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1 Introduction 

Renewable resources are those for which the stock can be continually replenished. Fishery 

resources are renewable. However, if (through human activities or otherwise) the population 

of some species is drawn down beyond a critical threshold, the species can become extinct. A 

recent concern has been with the dramatic decline in the populations of several valuable fish 

species such as cod, halibut and haddock. Since the seminal article of Gordon (1954), 

difficulties in effective management of fisheries have been attributed to the resource’s 

peculiarity of being a common property. However, due to the new law of the sea (established 

in 1982) more than 90 percent of fish resources are now under the exclusive jurisdiction of 

coastal states and can, in principle, be protected. Distant water fishing fleets are restricted to 

cooperative arrangements. The coastal state has to establish a total allowable catch 

(henceforth TAC) for each fishery resource in its extended economic zone. The TAC is 

allocated among the fishermen; the individual quotas are transferable and can be reallocated 

through a market for certificates. In theory, established property rights and the individual 

transferable quota system warrant optimal resource management. In practice, however, errors 

might occur when the decision-maker determines the TAC, because the size, growth and 

population dynamics of the fishery are not exactly known. Since fish is only observable upon 

landings, the estimated stock size of the species is likely to be different from the actual one. 

The primary research question addressed in the present study is to which extent the accuracy 

of stock surveys and the knowledge of the population dynamics may alter the decisions of the 

planner and affect efficiency of resource management. We study the resource extraction 

decisions of a sole owner under different information conditions in a deterministic laboratory 

setting. Our experimental results indicate that the knowledge of both the species’ growth 

model and to a smaller extent the accuracy of the stock estimate may produce significant 

efficiency enhancements in the dynamic decision task. In fact, these significant effects are not 

only a consequence of the different information conditions of experimental treatments but 

arise also from subjects’ deficiencies in learning non- linear dynamics. 

The paper is organized as follows. Departing from the classical logistic growth model, we 

derive the finite-horizon optimal extraction plan in the subsequent (second) section. In the 

third section we highlight research issues and present our experimental design. In the fourth 

section we report the results of our study and relate them to the received literature. Finally, the 

fifth section concludes. 
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2 Theoretical Considerations 

Consider the standard logistic growth function (as depicted in Figure 1), F(xt) = rxt (1 - xt/K), 

where xt denotes stock, r > 0 denotes the species’ intrinsic growth factor and K > 0 denotes 

the carrying capacity1. In the open-access fishery, the equilibrium level of the resource stock 

is determined by the ratio of harvesting cost to the price of the resource. If harvesting in a 

commercial fishery is costless (as in the experiment), the species will be extinguished for any 

positive price. If the intrinsic growth-factor r is smaller than the interest rate δ and costs are 

equal to zero, extinction may be the only solution even in the optimal harvesting policy. 

Figure 1. Logistic growth function for K=1000 and r=1.5 
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Note: MSY denotes the maximal sustainable yield.  

The graph represents the experimental parameterisation. 

 

Let the discount factor be denoted by ρ = 1/(1 + δ), the price normalised to one and assume 

harvesting costs to be equal to zero, the optimal extraction policy in the finite-horizon 

management problem can be determined as the solution to the following program. 
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1 This is the maximum viable (long-run) stock size. 
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Here, xt denotes the stock before extraction, zt denotes the stock size after extraction and yt 

(the control variable) denotes the extraction in period t ∈{1, 2,.., T}. The optimal solution to 

this problem can be calculated by means of Bellman’s (1957) maximum principle. Define 

Jn(x) as the maximum total value when only n periods remain, and the state variable at the 

outset of these n periods is x. Thus, beginning with the last period, the decision-maker faces 

the following problem. 
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The final extraction yT that maximizes the value function in equation (2) is equal to the 

maximal feasible yT, which coincides with the stock remaining in period T, xT. Hence, J0(x) = 

ρT xT , which, according to (1), is a function of the extraction in period T-1, xT = x(yT-1). Given 

J0(x), we can calculate the next term of the maximization procedure, J1(x). 
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From the first order condition follows the optimality equation F’(zT-1) = r(1 - 2 zT-1/K) = δ. 

Solving this equation, we obtain the end stock size z*
T-1 = K/2(1 - δ/r), which is constant as it 

does not depend on time. Given initial stock size xT-1 , the optimal extraction in period T-1 is 

determined by the optimal end stock size, y*
T-1 = xT-1 - z*

T-1. Thus, J1(x) = ρT-1(xT-1 - z*
T-1) +ρT 

(F(z*
T-1) + z*

T-1). Proceeding by backward induction, the following general expression is 

determined, 
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where z* = (1 - δ/r) K/2 and yt = max{xt – z*; 0}. Hence, the first term of the maximization 

procedure is JT(x) = x0 - z* + ∑ F(z*) ρT-j + ρTz*. The first extraction is determined by the 

initial stock size x0 = K and the optimal end stock size z*, y*
0 = x0 - z* = K - z*. 2 Since the end 

stock size is constant for all t < T and growth is deterministic, the initial stock size xt is 

constant for t > 1 and, consequently, the extraction yt is constant for all periods 1 < t < T. This 

result holds for any finite time horizon T < ∞, and also in the infinite horizon management 

                                                                 
2 Note the optimal harvest policy is a “most rapid approach” policy, driving the population toward the optimal 
level z* as rapidly as possible. 
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problem. 3 Hence, the extraction plan in the finite-horizon management problem coincides 

with the one in the infinite-horizon case (exclusive of the last period when the resource has to 

be extinguished) because at the maximum the marginal productivity of the resource after 

extraction F’(z*) must equal the interest rate δ.  

