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Abstract:

Via the leading unit root case, the problem of testing on a lagged dependent
variable is characterized by a nuisance parameter which is present only under the
alternative (see Andrews and Ploberger (1994)). This has proven a barrier to the
construction of optimal tests. Moreover, in their absence it is impossible to objectively
assess the absolute power properties of existing tests. Indeed, feasible tests based
upon the optimality criteria used here are found to have numerically superior power
properties to both the original Dickey and Fuller (1981) statistics and the efficient
detrended versions suggested by Elliott, Rothenberg and Stock (1996) and analysed
in Burridge and Taylor (2000).

Keywords: nuisance parameter, invariant test, unit root.

1 Introduction

This paper proposes methods by which optimal tests on a lagged dependent variable
in a linear regression model may be constructed. Both the need for and difficulties
associated with inference on a lagged dependent variable are highlighted via the
leading unit root case, as considered by Dickey and Fuller (1979, 1981). Although we

will ultimately consider all cases, initially suppose that
Yo = By + Bot + pyr_1 + &, & ~iid(0,0%), t=1,2,.,T. (1)

Naive testing for a unit root in (1) has rightly been criticized, as in Schmidt and
Phillips (1992), as the degree of deterministic trending is different under the unit

root. Instead consider testing
Hy:p=1Npy=0 vs. Hy:|p|<1np,#0, (2)

so that the degree of trending is linear under either hypothesis. In DeJong, Nankervis,

Savin and Whiteman (1992), imposing the restrictions on the parameters in (1)

B = (ar(1—=p)+ Bap), By=as(l—p), (3)
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implies a model of the form
Y=o tagt+u ;o u = pu ey, (4)

which has formed the basis for the majority of recent unit root tests, such as those in
Dufour and King (1991) and Elliott, Rothenberg and Stock (1996). Indeed the latter
provides GLS-type tests which have become benchmark, see Burridge and Taylor
(2000).

Here we do not impose these restrictions. None-the-less under Hy in (2) the two
formulations coincide. Under trend stationary alternatives they differ, in that in (1)
the mean of y; depends on the autoregressive parameter, while in (4) it does not. For
any given data set, in the event of rejection, it will not be possible to say which trend
stationary formulation generated it. Consequently, it is necessary that we have unit
root tests which are powerful against trend stationary processes characterized by (1).

This analysis also highlights the key difficulty with testing on a lagged dependent
variable. Since in (1) the mean of y;, depends on p, the alternative distribution of any
reasonable test statistic will depend not only on p, but also the parameters 3, and
B5. Thus, while we are easily able to construct tests having known size, under the
alternative 3, becomes a nuisance parameter. That is, as in Andrews and Ploberger
(1994), there is a nuisance parameter present only under the alternative. This remains
true for testing that p is any value, including zero, and regardless of any additional
restrictions imposed by the null. This difficulty has, so far, prevented the construction
of any optimality theory in this case. Thus objective assessment of the tests we do
have is not possible.

As in Andrews and Ploberger (1994) the solution is to provide tests which are
weighted optimal, with the influence of the nuisance parameter on power integrated
out. Specifically, within the semi-parametric elliptically symmetric family, we achieve
the following. It is shown that integrating out in power is equivalent to applying op-
timality criteria to the integrated density of Berger, Liseo and Wolpert (1999). There
nuisance parameters are directly integrated out of the sample density, before con-
structing estimators and tests for interest parameters. We then provide a method for

finding such integrated densities, in the elliptic family, which avoids all of the tech-
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nical difficulties usually associated with integrating out such parameters. Weighted
optimal tests such as point or locally optimal ones, follow by applying the appropriate
criteria to the integrated density.

The numerical evidence presented in the paper focuses on the unit root case. It is
shown that, appropriate to their context, the original Dickey-Fuller (1979) ¢-tests have
powers close to a weighted power envelope, and thus we can suggest no improvement.
On the other hand, for joint hypotheses such as in (2) their (1981) F-tests are short
of optimal, with a feasible point optimal test having significantly superior power
properties. Currently, the favoured test seems to be the GLS Dickey-Fuller (DFgrs)
test as described in Elliott, Rothenberg and Stock (1996). For testing a unit root
in (1) via (2) our feasible test slightly outperforms this competitor. In formulation
(4), this is reversed. However, the DFgp s is known to have power which evaporates
as the initial condition grows. Here, our test is shown to significantly out-perform
this test for both moderate and large initial conditions, in both formulations of the
problem.

The plan for the paper is as follows. The next section details the model and
assumptions. Section 3 presents and discusses the main results in the context of the
simple unit root test on p, while Section 4 discusses the results and gives the numerical

power comparisons. Technical proofs and some tables are placed in an appendix.

