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Abstract

This paper develops a new test for a unit root in autoregressive models
with serially correlated errors. The test is based on the “empirical” Cressie-
Read statistic and uses a sieve approximation to eliminate the bias in the
asymptotic distribution of the test due to presence of serial correlation. The
paper derives the asymptotic distributions of the sieve empirical Cressie-Read
statistic under the null hypothesis of a unit root and under a local-to-unity
alternative hypothesis. The paper uses a Monte Carlo study to assess the finite
sample properties of two well-known members of the proposed test statistic:
the empirical likelihood ratio and the Kullback-Liebler distance statistic. The
results of the simulations seem to suggest that these two statistics have, in
general, similar size and in most cases better power properties than those of
standard Augmented Dickey-Fuller tests of a unit root.

The paper also analyses the finite sample properties of a sieve hootstrap

version of the (square of) the standard Augmented Dickey-Fuller test for a
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unit root. The results of the simulations seem to indicate that the bootstrap
does solve almost completely the size distortion problem, yet at the same time
produces a test statistic that has considerably less power than either that of

the empirical likelihood or of the Kullback-Liebier distance statistic.

Keywords and Phrases. Autoregressive approximation, Bootstrap, Empirical
Cressie-Read statistic, Generalized Empirical likelihood, Linear process, Unit

root test.



1 Introduction

Asymptotic theory for testing for the presence of a unit root in autoregressive models,
the so-called unit root hypothesis, is well developed - see Phillips and Xiao (1998)
for an updated survey- and routinely applied in macroeconomics and finance where
most time series display unit root characteristics. There exists however a large body
of Monte Carlo evidence showing that the conventional asymptotic approximations
to the null sampling distribution of most test statistics for a unit root are inaccurate,
particularly in the case of autoregressive models with weakly dependent errors. As a
resuit the exact levels of these tests are often very different from nominal levels derived
from asymptotic theory. In such cases one option is to use the bootstrap to improve
the quality of the asymptotic approximation. The validity of bootstrap methods
for unit root models was originally investigated by Basawa, Mallikand, McCormick,
Reeves and Taylor {1991) and more recently by Psaradakis (2001), Romano and Wolf
(2001), Park (2002), and Chang and Park (2003) among others. Another option is
to consider alternative tests for a unit root. In this paper we follow the latter and
propose a new test for a unit root based on the so-called empirical’ Cressie-Read
method.

The empirical Cressie-Read method, introduced by Baggerly (1998} as a gener-
alization of Owen’s (1988} empirical likelihood, provides a nonparametric likelihood-
based alternative to bootstrap procedures for inference in a number of nonparametric
situations. The ECR discrepancy produces a very large family of nonparametric like-
lihood ratio-type statistics which includes the empirical likelihood ratio (Owen, 1988),
the Kullback-Lichler distance (DiCiccio and Romano, 1990) based on Efron (1981}
nonparametric tilting method, the Euclidean likelihood ratio (Owen, 1991), and the
least favorable family-based likelihood ratio (Lee and Young, 1999) among others. As
noted by Baggerly (1998), all members of the ECR family enjoy a number of desirable
statistical properties: they vield convex confidence regions (at least for a multivari-
ate mean} whose shape is typically data-determined. Furthermore BCR regions are
transformation invariant, do not require estimation of scale and, as recently shown

by Bravo (2005a), they all admit Bartlett-type corrections that can lead to improved

TWe use the term “empirical” to emphasise the central role played by the empirical distribution

of the data



inference. The ECR method can also be used to construct new estimators and test
statistics that are asymptotically equivalent to those based on standard asymptotic
methods, but are characterized by better finite sample properties (either in terms of
bias, and/or in terms of accuracy and power). For example Imbens and Spady (2002)
showed that all members of the ECR family give rise to alternative estimators and as-
sociated statistics to those based on Hansen'’s (1982) generalized method of moments
(GMM} method but with better finite sample properties. For all these reasons, it is
perhaps not surprising that the nonparametric likelihood approach to inference hased
on the ECR method has attracted recently a great deal of interest in econometrics
and statistics.

In this paper we show how the ECR method can be used to obtain a nonpara-
metric likelihood based family of tests for a unit root in an autoregressive model
with errors parameterized as a general linear process. The results of the paper are
based on the same autoregressive approximation used by Chang and Park (2002) in
the context of Augmented Dickey-Fuller (ADF) unit root tests, and by Psaradakis
(2001) and Chang and Park (2003) in the context of bootstrap unit root tests. This
approximation captures the dependent structure of the errors by fitting autoregres-
sive models with order increasing with the sample size at an appropriate rate. Since
the approximation is sometimes known in time series literature as sieve approxima-
tion (see e.g. Bithlmann (1997)), we shall call the resulting ECR method sieve ECR
(SECR henceforth).

In this paper we establish the asymptotic distributions of the SECR statistic under
the null hypothesis of a unit root and under a sequence of local-to-unity alternatives.
The resulting distributions correspond to the square of well-known functionals of a
Brownian motion and Ornstein-Uhlenbeck process, respectively. These results are of
theoretical interest and generalize (and/or) complement results obtained by Chuang
and Chan (2002), Bravo (2005b) and Bravo (2005¢). We note here that to derive
these results we rely on methods developed and used by Donald, Imbens and Newey
(2003) and by Bravo (2005¢).

In this paper we also use simulations to assess the finite sample properties of the
two most well-known (and used in practice) members of the SECR statistic, namely

the empirical likelihood ratio and the Kullback-Liebler distance. Their finite sample



properties are compared with those of a standard (squared) ADF ¢ statistic, and
with those based on the sieve bootstrap (squared) ADF t- statistic. The results of the
simulations are encouraging and seem to suggest that in a number of cases of practical
relevance the SERC method can produce test statistics with finite sample properties
that compare favorably with those of the original and bootstrapped (squared) ADEF
i- statistic.

The rest of the paper is structured as follows: next section reviews the ECR
method for inference in the case of independent and identically distributed observa-
tions. Section 3 introduces the sieve approximation, and shows how it can be used in
the context of testing for a unit root in a simple autoregressive model of order one.
Section 4 contains the main results of the paper. Section 5 reviews the sieve bootstrap
method in the context of unit roots tests. Section 6 containg the results of a Monte
Carlo study, while Section 7 contains some conciuding remarks and indications for

future research. An Appendix contains all the proofs.

2 ECR method

Like empirical likelihood, the empirical Cressie-Read (henceforth ECR) method uses
numerical optimization to estimate the unknown distribution of the data subject to a
given restriction assumed to contain all the information available in the sample. The
resuiting constrained estimator can be used to make inference about the restriction
itself, using the well-known fact that without restriction the empirical distribution
function is an optimal estimator (i.e. it is the maximum nonparametric likelihood
estimator) of the unknown distribution of the data. Specifically, the discrepancy (or
distance) between the constrained and unconstrained (that is the empirical distribu-
tion function) estimators of the distribution of the data can be used to assess whether
the imposed restriction is supported by the data. In the case of ECR method the
discrepancy is measured by the Cressie-Read power-divergence statistic (Read and
Cressie, 1988). For alternative, more general, discrepancies see Smith (1997) and
Corcoran {1998).

Suppose that the observations (z;);.

e

, are independent identically distributed (i.i.d.)

R-valued random vectors from an unknown distribution F, let § € © C R he an
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unknown parameter vector associated with F, and E denote the expectation operator
with respect to /. We agsume that the information about / and & is available in the
form

Blg (2, 60)] =0, (1)
for some specified value fy of 8, with ¢(z,8) : R x © — R?%valued vector of known
functionally independent functions. The typical approach to inference for 8 in (1) is

to use the analogy principle and define the Z-estimator # solution to the empirical

9n (@) :=Zg(zi,§) /n=0. (2)

Then tests and confidence regions for # can be based on the score-type statistic

w0 0[S () ()] "0 5]

since the latter converges to a Xf} under mild regularity conditions. Alternatively one

analogue of (1), viz.

can use the ECR to obtain nonparametric likelihood-based inferences for 8. Specifi-
cally let w; denote the weight that F places on the ith observation z;, where F is an
arbitrary probability measure on #?, and let @; = 1/n denote the weight (probability
mass) that the empirical distribution function F, assigns to each of the observations.
The ECR discrepancy between w; and 1/n {that is between F and F,,) is given by

n

CR(wi, 1/n,y) = [(nw) ™ =1} /[y (v + 1))

=1
where v € R is a user-specified parameter. In particular for v = —2 one obtains the
Euclidean likelihood, for v = -1 the Kullback-Liebler, and for + == 0 the empirical

likelihood ratio statistics?. The ECR method chooses the unknown weights w;’s so

that the null hypothesis Hy : @ = #, holds in the sample and the Cressie-Read statistic

is minimized. To be specific the w;'s solve the following constrained minimizations
je=1

ntluifn {C‘R {w;, 1/n, ) |Z;wi =1, Zqu (5, 0p) = 0} : (3)

Assume that

Pr{0 € ch (g (21,00) - 9 (. Bo))} = 1 a5 1 — o0,

*Note that the two degencrate cases v = —1 and v = 0 are handled by taking the limits.



that is, asymptotically the true mean of the distribution lies within the convex huil
ch(v) of g{z1,00), ..., g (&, G), for otherwise (3) does not admit a solution since it
is impossible to reweight the data so that the mean is 0. A Lagrange multiplier
argument, shows that the unique solution to (3), is given by

)”3/(1+‘r')

w; (8, ) n? (1 +E+g'g (x;,00) for v € R/ {-1,0},

Tlbo-1) = Com (Fo(ent)), (00,0 =07 (1+E0 (o)

fl

where the Lagrange multipliers Z € R and :‘;: € R¥ are determined by the constraints
Yooqwe=1and 37  wig{x;, ) = 0, respectively. Using (4) in {3) it follows that
the ECR statistic for 8y is given by W (8g,v) = 2CR (w0 (0o, v) , 1/n,v) where

n

) ) e ¥ [y +1) .
Witn) = S 3| (12 Bottn) T -1 oy e,

v (v 1)

W 6o -1) = 23 [ (E(0000)] s [ (B 0]

W (60,0) = Zilog (1 +&yg (.'131:,9())) ,
t=1

and W (83,, —1), W (,,0) correspond to the Kullback-Liebler and the empirical like-
iihood ratio statistics, respectively. A straightforward modification to Baggerly’s
(1998) arguments shows that W (8s,7) < X2, which in turn may be used to build

nonparametric likelihood based confidence regions for ¢ by inversion.