 

3 Laboratory fisheries: Design issues and experimental procedures 

Design issues 

The model of the previous section (as much as any other theoretical model we can handle) is a 

vastly simplified representation of the fishery. The perfect description of the population 

dynamics and the knowledge of the exact stock-size in every instance of time are only two of 

the idealistic assumptions. If we relax these, the solution to the harvesting-problem -as long as 

we can find one at all- becomes more involved. Another serious simplification of the model is 

the assumption of unbounded rationality which implies that a decision-maker is able to 

determine the optimal catch quota within a system of non- linear dynamics. The literature has 

shown that subjects experience significant difficulties in non-linear environments (Sterman 

(1989a, b, c), Brehmer (1992), Paich and Sterman (1993), Sterman (1994), Diehl and Sterman 

(1995), and Moxnes (1998a, b)). As Sterman (1994) pointed out 

… human performances in dynamic (complex) systems is poor … even compared to 

simple decision rules. … The observed dysfunction in dynamically complex settings 

arises from misperceptions of feedback.4 People are insensitive to non- linearity and 

violate basic rules of probability. The robustness of the misperception of feedback and 

the poor performance that lead us to create across many domains result from two basic 

and related deficiencies in our mental models of complexity. First, our cognitive maps 

of the causal structure of systems are vastly simplified compared to the complexity of 

the systems themselves. Second, we are unable to infer correctly the dynamics of all 

but the simplest causal maps. 

This paper addresses the efficiency losses that might accrue in fishery management due to the 

decision-maker’s shortcoming in dealing with complexity and due to missing information. For 
                                                                 
3 See Clark (1976, Ch. 2) for a derivation of a solution to the infinite-horizon problem and a discussion.  
4 Moxnes (1998a) referred to misperceptions of bioeconomics when he reported from a fishery management 
experiment. 
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this study, we have designed and conducted experimental treatments which vary two 

information conditions involving the knowledge of the species’ growth model and the 

accuracy of the stock estimate. The complexity in the task arises through the non- linearity of 

the growth function. We measure the efficiency of subjects’ extraction decisions by 

comparing the observed extractions to the maximal possible outcome. In fact, the scope of 

this study, in which one sole-owner of the fishery decides on the TAC, is limited to the 

examination of the deterministic microworld we described in the previous section. Therefore, 

many complications authorities actually face when they set the TAC are missing. Though this 

environment is overly simplistic it still captures essential ingredients of a fishery resource’s 

population dynamics. Given the (relative) easy tractability of this environment, we put up 

with the drawbacks. More realistic settings may be studied in the future. 

Still, there are at least three features with respect to the experimental implementation of the 

dynamic decision task that should be stressed: First, in the literature the fishery management 

problem is typically set in the infinite-horizon. As pointed out in the previous section, the 

optimal harvesting policy in the theoretical model is the same whether we consider the finite 

or the infinite-horizon setting. Since the infinite-horizon cannot be implemented in the 

laboratory, we tackle the fishery management problem as a finite-horizon dynamic decision 

task.5 Second, the decision-maker’s presumed objective should be to maximise the present 

value of the fishery in every instance. In a world without interest and costless harvest, this 

objective involves the most rapid approach to the maximum sustainable yield with every 

extraction decision, including a rebuilding of an eventually depleted resource as rapidly as 

possible. Naturally, the authorities can not know how well their harvesting-decisions 

approach the maximal economic rent. In the experiment, we implement this ignorance by a 

lack of information feedback into the decision-maker’s payoff space.6 Clearly, subjects must 

be rewarded according to their extractions. However, the exchange rate between the 

experimental currency and the subject’s home currency must not be given before the end of 

the experiment. Finally, there might be an emotional decision-bias of subjects -particularly of 

pity- which might be associated with slaughtering of fish. 7 In order to guarantee salience of 

the incentive structure the experiment must be neutrally framed. In the experiment we ask a 

                                                                 
5 Given the earth does not exist indefinitely this approach does not seem less plausible, either. 
6 Apesteguia (2005) finds no behavioural differences in a common pool experiment if payoff information is not 
revealed. 
7 See Moxnes (1998b) for a discussion. 
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subject to maximize savings, which are identical to the number of extracted units on the 

subject’s account. The procedures are detailed in the following subsection. 

Experimental Procedures 

In the computerized experiment,8 a subject had to decide one hundred times on the TAC, i.e., 

how much to extract from a privately owned resource stock. The extracted units were saved 

on the subject’s account and the logistic growth function was applied to the units that 

remained after an extraction. The initial stock size coincided with the carrying capacity 

x0=K=1000 units, the intrinsic growth parameter was r=1.5, and the discount rate was δ=0. 

The experiment involved four treatments which differed in the level of on-screen information. 

In Table 1 an overview is given: the letter G denotes growth, the latter S denotes stock and the 

letters No indicates no information on growth or stock. Before every extraction, the subject 

received a stock signal revealing information about the number of existing resource units. 