2 Model and Motivation

To formalize our treatment we shall consider models which generalize those in (1)

and (4), with
My : y=py1+18+e and
My : y=moatu ; w=pu_1+ e,

where now x; is any k vector of regressors and  and « are k vectors of unknowns.
To continue let y = (y1,...,yr) , € = (€1, ...,er)’, X = (2},..,2%)" so these may be

written as:
M, : Ayy=Xp+¢e and (5)
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M, : Ayy=A7AXa+e, (6)

where A, = Iy — pL and L is the T' x T" matrix lag-operator, having one’s on the
first lower off-diagonal and zero’s elsewhere. We shall proceed under the following

assumption on the joint density of the innovations e;

Assumption 1 Let F (u,X) denote the elliptically symmetric family with mean p
and variance Y, then assume that the density of ¢, f(e) € F(0,0%Q), |Q] =1,
with

FO,Q={f:fle)=q[f2)]},

where q(.) is a nonincreasing convez, measurable function on [0,00).
Given Assumption 1 and since for either model y is a linear transformation of the

innovations then both the data y and also the differenced data Ay = {y; — yt_1}tT:1

is also elliptically symmetric, with
M1 : Aly ~F (AlA;IXﬁ, 0'22[,) 3 M2 : Aly ~F (AlXOé,O'22p) y
S, = AAIQ (A AL
so that the difference between the models is characterized by the dependence of the
mean upon the parameter p.
To illustrate this difference, suppose that 2 = Iy and first consider the simple

unit root test

Hoy:p=1 wvs. Hy:l|p|<1 (7)
in both M; and M,. Under Hy we have
M, : E[Awy]=XB ; My: E[Ay] = A Xa,
while under H;
M : BE[Ayy] = MAXB 5 My B[Ayy] = A Xa,

that is for M5 the mean of the data does not depend on p. Thus, for Ms, construction
of either invariant (as in King (1980) or Dufour and King (1991)) or similar (assuming

Gaussian innovations as in Hillier (1987)) tests is straightforward.
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First define a matrix Cs by
CoChy =My =1 — (A X)(X'ANAX)IX'AL o CLOy = Iy,
and then

Vg . wp = CyA1y  and Ay = CoALA (AT NGy,

 Jw
SO vy is the maximal invariant, of which all invariant tests are functions. It has
density, with respect to normalized Haar measure on the surface of the N — k unit

sphere Sy_g, given by King (1980), as

o) — Juso Pdf (aws| Hy)da
pdf (va; p) = I~ PAf (aws| Hy)da

Optimal tests then follow by applying optimality criteria to the density of the max-

_ |A2|71/2 (UIAglv)*(N*k)/2 ]

imal invariant. Choices include point optimal tests (of which the Elliott, Rothenberg
and Stock (1996) test is an example), locally best tests which maximize the slope
of power at the null hypothesis (as in Dufour and King (1991)) or weighted average
power tests which maximize power averaged over all p under the alternative (Forchini
(2005)). Yet more criteria are examined in Forchini and Marsh (2000).

All of this is possible only because in M, the mean of the data does not depend
on p. For M; since the mean of the data does depend on p the problem itself is not
invariant. However, it is easy to construct tests which have known size. To do so

define the matrix C by
CIC’{:MX:I—X(X’X)_IX' 3 Ciolsz_k,

and then

V=77 5, W= CiAlyy
w1 |

so that the density of v; is constant on Sy_; under Hy. Any test which is a function
of v; will therefore have known size.

An optimal test is designed to maximize (some function of) power. To fully
illustrate the associated difficulties with attempting this for M, suppose briefly that

the € are Gaussian, and so
wy, = CiAﬂJ ~ N(Xpﬁ, O'2A1>,
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where
X, =CiAATX and A = CIAAT (AN ALC. (8)
Consequently, we have for v,

fa>0pdf(aw1| Hy)da

— A2 (AT —(T—k)/2 3 7 0
fa>0pdf(aw1’H())da | 1’ (Ul 1 Ul) X (Ul7 pﬁ?p)a ()

pdf (vi; p) =

where

) . 1 ALK,
h(vi, X,0, = 6_5/2/ e 5a T lex avll—p da,
(1 pﬁ p) a0 p \/_\/m

¢ = BXAX,B.

Thus the density of v; equals a quantity which is equivalent to the density in the
straightforward case M,, multiplied by a term depending on X o and the value of
p. Since pdf(vi,1) = 1, then the second term only applies under H;. It is in this
sense that 3 is a nuisance parameter which is present only under the alternative, as
in Andrews and Ploberger (1994). Moreover, as there, we will construct optimal tests
by integrating out its influence on power. However, before proceeding to do this, we
should note the following differences in the set-up here and in the latter paper.

First, even in the simplest Gaussian case, finding an explicit expression for power
is not feasible, since we don’t even have a resolved expression for the density. Conse-
quently, a direct approach for the elliptic family as a whole will not work. Second, at
least for the unit root case, hypotheses such as (7) make less sense than (2). In this
case 3 becomes a mixture of parameters of interest and nuisance, thus representing

a subtly different problem.