3 Sieve approximation for unit root tests

Consider the following AR (1) process
?j’t = ﬁytwl -+ g, t= 11 21 sy T2 (6)

Uy = il (L) gy = Z'L/)jst”j
=1

where, for simplicity, yp = 0%, and the innovations g, form a martingale difference

sequence satisfying the following assumptions:

3The initial value of g, docs not affect the asymptotic results obtained below as long as y =

0,(1).

0}

(5)



M (T) E(ef|Fia) = 0% a.s., (I1) E (|5tF6 [j:t—-l) < o0 a.s. for some 6 2> 4,
and W (L) satisfies
LP ¥ (z) # 0 for all {2 <1 and 3,57, j*|¢;] < oo for some & > 1.

Assumptions M and LP imply that u, is a strictly stationary linear process driven
by martingale difference innovations. Note also that LP includes models with poly-
nomial decay of the coefficients {’t/)j}(;io. General ARM A (p, q) processes satisfy LP
with an exponential decay of {q‘/)j};io'

It is well known (see, for example, Phillips (19874)) that the dependent structure
of the error process u; introduces a bias term that affects the asymptotic distributions
of the t- statistic or coefficient test for the unit root hypothesis Ho : § = 1 in (6).
One way to solve this problem is to correct the test statistics with nonparametric
estimates of the bias as originally proposed by Phillips (1987a) and Phillips and
Pierron (1988)%. Alternatively one can approximate u; by a finite autoregressive
process of order increasing with the sample size as recently suggested by Chang and
Park (2002). As mentioned in the Introduction, this autoregressive approximation is
sometimes known in time series literature as sieve approximation (Biithlmann, 1997),
since it is based on a sequence of autoregressive processes (i.e. a sequence of finite
dimensional parametric models} approximating a linear process, which can be thought
of as an infinite dimensional nonparametric model. It should be noted that in the
context of tests for a unit root, a similar idea was originally proposed by Said and
Dickey (1984) and more recently by Xiao and Philips (1998) as an extension to the
traditional angmented Dickey-Fuller (ADF) test for a unit root with weakly dependent
errors, Both Said and Dickey (1984} and Xiao and Phillps (1998) however considered
only linear processes with geometrically decaying coefficients and i.i.d. innovations,
as opposed to the general linear processes considered in Chang and Park {2002} and
in this paper.

Let

P (L)u, = e (7)

“Note that the corrections proposcd by Phillips (1687e) and Phillips and Pierron (1988} are

also valid for other weakly dependent structures of the arvors. In particular they are valid if , is
- . . . C g NPV .
asswmed to be a strong-mixing process with mixing cocfficients o, satisfying Y0 oy < oo for

SO0 o > 2,



denote the AR (o0) representation of the linear process u,, and notice that LP implies
that @ (2) is bounded away from 0 for |z] < 1 and that ij_l 7" |q‘Jj1 < oo. Consider
the following AR (p) approximation to u,

P

Up = Z Gyt + Epe (8)

j=1

where £, = Et"*”Z?ip 1 P-4, and note that by iterated expectations, M(IT) and LP
Elepe—el =0 (p‘”’k) (Chang and Park, 2002), implying that the larger p becomes,
the smaller is the error in the autoregressive approximation (8). The basic idea in the
sieve approximation for u, is to allow the order p of the autoregressive approximation
to increase at an appropriate rate with the sample size, that is p = p(n) — oo as

n — oo. Using (8), we can rewrite (6) as

pln)
= 5y$~1 + Z quAyt—j + Epfn).ts (9)
J=1

where Ay, = ;. Define the sieve (or augmented) “score” function

p(n})

!
Mafn),t (51 (/)) = { -1 Ayt—l v ‘Ayt—p(n} ] Y& — ﬁytwl - E (.bjAyt-—j 3 (10)
=1

and let [ E ;5’ ]f denote the least sguare estimator that solves 2?4 Mpin) it (ﬁ, /qg) w3
0. Then using (9) the unit root hypothesis Hy : § = 1 can be tested using the
ADF t-statistic
ADF, = (8-1) /5, (11)
where 35 ig the standard error for the estimated coefficient E
Let B {r) denote a standard Brownian motion on C [0, 1], the space of continuous
functions on the interval [0, 1}, and = denote weak convergence in distribution. Chang
and Park (2002) show that under the minimal rate condition® p(n) = o (n'/?) the

asymptotic distribution of (11) is

ADF, = (f:ﬁ(r)dB(r)) / Uj B?(r)dr)]/z,

that is the distribution of ADF; coincides with that of the ¢-statistic for a unit root

obtained by Dickey and Fuller (1979} in the absence of serially correlated errors.

"Note however that this rate is not sufficient for consistency of the estimates of the ¢;’s. See
Chang and Park (2002} for more details.

9



4 Main results

If the error process uy in (6) was a martingale difference sequence, the martingale
property of the score function my (8} = yi—1 (s — Pys-1) under the true value of 3,
say [y, implicitly imposes the moment restriction E [m, (3y)] = 0 that, as shown
by Bravo (20058), can he used to build an ECR statistic for the hypothesis Hp :
A = [,. In the case of weakly dependent errors however the same restriction does
not hoid, and thus cannot be used by the ECR method. On the other hand, under

i[5 )= 4]
E [E (mpmys (Bo, $0) [Fir)] = 0 as p(n) — oo,

that is the sieve score mymy ¢ (3, dg) gives rise to a set of p (n) approximate moment re-
strictions that can be tested using ECR method as described in Section 2. In practice
the resulting sieve ECR. (SERC) finds the w;’s consistent with & [mp(n)),, (B, q’){))] =0
by solving

Imin {CR (s, L/, ) izwt =], Z’wtmp(n),t (Bo, do) = O} : (12)
’ t=1 11
As discussed in Section 2, as long as

Pr (0€ h{ mppys (B b0) Mt (Bos o) }) = Lasm— oo,

a unique solution to (12) exists and is given as in (4). Then the SERC statistic for
/

I
the null hypothesis Hj : [ 8 ¢ ] = { By &% ] is given as in (5), that is

n

) 2 Ly ¥/
w ()60, (]'JOj Y ) = W ; [(l + C + E Mpin),t (ﬁ(): q’)())) 1:|
for v/ € R/{=1,0},

W83, &y, ~1) = 2 i {??Z exp (E’mp(n),t (8o, d)o))] log [nf exp (E’mp(n),t (Bos cf)g))] ,
t=1

W (B0 90,0) = 2 log (1+Empme (B0, 60)) (13)
tae1

The unit root hypothesis Hy : § =1 is a composite hypothesis with 5 the parameter

of interest and ¢ a vector of nuisance parameters. Like empirical likelihood, ECR

10



deals with nuisance parameters by profiling (i.e. concentrating them out). Let
W (1,&’;,7) = QmIin W(l,¢,v)

denote the profile SECR for Hy : § = 1. In addition to M(I),(II} and LP we assume
that

MU sup, E (Je|* | Fi-1) < oo a.s. for some a > 2,
and that as p(n) — oo

P (D) p(n) = o (n'/2#) forsome 8 > 1/a, (1) p (n) satisfies limn.o n/2 Y50 00y 10051 =
0.

Assumption MU is a uniform integrahility condition, which is in general stronger
than the one used by Chuang and Chan (2002) and Bravo {2005b) in the case of un-
stable autoregressive processes with martingale difference innovations. In this paper
it is used to impose a restriction on the growth rate of p {n), as specified in assumption
P(I), which is the weaker the stronger MU is. Assumption P(IT) is as in Berk (1974)
and Said and Dickey (1984) and ensures the nl/? consistency of the estimates of the
¢,;'s%. At the same time P{II) rules out the logarithmic rate for p(n), implying that
information-hased selection rules for p (n), such as the Akaike information criterion
(AIC) or the Bayesian (Schwartz) criterion (BIC) are not allowed. On the other hand
P (1) allows using the sequential tests method of Ng and Perron (1995, p.270) for the
choice of p(n). This method seems to work well in practice and provides consistent
estimates (the least squarcs estimates) that can be used as initial values for the ¢,’s

in the numerical algorithm used to compute W (1, E/;, fy).

Theorem 1 Assume that M(1),(I1) MU, LP and P(I},(II) hold. Then for any
7€ R and p(n) = o (n/?)

W (1?/33) = ( /:B(?-) dB (1’))2 / ]ﬂ 2 () dr. (14)

1t should be noted that P(II) is stronger than what is needed for the validity of this paper’s

results. Indeed Theorems 1 and 2 below are stil} valid if P(I1) is replaced by the weaker assutzption

P (11} p(n) satisfics Hmymeo p (n)'/2 D ()1 ;1= 0.

il



Theorem 1 shows that W (1, ;g‘;,'y) converges to the square of the ADF ¢-statistic
for a unit root defined in (3}. Thus Theorem 1 provides an asymptotic justification
for the test that rejects the unit root hypothesis at o level, when W (1, Ef;, ",f) > U
where 1, is the 1 — o quantile of {14), which can be found by simulation. Note
that the rate o (n'/*) is the same as that of Donald et al. (2003) in the context of
consistent empirical likelihood tests for conditional moment restrictions.

To assess the power properties of W (1, ;;B, 7) we consider the same type of (local)
alternative hypotheses considered hy Chan and Wei (1987) and Phillips (19875). It is
important to note that in the context of empirical likelihood inference the distribution
functions under the null and the local alternative hypotheses are related in the sense
that they are both assumed to belong to the same class of multinomial distributions
supported on the sample indexed by the parameter . Bearing this in mind, the
sequence of alternatives we consider is H,, : 3, = 1 — §/n for some —oo < § < oc.

Let Js (r) = [y exp [~ (r ~ s) 7] dB (s) denote an Ornstein-Uhlenbeck process.