This signal was accurate in the treatments GS and S – i.e., equal to the resource stock xt – and 

noisy in the other two treatments G and No – i.e., the signal was equal to the resource stock 

multiplied by a random draw from the uniform distribution over the interval [0.75,1.25] and 

rounded to the next integer. In the treatments GS and G, an on-screen facility (in Table 1 

referred to as information about the growth function) was provided by means of which a 

subject could anticipate the consequences of any possible extraction for the nearest future 

before she/he confirmed an extraction. 9 Subjects were instructed accordingly.10 

Efficiency in the experiment was defined as the quotient of extracted units and 38125, which 

was the maximum number of possible extractions unknown to experimental subjects.11 

Efficiency was hence a number between zero and one. The payoff a subject received at the 

                                                                 
8 The software was programmed by means of Abbink and Sadrieh’s (1995) RatImage. 
9 Before making an extraction decision, the subject was given an on-screen record of 11 possible extractions in 
10 percentiles of the signalled stock in the first column. In the second column the corresponding after-extraction 
stock sizes were displayed, in the third column the resulting next stock sizes, in the fourth column the growth of 
the resource (i.e., the difference between the third and the second column) was displayed, and finally the savings 
were recorded in the fifth column. Additionally, the subject could explore the effects of every possible extraction 
at any point in time and before making an extraction decision -between nothing and the maximal available 
number of units (i.e., in G the maximum extraction was 4/3 * stock signal). The results of any such enquiries 
were displayed in a scroll-box appended to the standard record of possible extractions. Finally, if the subject was 
satisfied with the consequences of her/his latest inquiry (displayed at the end of the table) she/he confirmed it as 
the harvesting-decision by pressing the “extraction button.” 
10 Instructions and the computer-screen (for G) are depicted in the Appendix. 
11 The maximum is easily calculated by applying the results from Section 2: First, extracting 500 units to reach 
the steady state (the maximal sustainable yield since the interest rate is zero); then, extracting 375 units (equal to 
the growth in the steady state); and finally, extinguishing the resource in the last decision. 
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end of the experiment was the product of efficiency and the premium to be paid in a treatment 

which was known to subjects.12  

Table 1. Experimental treatments 

 
Accurate  
stock size 

Noisy signala 
about stock size 

Growth  
Function information 

GS #25 G #35 

No growth  
Function information 

S #27 No #30 

a) The noisy signal equals the true stock size multiplied by a random number from the interval [.75, 1.25] 

 

If a subject extinguished the resource before having made 100 extraction decisions the 

experiment ended instantaneously, regardless of the number of decisions made to that point. 

In order to limit erroneous extractions from the stock, subjects were warned if the extracted 

number of units exceeded the stock signal. At the other extreme, an extraction decision of 

zero units also triggered a warning. In addition, before the last decision (in round 100) the 

subject was informed that no further extraction would be possible thereafter. The preceding 

extractions and the on-screen information, including the stock signal before and after 

extraction as well as the resulting savings, were recorded in a history-window that subjects 

could access at any time during the experiment. 

In total 117 subjects participated in the experiment. The set of decisions made by each subject 

represents an independent observation for our statistical analyses. The number of subjects 

participating in each treatment is displayed in Table 1. The experimental sessions were 

conducted on two occasions, one at the ESSE laboratory at the University of Bari and the 

other at the CentERlab at Tilburg University. Each subject participated in only one treatment. 

Theoretical Benchmarks 

In section 2 above, we derived the optimal extraction strategy in the full information GS 

treatment. This strategy is clearly not applicable in the other treatments. Moreover, it is not 

clear in these other treatments what the optimal strategy is. However, in this section we 

                                                                 
12 The premium (i.e., the maximal payoff) in GS was €15, in G and S €17.50, and in C €20 (1€ ≈ 1$). The 
average payoff was €11; the experiment took about an hour. 
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propose ‘reasonable’ strategies in these other treatments, and justify their ‘reasonableness’ by 

showing that the implications of following these strategies are close to the implications of 

following the optimal strategy (if it were known). Of course, the subjects in our experiment 

could not know what was the optimal strategy, but we, the experimenters, know, and can use 

that knowledge to justify these ‘reasonable’ strategies. In what follows, we refer to these as 

our ‘theoretical benchmarks.’ That for the GS treatment coincides with the optimal strategy; 

those for the other treatments are justified in what follows. 

The development of the stock on the optimal extraction path for the treatment GS is shown in 

the top panel of Figure 2. On first sight, it may seem inadequate to use this perfect 

information benchmark for calculating efficiencies in the imperfect information settings. 

However, the benchmarks for the two treatments G (top right in Figure 2) and S (bottom left 

in Figure 2), are so close to this simple benchmark that using more elaborate comparisons 

would not yield any substantially different results. Even the benchmark for the treatment No 

that shows substantial stochastic variation centres with a median path around the perfect 

information benchmark (bottom right panel in Figure 2). In other words, given subjects follow 

a path of action that uses the information input consistently, they are likely to come close to 

the perfect information optimum rather quickly in an early phase of the experiment.  

In order to avoid the problem of extinction, the suggested theoretical benchmarks for the 

treatments without perfect information are all “prudent”, i.e. extraction choices that do not 

lead to the extinction of the resource with certainty are preferred to those that risk extinction. 

While this requirement may be too conservative in general, it seems useful, because it defines 

the most cautious benchmarks, below which no reasonable extraction path should fall, no 

matter how risk-averse the decision-taker is. Interestingly, prudence does not really pose a 

major source of inefficiency in any of the settings. In treatment S, the prudent benchmark 

behaviour achieves 98.6 percent efficiency. While an average efficiencies of 99.7 and 85.4 

percent are achieved in the treatments G and No, correspondingly. 