3 Weighted optimal inference on a lagged depen-
dent variable.

In this section we provide weighted optimal tests which are applicable to either type of
null hypothesis and fully workable in the semi-parametric elliptically symmetric fam-
ily. The first obstacle to providing such tests is that even when we assume Gaussian

innovations, we have no closed form for power.
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We first show that weighted optimal tests follow from applying standard criteria
to the integrated density of Berger, Liseo and Wolpert (1999). Here we will focus on

providing point optimal w”? and locally best w’? tests, defined by

wf? = arg max Pw:/pdf(vl;p) (dv) and (10)
WESN —k w

W’ = arg max ok , (11)
WESN_k ap p=1

where p = ,u(X 0, 3) represents the nuisance parameter under the alternative. As
in Andrews and Ploberger (1994) we will provide tests which are weighted optimal.
That is, for some weight-function 7(u) : R¥~% — R, on the nuisance parameter ,
satisfying
/ w(p)dp =1, for all 5 and p, (12)
RNk

weighted versions of the tests in (10) and (11) are

WP = arg max /wa(u)d,u and
n

wWESN _k
0| P,m(u)dup
wtP = arg max J. (k)
wGSN,k ap 1
p:

To proceed, follow Berger, Liseo and Wolpert (1999) and define the integrated
density, first for v; by

Pl (v1:p) = / pdf (01; p)r (1) (13)

H1

and also for w; = C{Ayy, by

P (w1 p) = / pdf (wn; p)e()dp

H1

Moreover we can define a derived density for vy, as

fa>0 W(awﬂ Hi)da
fa>0 W( aw1| *ZJO)da7

pﬂd}(vlé p) = (14)

that is ];ijf (v1; p) is an integrated density derived from the integrated density of w;.
We are now in a position to state and prove a theorem which clearly demonstrates
the possibility of constructing weighted optimal tests in the semi-parametric case,

even though no resolved expression for power exists.
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Theorem 1 Suppose that the data y is generated such that Assumption 1 is satisfied,

then weighted optimal unit root tests on the lagged dependent variable are found via

wP9 = arg max P, = /Z;dvf(vl;p) (dv) and

wWESN _k

LB __ 8Pw
w,” = arg max

|
m wGSka ap

p=1

The importance of Theorem 1 is twofold. First it establishes that weighted optimal
tests can be found by applying standard optimality criteria to an integrated density.
Thus every strictly optimal test has an immediate weighted analogue. Second, we
need actually only consider finding an appropriate integrated density for w; = C'Ayy,
rather than for v;. This is crucial in providing a mechanism for constructing weighted
optimal tests which circumvents the rather obvious obstacle of feasibility.

Since we have no resolved expressions for the density of v; it is far from clear
how to choose a weighting function so as to integrate out the nuisance parameter.
However, as Theorem 1 demonstrates, we need only consider weight functions which
integrate out the nuisance parameter from the density of w;. Moreover, since w; is
a linear transformation of y it has a distribution in the elliptically symmetric family.
Therefore, we can exploit the relationships between joint, conditional and marginal
densities within that family to provide both the weight function and the resulting
integrated density.

Before proceeding we need to be explicit about the two types of hypotheses to be
considered; those which restrict only p under the null and those which also restrict
part or all of 3. In order to maintain consistency of notation throughout we will

consider the extended regression model;
Yt = PYt-1 +$;6+Z£7+5t7 = 1727“7T7 (15)

where now z; and « are [-vectors of covariates and parameters, respectively.
We will consider testing both single and joint unit root hypotheses in the context

of (15), specifically tests of

Hy : p=1ny=0 vs. HY:|p|<1Ny=0 and

Hy : p=1ny=0 vs. H :|p|<1ny#0, (16)
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so that these tests differ only under the alternative. For example, testing (2) in (1)
as in the introduction, is characterized by testing Hy versus H{ with x; =1, 2, = t.
Given model (15) tests having known size can be characterized by the vector
U1 = m ; w = C1Ayy,
where the matrix C is as defined above. Under the null hypothesis the distribution
of vy is constant on Sy_;. Under the alternative hypotheses, however, its distribution
is not known, and will in general be different for each case. Thus, for X , and A;

defined in (8), under HY,
wy| Hls ~ ]:(XpﬁaUZAl)'

Here, because the set of regressors is unchanged from null to alternative we shall treat

the whole of X ,3 as the nuisance parameter, that is

ps = Elun] = X0,

is the nuisance parameter present under the alternative Hy .
On the other hand, putting W = (X, Z) and A\ = (&,+')", then under the joint
alternative,

wy| HY ~ F(W,\, 02 Ay),

where now Wp = C{A;A'W. In this case the regressor set changes from null to
alternative, and thus not all of W,,(S is nuisance. Moreover, any ‘optimal’ test should
depend upon this change. Although there are a number of ways to achieve this, here

we will assume that here the nuisance parameter under H{, to be integrated out is

MJ:)‘a

that is just the parameter set. Notice that this approach is equivalent to providing
a weighted average most powerful test over values of 6 under the alternative, similar
to Forchini (2005).