Theorem 2 Under the same assumptions of Theorem 1, for any vy € R
N "1 2 1
W (ﬁmqﬁ, 1) - (/ Js (r)dB (r)) /f J5 () dr. (15)
0 0

Theorem 2 shows that W (ﬁn, 25, 1) has the same local asymptotic power of ADF?.
Since the rate of divergence under the alternative of the latter is O, (n) we may
expect W (ﬁn,:f)\, 1) to have good power properties and in particular greater power
than standard t-ratio test (11).

Remark 1. The profile SECR. test statistic is a nondirectional test whereas the
standard ADF t-ratio is directional against stationary or explosive alternatives. To

obtain a directional profile SECR. test statistic we can consider its squared root, that

(1) = (1) i (13 ™

where sign (-) is the sign function.

is

Corollary 3 Under the same assumptions of Theorem 1,

R(134) = /: B{r)dB(r)/ (/01 B (r) atr)w.

12



Remark 2. Models with deterministic trends z; can be analyzed similarly. Sup-
pose that z; is generated by

2= 10T+ Y (16)

and y; is given by (1}, Then the unit root hypothesis can still be tested as in (2} using
the residuals ; of a preliminary regression {16). It can be shown that the distribution

of the resulting profile SERC statistic is

W;,(1,E/3,fy)::><f By (r)dB (r ) /BX r)dr

where By (r) = B(r) — [ﬁ)lB( ] [Jo (M X (r ] 1X(r} is a detrended

Brownian motion and depends on the limit trend function X (r).

5 Sieve bootstrap for unit root tests

We now briefly consider the sieve bootstrap for ADF test as developed by Chang and
Park (2003) (see Psaradakis (2001) for an alternative application of sieve bootstrap
to unit root testing).

The sieve hootstrap procedure is motivated by the AR (oo) representation of the
linear process u; given by & (L), = g, and its finite dimensional {(sieve) AR {p}
approximation (9). Let 53- (4 =1,...,p(n)) denote the least squares estimates’ of the
autoregression (9) and let €, denote the resulting residuals. As it is customary in
bootstrap literature we use the asterisk = to denote bootstrap sampies. To obtain a
hootstrap unit root process y;, we first obtain 1.i.d. samples 7, , , from the empirical
distribution Epmy.— 2 -ty Epmye/ 1. Next we generate uj from the fitted autoregression

plw)

Ti-;; = (/ ut —J + 5})(71)i (i?)
F=1

/ .’w
uh ] = [ 0 ... 0 ] ¥ Finally using u; the bootstrap

with initial values { U..p

TAlternatively as suggested by Bilhlmann (1997) and Psaradakis (2001} (8) can be estimated
by the Yule -Walker method , which may be preforable in small saiples since it always yields an
invertible autoregression.

8 Altornatively we may generate a large number of values of u) and discad the first, say &,

generatod values to remove the cffect of the initial values,

13



unit root process y; is generated according to
Ve = Ui+ t=1,..n

with g = 0.
For the bootstrap version of the ADF test let

pln)
U= Byl > AU+ Sy
=1

and define the bootstrap sieve score function (cf. (10))

, p(n)
Moy (81 @) = { Yo DY o DY ] T S AN Tl IS
gw=1

—~ o~ /
and let [ 3* ¢: ] denote the bootstrap least square estimator that solves

Zm;(n),t (35) = 0.
te==]

Then the hootstrap analogue of the ADF {-statistic for the unit root hypothesis
Hy:B=1is

ADF; = (B - 1) /33,
where 35,‘ is the bootstrap standard error. Chang and Park (2003) show that the
bootstrap ADF t-test is asymptotically valid. To be specific they show that for any
a € (0,1)

Pr{ADF, <uj|Hy) — &

where uf 1= inf {u: Pr*(ADF} <u) > o} is the bootstrap a-th quantile obtained
by the bootstrap distribution of ADFY.

The results of the previous section show that the SECR, statistic is asymptotically
equivalent to ADF?. Thus to make the comparison between the SECR test statistic
and the bootstrap test for a unit root meaningful we need to bootstrap the square
of the ADF t- statistic. Let ui_, = inf {u: Pr* (ADF? > u) > 1 — o} and assume

that the linear process (7) satisfies LP,

?As in the case of gy the initial value of g does not affect the asymptotic results obtained in this

scetion as long as yi = 4o = O, (1)

14



B The innovations &, are i.id. random variables with E (&) = 0, E(¢}) = o?,
1
E ([Et! ) < C0O, 10

and that the growth rate of the lag parameter p(n) in (17) is
PB p(n)=o ((n/ log n)l/(%}"z)) " where k is defined in LP
Theorem 4 Assume that B, and PB, LP holds for k= 1. Then
Pr(ADF? > w;_ |Ho) = 1 -« (18)

Remark 3. The growth rate p(n) = o ((n/ log n)l/ 4) specified in Theorem
4 is slightly weaker than the corresponding one used in Theorems 1 and 2. Also
assumption PB implies that the selection of the lag p(n) in the sieve bootstrap
approximation {17) can be based either on the sequential method as used in the
previous section for the SECR statistic or on information-based selection rules.

Remark 4. As in the case of ECR statistic, the sieve bootstrap method extends
easily to the case of autoregressive models with deterministic trends x, as given in

(16) using the detrended residuals 7; instead of the original series z, .

6 Monte Carlo evidence

In this section we use simulations to investigate the performance of the profile SECR.
test statistic for a unit root in finite samples. In the simulations we counsider the two
best known (and most used in practice) members of the SECR statistic -the empiri-
cal likelihood ratio W (1,;,/3, 0) and the Kullback-Liehler distance W (1,&5\, —1)— the
squared ADF t-statistic ADF?, and the bootstrap squared ADF f-statistic BADF?
(cf. (18)).

WThe 1i.d. assumption rather than the martingale difference of M and MU makes the usual

bootstrap procedure meaningful.

H Assumption PB is used to prove the weak consistency (e, in probability) of the bootstrap
ADF?. To establish strong consistency of the bootstrap conditional distribution PB should be
replaced with
PB (I)p(n) = o{(n®) with 0 < & < 1/2 (I} p(n) = Cn® for some constant C and 1/ {4k) < 6§ < 1/2
(sce (Chang and Park, 2003) for further details). Note that the lower bound condition PB’(II) is
slightly stronger than P{II).



Remark 5. The choice of empirical likelihood ratio can also be motivated by
the fact that it enjoys a number of interesting statistical properties (see Owen (2001)
for more details), whereas that of Kullback-Liebler distance can be motivated by the
numerical stability and robustness of the underlying nonparametric tilting method
used in the estimation (see for example Imbens and Spady (2002)).

Remark 6. Note that the ADF? statistic corresponds to the so-called Euclidean
likelihood {Owen, 1991), i.e. the ECR statistic W (1,5,7) with v = —2.

The model we consider is
= Py +uy t=1,2,..n

with 4 = {1,.95,.90}, and w, is either v, = Guzq + &, O wp = & + 05,1, In the
simulations we use 6 = {~.8,~.5,~.2,0,.2,.5,.8} and three different specifications
for the distribution of the error &;, namely N (0,1) (standard normal), x?—4 (centered
chi-squared distribution with four degrees of freedom) and t5 (t-distribution with five
degrees of freedom). The sample size n is set to 100 and 200. All the samples are
generated using the SPLUS functions rnorm, rchi, and rt.

A practical issue that arises in calculating W (I,Zf;,'y), ADF? and BADF? (or
their square roots) is the choice of the lag p (n) in the sieve approximation. There is a
large hody of simulation evidence showing that this choice has important implications
for the finite sample properties of standard ADF tests for a unit root. We investigated
this issue in a preliminary Monte Carlo study, where we considered four different
specifications for p (n) = {2, 4, 6, 8} as well as two different adaptive rules for choosing
p(n), one based on the sequential testing procedure suggested by Ng and Perron
(1995) and the other based on the AIC criterion'?. Table 1 reports the finite sample
size of W (1, b, — 1), W (1, b, 0) , ADFZ and BADF? in the case of a moving average
specification of 1, with parameter values ¢ = {—.8,.8}, N (0, 1) errors and sample
size n = 100. Note that the empirical size is obtained from 10000 replications using

simulated asymptotic critical values'®, whereas the bootstrap critical values are based

¥ Note however that under P(IT) the AIC criterion is not aflowed for any ECR statistics, so strictly
speaking this eriterion should not be considered.
Vi Phe critical values were obtained by approximating B (r) with partial smus of N (0,1) random

variablos with 5,000 steps and 99,999 replications.
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on 1000 replications.

Table 1. Finite sample size of W (1,5, -1) = W_y,
W (1,55, o) .= Wy, ADF? and BADF?
for MA N {0,1} errors at 0.05 nominal level
0 |p(n) | W.| Wy ADF? | BADF?
2 | 432 ] 498 448 423
5 |.198 | .223 | .190 153
—8| 8 |.0781.089| .069 054
tieg | -064 1.069 | .060 053
AIC | 187 | 196 | 144 122

2 065 | .070 | .061 053

5 075 | 081 064 059
8 8 | .084|.092| .073 064
taeq | 067 | .068 | .060 053
AIC | 073 | .079| .078 063

1 The lag p(n) is selected from the range 2<p(n)<10.

Table 1 indicates a number of interesting points: First the choice of p(n) clearly
has bearing on the size all the four test statistics considered. Second among various
data dependent criteria for choosing p (n) the one based on sequential testing sug-
gested by Ng and Perron {1995) produced tests with better finite sample properties.
Third contrary to the findings of Chang and Park (2003) the AIC criterion seems to
produce bootstrap tests that arve still characterized by some size distortion. Fourth
empirical likelihood and Kullback-Liebler have very similar size properties.’®.

The resuits of Table 1 clearly suggest that the sequential testing procedure pro-
duces tests with the smallest size distortion. Accordingly the Monte Carlo evidence
reported in the following tables is based on the lag p{n) chosen from the range
2 < pln) < )
p{(n), = 10 for n = 100 and p(n), . = 12 for n = 200. The tables report the

by means of a sequential 0.10 level two-sicded {- test, with

14 should be noted however that in computing the empirical likelihood ratio we occasionadly
(about 5 per cent of the simulations) encountered numerical difficultios, whereas the computation

of the Kuliback-Lichler statistic was more reliable.
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finite sample size and power of W (1,;15, —E), |44 (1,5,0), ADF? and BADF? for
the unit root hypothesis Hp : 5 = 1 at the {0.10,0.05} nominal level. Note that the
empirical size and power are obtained from 5000 and 1000 replications respectively,
using the same simulated asymptotic critical values of Table 1, whereas the power
is calculated using empirical critical values obtained from the simulations under the

null hypothesis, and thus represents size-corrected power.
Tables 2-13 can be found after the Appendix.