In the treatment S, in which the stock size is known, but not the growth function, the decision-

maker must use the information on stock size change (i.e. growth) to infer the best possible 

plan of action. Given that the range of possible actions is finite and given that the growth 

function is unknown, but single-peaked and fixed, the task can be reduced to a parameter 

search problem. The goal of the search algorithm is to identify the stock level inducing the 
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Figure 2. Theoretical benchmarks 

 

maximum growth. Since the stock size information is perfect and the growth function well-

behaved, a hill-climbing algorithm can be used that searches the parameter space employing 

systematic experimentation and consistent adaptation of the choice variable to achieve higher 

and higher values of the goal variable. The only major difficulty that the process must deal 

with is the lock-in hazard that is due to the missing information on the growth function. A 

lock-in situation arises when experimentation entails the risk of “being stuck” at such a low 

level of growth that a return to the optimal stock size is no longer feasible within the decision 

horizon. In the case of an extremely skewed growth function, for example, even relatively 

cautious experimentation may lead to lock-in situations, on the one hand, while perfectly 

conservative stock preservation will obstruct the optimisation process, on the other. Hence, 

the decision-maker will have to trade-off the efficacy of the search process against the risk of 

being locked in at a sub-optimal stock level.  

The benchmark we present in the lower left panel of figure 2 uses a simple hill-climbing 

search algorithm with an exponentially decreasing experimentation rate ε t. In any round t, the 

decision-maker extracts an amount that leaves 1 – ε t of the last round’s post-extraction stock 

level. As long as the observed absolute growth in t is greater than in t – 1, the process is 

continued with the same experimentation rate ε t, i.e. εt+1 = εt. As soon as, a decline of the 
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resource growth is observed in a round t, extraction is adjusted to restore the previous stock 

size, before continuing experimentation at an halved rate, i.e. at the rate ε t  = εt  – 1/2. At what 

speed the process converges and how difficult it is to recover from local lock-ins, does not 

only depend on the growth function, but also on the initial conditions, i.e. the initial size of 

the stock and the initial experimentation rate ε0.13 Using the experimental parameters and an 

initial experimentation rate of .1, we can show that after only 9 of 100 rounds, the process 

converges to stock levels that are within 10 points around the perfect information benchmark. 

By round 20 experimentation ends and the processes rests exactly at the optimal stock level.  

Things are a bit more complicated in the G treatment, in which the growth function is known, 

but not the exact stock size. In this case, using the growth function information, the decision-

maker can calculate the optimal target stock size, which is identical to the target stock size in 

the perfect information treatment. However, due to the stochastic nature of stock size 

feedback, extraction decisions that perfectly hit the targeted optimal stock size cannot be 

made. Instead, to improve the quality of the extraction decisions, the information arriving 

after each decision must be used to increase the precision of the stock size estimate. In any 

round, the extraction history and stock size signals can be combined with the growth function 

information to tighten the lower und upper boundaries on the initial stock size. As more and 

more observations are made, the range of possible initial stock sizes is reduced, ultimately 

making a perfect estimate possible. Once the initial stock size can be pinpointed, the current 

stock size can be calculated by reconstructing the history of extractions and applying the 

growth function, correspondingly.  

While the inference logic described above is unique, neither the realised path of information 

disclosure nor the level of extractions up to the point of perfect inference are unambiguous. 

The path of inference is not unique, because of the stochastic nature of the stock size 

feedback. Obviously, certain sequences of random draws will enable a quicker perfect 

inference than other sequences. Furthermore, the optimal extraction behaviour before the 

perfect inference is achieved depends on how the threat of pre-mature extinction is treated. 

We have chosen a benchmark that deals with the extinction issue by assuming “prudence” in 

the sense that any pre-mature extinction of the stock is excluded. The prudent extraction xt in 

                                                                 
13 If ε0 is small the risk of overshooting the optimal growth stock level is small, but the speed of convergence is 
low. If ε0 is large then the contrary is true. The path displayed in Figure 2 is derived for an initial stock size of 
1000 and an initial experimentation rate of ε0 = .1. 
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round t is limited to being no greater than the minimum estimated stock size st at time t (i.e. 

given all information collected in the previous rounds), hence xt = max(0, st – 500), where 500 

is the optimal stock size (derived from the growth function information). 

The top right panel in Figure 2 displays the development of the stock in a small Monte-Carlo 

sample of runs with prudent extraction and rational updating. The “median path” shown in 

the panel, describes which development of the stock size we should be expecting, if subjects 

are prudently extracting and rationally updating. The “minimum” and “maximum” paths show 

the extremes of the simulated distribution14. As can be seen, the stock size quickly converges 

to the optimum of 500 (i.e. the exact initial stock size is quickly inferred from the history), 

even though the assumed behaviour is very cautious concerning the threat of pre-mature 

extinction. On the median path, the maximum sustainable yield at a stock size of 500 is 

reached after only 20 of 100 rounds. Even in the worst case observed in the simulation, no 

more than 40 rounds were needed for full convergence. 