The following theorem, proved in the appendix, gives both the weight function
and the weighted point optimal and locally best test for testing H, against each

alternative.



Theorem 2 Suppose that the data y is generated according to model (15) such that
its distribution satisfies Assumption 1, and let qs(.) and q;(.) be convexr non-negative
functions defining particular elliptically symmetric families, then:

(i) For testing against HY , the appropriate weight function, for |p| < 1 is
~1/2 —1
ms = mlus) = o241 | g5 (4 (2 4) " ps)
and hence weighted point optimal and locally best tests are given by

wfso s reject Hy if v[A7'v; <k and

0(Ar)

ap U1 S ]{32, (17)

LB . : ; /
wyy :reject Hy if vy

p=1

where k1 and ko are constants chosen so that the size of each test is fized at .

(ii) For testing against Hy, the appropriate weight function, for |p| <1 is
_ 1/2 _
m(py) = |U 2 (W,W)} qj (U 2#{] (W'w) :UJJ) )
and hence weighted point optimal and locally best tests are given by

_ N1
wf? : reject Hy if v} <A1 + PW> v, < ks and

N
0 <A1 + PW>
Wkl reject Hy if  of 5 v1 < ky, (18)
p
p=1
where ]5W = Wp (W’ I/V)f1 W,ﬁ and ks and k4 are constants chosen so that the size of

each test is fired at . M

Theorem 2 gives weighted optimal tests for each formulation of the unit root hy-
pothesis as applied to a lagged dependent variable. Both the theoretical and numerical

properties of the resulting tests are analyzed in the following section.

4 Analysis

4.1 Discussion

Choosing a particular prior or weight function is always open to the criticism of it

being a mere contrivance. However, it is important to note the following. Together the
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theorems set out a clear procedure for deriving weighted optimal tests. Specifically,
such tests follow immediately by applying standard techniques (such as those in King
(1980) and Dufour and King (1991)) to the integrated density for w;. Exploiting
the marginalisation properties of the elliptically symmetric family provides both the
appropriate weight function and hence the resultant tests. Practitioners are free to
exploit the general results to derive their own weight functions and tests.

The given tests enjoy precisely the properties we would desire. Consider the

density of v; given in (9), written as
_ 1 \—(T—k)/2
pif (vr.p) = | 417 (0} AT 1) " g,

and notice that since

pdf (vi: p) = | A [T (v A7) "R (19)

then
/ h(ps) m(pg)dpg = 1.
ts

That is we have very precisely integrated out of the density that part which was
unresolved. The implication is that every test satisfying some optimality criteria for
M, has a precise (weighted) analogue for testing HS in M;. In fact the only difference
between them will be that for M, we project the data orthogonal to the columns of the
differenced regressors, while for M; we project orthogonal to the columns themselves.

For the tests for the joint hypothesis H, notice that
Ay + By = CiAA! (1N_k W WW) ! W’) (ALY NG,

so that any resulting test will be a function of two components. One represents the
simpler case where only p is restricted, while the other represents a projection on the
space spanned by the columns of W = (X, Z). This also would seem to be a desirable
property for such tests to enjoy.

In practice the assumption that the covariance of the innovations is scalar may
not be warranted. However, and with some generality, it is possible to make robust

the procedures described above and deliver operational testing procedures. To do
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T . . . .
so assume now that the (g;); are a stationary ergodic process, having covariance

structure,

Elee] =0%Q, |0 =1.

Consequently, let Q be any parametric or semi-parametric estimator with
|12 = Q] = 0,(1), (20)

where ||.|| is any matrix norm, (note that all norms are equivalent on the space of

symmetric positive definite matrices). Hence, for
Aq = CIAATQ (A ALC,

and on account of (20),
(U’Aélv — U'Aélz)) = 0,(1)

then asymptotically robust tests can be derived via optimality criteria applied to
v Aélv. The need to estimate € consistently restricts the class of models somewhat,
generally defined weak mixing process are ruled out. However, neither the density
nor the precise nature of the correlation structure in {2 need be specified. Since the
(¢;) are stationary, then via Wald’s decomposition, we need only construct a consis-
tent estimator for their transfer function, for example via the consistent augmented
autoregression of Ng and Perron (2001).