The resuits of Tables 2-13 can be summarized as follows: First both Kullback-
Liebler distance and empirical likelihood ratio statistic have size distortion similar
to that of the square of ADF (euclidean likelihood} statistic, albeit slightly larger
for n = 100. Second Kullback-Liebler distance and empirical likelihood ratio have
better size properties when the magnitude of the parameter ¢ is smaller. Third the
bootstrapped square ADF statistic has in general the smallest size distortion. Fourth
Kuliback-Liebler distance and empirical likelihood ratio statistic have the best power
properties, with the empirical likelihood having an edge over the Kullback-Liebler
particularly when the alternative hypothesis is closer to the null hypothesis. Finally
the bootstrapped square ADF statistic has noticeably less power than all of the other
test statistics considered®®.

In practice these results suggest that if the errors are not strongly correlated there
are some advantages (in terms of power) in using nonparametric likelihood based
methods to test for a unit root (at least empirical likelihood or Kullback-Liebler).
In particular for smaller sample sizes (e.g. n < 100) is small the Kullback-Lieblex
distance statistic is preferable to the empirical likelihood ratio on the grounds of
its numerical stability. On the other hand if the errors are strongly correlated the
hootstrap produces the most accurate tests for unit roots. However it is clearly not
possible to know @ priori what is the degree of correlation present in the errors. Thus
from an applied point of view the following two-step procedure might be used: first fit

a preliminary augmented (or sieve) regression as in (10) and use the sequential ¢ test

51t should be neted that these results are not sample size dependent in the sense that we run
the same Mente Carlo experiments for sample sizes 1 = 50 and » = 400 and obtained qualitatively
the same type of results, with the only difference that for 7 = 50 the ompirical likelihood ratio was

occasionally (i..c. about 10 per cent of simulations) munerically unstable.
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method to choose the lag p (n) specifying a large p (n) If the chosen p (n) is such

max’
that p (n) < p{n),., /2" use the Kullback-Liebler distance or (or empirical likelihood
ratio) statistics using as initial values the estimates obtained from the preliminary
regression. Otherwise use the bootstrap with residuals obtained from the preliminary

regressiorn.

7 Conclusion

In this paper we have proposed a nonparametric likelihood based test statistic for a
unit root in an autoregressive model with serially correlated errors. The test statistic
is based on the ECR method and uses a sieve approximation to capture the dependent
structure of the errors. We have derived the asymptotic distribution of the result-
ing sieve ECR statistic and assessed using simulations the finite sample properties
of the two best known members: the empirical likelihood and the Kullback-Liebler
distance. The results of the simulations suggest that both statistics have good finite
sample properties, provided that the sample size is relatively large and the degree of
dependency in the errors is small. These results suggest some directions for future
research. First in the Monte Carlo simulation we have considered the empirical like-
ihood ratio and the Kullback-Liebler distance statistics. This choice was based on
a number of statistical and numerical properties enjoyed by these two statistics, but
clearly there are other test statistics that could be considered including the Hellinger
(for v = —1/2) and the Pearsonian Chi-square {for v = 1) statistics .

Second the issue of selecting p(n) requires further investigation. In the paper
we have considered the method suggested by Ng and Perron (1995). This method
seems to work well in practice, however it needs not to be optimal. Also the proposed

two-step procedure hased on the crude upper bound p{n),,.. /2 could be improved.

max

Third the sieve bootstrap unit root tests are very accurate (i.e. their empirical
size is very close to the nominal size) but they might lack in power. This suggests that
using a method that combines the bootstrap and the ECR (or any other nonpara-

metric likelihood methods) approach, like for example the so-called biased bootstrap

16

It may appear that this choice is somewhat arbitrary. However it does scom to work in practice
-at least for the ARMA type of crrors thay we considerced in this paper and i other simulations

experiment not reported here.
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{Hall and Presnell, 1999), might result in unit roots test statistics with remarkably
good finite sample properties both in terms of size and of power. This possibility is

certainly of interest and is currently under investigation.
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Appendix

7.1 Duality between ECR and generalized empirical likeli-
hood

Let p(v) be a function of a scalar v that is concave on its domain, an open interval
V containing 0 with derivatives p; (v) = d®p (v) /v (j =1,2,...) and let V,,(8) =
{X:Ng(2,80) €V, i=1,..n}. A generalized empirical likelihood (GEL) statistic
(Smith, 1997) for Hy: 8 =y in {1) is given by

22 (p (Voi (@0,00)) /n = p (0)

where A i= arg Maxaev, @) > orey £ (X’ i (3, 90)) /n. Associated with any GEL statis-
tic are the so-called implied probabilities 7; = p, (X’ g: (T, 90)) /3 (/):’ g; (x4, 6‘0))

which by construction sum to 1, and satisfy the sample moment condition
T
Z%igi (z:,00) =0
(=3}

when the first order conditions for A hold, mirroring the population moment condition
{1).

The solution (4) to the constrained optimization problem (3} can be written for
6 # 0 as

@, (60,6) = (1+ 679 (2:,60)) ™7 1 37 (1+ 87 g (i, 60)) (19)
dum]
where § = 14 and 7j = E/ (5?) By defining
plv) = (1+60) 7 1 (6-1) (20)

it is easy to see that p, {v) = (L + 5’0)%/ % and therefore the implied probabilities are
~ -1/ 2 - —1/6
Ty = (1 + 6N g (w4, 90)) /Z (1 + 86N g; (-’hﬁo)) . (21)
i=1

Comparing (19} and (21) clearly shows that for X = 7 there is a dual relationship

between ECR and GEL method, that is every ECR statistic can be obtained as a
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GEL statistic and viceversa every GEL statistic based on (20) can be interpreted as
an ECR statistic. This duality, first noted by Newey and Smith (2004), is useful in
the context of this paper because it implies that the asymptotic properties of ECR
statistic can be recovered from those of the corresponding GEL statistic, which are

somewhat simpler to derive.

7.2 Notation

In what follows C' denotes a generic positive constant, 3 = Y 7, unless otherwise
stated, and “CMT” stands for continuous mapping theorem. Also if M is a symmet-
ric matrix and v is a vector the matrix norm [|[M{ is defined as sup,y1/2¢; | M,
whereas ¢pax (M) and ¢, (M) denote the largest and smallest eigenvaiue of M. For

notational convenience, let p(n) := p and let

7
Aypr = { Dy oo AYip ] , o = diag [ nt n—i/QIP ii ’

/
— / —_
}/t—u-l,n - Sn [ Ye-1 Ayp,t_l ] s My = Y't—i,ngp,t}

A/]nn = £ (Z m'tnm‘;ﬂ|f!-m--l) s Ewp = dzag (0-2 [: W E;lJ ])
Min (d)) = Y;—l,n (yt — Y1 AY;),tﬁfJ) ; T??'t = My (5)
Drp = @~ dyll Lm0 (p) =T and Tpp— 0 as n — oo

where g, = &, + Z;ip +1 $;Ue—j, w is as random variable such that Pr (w > 0) - 1,

and the RP*P valued matrix 3, = O (1) has typical {7, 7) element B (Ay,—;Aye—j).

7.3 Preliminary lemmae

Lemma 5 Assume that M and LP hold. Then forp=o (nl/ 2)
H'P‘Jnn - Ewp” = Op (l) - (22)

Proof. Note that E [(Em - E,,)2 I}}_l} < E(uf|Fiey) (Z;?f’__pH |d)|)2 =2 044 (1), 80
by triangle inequality F (Ef,:t | Fie1) = 0%+04.. (1), which implies that £ (3 my.mj,|Fra) =
0?3 Yi1 Vi wtous (1) . By Berk (1974) 3 Ay, 1Ay, 1 /n 5 £, and by Phillips
(1987b) Sy /n? = o®W (1) [ B? (r) dr = o%w. Furthermore, since |3 g1 Ay, /n|| =
O, (p'/*) (Chang and Park, 2002, Lemma 3.2), 3" .14y}, /n/? 2,0, Thus by
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iterated expectations it can be shown that £ || M, — Z?,,L,p“2 = ('p?/n which implies
(22). m
Lemma 6 Assume that M and LP hold. Then for p=o(n'/?) and n — o

sup Pr {|| M| > n} — 0. (23)

PI‘OOf. NOtG that Hﬂ‘(fnnu S Cinax (-n{[mz.) and that by (22) |<max (Mnn) -~ Cmax (Ewp” S
| Mon — Bupll = 0p (1), Since ¢ (5,,) = O, (1), it then follows that ¢ (M,,) = O, (1)

whence (23). n
Lemma 7 Assume that M and LP hold. Then forp=o (n}/ 2) and any € >
Y E (lmanll® I {limanll > €} [Fim1) = 0, (1). (24)

Proof. Note that

[A

> B lmel® I {Imell > €} 1Fa) D Yeerall” B (lepel 1 F-1) /¢

CO, (p*/n) =0, (1)

AN

since 41 /0% = 0, (1) (Chan and Wei, 1983). =

Lemma 8 Assume that M and LP hold. Then for p = o (n'/?)

I
“ E MMy, — Zoop

= 0,(1) (25)

and
= 0p (1) (26)

‘g‘ (Z '.f??.m’.'”i?.in) — ¢ (Zup)

where ¢ (-) 15 either o () 0T Smax (4.

Proof. Note that (23) and (24) imply Theorem 2.23 of Hall and Heyde (1980)

and thus
!
H E MMy, — Mo I =0, (1).