What is perhaps even more important than the point of full convergence is the fact that the 

path comes close to optimum very quickly and hence induces only minor losses due to the 

imperfect information. On the median path the total extraction is just slightly below 38000 

compared to the 38125 in the optimum of the perfect information setting. Hence, the median 

efficiency loss due to application of the prudent extraction rule would be less than 0.4% and 

even in the worst case only 1%.15  

Finally, defining a convergent benchmark in the treatment No involves using blending the two 

methods used for the benchmarks in S and G, because both growth function information and 

perfect stock size information are missing. The bottom right panel in Figure 2, displays the 

median, the minimum, and the maximum path that were observed in a small Monte-Carlo 

simulation using such a combined procedure. In this procedure, the hill-climbing process (i.e. 

the search for the stock size that induces maximum growth) cannot be controlled by simply 

comparing resource growth at different levels of stock, because the stock size information is 

imperfect. Instead, the success measurement has to be based on the distribution of empirically 

estimated growth numbers. Since the growth function information is also unavailable, 

achieving the same precision of the empirical estimation of the growth numbers as in 

                                                                 
14 It should be noted that these do not represent actual paths, but just the upper and lower envelopes of the 
various possible paths. 
15 Since subject payments in the experiment were rounded up to multiples of 50 Cents, even in the worst case 
simulation subject payments would have coincided with the maximal payoff. 
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treatment G requires having many more observations. Hence, the low level of information in 

No leads to a high dispersion in the speed and path of convergence. As the minimum and 

maximum paths we observed in our simulation show, often 100 rounds will not entail enough 

empirical observations as to allow a convergence of the process to the maximum growth 

point. Nevertheless, the median simulation path converges well within the first half of the 

experiment, indicating that the distribution of experimentally observed post-extraction stock 

sizes in the second half of the experiment should be located around 500, the stock level that 

induces maximum growth.  

4 Experimental Results  

This section is organized corresponding to the optimal extraction plan. First, we survey the 

efficiency of initial extraction decisions; second, we consider the overall efficiency and the 

evolution of extraction decisions; and, third we report on the efficiency of subjects’ last 

extractions. As a benchmark we refer to the decisions on the optimal path. These imply a 

stock-size after extraction at the maximum sustainable yield (i.e., 500 units) until pen-ultimate 

decision and extinction of the resource with the last decision. We conclude the section by 

classifying observed individual behavioural pattern. 

The First Extraction Decisions  

The first extraction induced significant under-harvesting in all treatments (two-tailed 

Wilcoxon signed ranks test at α=.01): subjects extracted less than the optimal 500 units. Table 

2 records the statistics on stock after the first extraction. 

Table 2. Stock size after first extraction 

treatment # minimum Maximum average std. error 
Wilcoxon-test 

H0: average=500 

GS 25 300 975 653 165 -3.40** 

G 35 280 999 670 197 -3.98** 

S 31 100 1000 842 232 -4.34** 

No 30 200 1000 932 166 -4.69** 

**significant at 1%, one-tailed;  *significant at 5%, one-tailed 

 

The deviations from the optimal extraction increased from treatment GS through No (two-

tailed Jonckheere test of ordered alternatives at α=.01). Equation (5) represents a pooled 
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dummy regression of the distance of stock after the first extraction from the optimum on G 

and S. In accordance with the Jonckheere test, the regression results reveal that growth and 

accurate stock information both had a significant influence on the efficiency of subjects’ first 

extraction decisions. DG and DS denote dummy variables which take a value of one if a 

subject receives growth information and accurate stock information, respectively, and zero 

otherwise. 

|Stock1 – 500| = 438** - 223 DG** -  57 DS* 2R̂ =.35 (5) 

 23.96 27.64 27.71 [std. error]  

 18.30 -8.08 -2.07 [t-ratio]  

**significant at 1%, one-tailed; *significant at 5%, one-tailed 

 

Average Efficiency 

The subjects’ presumed objective in the experiment was to maximise efficiency, which we 

define as the ratio of the actual extraction to the maximal possible one. Table 3 records the 

minimum, maximum, and average efficiency attained in the experiment. Standard deviations 

are reported in the last column.16 Efficiency increased across treatments from No to GS. 

Differences between treatments are significant at 1% for all pair-wise comparisons, except for 

the comparison of G to S (Mann-Whitney test, two-tailed). In treatment G (and only in 

treatment G), three subjects extinguish the resource within the first 19 extractions (see Table 

A in the appendix). If we do not take the extinction observations into account, efficiency in 

treatment G is significantly greater than in S. The dummy regression of efficiency on the 

treatment dummies growth and accurate stock reported in equation (6) indicates that both 

treatment variables had a significant effect on efficiency. The knowledge of the growth 

function implied an increase of average efficiency by 27.6%, the accurate stock size 

information by 21%.  

 

Efficiency  = .427** + .276 DG** +  .210 DS* 2R̂ =.31 (6) 

 .038 .044 .044 [std. error]  

 11.17 6.26 4.66 [t-ratio]  

**significant at 1%, one-tailed; *significant at 5%, one-tailed 
                                                                 
16 Table A in the appendix records individual efficiency levels. 



 14 

 

The maximum of the observed efficiency levels does not deviate too much from the efficiency 

levels proposed by the theoretical benchmarks in any treatment. However, actual behavioural 

patterns differed much from the benchmark; they will be discussed below. 

Table 3. Efficiency 

 
Treatment 

# minimum 
 

Maximum average std. error 

GS 25 0.613 0.999 0.874 0.108 

G 35 0.091 0.949 0.727 0.254 

S 31 0.057 0.922 0.661 0.252 

No 30 0.018 0.853 0.398 0.287 
 

The Evolution of Extractions and Stock 

Figure 3 contrasts the evolution of average stock levels after extraction in all treatments with 

the optimal path represented by the 500-units line. Payoff maximization involved in each but 

the 100th decision an extraction of the maximum of zero units and the difference of the actual 

stock size and 500 units. In case the resource was depleted below 500 units the stock would 

have to be rebuilt. Equation (7) represents the pooled regression of distance from optimum on 

time, by which we checked whether efficiency increased over the sequence of extraction 

decisions.  

|Stockit – Optimum| = β0 + β1’t  + ε it, 1 ≤ t ≤ 99  (7) 

 

The regression results recorded in Table 4 confirm that efficiency increased in the experiment. 