The extension to the case of testing the hypotheses Hy : p = p, is immediate. We

can define

w
v = —= ;i wy=C"Agy,
|wol

Clci = MX:[—X<X/X)71X, ) C{Cl :Ikaa
which, following precisely the steps taken to arrive at (19), gives
- _ _ —(N—k)/2
P (v0: p) = Aol /2 (vh A7 o) 2,

where Ay = C1 oA (A1) AgCr.
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Hillier (1987) characterizes the class of similar (and consequently under our as-
sumptions invariant) tests for the significance of a lagged dependent variable, i.e.
tests for Hy : p = 0. However, no optimal procedures were developed. Here, we are

able to characterize weighted optimal tests, as in the following corollary to Theorem

1.

Corollary 1 Suppose that the data y is generated according to model My such that
its distribution satisfies Assumption 1 with €2 = Ip, and suppose that we are testing

the hypotheses Hy : p = 0. Then weighted point optimal and locally best tests are

given by

/Cf Aflcf/

wPO : reject Hy if i 1, 1Y <ks and
Yy Mxy
oAt
y,CI (ap ) . 1y
LB . . p= /

wy” : reject Hy if v] < kg,
’ y'Mxy L=

where ks and kg are chosen so that the size of each test is o, and

A=CiAN (AN ¢

p

Importantly, both of these tests are identical to the optimal procedures derived

for the same hypothesis in M,, see for example King and Hillier (1985).

4.2 Numerical Results

All of the tests proposed in this paper take the form of quadratic forms on the surface
of the unit sphere. Such forms can always be written as ratios of quadratic forms in y.
As a result, the densities and distributions (under either hypothesis) are, in principle,
available via a variety of numerical methods, see also DeJong, Nankervis, Savin and
Whiteman (1992). Alternatively, convenient asymptotic approximations to these (as
opposed to the limiting forms of the statistics themselves) are available in the form of
saddlepoint approximations, as do Forchini and Marsh (2000). Given this, and also
that the focus of the paper is upon power optimality, the numerical work will focus

on comparing weighted optimal tests with those currently available in the literature.
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We shall do so in the context of the simple model
Yo =By + Bot +pyi1 +er ;5 & ~iid(0, 02)-

In this context the literature has not bettered the original Dickey-Fuller (1979, 1981)
statistics, although refinements to their procedures in more general settings are many.

We will consider testing the following sets of hypotheses
HY : p=1 vs. Hj:|p| <1,

H{ : p=1NpB,=0 vs. Hi:|p|<1NBy=0,

HY : p=1Np=08,=0 vs. Hi:|p|<1npy,=0,

[y

Hy : p=1NnpB, =p,=0 vs. Hi:|p|<1 and

H @ p=1NBy=0 vs. Hj:|p| <1

Fach of these hypotheses has associated with it a particular Dickey-Fuller test.
For hypotheses Hj and Hj these are the pairs p,. — 1,7, and p, — 1,7, i.e. the OLS
estimator for p— 1 and its t-ratio, respectively. For hypotheses Hg, H} and Hj, these
are 1, &5 and Pj, i.e. the likelihood ratio (or a monotone function of the F-ratio)
test for each respective hypothesis. In addition we consider the t-tests based upon
efficiently detrended data, as in Elliott, Rothenberg and Stock (1996) and Burridge
and Taylor (2000); DFY, ¢ for H3 and DF}; ¢ for Hy and HJ, respectively.

First we compare the power of these statistics with the weighted power envelope,
obtained as the power of the weighted point optimal test, at each appropriate value
of p. For hypotheses Hi and HZ the point optimal tests are given in (17), while
for H3, Hy and H{ they are given in (18). All of the Monte Carlo experiments were
performed according to the following specifications. Wherever the values of 3, and (3,
are not specified, by either hypothesis, they were set equal to 0.1. For a sample size of
T = 100 and for 20000 replications the appropriate critical value was simulated under
each null hypothesis. For a variety of alternative values of p the rejection frequencies
of each of the tests were simulated. These outcomes are reported in Tables 1 through
7 in the appendix.

Tables 1 and 2 contain a comparison between the p, — 1,7, and p, — 1,7, tests

14



and the weighted envelopes, PE. and PE,, respectively. The powers of the Dickey-
Fuller tests are close to their respective envelopes. Indeed, here we report no further
comparisons for these first two hypotheses. The current tests, by criteria as objective
as can be achieved in this context, have powers which cannot be significantly improved
upon, if at all. Since these tests form the basis of the augmented Dickey-Fuller tests, or
the procedures of Phillips and Perron (1988) and Ng and Perron (2001), this perhaps
gives also some additional confidence in those procedures. Moreover, although not
reported, it is the case that t-tests for each value of p between 0 and +1 inclusive
tend to share this property.