Therefore (25) follows by triangle inequality, whereas (26) follows by (25). =
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Lemma 9 Let y; = yoq + 1w where vy = VW (L)gy = Z;‘il Y Et-j, €t 18 @ martingale
difference sequence satisfying M, W (L) satisfies LP and yo = 0. Then max [y /n| =
Ous. (n"lfz (log log n)l/g) and max; [us] = 0q.5. (n?) for 8> 1/a

Proof. By the Beveridge-Nelson decomposition (Beveridge and Nelson, 1981)
ye = W (1), + n, where S, = Z;:} Ejy My = Qg0 OEe—; and o = — > pe1 Yign By
Lai and Wei (1982) max, |5;] = O,.. (nl/z {log log 71)1/2 and max; || = 0q.s. (nﬁ),
so that the conclusion follows by CMT noting that max; Ju, < 3070 ;| max, {e,] =

005, (1) . m

Lemma 10 Assume that M ond LP hold. Let B, = o (dz’ag( nl nAL )) for
B> 1o, Ap = {2 p"2|R7M < €} where e < 1. Then

max sup |[Amyl = 044 (1), (27)
t )\EAJHR
and
Apn C Ay as. (28)

where Ag 18 an open interval containing 0.

Proof. By Lemma 9 max; |th-1/n| = 0ns (1) and max;; |Aye;] = ous (nf) for
7= 1,..,p 50 that max, [| Raml| = 0as. (p/?). Then on Ay, max,supyes, [Ama] <

¢/p"? max; | Ryl = 0,6 (1) which implies (28). =
Lemma 11 Assume that M(I),(II), MU, LP, P(I),(1I) hold, and let
A= arg g;‘é%\};}:Zp()\ my),

SN

where p{-) is as in (20) . Then A ewists a.s., l ‘ = O, (p*/?) and

sup Z p(Nmy) < p(0) + Oy (p) . (29)

Proof. On Ap S p(MNmy) is twice continuously differentiable so that 2=
%l 2 = S,"[lx and

argmaxy, ». p{Xm,) exists a.s. Let A, = x,0 where x,, = ’
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18]l = 1. Lemma 10 imples that for 0 < X < X max; P (X;mm) < -, thus by

Taylor expansion

p(0) < S0 (umen) = p0)+ 3, 3 e+ 3 00 (Ryten ) Noeatri, 32
< p(0) + Ky Z Menl| — Cr2 mem’m@
< g (G) + Ky Z Min l - Cﬁii (30)

where the last inequality follows because 63" MM, 0 2 Smin (Sup) > 0 a.8.by (26).
Subtracting p (0) —~ Ck2 from both sides and dividing by &, we find that

K < ”Z My t = O;u (p1/2)

where the last equality follows by
2 2 .
S Aypeienefn|| < B Ay, im| B(EHFS) +

E HZ AY;;,tqHQ E ((Ep,t - Et)f% |}}_1) <O(p)+o (p1-2k) s D,

E

Note that for any ¢,, = O (1)

Sy rXH < §,p"? implies that

p1/2 HR;:IXH S Cmax (S:'IR;l) 571}7 = O (n—1/2+}9) D — 0
S
HXH € int{A¢}. By concavity of 3 p(Nmy) and convexity of Ag it then follows

for p = o (n¥?°%) . Thus pl/gt

‘ < € a.s. that is I*X” € int {A,,} and hence

that A = argmaxy, 5 o {\'m,) exists a.s. Finally (29) follows by (30} because &y, =
O, (p'?). =

Lemma 12 Let ¢ € &, .. Then

i ! !
HE Mgy Mgy, — E M My

Proof. By triangle and Cauchy-Schwartz inequalities

“Z Tgn T, — Z My, || < Z [Ef,p — Eipl 11 |I2
)

Z |(Et,p . Et,p)z — (&tp — E1) gt,p! Vi1l
C (&= dol| S 1¥imrall® = Oy () = 0

=0, (1). (31)

A

FAN
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Lemma 13 Assume that M(I),(II), MU, and P(I} hold. Then on the set Ay, as
defined in Lemma 10 for any ’c,‘f) e d

Tpn

max sup sup (X =0,(1), and Ay, CAg(¢) as. (32)
a;e(l))m }\EA;m

where Ag (¢) 1s an open interval (depending on ¢) containing 0.

/ o~
Proof. Note that m, = [ Ye1 DAYy il (et,p - Ay, e (qb - gbo)). By Lemma
9 max; JAYps—1]] = 0us. (p¥*nf) and thus by triangle inequality

Tpn)

!
max sup sup [N < ¢/p max (nﬁmu - l B[ gen O¥pia | AV

Hed, ACApn

= ¢/p"? (045 (0M%) + 0us. (TonD))
so that (32} follows as in Lemma 10. =

Lemma 14 Assume that M(I),(IT), MU, LP, P(I),(II) hold. Let ¢ € ®,,.,

~

A= arg max Z p (N'iny)

A€Ag (d))
and suppose that ||| = O, (p*/*). Then X ewists a.s., ‘ S-1X ‘ = 0, (p'/?)
sup Y p(Niie) < p(0) + Oy (p) - (33)

Aer(d))

Proof. As in the proof of Lemma 11 3~ p(X'70,) is twice differentiable on A, and
thus A := arg maxiea,, 2. 2 (A7) exists a.s. Using the same argument and notation

of Lemma 11 we get

0 < Ky

E My

Then by (26), (31), (32) and CMT ¢pax (37 g ing,) < C and max, [ A | = 0, (1),

and thus
fin g ” E n?'t?t

S,jf):H = O, (p'/?), and (33) follows as in Lemma 11. =

20 o
— Cr0 5 Mn Ty, 0.

= Op (pl/?) s

so that ‘

Lemma 15 Assume that M{1),(II), MU, LP, P(I),(II) hold. Let b€ $,,,, and let
b= arg mingeq, S p (M), Then il = O, (p*/?).
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Proof. Let X = Rnfun/ ||l p/? so that X € A, and hence max; ’X"fﬁt

045, (1) by (32). Note that max, —p, (N, ) < C a.s. so that
D oy (Nin) iy, = C Y finiily, a.5.
and Sumin (O My, ) = C by (31). Thus similarly to Lemma 11 for 0 < h <A
N T o1 iy Tl s p o1y
Z p (Vi) = NS, + Z s ()\nmm) NS Mg, Syt A2
> NS i, — CNSTASTIA
1Y 11 2
Smax (Rnsn 1) |Imm|1 /P1/2 - CQmax (Rn‘sn 1) /}')

Note that by the definition of ¢ and (33)

sup Zp (XN'iy) < sup Zp()\’mt) =0, (p)
AGApn (;f;) -’\EA;m

and thus

Op (P) = ZP (Xlﬁ'lf) Z Crmax (Rugnnl) “ﬁtn“ /131/2 - CO]’) (Q}mm (R1181:1)2) /p

which implies that [|]] < O, (p%?/n1/2=P)+0, (0¥ 8 [p1/2) = o, (p/*)+0, (p'/?) .
n

Lemma 16 Assume that M(I),(1I), MU, LP, P(I),(I) hold. Let ¢ € ®,,, and
suppose that 7o, = 0 (1 / (nﬁpl/ 2)) Then there exists (1-;1/; € int {(I)T;

> p(Nny) a.s. satisfying 0 = 59 [p{(Ny)] /0.

Tpn

} NANUMEZENG

17

Proof. By a Taylor expansion we have
ST e = S p(Nm)+ Y 0p(Nmy) 06 (6 o) +
(3= 60) S0 (Nm) 0008 (3 o) /2 +E, (39
where
= (3 60) 3 [P0 (Wi} 0008 — P (X (0608) (8- dy) /2

and 7h, is evaluated at the mean value ¢ between ¢ and ¢,. Lennna 15 implies that
e - e o e 1/2Y R — 1/2 . : .
as long as ¢ € @, [|Fun] = O, (p*?) and thus ||| = O, (p'/?). Also (31) and a

Taylor expansion show that on Ay,

-1
Ap = ( E 77?,“1?71;_,1) E M. (35)

31



Let

Z AYp11Y 1, (Z mmm’m) B Z Vie1nAYpy = P2,
Z AYpt-1¥{ 1 n (Z ’.rnmmin) - Z M @ = @
by the chain rule for T < 7y, ... < p
& p(N'my) /00,,..06;, = [a’cp (Nmy) /8 (/\'m,,)"] o (Nme) 104,00, (36)
so that using (36) for £ =1 and 2, and (35) gives

Z 8p ()\’mt) /8(]5 = =0 ()\,mft) Qn
> 8 (Nme) /0904 = py (N'my) P2. (37)

Inserting {37) into (34) vields
Sop(N) = 3 p(Nm) — py (N Qu ($ - ) +
(6= 00) o2 V) B2 (3= 90) /2 + &, (38)

where

én = (;f; - %), Z AYpi-1Yi_i [(Z pz (') 771tn?'unin) s (Z py (N'my) 777-17277321;) MI] X
z Yéul,n/—\y;),t_1 (5 - (/50) /2

By (32) max, |p, (M) — oy, (0} = 045, (1}; moreover CMT and {26) ¢pin (P2/n) > C,
which implies (P2/n)”" exists a.s . Define ¢ = ¢ — (P%) ' Q, and note that (38)

can be written as

S p W) =S pNi) = (3 8) B2 (3 3) — (@ - o) T2 (G- d0) +&, (39

where

—_— - -1
R:'z: = Z Ay?i'af-— 1 }/t,w},n [(Z mt?lm;n) - (Z n?‘t???n;ﬂ) } Z Vi 1n Ay;m‘.—l :

Note that

1

17

< H Z AYp,f#l}/t‘,——l,n

2 -1 -
s e ] 7
U( E 77?~m?73m) - ( E mmmm)
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and that [|(mwm,) ™" — (3 mami,) || = o0, (1) using (31), (26), the triangle
inequality and the same arguments of Berk (1974, p. 493). Since

2 HZAYP,th,!ml,n/nl/z . [ 0 ]

g
= O, {p/n),

it follows that ||} Ay, e Y. AP = 0, (1) whence by CMT {|R2]| = O (p) = 6 .
Lemma 8 shows that if p = o (n!/*) ||3° my.my, — Tuyl| = 0, {1/p) hence &, = o, (1),
Note that for any 0 such that |6 <1 72 6’ P20 > ¢ (P2),

7

P

(6= 9)|| < smex (P ) @0/ = 05 (0#2) = 0 7]

?11/2

and hence (a - ﬂqg) € ®,,,, and that by triangle inequality ¢ ¢g € 2®,,,. Thus since

SUDjeq, ‘( gf)o) 2 (¢ - )i < 46,72, and supy Feir, Gl = 8nT2y, we then have
that

min sup Z,o (X)) — Z,O(X"mt) = (‘me( )/2 ) Ton:

-

Because &, = 0, (1) and 75, > 0 for each n it follows that >~ p(X'm;) attains a.s. its
minimum value at some point ¢ € int {®,,, } and since 3 p (N7,) is continuous on
®, . it follows that & satisfies 0 = S 0p(Nmy) /O0¢ a.s. m

Lemma 17 Assume that M(1),(I), MU, LP, P(I),(II) hold, and let

& = arg_min Z p{Ny).