The coefficients indicate that the effect of time on efficiency was greater in treatments S and 

No than in the treatments GS and G, in which subjects received information about the growth 

function. This result does not say that subjects in the treatments without growth information 

were more efficient in the end than those who had this  information. Convergence of the 

average stock after extraction to the optimum was limited at 205 and 258 units in the 

treatments S and No, respectively. In the treatments GS and G, in contrast, the average 

deviation from the optimum did never exceed 199 and 252 units, respectively. 
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Figure 3. Evolution of average stock after extraction compared to optimal path 

 

 

 

 

 

 

 

 

 

 

 

Table 4. Distance from optimum on time (eq. 7) 

  coefficient std. err. t-ratio 2R̂  

GS constant 182** 6.220 29.33 0.03 

 period -0.67** 0.108 -6.22  

G constant 197** 6.063 32.55 0.01 

 period -0.53** 0.105 -5.07  

S constant 248** 5.708 43.53 0.08 

 period -1.22** 0.099 -12.36  

No constant 417** 7.516 55.47 0.05 
 period -1.31** 0.130 -10.10  

**significant at 1%, one-tailed; *significant at 5%, one-tailed 

 

Indeed, greater efficiency also corresponds to smaller stock sizes across treatments, as, on 

average, our experimental data suggest rather under-harvesting than over-harvesting. This is 

confirmed by the two-tailed Wilcoxon signed ranks test reported in Table 5. The first column 

of Table 5 exhibits the percentage of subjects whose stock size after extraction was more 

frequently below than above the optimum; the second column records the ratio of 

observations that invo lved lower stock than optimum to the number of observations in which 
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stock was not equal to optimum. Over-harvesting was most heavy in treatment G, where three 

subjects extinguished the resource within 19 decisions. In all three observations, the last 

extraction did not exceed the signalled stock, but in fact it did exceed the actual stock size. 

The two-tailed Wilcoxon signed ranks test reported in the third column of Table 5 reveals that 

over-harvesting was not significant in any treatment.17 The only significant result that comes 

out from the test indicates under-harvesting in treatment No. This reveals important 

differences to the results of Moxnes (1998a, 1998b). While Moxnes finds a strong tendency to 

over-harvesting in early rounds, we rather find a tendency to under-harvesting. This seems to 

indicate that the behavioural biases in such dynamic settings are not very robust concerning 

changes to the experimental set-up which is also reflected in the treatment differences we 

observe. The propensity to harvest more in GS and G than in S and No suggests furthermore 

that subjects are more confident with their extraction decisions when they receive information 

of the stock dynamics.  

Table 5. Over-harvesting 

 stock-size < optimum Wilcoxon test 

Treatment #subjects #observations H0: #subjects=50% 

GS 40.0% 45.8% -0.700 

G 51.4% 53.1% -0.532 

S 35.5% 36.9% -1.925 

No 10.0% 15.4% -4.502** 

**significant at 1%, one-tailed;  *significant at 5%, two-tailed 

 

The Final Extraction Decision & Extinction of the Resource 

With the final extraction, subjects were expected to extinguish the resource. However, only 

one half of them did so as surveyed in Table 6. 58 subjects (50%) ended the experiment with 

a zero stock, 10 subjects in treatments G and No did not extinguish the resource but extracted 

all units signalled to them before the last decision. Apparently they had forgotten that the 

signal was most likely incorrect. In Table 6, the numbers in brackets indicate the subjects who 

did not even extract all the units signalled to them. On the other hand, there were 12 subjects 
                                                                 
17 We computed for each subject the number of times the stock was greater than or equal to the optimum. The 
rest, the difference between 99 and that sum, revealed the number of occasions in which the stock was smaller 
than the optimum. For each subject we computed the surplus of number of times the stock was greater than the 
optimum over the number of times it was smaller than the optimum. The test was run on these surpluses. 
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who extinguished the resource too early, i.e. before they reached the 100th decision: eight 

subjects did so in the 98th and 99th decision in treatment S and one subject in the 93rd decision 

of GS. As already pointed out above, we observed three cases of apparently unintentional 

extinction in treatment G within the first 19 decisions.  

Table 6. Non-extinction [positive end-signal]  

Treatment # % 

GS 10 40% 

G 22 [17] 63% 

S 16 59% 

No 15 [10] 50% 

Total 59 [49] 50% 
  

Behavioural pattern: Control Theory, Linear World and Misperceptions of Feedback 

In agreement with Edwards’ (1962) classical description, the present work contributes to the 

laboratory studies on dynamic decision making. 18 Brehmer (1992) suggests that experiments 

on dynamic decision making are particularly valuable since real world problems such as 

company management or even everyday life involve many dynamic tasks, and field data is 

difficult to obtain. As a general framework for the study of dynamic decision making, 

Brehmer (1992) proposed control theory (although not the mathematical term).19 He pointed 

out, subjects’ overall goal in a dynamic decision task should be one of “… achieving control: 

that is, that decisions are made to achieve some desired state of affairs, or to keep a system in 

some desired state.”  