The outcomes of experiments for the further three hypotheses stand in stark
contrast. For these cases and both sample sizes the powers of the ®;, &5 and &5
tests are a small fraction of the relevant envelopes, denoted here by PE;, PFE, and
PEj3, respectively for hypotheses H3, Hj and H and reported in Tables 3,4 and
5. The Dickey-Fuller tests have particularly low powers when a trend is included in
the alternative, as previous studies have reported. However, the literature has not
yet provided feasible tests having significantly greater power in these circumstances.
Moreover, these tests are completely outperformed by the DF7; o, despite this test
not being designed for these alternatives.

We also simulate the power of the locally best test, wfrf given in (18), and also
a feasible, nearly efficient test, based on a principle similar to that employed by
Elliott, Rothenberg and Stock (1996) for tests in M. The test is chosen so that it is
asymptotically point optimal for the value at which the (weighted) asymptotic power
envelope is 0.5. As in the latter paper, this point, say ¢* = T'(p — 1) is approximated
via Monte Carlo simulation, for a sample size of 7' = 500. On the basis of 5000

replications, the appropriate values of ¢* were, to the nearest integer
H3:cy="7 Hy:c,=10, Hj:ci=13.

The powers of the resultant feasible tests, w;,,(c*) are presented in Tables 3 to 5.
The locally best tests perform adequately only very close the null hypothesis. On the
other hand the w,,(c*) tests have powers very close to their respective envelopes over

the range of alternatives and outperform both the F-tests and efficient t-tests.
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A final set of experiments compare the performance of the efficient Dickey-Fuller
test (DF(,g) with our feasible point optimal test (w,,(c*)) in both the formulation
considered here (M;) and that for which it was designed (Ms). Moreover, we will
examine the power performances as the initial condition deviates from its assumed
value of 0.

First we will consider

Y=01+0st +pyi1+e Y=y +01, Yy #O. (21)

and test the joint hypothesis given above as HJ. Performing the experiments as
outlined above, the powers as we vary p and y* are given in Tables 6a (for w,,(c*))
and 6b (for (DF%,g)). For small y* the powers of DF(,; ¢ are close to those of w,, (¢*),
though naturally smaller. As is well known the power of the DF{; ¢ test collapses for
large y*. This is not the case for w,,(c*). Although it is not unbiased, over a range
of p values its power is either stable or increases slightly with y*.

In order that these comparisons are fair these experiments were repeated in the

model

y=01+ Bt +u 5 w=puites y=y"+p0, y-#0, (22)

here testing the simple hypothesis given above as H}. As should be expected for small
deviations in the initial condition the DF{; ¢ test is more powerful than w,,(c*). Once
again though the power of DF7; ¢ collapses as y* increases while, generally, that of

wx,(c*) remains stable.

5 Conclusions

This paper has demonstrated that the problem of testing on a lagged dependent vari-
able, including the relevant unit root test, is generally characterized by the existence
of a nuisance parameter, present only under the alternative. As in Andrews and
Ploberger (1994) optimal tests can be defined as optimizing some weighted function
of power. This is equivalent to applying standard optimality criteria to the integrated

density of Berger, Liseo and Wolpert (1999). In the elliptically symmetric family this
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is shown to be straightforward to accomplish, with the obvious technical difficulties
completely circumvented.

For the leading unit root case, where no further restrictions are imposed under
the null, the resulting weighted criteria are directly analogous to those applied with
much success in the alternative framework of Dufour and King (1991). Numerical
evidence here shows that the ¢-tests of Dickey and Fuller (1979) have objectively good
power properties in this context. Indeed, it turns out that generally it is difficult to
improve on the t-test for any hypothesized parameter value.

On the other hand when additional restrictions are imposed, here we can provide
weighted optimal tests which are much more powerful than the relevant F-type tests
of Dickey and Fuller (1981). Some power superiority is also evident over the currently
favoured efficient-detrended version of the Dickey-Fuller ¢-test. Moreover, compar-
isons in both the current and the Elliott, Rothenberg and Stock (1996) framework
demonstrates that the power of a feasible weighted point optimal test is stable as
the initial condition deviates from its hypothesized value while that of the efficient
Dickey-Fuller test collapses. That is if there is uncertainty over the initial condition

one might prefer the proposed test, even in Ms. For M; the caveat is not necessary.

Acknowledgments: Thanks are due to Francesco Bravo, Les Godfrey, Grant
Hillier, Peter Phillips and participants at seminars at the Universities of Monash
and York. The author has particularly benefited from detailed comments from both

Giovanni Forchini and Rob Taylor.
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Appendix
I) Proof of Theorem 1: Following Andrews and Ploberger (1994), for a given

measurable, non-negative weight function (), weighted power is given by

P, = /Pw(u)du
w

- | ( [t o) @ W(u)) s,

since pdf (vy; p) is a density and thus non-negative, Tonelli’s Theorem implies we may

change the order of integration, to obtain

P = [ ([ st dn) @
w \Ju
= [ P, (23)
so that the optimality criteria applied to the integrated density immediately yield

weighted optimal tests.