(/’G(I’T)m

Then ||& - o|| = O, (/m)7?)

Proof. Using Lemma 14 and a Taylor expansion it is possible to show that

2 (3 ()~ p () = 3ty (X Aty ) S e+ 0 (1)

Since My = My — YiernAY, o Lo — ¢y ) it follows that
: n,t—1 ]

-1 -1
o~ o~ f o~ / i
E Mg, ( E mmmm) E My = E M, ( E mmmm) E T =
oy ! ;
2 E My ( E mmmm) E Y1 AY i (q’) - q’)o) +
~ ! , , ! , ~
y
((f) - (/)U) E :AyJJ:f-‘*ly;—l,ﬂ (_S_ ﬂ?’fﬂ'ﬂ?‘tn) E Y;-*L?I Ayp,twl (({) - (/)U) :
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Let

(;j; - d)o), Z Ay;p,t--—lyy_Ln (Z mtnmin> o z K—l,?bAy;:,tml (E/; - (/J)O) = -F;E,
Z T/ﬁ’;?z (Z ﬁ’tnﬁgn) B Z T??‘tﬂ = j;fgﬁ Z m’;.n (Z ?ntnﬂ?‘in> - Z Mgy == ﬁ’{[?;

By repeated use of the triangle inequality we have that

F2< M2 4+ M2+ 2F M, < M? + M? + 2F! (fwf + Mn)

“’her@ F;i - (,4; o ¢0) Z Ay;ﬂ.-f-“"lyl——l,n (Z mt?l?nin)—i/gv ]‘/[7,; = Zﬂ?‘in (Z {"nf.n,’n;.n)ﬁl/z
— — — 2

and M, is defined similarly. Subtracting 2F) (Mn 4 Mn) , adding (Mn + M,,,) and

By = (Mo + 33,) | < 22| W, 4 0|

Note that M2 < C |[me, | and M2 < C | |? so that by Lemmae 11, 14 and CMT
Ez - (A{[n + Mt) H 2

taking the square roots from both sides yields ’

both Mﬁ and M 3; are O, (p}. Then again by triangle inequality
”-F:'LH - ‘ﬂ/irn + ﬁ;“ hence

— 2
IEI% < C ||, + M, i =0,().

Since 3. Aype1Yy, (5 meml,) ' S Yie1n Ay, /n 2 I, we have that F} >
~ 2 - 2
Somin (Zp) 1 ”qb -l =n ”qb — ¢p|| € and thus

~ 2 o
|3 - || < FP< MR+ ME=0,(0/m).
n

Lemma 18 Lety; = (1 — §/n) yp1 +uy where wg is as in Lemma § and yo = 0. Then

for any 1 > o > 1/2 maxg ] = 045 (n%).

6 _ -7, . T S U 6 . Tlelme
Proof. Let 3, = {1 — 6/n)"™"; by recursive substitution g, = g1 D545 Using
the same notation of Lemma 9, Beveridge-Nelson decomposition and summation by

parts give
pa

o= B W) S+ 0] =D S5 (B — Bhors) - (40)

=t
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By Chow’s strong law of large number S; = 0, (n®) so that by Lemma 9 and triangle

inequality

b I} o
max el < Eﬁt,t| max 1S + ¢l + max |Se-1 Zl ‘ﬁj,t — P ]ti = 045, (1Y)
VES]

since Z;El |/J’;5-7,_ - ﬁ‘;’f,},f| <00, N
Lemma 19 Lety; = (1 — 6/n) yi..1 +us where u; s as in Lemma 9 and yo = 0. Then

Z Y—1Ept = Z Y161 + 0y (1) .

Proof. The proof is similar to the one given in Lemma 3.1 of Chang and Park
(2002). For notational convenience let €,; — & = €y, and note that > 1€, =
Y Yii€e+ 3 16 By (40)

t—1
Z% 1(Eps — &) = {5# 1t 12 {\I; (1) Spmy + thl] + ZZSJ'—E (ﬁ?,tml - ﬁ?—l,t—l)} Ept-
=2

Consider first 3 5, ,_1 5160 and note that e, = D olpi1 Tpg€et where 305 2 <
C Z?:ip Q=0 (p‘%). Let 65 denote the Kronecker delta; then

]
g:ﬁtml,tmlst—'lﬁm = E Wp,lﬁtwlt IE E E4—i€-l

l=pt
o0
b P
= 5tw1:tm1 na § "‘fp,t!"f _S_ ’)’ptE E €4—i—i ~ 5zj)
l=pel e =1
2
1/2
< ﬁtltl no’ E 1’)’pfi+ E/ g E Ep 1511“0671)]
te=pt-1 t=pa-1
< Co (npw )
Next
o oo
i - . : 8 ,
t——l,t—lCt—lEpf = o Tt 5,¢,m1,t-_15f_wzm1€t~1
J=0 l=p+1
oC o] &)
8 2 "
= gy (MO 5 Odtwl’}‘p,i‘f'g 0y E “fp,gg (Et—i—lgf.—l“"géi-{-lf)
l=p4-1 F=0 l=p41

= (0 (np”*‘") + Ons (n”]fk))
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for any 1 > n > 1/2 by Chow’s strong law. Similarly for the last the term it can be

shown thatzzz 125’3 2( e 5§~1,f.—1) €pt == Op (np“ )umngz 1( i J 171 l <
co. M

7.4 Proofs of Theorems

Proof of Theorem 1. Lemma 17 shows that

la; —dol = Oy ((p/n)l/g), which
implies that ¢ — ¢, € int {®} since (p/n)"/? = o (p7'/*n~7) and hence by Lemma
16 there exists a ¢ such that 0 = 83 p (N7 /8¢ a.s. Then by Lemma 15 |[fi| =
O, {p*?) and hence by Lemma 14 X = argmaxyen, L (A, ) exists a.s. By Lemma 13

max; ‘T'Fﬁtj = 045 (1) 50 that for all A and ¢ in a neighborhood of a neighborhood
of (X, 3) S p(X'my) is twice continuously differentiable and - 8%p (X’ﬁ?‘t) JONON =
5 oo (Xlﬁlt) nymy and note that S, [GQ[J (Xf’fﬁt) /&\EM’] 5. is nonsingular a.s.. By

the implicit function theorem there is a continuously differentiable function A (@) such
that 0= 3" 9p (A (¢) m,) /8¢ so that by the envelope theorem

0=t Z@p ( mt) JO¢=n"" Zpl <)\n mm) (8mm/dd)) - (41)

Thenfor0 <A <A

S 00 (X ) 102 = Su |37 o1 (O)en+ Y pa (Vi) Fign i o

since by {32) max, 1 Do (X’?ﬁ,t) — P (0)‘ =5 0q.5 (1) it follows by (31), (19) and CMT
that S (3 py (N) Fniity) > 0 a.s., and thus A, = (3 Riity,) 7 3 Mn+0p (1).
Using fMim = M — Yeu1,08¥ 501 (?(; (j)o) in (41) gives

-1

0 = 3 (0720, /06)' [ po (V) i,
Z [m,,,, — Y1y @ — 00) /711/2] + 0, (1).

!
Note that 77725 0, /0¢ = — 3. YioinAyh,_ /0?5 [ 0 -5, } whereas by
(31), (32) and CMT 3= py (V) gty ] 2

37 (020 /06) [Z ps (N72,) ﬁ‘?,fﬁf} B S Viiw By /nt D

[0 =, 550 EP]’

E“ , 50 that
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and hence (% - (j)o) =2 LN Ay, 181 The latter implies that 5 Mg, = 3 My, —

o~ !
YiimYyi o ((/) - lf)ﬂ) =3 [ Yr&p/m O ] and hence by a further Taylor expan-

sion about A
2(Y0 (V) =) = o=z Yo 0 (1) = (Cweas) /(o2 s2)

= (ful B(rydB (T)>2/f01 B2 {(r) dr. (42)

By the duality between GEL and ECR statistics (see (20)) (14) follows. m
Proof of Theorem 2. Note that

=0, (1)0 (pns) = Ous. (1)

>

J=ptl

max |yi-1 (epe — €2) /1| < max [yer./7]

by Lemma 18 and MU, so that
max [ye-18p2/1| < max [ye-18¢/1| + 1?{1tax|yf,_1 (£pt — 1) /1] = 04 (1} (43}

Note that by Phillips (1987b) 3742, /n® = o2 (1)* [ J,2 (r) dr := c%w, whereas
for each j = 1,...,p it is possible to show that > (ytulutmjul/n)z = O, {1) so that
E ”2?/tﬂAY;),t._l/ng/z“? = O (p/n). Since y = Op (nl/z)a 2 AYp 1A /n -
%, it then follows that the conclusions of Lemmae 5-7 and hence of Lemma 8 are
still valid. Furthermore in view of (43) Lemma 10 is also valid. Thus by the same

arguments of Lemma 11 following the proof of Theorem 1 gives

2 (Z P (X,ﬂ?’t (/671? G)O)) - p (0)) = Z Mg (ﬁm (t'f){))l (Z Min (Jgna (/50) Min (ﬁan (ié()),) o X
Z Mty (J[jn" (I'J"{)) + Op (1)