As we observe literally no incidence of individual decision making in support of our above 

outlined theoretical benchmarks, we establish the alternative research hypothesis that subjects 

either try to hold the stock signal constant or the extraction level (through the extractions 2-

99). This hypothesis is based on the idea that subjects try to take control over the dynamic 

system. Actually, we can find support for both extraction policies. In Figure 4, we have 

plotted the individual stock development of four subjects who exhibit behaviour that can be 

                                                                 
18 A dynamic decision problem implies that 1) a series of decisions is required to reach the goal, 2) the decisions 
are not independent, and 3) the state of the decision problem changes. See Brehmer (1992) for a discussion. 
19 This was noted before; see for instance Rapoport (1975). 
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identified as “typical” for the control theory hypothesis. The number of observations that 

follow similar patterns is stated. For instance, 15 individual charts or 60% of the observations 

in GS display straight lines as presented in Figure 4. 

 In treatments GS and S, in which subjects received accurate stock information, it is difficult 

to tell whether subjects were maintaining stock or extraction as both variables depend on each 

other. However, these questions can be addressed by examining the plots of treatments G and 

No, where such information was not supplied. Next to the optimal path indication, these plots 

exhibit two further lines: The unbroken line represents the movement of stock after extraction 

and the dashed line represents the noisy stock signal after extraction. The displayed plots 

represent 34% and 7% of similar patterns in the treatments G and No, respectively. In the 

representative plot of treatment G the dotted line is straight indicating extractions to maintain 

a constant stock signal. In contrast to this, the straight segments in treatment No exhibit a 

constant stock after extraction which hints at a policy of constant extraction.  

Figure 4. Behavioural pattern – control theory 

 

 

 

 

 

 

 

 

 

 

In fact, more plots of individual extraction decisions indicate a constant stock size in 

treatments S and No, but not in support of the control theory story. Samples of these are 

displayed in Figure 5. The striking pattern is that half of the subjects in treatment No and 19% 

in S extracted almost nothing. They held their stocks near the biological equilibrium size of 

1000 units where growth was very close to zero. This odd behaviour can hardly be 

rationalized if not in the light of Brehmer’s (1980) observation that people tend to believe in a 
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linear model rather than in other models. If subjects actually believed in a linear relationship 

between stock size and growth they might have taken for granted that growth increases with 

stock. From this perspective it would make sense to let stock grow and extract at the end the 

profit maximizing stock size.  

Figure 5. Behavioural pattern – linear world 

 

 

 

 

 

 

Such misperception of linearity in non- linear dynamic systems has been reported in earlier 

experimental research (see Sterman (1994) for a survey)), as we pointed out in section 3. 

Another behavioural pattern, which Sterman (1989a, b, 1994) called the misperceptions of 

feedback, must be seen in the fluctuations of the stock-sizes after extractions (see Figure 6). 

Such “pulse fishing” makes sense in some fishery environments (Schnier 2005), but not in our 

experiment since subjects were informed about facing a deterministic system. It seems 

particularly surprising that even in the transparent setting of treatment GS (in which subjects 

experienced feedforward information) cycles and oscillations of stock occurred. Paich and 

Sterman (1993) who observed comparable pattern claimed that subjects’ learning in complex 

environments is poor. This argument could in fact explain the persistency of these oscillations 

in the data.  

 

5 Summary 

In this paper we have considered the fishery management problem under a finite-horizon 

condition. We established the benchmark solution (in the full information treatment) which 

disagrees with the infinite-horizon solution only in the last extraction. This approach differs 

from other fishery experiments as in Moxnes (1998a), Mason and Phillips (1997) or Schnier  
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Figure 6. Behavioural pattern – pulse fishing 

 

 

 

 

 

 

 

 

 

 

 

 (2005) where “infinite” horizon tasks were intended but sessions lasted only 20 or 35 

extraction periods.20 In line with this literature, extinction of the resource before the end of the 

experiment was generally not a problem in our study, although it eventually happened when 

subjects received information on population dynamics but a noisy signal of stock. Over-

harvesting was not a problem either in our study. This result diverges from those of Moxnes 

(1998a, b) and may lead back to the differences in the experimental structure: in the present 

study, subjects had a direct control over the fishery resource while settings in Moxnes’ studies 

were much more complex. The behavioural patterns that classify our data almost completely 

can be summarised as follows. About 35% of subjects tried to achieve control over the 

complex system by holding either stock or extraction levels constant. Another 44% of 

subjects managed their stocks by pulse fishing and 17% misperceived the non- linearity of the 

environment and extracted almost nothing.  