From (14) we define an integrated likelihood for v as

S0 PAf (awn| Hy)da

Juso Pdf (awn| Ho)da

_ Jazo a7 [ pdf (wis p) w(p) dp da (24)
Jaso a’7 ! Jan—w PAf (wy; 1) w(p) dpda ’

since, for N — k > 2, Tonelli’s Theorem applies and so, again, we may interchange

I;CTf(UnP) =

the order of integration. Consequently, noticing that

/N ) pdf (aws; 1) w(p)dp = pdf (aws; 1),
RN—
which follows from
/ m(p)dp =1, for all Band p,
RN—k

then

— > o™ Lpdf (aws; p)da
pdf(“? P) = fooo Nk 77(:”1) dpiy
Rk [ a"z lpdf (aws; 1)da

- /szk pdf (v; p) w(1y) dpy = pdf (v; p),

as required. That is for a given weight function 7(u) any integrated density for w

immediately induces an equivalent integrated density for v. Substituting into (23)

immediately gives the result. H
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IT) Proof of Theorem 2:
Part (i): The integrated density for w; is given, for any weight function = (u), by

pdf (w; p) = / - pdf (w; p) m(p)dps, (25)

and in order that the integrated density for v, exists always (because lim,_,; p1 = 0),
we will suppose that at p =1,

m(p) = 6,(1), (26)
the delta function taking the value 1 if u = 0, 0 otherwise.

For p # 1, from Kariya (1980, Section 3) and the fact that marginal densities in

the elliptically symmetric family are themselves elliptically symmetric, we have
wyp ~ F(M,UzAl),

which we will interpret as the conditional distribution of w; given the nuisance para-
meter p = pg = X'pﬁ.
The method of this paper is to choose the weight function so that under HY,

(w), 1) are jointly elliptically symmetric in that

w 0 w
A o e (27)
7 0 X

w, 7

Immediately then, there exists a weight function given by

m(w) =15 P as (WS, )

so that marginally p ~ F(0,%,) and the condition (26) ensures that the requirement
(12) is met.

To determine this weight function notice that conditionally, we have
w1| H~ F (,ua U2A1) )
and so the matrices in (27) must therefore satisfy,

Suuyn = p
S — By Suy = Al (28)
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Since the choice of what is essentially a prior for the nuisance parameter is, and should
be, somewhat user dependent, (28) has many solutions. Indeed it is not possible to

identify both ¥, ,, and Z;l individually, however we must have that

Sty X, =X

12

since neither matrix can depend on 3. For HY we will take the simplest solution (in

particular so as to avoid use of a non-singular elliptical weight function) which has
Y, =Xuu = A1, (29)
which determines the weight function precisely. Moreover, from (28) we have
Ew - 2A17
and so the integrated density for w is simply
—r 24 (7V2 (. 24\~ L
pdf (wy; p) = ‘20 Al} q (wl (20 Al) w1> ,

from which the integrated density for v then immediately follows from King (1980),

as

];C\i-:f(vl,p) _ ‘A1|71/2 (lelfl,U)*(N*k)/Q .

Applying the results of Theorem 1 and using the definitions of w”® and w? the

weighted optimal tests then follow. M

Part (ii): Under H{ we interpret the distribution of w; as being conditional upon

the nuisance parameter \, which is given by
wi| A~ F (Wp)\, 02A1> .

Notice that A does not vanish under the null hypothesis, unlike ;2 above, since it is
a mixture of interest and nuisance parameters, and so no restrictions on the weight
function are needed.

Once again we suppose that the data w; and nuisance parameter A are jointly

distributed as

w 0 Zw Zw
A 0 Son a
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The weight function is, similar to before, determined by matrices which satisfy

Sun Sy W8 = W,6
Y — Bunly Tua = Ar
The straight-forward solution, again avoiding non-singular solutions, is to set
Sup = W, (WW)™' = Cia A W(W'W) ™!
o= Ww)T
so the weight function is given as

1/2

T(A) = [ 2 (W'W)|""qs (672N (WW) ).

For the integrated density of w; we have that,
Zw - Al —|— pw, ]SW = WP(W/W)ilwp,,
and so
S ) -2 _ o\ -1
pdf (wi; p) = 0" (A1 +PW>‘ q| wy (U (A +PW)> wy |,
and so from King (1980), we have
o ) L1\ —(N=R)/2
pdf (v1,p) = |Ay + Py |71/ <U, (A1+PW) U) ;

and once again the results of Theorem 1 and the definitions for w”? and w™? yield

the given weighted optimal tests. W

IIT) Tables
The results presented here represent outcomes of 20000 Monte Carlo replications,
both for the critical values and the rejection frequencies given here. All experiments

were performed using Mathematica 4.1 on a 3.0Ghz Pentium IV PC.