Note that > mm (B, ¢o) M (8, 0) = diag (02 [ wy Dy D and hence ¢ and g
are asymptotically independent under the sequence of local alternatives F,. Thus
Lemmae 12-17 can be used exactly as in the proof of Theorem 1 to show that there
exists a/qg € int {®,,} that solves 0 = 3 dp (X my (ﬁn,gﬁ)) /00, Let myy, (ﬁ,a‘;) =
Yicin (yt — B Yy — Ay;’,._@) and note that > my, (ﬁma}) = 5 1 (B, do) —
Vie1n DY, (&5 - qﬁo). The block diagonality of Y my, {8, &) M (B, ¢o) implies
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i~ o~ !
that ((/) — d)o) =¥ YAy, 161, and hence Y me, (ﬁn, f,b) =5 [ Yio1€ip/n O } as
in Theorem 1. Thus by Taylor expansion

2 (Zp (/)\\’mt (8, %)) ~ p{ ) me (ﬁm ¢5) M, Zman (6715 ff)) + o, (1)
= > (,6’,1,%) [diag (02 [ Wy Ty D] me (ﬁm ff)) +0p (1)
(Z?jt-«l%t)z / (02 Z ?f?q) +0p (1)

By Lemma 19 3" p_18,/n = Y yr-161/n+ 0, (1) so that as in Theorem 1 (15} follows
by (20), the results of Phillips (19870) and CMT. m
Proof of Corollary 3. A straightforward application of CMT shows that

i

R (1, ?qg, ,},) converges weakly to the same distribution as that of the ADF, statistic.
]
Proof of Theorem 4. The results of Chang and Park (2003) and Park (2002)

show that for S} = ZJ 1 &5 T(1)=1/ (1 — 2o ’qgk) and 9?2 = 3 (Epmye — E*Ep(n),t)Q /n
- - - 1/2
(5* - 1) /55, = (xll (1) ZSf_lef/n) / (32\1; Y82 /n?) + 0, (1) in probability
-1 1 1/2
= "/ B(r)ydB(r}/ (/ B (7) dr) in probability
0 Jo

since 62 “5 ¢? by strong law of large numbers. Then by CMT

(ﬁ* - 1) /'"*‘2 (/{}] B(r)dB ('r)) / (fol B*{r) dr) in probability. (44)

Tet ADF? = (ﬁ* — 1) /3%2 and for ) < a < 1uy_q i=inf {u: Pr (ADF? > u) > 1 - a}

and u}__ denote its bootstrap analogue. From (44) it follows that
Pr* (ADF? > ui_,) — | — a in probability

. P C oy R
and thus u_, — uy_s, which in turn implies (18). m
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Tables

Table 2. Finite sample size and power of W (1, E;g, —1) = Wy,
W (1,&3, o) =Wy , ADF?, BADE? with AR N (0,1) errors

at 0.10 and 0.05 nominal level nn = 100

38 Wo, o W ADF? BADF?

1 =8| 119 .075 .121 089 .111 .046 .099 .049
1 5| 117 067 .123 088 .116 .049 .103 .052
1 -2| 115 .061 .119 .065 .109 .045 .101 .05l
1 0] 112 067 .115 072 .120 070 .105 .056
12| 116 059 .120 068 .109 .049 .101 .052
1 5] .21 .78 .125 080 .120 .073 .105 .04
1 .8 .115 .69 .117 .075 .110 .063 .101 .051
95 -8| 427 9288 425 206 .408 253 .332 212

95 -5 449 315 464 331 414 241 301 218
95 -2 436 .305 455 318 383 .226 .273 .210

0 400 256 427 267 399 204 226 168
9% 2| 388 312 401 298 366 .236 .2064 .187

A5 .5 377 216 379 237 301 217 221 173
95 .8 312 217 331 213 305 179 214 165
B0 -8 723 535 733 .B3L 625 527 .576 487
A0 =51 750 615 759 626 .7

5
0 556 .6i2 .499
H00 -2 738 620 787 641 .7 543 689 497
90 0 697 545 678 534 705 598 677 534
A0 20 709 5 728 0 .533 639 .522 556 451
H0 51 637 423 682 483 475 396 .327 .208
3

90 S06 365 537 373 446 336 303 203
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Table 3. Finite sample size and power of W (1, 5, —1) =W_,,

W (1,?/3,0) .= Wy, ADF?, BADF? with MA N (0,1) errors

at 0.10 and 0.05 nominal level n = 100

g 8 W_1 Wo ADF? BADF}
I -8 .124 075 131 .089 .125 .069 .108 .059
I -5 119 059 .125 076 .110 .060 .105 .052
I -2 106 .057 .09 .062 .101 .056 .099 .050
1 0 112 .069 110 .073 113 .064 104 .051
.2 J07 064 109 068 113 064 .104 .056
1 5 104 064 113 .067 109 056 102 .053
1 8 107 .063 .113 .070 111 .061 .102 .0563
95 -8 .B54 356 .592 373 524 343 475 303
95 -5 | 421 289 438 206 448 2256 406 211
95 -2 A89 354 466 378 517 346 423 278
95 0 8567 234 399 217 368 (199 299 156
95 2 443 234 472 250 462 267 387 .202
95 .5 432 201 443 228 438 265 346 .123
95 8 321 150 347 174 321 172 267 120
90 -8 769 650 759 670 880 .687 744 604
90 -5 798 614 733 594 887 .676 703 597
90 -2 | 789 540 760 583 853 .6BE .698 .BT8
90 0 709 453 763 498 856 597 .674 502
00 .2 699 379 T15 412 744 548 G40 432
90 5 7h4 384 797 404 768 659 .603 443
90 .8 B5O0 364 601 382 564 348 503 302




Table 4. Finite sample size and power of W (1,(1’5, wl) = W_y,
W (1,?,5, —1) = Wy, ADF2, BADF? with AR %2 — 4 errors

at 0.10 and 0.05 nominal level 7 = 100

84 W, Wo ADF? BADF?

1 -8 126107 133,103 110 .060 106 .053
-5 15 .064 110 055 121 071 104 .054
-2 415 070 116 067 105 051 101 .052
i 0 407 .65 108 .060 .108 .052 .102 .051
1 2 A10.669 116 .0v8 102 .050 .100 .048
1 5 A17 073 121 080 118 063 .105 .054
1 8 115 072 130 078 118 .068 .104 .055
95 -8 411 305 409 314 357 245 296 (198
95 -5 4200 329 426 334 402 215 333 .206
A5 -2 446 347 465 350 396 .240 307 .2056
95 0 443 327 455 340 377 312 313 197
952 446 343 463 357 397 233 325 169
95 409 317 417 325 399 246 329 157

o
b5 .8 2598 248 385 278 336 182 245 .136

8| 699 .508 .714 514 545 483 435 377
734 537 750 571 .b72 519 517 443
90 -2 714603 748 630 697 538 521 437
90 0 732 589 740 605 G35 .860 .553 430
90 .2 713 881 731 58T 672 833 604 424
96 .5 655 518 673 510 608 463 523 421
90 8 514 405 523 413 528 341 424 321

@

o]
1

[k
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Table 5. Finite sample size and power of W (1,;;’;, mi) = W,
W (125 —1) = Wo, ADF2, BADF? with MA ¥ — 4 errors

at 0.10 and 0.05 nominal level n = 100

38 W, W ADF? BADF?

1 -8 .118 070 .123 075 .134 .068 .104 .083
I -5 119 072 128 .081 .105 .057 .101 .052
1 -2 120 .07 132 .083 .114 .064 .106 .058
1 0 130 085 .14Y 105 115 061 .103 .085
1 .2 122084 126 091 114 062 102 .054
1 5 17 .076 122 .08 116 061 .108 .054
1 .8 200 .088 137 094 120 069 105 051
95 -8 | 599 401 .637 425 620 427 543 354
95 -5 A05 312 446 305 454 285 824 177

095 -2 364 215 397 236 404 202 304 156

95 0 A37 230 468 246 418 207 323 185
95 .2 421 .224 439 238 410 250 302 201
95 .6 B340 184 352 (197 366 204 310 (156
95 .8 280 175 312 184 287 .1G8 .206 .103
B0 -8| 785 .626 .744 682 863 .649 .704 .535
9 -5 767 649 737 631 885 704 712 507
A0 -2 759 455 750 468 720 499 648 407
S0 0 742 537 788 525 737 .BBS 659 438
B0 2 708 503 738 547 .T19 523 620 465
B0 .5 712434 792 412 G660 447 539 367

B0 .8 533403 572 463 6564 403 501 325
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Table 6. Finite sample size and power of W (1, /c/;, -—1) = Wy,
W (1,25, —1) .= Wy, ADF2, BADF? with AR ts errors at
0.10 and 0.05 nominal level n = 100

3 0 W, Wo ADF? BADF?

o0

124 092 136 115 109 052 (105 .050
5| 118 083 .134 .094 .110 053 .104 .052
2 109 .059 .112 .063 114 .062 .104 .053
0 110 .060 107 .065 .109 .058 103 .049

2§ 108 064 111 073 .116 .067 .105 .052
A15.071 120 .08G  .104 .077 103 055
A17 0 .066 125 073 121 .064 106 .054

367 288 380 286 364 218 276 177
487 379 507 393 415 262 345 198
469 .355 482 362 .389 .230 .317 184
85 0 A36 0 .329 445 325 404 236 327 198

LI
b ot ool Coown

o
St &vofn
1

95 2 A18 307 425 325 421 244 344 200
95 5 367 257 387 267 361 201 208 186
95 .8 B44 0 .298 345 311 244 177 198 169
A0 -8 689 527 706 .540 589 503 439 396
S0 -5 734 633 776 652 750 602 .654 .5B2
90 -2 736 607 7H2 634 741 561 635 604
9 0 721 599 749 605 703 543 619 454
S0 .2 709 558 726 579 658 .56 549 446
80 .5 G687 456 684 487 521 447 432 383
S0 .8 A87 356 501 367 463 323 396 276
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Table 7. Finite sample size and power of W (1, /qi;, ml) = W_y,
15% (l,?f;, %1) = Wy, ADF?, BADE? with M A ty errors at

0.10 and 0.05 nominal level n = 100

B0 W, Wo ADF? BADEF?
1 -8| 123 90 143 .105 .118 .064 .103 .055
1 -5| 119 076 .128 .088 111 .059 .105 .054
1 -2| .109 057 .119 069 .110 .051 .103 .052
1 0| .07 058 .113 .072 .106 .053 .101 .053
1 2| 109 061 .112 .069 .106 .057 .104 .053
1 5| 110 061 121 076 .112 .058 .105 .052
1 8| 114 078 121 .082 .119 .067 .108 .054
95 -8 498 313 522 .334 573 .353 476 .288
95 -5| 437 250 455 273 446 255 .375 .202
95 -2 422 217 437 231 424 222 337 .195
95 0| 343 240 389 243 373 212 316 .156
95 2| 306 .280 .343 .272 412 273 343 211
95 5| 366 .200 .392 212 372 .232 .301 .1597
95 8| 359 150 .383 .162 291 153 .204 .104
90 -8 813 680 842 .694 .896 .679 786 .589
90 -5| 810 .656 .837 .638 .883 .653 .750 .634
90 -2 756 489 779 458 722 501 660 389
90 0 | .629 413 663 432 721 425 624 423
90 2| 720 429 723 432 743 516 612 432
90 5| 733 .343 763 .365 721 .504 .605 412
90 8| 649 344 692 371 591 352 423 299
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Table 8. Finite sample size and power of W (1,2}5, mi) = W_4,

1% (1,3}, {J) = Wy, ADF? and BADF? with AR N {0,1) errors

at 0.10 and 0.05 nominal level n == 200

[ w_, W ADF? BADF?