                                                                 
20 Mason and Phillips (1996) considered a dynamic extraction game in which they varied the number of 
extractors from the common pool. Moxnes (1998) reported an experiment in which subjects acted as sole-owners 
of the fishery. The optimal solution to the management problem could only be determined numerically. The task 
was as of infinite horizon: Subjects had to maximise over the horizon of 20 periods the sum of extractions and 
remaining fish units. The control variables were the orders of vessels and utilization level of the fleet. Every 
vessel had an average lifetime of 25 periods, thus that all vessels should be ordered at the beginning of the 
experiment. Only the subject with the high score received any price. Moxnes (1998) reported over-capacities of 
the fleet and so over-harvesting.  
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Efficiency of extraction decisions was an estimated 21% higher if the stock signal was 

accurate, and 27.7% higher if the growth function was revealed to the subjects. It suggests 

that research helps to increase extraction decisions significantly. However, it should be noted 

that we considered here a highly simplified, deterministic model in which the precise growth 

function is given or not. In a real world resource management problem the decision maker 

faces an inaccurate growth model, non-deterministic stocks and positive market parameters as 

interest rates, costs, and prices. Furthermore, we are aware that political influences may affect 

the decisions of the authority as well (e.g., lobbyism) but we left these imperfections in the 

decision making process out of focus. However, all these complications might be introduced 

to the laboratory in the future. The logistic growth function which we considered in the 

experiment seems to be ideally behaved to provide the experimenter with a rich research 

environment: the unique optimal solution to the maximization problem can be calculated, 

although it is not easily recognized by experimental subjects. 
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Table A. individual efficiency 

Note: Subjects’ results are arranged according to their performance. †In G, 

three subjects extinguished the resource within the first 19 extractions. The 

last extraction was two or five units smaller than the signalled stock but 

exceeded the actual stock size. 

   

 

 

# No S G GS 
1 0.018 0.057 0.091† 0.613 
2 0.036 0.066 0.095† 0.620 
3 0.045 0.168 0.149† 0.706 
4 0.056 0.192 0.394 0.740 
5 0.060 0.358 0.434 0.803 
6 0.084 0.484 0.488 0.810 
7 0.085 0.554 0.503 0.820 
8 0.155 0.560 0.507 0.853 
9 0.160 0.606 0.520 0.877 
10 0.178 0.640 0.583 0.879 
11 0.190 0.646 0.651 0.880 
12 0.220 0.657 0.656 0.893 

13 0.220 0.658 0.783 0.900 

14 0.267 0.669 0.800 0.907 

15 0.275 0.697 0.814 0.917 

16 0.390 0.743 0.836 0.920 

17 0.485 0.760 0.853 0.939 

18 0.557 0.771 0.860 0.942 

19 0.611 0.771 0.866 0.950 

20 0.613 0.791 0.869 0.967 

21 0.625 0.823 0.869 0.967 

22 0.640 0.834 0.874 0.974 

23 0.645 0.846 0.890 0.980 

24 0.650 0.851 0.897 0.993 

25 0.686 0.863 0.903 1.000 

26 0.695 0.869 0.904  

27 0.755 0.897 0.907  

28 0.835 0.903 0.914  

29 0.845 0.909 0.926  

30 0.853 0.914 0.926  

31  0.922 0.931  

32   0.937  

33   0.937  

34   0.937  

35     0.949   
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Instructions 

In the experiment you are asked to make saving decisions. With every decision you determine 

how many units you extract from a fictitious resource stock. Every extracted unit is credited 

to your savings account, which is displayed on your screen (in a window labelled “status”). 

Your objective in the experiment is to maximize savings. You begin with zero savings. 

With each extraction you transfer units from your stock to your savings account. After the 

decision, the stock will be subject to deterministic growth. That is, the resource stock grows 

by an amount that is unequivocally determined by the number of units that remain after 

extraction. If the stock is zero, growth is zero. Unless you extract the entire stock you are 

asked to make 100 extraction decisions. 

The stock size information 

At every time before you make an extraction decision, the stock, i.e., the number of units from 

which you can extract, will be revealed to you on the screen. [subjects in G and No read: Yet, 

this information is biased. Your information reflects the product of a random number in the 

range 0.75-1.25 and the actual stock. In other words, the number of units you have in the 

stock is multiplied by a randomly determined number between 75 percent and 125 percent. 

The computer determines a new random number after each of your decisions. Consequently, 

you never know whether the actual stock is greater, smaller or equal to the revealed one.] 

[subjects in GS and G read: The growth function 

You are given information about the relation of stock size and growth through an onscreen 

tool in a window titled “result calculation”. It is easy to handle: Insert a potential number of 

units to be extracted (how to do it is detailed below). The corresponding stock after extraction 

and the resulting stock from which you can extract at your next decision will be stated in the 

second and the third column. The fourth and the fifth column record the corresponding growth 

and the savings after extraction, respectively. By default, this information is recorded for all 

potential extractions involving 10 percentiles (i.e., 10%, 20%,…, 100%) of the [subjects of G 

read: revealed] stock, as recorded in the first column of the result calculation window.] 

Your payoff 

There is an optimal extraction plan, though you will not be told any details about it. However, 

your payoff relates to the maximum possible amount of savings as follows. At the end of the 

experiment your payoff will depend on the quotient of your actual savings and the maximum 
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possible savings (i.e., the quotient corresponds to the result of dividing your savings by the 

maximum possible ones). This quotient will be taken times {(subjects in GS read 15), 

(subjects in G and S read 17.50), (subjects in No read 20)} Euro to determine your payoff, 

which will be paid to you in private as soon as you have taken your last decision in the 

experiment.  

The software  

To make your decision you proceed in 2 steps: First, insert a potential number of units to be 

extracted with the keyboard or the mouse, and confirm it with the enter key. The number will 

be highlighted in the display of the “decision” window on the bottom right of your screen. 

Second, to make your extraction decision final you press the button labelled “extract”. Note, 

unless you press the extraction button with the mouse you can insert other numbers as often as 

you like without any consequences. 

The history 

From the menu bar at the top left of your screen you can retrieve the “history” window. The 

history records all information you have received and the decisions you have taken in the 

experiment. 

The screen 

 

 
Screen G


