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1 Introduction

This paper develops a model of the UK macroeconomy and the government bond

market and uses it to analyse the operation of monetary policy since 1979. Observa-

tions on both the economy and the bond market are used to determine the parameters

of the model, which assumes that the long run inflation expectation implicit in the

bond market is the same as that in the product and factor markets. This approach

generates a well-determined macro-based yield model with a relatively large number

of factors and provides new insights into the efficacy of UK monetary policy over the

last 25 years.

The macromodel is based on the specification originally developed for the US by

Svensson (1999); Smets (1999) and others. This model represents the behaviour of

the macroeconomy in terms of three variables: the output gap (gt), inflation (πt)

and the short term interest rate (rt). This specification is often called the ‘central

bank model’ since it provides a basic dynamic description of an economy in which

the central bank implicitly or explicitly targets inflation using a Taylor rule, which

determines the policy interest rate in terms of inflation and the output gap. The other

two equations of the system then show how inflation and the output gap respond to

each other and to the interest rate. This model can be specified as a Vector Auto-

Regression (VAR) or as a structural system in which the parameters are restricted

in the light of economic theory.

This macro model is combined with an arbitrage-free model of the yield curve.

As the name suggests, this type of model specifies bond yields as functions of basic

driving variables or ‘factors’ in a way that removes arbitrage opportunities. The stan-

dard model is ‘affine,’ meaning that yields are linear combinations of the basic factors.

This in turn means that if there are N underlying factors, they can be represented by
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N bond yields, which can in principle be used to explain yields at other points in the

maturity spectrum. This property is exploited by the yield factor approach, which

(since Brown and Schaefer (1994)) has been extensively used for testing arbitrage-

free specifications (Duffie and Kan (1996),Dai and Singleton (2000)). This property

is also used in the hybrid macro-finance specification developed in this paper.

Recent studies have used macroeconomic factors to model the yield curve (Ang

and Piazzesi (2003),Dewachter and Lyrio (2003)). However, these ‘macro-finance’

studies reveal that although macro variables provide a good description of the be-

haviour of short term yields; they do not describe long term yields very well (Kozicki

and Tinsley (2001)). In fact, this finding suggests that the basic central bank model,

which is used to represent the macro dynamics in these yield models, suffers from

an omitted variable misspecification. That is because in an arbitrage free world,

variables can influence (non-defaultable) bond yields if and only if they influence

the short term interest rate and the macroeconomy. In order to allow for this phe-

nomenon, macro-finance studies have typically used a Kalman filter to model the

additional effect of an latent expectations variables on inflation, the short rate and

hence bond yields. This unobservable variable is updated in the light of forecast

errors. It is interpreted as an inflation target or expectations variable, but could also

reflect changes in the real rate of return.

This approach assumes that the market forms expectations adaptively. However,

bond markets are arguably forward looking. They can react immediately to political

events and policy announcements, which an adaptive scheme can respond to only

gradually. Instead, the specification developed in this paper derives a direct measure

of market expectations by exploiting the yield-factor property of the affine yield

model. The affine nature of the system means that if the basic macro-yield model

were to omit M (possibly unobservable) factors, then this misspecification could be

3



rectified by introducing M yields into the macromodel as additional explanatory

variables.

This immediately means that we can use these yields in Granger causality tests

to check for omitted variable misspecification in the central bank model. In this

context, it can be shown that long term (17 year1) conventional (y∗t ) and index linked

(l∗t ) yields Granger-cause the three macro variables
2. These tests suggest a model in

which there are (besides the three macro variables) two unobservable factors, real and

nominal, represented by (l∗t ) and (y
∗
t ). Work by (Grilli and Roubini (1996), Estrella

(2005)) and others suggest the use of long conventional yields (or yield spreads) in

is macromodels, on the grounds that they act as indicators of inflation and output

expectations. In the case of the UK, we can improve upon this specification by

putting the long term index linked yield into the VAR as well.

These variables were used initially in a VAR to determine the broad dynamic

dimensions of the empirical version of the macro model set out in the next section.

Then section 3 shows how the arbitrage free yield specification can be used to back out

the unobservable nominal variable, adjusting the long term yield to get an estimate

of the inflation expectation implicit in the data. This represents an improvement on

other methods (described for example by Anderson and Sleath (2001)) which take

the simple difference between nominal and real yields (or forward rates), because

it allows for risk premia. This estimate is also determined by the behaviour of the

varaibles in the macro model. Section 4 of the paper discusses the results and draws

out the implications for monetary policy. Section 5 provides a brief conclusion and

suggestions for further work in this area.

1This is the longest maturity for which a constent set of data could be obtained - see section 3.
2Once these two yields were included in the regression (alongside the spot rate), other yields

were insignificant. So in this hybrid macro-yield factor model M = 2. Consistent with the theory of
the long yield asymptote set out in appendix 1, the macro variables do not Granger-cause the two
long rates.
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2 The macroeconomic model

For simplicity, in this paper I use the real rate (l∗t ) itself to represent the unobservable

real factor3. This gives a model with a single (nominal) unobservable variable, acting

on the yield curve through the macro system and hence the spot rate (rt). Because a

latent variable is only defined up to a linear transform, this needs to be normalised.

