .0129 .0122

3 .0161 .0085 .0056 .0042

4 .0222 .0105 .0062 .0041

5 .0320 .0130 .0064 .0035

ii) D
k
ph(θ̂) | ph(θ̃)

l
n 50 100 200 400

m

1 .0010 .0008 .0005 .0003

2 .0023 .0014 .0011 .0005

3 .0036 .0015 .0011 .0004

4 .0040 .0018 .0010 .0006

5 .0049 .0019 .0012 .0004

Table 1c: Monte Carlo Kullback-Leibler distances for Y ∼ N(0, 1)
i) D

k
ph(θ0) | ph(θ̂)

l
n 50 100 200 400

m

1 .0187 .0186 .0184 .0184

2 .0141 .0127 .0121 .0118

3 .0104 .0065 .0046 .0037

4 .0149 .0082 .0051 .0036

5 .0233 .0099 .0052 .0029

ii) D
k
ph(θ̂) | ph(θ̃)

l
n 50 100 200 400

m

1 .0043 .0016 .0013 .0007

2 .0060 .0025 .0014 .0006

3 .0084 .0032 .0017 .0009

4 .0099 .0038 .0020 .0010

5 .0133 .0046 .0021 .0011
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Table 2a: Monte Carlo rejection frequencies under

Ha
0 : Y ∼ Exp[1]

size 0.10 0.05

n 100 200 400 100 200 400

Λ6 0.112 0.096 0.102 0.062 0.058 0.049

Λ9 0.105 0.103 0.985 0.054 0.049 0.047

Λ12 0.109 0.098 0.101 0.057 0.051 0.050

KS 0.081 0.092 0.103 0.041 0.049 0.051

CM 0.095 0.095 0.096 0.051 0.051 0.049

AD 0.093 0.095 0.100 0.050 0.051 0.049

Table 2b: Monte Carlo rejection frequencies under

Hb
0 : Y ∼ N(0, 1)

size 0.10 0.05

n 100 200 400 100 200 400

Λ6 0.062 0.067 0.072 0.031 0.035 0.038

Λ9 0.068 0.072 0.079 0.037 0.040 0.041

Λ12 0.081 0.086 0.095 0.041 0.045 0.047

Λ15 0.095 0.096 0.099 0.043 0.047 0.049

KS 0.076 0.088 0.099 0.036 0.042 0.044

CM 0.105 0.099 0.097 0.055 0.052 0.049

AD 0.101 0.097 0.098 0.053 0.047 0.048
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Table 3a: Monte Carlo rejection frequencies under

H0 : Y ∼ Exp(1)
size 0.10 0.05 0.01

n 25 50 100 25 50 100 25 50 100

Λ̄A 0.098 0.099 0.102 0.049 0.052 0.052 0.008 0.007 0.011

Λ̄B 0.097 0.093 0.096 0.046 0.044 0.050 0.008 0.008 0.011

KS 0.051 0.063 0.081 0.026 0.032 0.041 0.005 0.007 0.010

CM 0.098 0.108 0.095 0.051 0.056 0.051 0.014 0.012 0.012

AD 0.092 0.091 0.093 0.042 0.046 0.050 0.011 0.008 0.011

Table 3b: Monte Carlo rejection frequencies under

H0 : Y ∼ N(0, 1)
size 0.10 0.05 0.01

n 25 50 100 25 50 100 25 50 100

Λ̄A 0.094 0.098 0.097 0.055 0.056 0.053 0.013 0.014 0.013

Λ̄B 0.093 0.096 0.096 0.047 0.053 0.049 0.014 0.012 0.010

KS 0.059 0.069 0.076 0.027 0.031 0.036 0.006 0.008 0.008

CM 0.127 0.114 0.108 0.068 0.059 0.055 0.017 0.015 0.011

AD 0.086 0.096 0.101 0.047 0.048 0.053 0.007 0.010 0.009

Table 4a: Monte Carlo rejection frequencies under

H0 : Y ∼ Exp[5]
size 0.10 0.05 0.01

n 25 50 100 25 50 100 25 50 100

Λ̄A 0.103 0.103 0.102 0.053 0.054 0.054 0.013 0.013 0.012

Λ̄B 0.104 0.096 0.102 0.051 0.047 0.052 0.012 0.008 0.012

KS 0.051 0.070 0.078 0.028 0.031 0.040 0.006 0.010 0.009

CM 0.099 0.107 0.098 0.055 0.051 0.050 0.015 0.011 0.012

AD 0.094 0.096 0.096 0.047 0.046 0.050 0.013 0.011 0.010
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Table 4b: Monte Carlo rejection frequencies under

H0 : Y ∼ N(1, 2)
size 0.10 0.05 0.01

n 25 50 100 25 50 100 25 50 100

Λ̄A 0.096 0.097 0.096 0.055 0.054 0.055 0.015 0.014 0.012

Λ̄B 0.091 0.095 0.099 0.048 0.045 0.050 0.011 0.012 0.009

KS 0.053 0.068 0.083 0.026 0.031 0.039 0.006 0.007 0.010

CM 0.125 0.111 0.105 0.061 0.058 0.055 0.016 0.012 0.012

AD 0.090 0.096 0.104 0.044 0.047 0.052 0.009 0.011 0.011

Table 5: Rejection frequencies at 5% level for tests of

H0 : Y ∼ Exp(1) vs. H1 : Y ∼ Γ(v, 1) for n = 100.

v Λ̄A Λ̄B KS CM AD

1.44 0.754 0.778 0.484 0.588 0.697

1.36 0.624 0.662 0.336 0.424 0.544

1.28 0.475 0.501 0.227 0.271 0.372

1.20 0.322 0.331 0.124 0.154 0.210

1.12 0.169 0.167 0.066 0.079 0.095

1.04 0.098 0.093 0.050 0.051 0.053

0.96 0.100 0.098 0.056 0.067 0.067

0.88 0.207 0.205 0.145 0.163 0.176

0.80 0.408 0.429 0.299 0.351 0.401

0.72 0.686 0.720 0.523 0.615 0.695

0.64 0.893 0.928 0.802 0.869 0.903

0.56 0.991 0.995 0.961 0.980 0.992
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Table 6a: Rejection frequencies at 5% level for tests of

H0 : Y ∼ N(0, 1) vs. H1 : Y ∼ χ2( v) for n = 100.

v Λ̄A Λ̄B KS CM AD

10 0.921 0.916 0.669 0.784 0.799

30 0.471 0.496 0.304 0.352 0.332

50 0.309 0.317 0.197 0.227 0.203

70 0.224 0.249 0.162 0.179 0.169

90 0.197 0.218 0.150 0.163 0.142

110 0.175 0.195 0.134 0.139 0.132

Table 6b: Rejection frequencies at 5% level for tests of

H0 : Y ∼ N(0, 1) vs. H1 : Y ∼ t(v) for n = 100.
v λ̄A λ̄B KS CM AD

2 0.997 0.987 0.955 0.977 0.981

4 0.676 0.659 0.475 0.599 0.648

6 0.445 0.386 0.246 0.328 0.374

8 0.298 0.260 0.152 0.193 0.217

10 0.234 0.209 0.113 0.143 0.166

12 0.187 0.175 0.097 0.112 0.134
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