Table 1: Powers of tests for H} vs. H{, T =100

p 975 950 .925 900 .875 .850 .825 .800
PE. 077 124 223 316 .514 599 777 851
Tr 073 108 188 .279 432 519 .695 .787
p,—11.081 .117 211 313 .488 .593 .771 .843
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Table 2: Powers of tests for H2 vs. HZ, T =100
p 975 950 925 900 .875 .850 .825 .800
PE, 077 169 .268 438 583 .728 834 .924
Tu 075 138 237 396 488 .653 .818 .883
p,—1|.077 155 .260 .435 .580 .719 .826 .919
Table 3: Powers of tests for H3 vs. HP, T =100
p 975 950 925 900 .875 .850 .825 .800
PE; 098 248 458 .693 .845 .928 973 .994
o} 057 .083 142 233 371 .521 .669 .795
DF!, | 058 117 207 .352 518 .672 .801 .889
Wr,(c*) 1.094 234 451 673 .829 915 .971 .989
w{:f 098 144 196 .255 .295 .369 .424 487
Table 4: Powers of tests for Hy vs. H{, T =100
p 975 950 925 900 .875 .850 .825 .800
PE, 055 .088 .248 491 .706 .869 .941 .985
o} 050 .053 .055 .096 .133 .207 .290 .416
DFZ,q | 055 079 234 375 552 710 .833 .919
wq,(c*) | .063 .085 .237 .482 .645 .794 .901 .957
wﬁf 055 .069 .100 .136 .167 .204 .253 .309
Table 5: Powers of tests for H; vs. H;, T =100
p 975 950 925 900 875 .850 .825 .800
PE; 058 105 .197 .333 438 .611 .754 .846
o 056 .070 .105 .147 .206 .321 472 571
DF5, s | 058 100 .188 .288 416 .592 .722 .837
w () | 056 005 191 .308 425 .509 737 .844
wkB 058 .076 .099 .126 .152 .182 .215 .267

T
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Table 6a: Powers of the w,,(c*) test for HS vs.

*

975

in (21) with different y*,

950

925

P
900

875

T =100

.850

825

6
H17

.800

© o0 N O Ot s W N e

—_
=]

.056
.051
.044
.040
.032
.026
.020
.014
012
.008

Table 6b

*

975

104
.097
.089
.084
072
.066
.060
053
045
037

: Powers of the DF(; ¢ test for HS vs.

183
77
A71
167
158
155
147
139
131
125

314
292
298
297
291
292
288
293
281
283

451
452
455
459
468
470
AT78
482
489
501

in (21) with different y*,

950

925

p
900

875

.610
.609
617
.629
.642
.651
.664
.682
.692
.708

745
754
761
778
788
799
815
831
.842
857

T =100

.850

.825

875
.856
.868
.883
900
905
911
924
929
941

6
H?,

.800

© o0 N O Ot s W N e

—_
jen}

.046
.035
.023
.014
.008
.003
.001
.001
.000
.000

.089
075
.056
.039
.022
012
.006
.002
.001
.000

176
151
A17
.091
.066
.038
.021
.009
.005
.001

304
271
234
182
136
093
.062
.036
016
.008

24

.446
422
.380
323
.259
204
143
.091
.057
.032

.615
.602
.552
.496
423
.352
274
.206
138
.090

744
735
708
.664
599
528
447
.356
283
202

.856
.849
.835
.800
751
.694
.624
.545
455
361



Table 7a: Powers of the w,,(c*) test for H} vs.
T =100

*

975

in (22) with different y*,

950

925

p
900

875

.850

.825

1
H17

.800

© o0 N O Ot ks W N e

—_
)

.098
.093
.088
.085
077
.068
.063
.048
.043
.036

Table 7b

*

975

159
157
152
156
.140
128
125
116
104
.099

: Powers of the DFJ,; ¢ test for H}

278
272
263
245
.249
244
.242
247
230
232

444
429
416
408
408
400
412
407
419
414

.608
.601
.H88
570
.569
579
.601
.604
.609
627

in (22) with different y*,

950

925

P
900

875

754
762
745
17
728
735
758
768
785
.800

.851
.850
.852
834
.851
.860
.868
.883
.896
915

VS.

T =100

.850

825

908
915
913
916
920
928
.946
952
.958
961

1
H17

.800

© o0 N O Ot s W N e

—_
=]

.090
.066
.050
.033
018
011
.004
.002
.000
.000

168
148
121
.085
055
.035
017
.009
.002
.000

313
287
.246
194
141
.093
.053
.030
.012
.006

505
466
A17
353
265
204
141
087
.049
023

25

.685
.651
.599
.540
451
371
278
201
133
078

.823
799
764
716
.634
553
454
.365
.253
A75

911
.889
.865
.822
786
721
.639
.552
461
.348

960
943
932
901
.883
.844
187
125
.636
537