In this paper I do this by equating it with the long run inflation expectation (π∗t ),

so that long term inflation expectations in the gilt-edged (British Government) bond

market coincide with those in the product and labour markets. If the monetary

authorities announce a credible inflation target then we should also find that π∗t

is in line with the target. To be consistent with the target, the asymptote of the

equation driving the spot rate (r∗t ) should equal π
∗
t plus a mark-up representing

the real spot rate. This should (in the absence of a real risk or liquidity premium)

equal l∗t , giving: r
∗
t = π∗t + l

∗
t . However, if the markets have to infer π

∗
t from say a

monetary or exchange rate target (as they did until 1993) or if the inflation target is

not credible, then this identity could break down. To allow for this possibility, the

general macro model is specified with: r∗t = kr + ρrl
∗
t + νππ

∗
t ; where the restrictions

kr = 0, ρr = 1, νr = 1 offer tests for target transparency & credibility and for the

presence of real risk premia.

The dynamic specification was explored using (y∗t − l∗t ) as a proxy for π∗t in

3 Indexed yields may contain a risk premium, but their relatively low volatility means that this
should be relatively small, allowing the 17 year discount factor rate to provide a good indicator of
the medium term real rate of return.
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preliminary OLS regressions. This suggested a macro model of the form:

mt = κm +Φ
0
31l
∗
t +Φ

0
32 π

∗
t +Φ

0
33mt + Φ

0
34mt−1 + wm,t (1)

where : m0
t = {πt, gt, rt}

κm = (I − Φ033 − Φ034)k; Φ031 = (I − Φ033 − Φ034)ρ; Φ032 = (I − Φ033 − Φ034)ν. (2)

This has the steady state solution:

m∗t = (k + ρl∗t + υ π∗t ) (3)

where k0 = {0, kg, kr}, ρ0 = {0, ρg, ρr} and ν0 = {1, νg, νr} show the steady state

intercepts and the effects of l∗t and π∗t on the macrovariables.

The exploratory regressions show that the macro variables do not Granger cause

the real rate (l∗t ). I was able to model this yield satisfactorily using a simple mean

reverting AR(1) process:

l∗t = κ1 + φ11 l
∗
t−1 + wl,t. (4)

consistent with the view that long term real interest rates are determined indepen-

dently of macroeconomic influences. Similarly, using (y∗t − l∗t ) as a proxy for π∗t

preliminary OLS regressions also suggested an AR(1) model for the inflation objec-

tive:

π∗t = κ2 + φ22π
∗
t−1 + w2,t. (5)

consistent with the view that this objective should be independent of short run mean-

reverting macroeconomic considerations. These preliminary results thus suggest a
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dynamic model for z0t = {l∗t ,π∗t ,m0
t} of the recursive form:

zt = κ+Φ01zt−1 +Φ
0
2mt−2 + wt; where: (6)

Φ01 =

⎡⎢⎢⎢⎢⎢⎢⎣
φ11 0 013

0 φ22 013

Φ031 Φ
0
32 Φ

0
33

⎤⎥⎥⎥⎥⎥⎥⎦ ; Φ02 =

⎡⎢⎢⎢⎢⎢⎢⎣
013

013

Φ034

⎤⎥⎥⎥⎥⎥⎥⎦ ;

κ0 = {κ1,t,κ2,t,κ0m,t};

w0t = {w1,t, w2,t, w0m,t};

and where:

wt =C
0ut ∼ N(0,Σ) (7)

Σ=C 0DC.

ut is a 5× 1 vector of orthogonal i.i.d. normal error terms:

ut ∼N(0,D) (8)

D= diag[d1, d2, d3, d4, d5].

D is an 5×5 diagonal matrix and C0 is a lower triangular matrix with unit diagonals.

0mn represents an m× n null matrix.

This system may be written in the standard first order difference format as:

Zt = K +Φ0Zt−1 +Wt (9)
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with:

Φ0 =

⎡⎢⎢⎣ Φ01 Φ02

[032 I3] 033

⎤⎥⎥⎦ (10)

K0 = {κ0t, 013}

W 0
t = {w0t, 013}

where the state vector is defined as Z0t = {l∗t ,π∗t ,m0
t,m

0
t−1} and In is an n×n identity

matrix.

3 The yield model

To translate this into a model with observable variables I use the relationship be-

tween the long yield y∗t and the unobservable variable π
∗
t implied by the no arbitrage

assumption. Appendix 1 shows that under this assumption, when the system is

described by (9) and (10) every nominal bond yield must be described by a linear

function of the state vector Zt. The solution for the negative of the logarithm of the

m−maturity discount bond price is:

−pm,t = γm +Ψ
0
mZt (11)

where the slope coefficients are:

Ψ0m = j
0(I − Φ̃0m)(I − Φ̃0)−1 (12)

where : Φ̃0 = Φ0 − ΣΛ01.

and the intercept follows by recursion of (28) and (24). These coefficients depend

upon the dynamics under the risk adjusted measure ( κ̃, Φ̃). They differ from those
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estimated under the observed measure for the macromodel dynamics (κ,Φ) by addi-

tive terms which depend upon the error variances and parameters which reflect the

price of risk (25) and determine the risk premia in this type of model (30).