1 -8 .109 .055 .116 .053 .113 .054 .102 .052
1 =57 110 .060 .108 .057 .109 .052 .10l .053
1 —21 105 .054 .108 .047 .110 .048 .103 .051
1 0 | .109 .055 .105 .02 .107 .053 .102 .050
121 115 .060 .110 .058 .108 .064 .105 .055
15 | 117 061 .112 .059 .109 .056 .104 .052
1 8| 110 .059 .106 .057 .107 .055 .103 .049
95 -8 799 630 .805 .643 811 .617 784 .600
95 —.5| .839 .643 .832 .666 .836 .652 .802 .630
95 -2 78 .604 .800 .623 791 .601 .793 .589
95 0 | 799 588 804 .603 795 591 .77TH 594
95 .2 | 78 625 .806 .618 791 .G13 .743 .589
95 .5 | 769 530 799 569 752 .524 743 .504
95 8 | .672 489 687 508 .689 .492 655 437
90 —.8| .976 .920 988 .048 996 972 .900 .845
90 =5 971 912 988 070 .994 964 .884 .856

S0 -2 974 915 990 .956 .987 .943 820 .798
90 0 954 937 984 955 985 947 832 812
90 .2 943 929 991 964 989 956 .856 829
90 952 9056 889 934 981 916 877 .84l
908 989 059 990 968 .994 964 .899 .869

o




Table 9. Finite sample size and power of W (1, 5, O) = Wy,

W (1, é, wl) .= W_,, ADF? and BADF? with MA N (0,1} errors

at 0.10 and 0.05 nominal level n = 200

Jé) b W_4 Wy ADF? BADF?

1 =8| 129 .075 .127 080 .123 .064 .106 .055
I =5 115 070 .120 069 .115 054 .103 .052
L =2 113 066 .118 .069 .120 .063 .105 .054
H 0 JA256 0 .075 120 073 117 062 (108 .053
1 2 129068 .131 075 126 064 107 .088
1 ) 123 .070 128 073 122 .066  .109 .057
1 8 A37 076 132 .082 124 064 .105 .089
95 -8 599 350 605 373 524 343 480 .289
95 —5 | 400 205 408 232 368 207 .314 197
B =20 320 210 357 208 .378 228 307 199

95 0 343 195 399 217 368 (199 319 178
95 2 375 165 389 144 397 174 336 168
95 5 329 205 367 216 .339 .198 287 187
95 .8 300 195 274 204 311 178 2564 (155
90 -8 .860 .676 .889 .690 .880 .687 .750 .643
90 —.5] 643 496 .627 485 688 .503 .605 .487
90 =2 599 406 615 433 606 416 .543 398
90 0 587 395 594 404 590 388 604 376
H0 0 .2 465 370 493 399 568 376 523 342
90 390 680 396 568 397 536 .354
90 8 439 209 465 304 457 298 397 275

[aba ]
o
[aia ]
Lo
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Table 10. Finite sample size and power of W (1, E/;, —1) = W,
W (1, &, 0) .= Wo, ADF?, BADF? with AR X% — 4 exrors

at 0.10 and 0.05 nominal level

Ié; g W_i Wa ADF? BADF?

I —81 109 .055 .107 .057 .102 .053 .104 .051
I =5 108 .057 .107 .061 .106 .053 .102 .052
1 - 410 .085 106 060 .104 .056 102 .053
1 0 109 060 166 .057 .102 .052 .104 .053
1 2 A13 066 110 .058 .104 .055 .102 .052
1 9 05 .0567 107 058 104 .052 .102 .053
1 8 108 .0659 112 .062 .107 059 103 .054
U5 -8 | 806 670 832 650 812 .628 .78 .604
95 -5 | 796 .606 .822 .612 792 .595 775 557
95 -2 805 .603 .805 633 797 .616 .722 574
95 0 757 598 799 610 778 682 732 532
95 .2 756 598 800 .603 781 581 700 .554
95 .5 743 567 764 876 750 549 698 504
U508 676 500 696 496 683 479 .632 443
90 -8 1 988 .923 976 942 .994 957 930 .902
90 -5 | 987 .20 .965 .932 .995 .G55 .912 .943
90 -2 | 960 .932 .945 940 .994 959 921 .903
9 0 950 .926 9568 930 984 938 913 .8%0
90 .2 067 .932 945 921 988 948 .904 860
90 .5 955 930 968 925 981 928 914 .856

S0 8 905 820 914 815 921 804 85O 765
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Table 11. Finite sample size and power of W (1, @, wl) = W_q,

W (1,5, o) .= Wy , ADE? and ADF? with MA x? — 4 errors

at 0.10 and 0.05 nominal level

g 0 W_, A ADF?  BADF}?

1 -8| 119 065 .123 070 .124 .068 .104 .053
1 -5| 115 075 .124 086 120 .065 .102 .054
t-2| 109 069 118 077 122 067 .105 .053
10| .107 061 .115 .068 .11l .065 .107 .054
12| 110 .069 .128 .075 .125 .070 .106 .056
15| 110 .073 .114 077 .109 060 .102 .052
1 81! 105 .070 .131 .089 .117 .069 .105 051
95 -8| 567 .417 598 487 589 448 407 .335
95 -5 386 .240 393 285 377 224 .305 .198
95 -2 377 208 400 .215 .397 205 .321 .205
95 0 | .363 202 385 199 355 .105 .238 .176
95 .2 | 380 .185 .379 .194 343 178 277 .143

0
(94

5| 357 213 363 .201 .3B8 .197 310 .155
95 8| 377 244 388 213 342 187 .300 .156
90 -8 836 .644 843 675 .863 .669 777 614
90 - 699 433 712 423 703 446 633 367
90 -2 598 359 604 378 .587 345 .503 302
90 0 539 370 543 367 567 344 479 314
A0 .2 | 566 375 586G 37T 575 369 487 307
90 .5 | 579 388 592 392 580 362 508 .309
90 .8 | 503 332 525 .354 530 .336 479 .303

o
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Table 12. Finite sample size and power of W (1, Ef;, ml) = W_q,
W (1,&3,0) = W, , ADF? and BADF? with AR t5 errors

at 0.10 and 0.05 nominal level

8 4 Wy W ADF? BADF?
1 -8| 120 087 .143 .105 .118 .064 .106 .053
1 -5| .110 057 109 .060 .108 .058 .104 .052
1 -2 .103 058 .104 .059 .103 .056 .101 .051
10 .102 .054 .109 056 .105 .054 .100 .053
1.2 .105 .057 .111 .055 .105 .053 .104 .049
1 5| .110 .057 .108 .059 .104 .052 .103 .048
1 8| .105 .060 .113 .065 .111 .057 .103 .053
95 -8| 960 .06 980 .945 831 .635 .744 .600
95 -5| .840 700 .850 .649 809 .625 725 567
95 -2| 832 612 847 .605 .804 591 704 557
95 0 | .813 598 .821 610 .802 .602 .735 .523
95 2| .800 .605 .831 .623 .800 .597 722 513
95 5| 742 543 745 588 739 532 715 521
95 8| .677 507 708 513 .G8G .485 637 .423
90 -8 | 040 933 980 945 991 963 840 .743
90 -5| 956 .934 990 966 .992 .958 .853 714
90 -21 944 905 983 976 .949 987 814 789
90 0 | 955 930 .967 .960 .983 959 .855 810
90 .2 | 959 905 967 932 985 947 .843 .809
90 5 978 887 974 921 988 939 832 .738
90 8| 932 745 915 788 922 779 834 754
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Table 13. Finite sample size and power of W (1, ’g‘z‘;, ——1) = W_1,

w (1,333, o) = Wo, ADF? and BADE? with MA t5 errors

at 0.10 and 0.05 nominal level
g 0 W_, Wo ADF? BADF?
-8 120 070 123 076 .118 .064 .103 .055

I -5 .115 073 .118 .084 .113 059 .102 .053
I -2} 124 .068 .125 .074 .114 060 .105 .054
10 129 074 136 .079 113 .065 .103 .059
1 2| 115 069 .122 .073 .112 .065 .106 .057
1 5| 113 075 114 .087 .119 .073 .106 .054
1 8 A24 065 129 .78 123 076 .104 .033
95 -8 .B65 376 .597 .393 .593 .383 504 245
95 -5 403 289 402 294 .38 .275 .312 .188
95 -2 375 205 383 212 .343 194 255 124
95 0 ¢ 335 197 368 207 339 199 243 139
95 2 322 212 343 235 364 207 215 132

51 387 154 .394 163 379 152 242 105
95 .8 367 177 387 173 389 162 269 .120
8

90 - 04567 742 594 896 .67H 786 .553
90 -5 .589 456 .605 472 630 458 .589 .368
90 -2 556 388 573 405 529 396 .503 337
90 0 | 576 .387 .582 397 599 384 .534 318
90 .21 534 354 56T 374 572 371 516 312
90 .5 512 314 .554 342 .574 .3556 .507 298
900 .8 | 521 299 543 304 549 315 492 275