Dividing across (11) by maturity gives discount yield:

ym,t = γm/m+Ψ
0
mZt/m (13)

= αm(Λ,K,Φ, C,D) + βm(Λ,K,Φ)Zt

For the long yield y17 = y∗t we may partition β∗(Λ,K,Φ) = β17(Λ,K,Φ) to get:

y∗t = α∗(Λ,K,Φ, C,D)+β∗1(Λ,K,Φ)l
∗
t+β

∗
2(Λ,K,Φ)π

∗
t+β

∗
3(Λ,K,Φ)

0mt+β
∗
4(Λ,K,Φ)

0mt−1

(14)

where Λ is a vector of auxiliary parameters defining the risk aversion of the market

and the α and β parameters are defined by (12), (28) and (24) & (13). Since all of

the other variables in this equation are observable, we can use this to infer π∗t :

π∗t = (y
∗
t−α∗(Λ,K,Φ)−βL1 (Λ,K,Φ)l∗t−β∗3(Λ,K,Φ)0mt−β∗4(Λ,K,Φ)0mt−1)/β

∗
2(Λ,K,Φ)

(15)
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giving the transforms:

Xt =Θ+ Ξ
0Zt ; (16)

Zt =Ξ
0−1 (Xt −Θ);

where : Ξ0 =

⎡⎢⎢⎣ Ξ01 Ξ02
035 I3

⎤⎥⎥⎦ ; (Ξ0)−1 =
⎡⎢⎢⎣(Ξ0)−11 (Ξ0)−12

035 I3

⎤⎥⎥⎦

Ξ01 =

⎡⎢⎢⎢⎢⎢⎢⎣
1 0 013

β∗1 β
∗
2 β
∗
3

0 0 I3

⎤⎥⎥⎥⎥⎥⎥⎦ ;Ξ
0
2 =

⎡⎢⎢⎢⎢⎢⎢⎣
013

β∗4

033

⎤⎥⎥⎥⎥⎥⎥⎦ ;

(Ξ0)−11 =

⎡⎢⎢⎢⎢⎢⎢⎣
1 0 013

−β∗1/β∗2 1/β∗2 −β∗3/β∗2

0 0 I3

⎤⎥⎥⎥⎥⎥⎥⎦ ; (Ξ
0)−12 =

⎡⎢⎢⎢⎢⎢⎢⎣
013

−β∗4/β∗2

033

⎤⎥⎥⎥⎥⎥⎥⎦
Θ0 = {θ0, 013}

θ0 = {0,−α∗/β∗2, 013}

where X 0
t = {l∗t , y∗t ,m0

t,m
0
t−1} and similarly x0t = {l∗t , y∗t ,m0

t}. Substituting (16) into

(9) allows the macromodel to be written in terms of this observable vector as:

Xt =Θ+ Ξ[K +Φ0Zt−1 +Wt] (17)

=Θ+ Ξ[K +Φ0Ξ0−1 (Xt−1 −Θ) +Wt]

Dropping the identity represented by the last three lines of this system and simplifying
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gives the empirical version of the macromodel:

xt = θ + Ξ01κ+ [Ξ
0
1 Ξ

0
2]

⎡⎢⎢⎣ Φ01 Φ02

[032 I3] 033

⎤⎥⎥⎦
⎡⎢⎢⎣(Ξ0)−11 (Ξ0)−12

035 I3

⎤⎥⎥⎦
⎡⎢⎢⎣xt−1 − θ

mt−2

⎤⎥⎥⎦ + Ξ01wt

= θ + Ξ01κ+ [[Ξ
0
1Φ

0
1 + Ξ

0
2[032 I3]] Ξ

0
2Φ

0
2]

⎡⎢⎢⎣(Ξ0)−11 (Ξ0)−12

035 I3

⎤⎥⎥⎦
⎡⎢⎢⎣xt−1 − θ

mt−2

⎤⎥⎥⎦ + Ξ01C
0ut

= Ξ01κ+ [I5 − {[Ξ01Φ01 + Ξ02[032 I3]](Ξ0)−11 }]θ + {[Ξ01Φ01 + Ξ02[032 I3]](Ξ0)−11 }xt−1

+ {[Ξ01Φ
0
1 + Ξ

0
2[032 I3]](Ξ

0)−12 + Ξ02Φ
0
2}mt−2 + Ξ

0
1C

0ut

= k + F 0xt−1 +G
0mt−2 + ηt

where:

k = Ξ01κ+ [I5 − {[Ξ01Φ01 + Ξ02[032 I3]](Ξ0)−11 }]θ; (18)

F 0 = [Ξ01Φ
0
1 + Ξ

0
2[032 I3]](Ξ

0)−11

G0 = [Ξ01Φ
0
1 + Ξ

0
2[032 I3]](Ξ

0)−12 + Ξ02Φ
0
2

ηt = Ξ
0
1C

0ut

Similarly, let yt be a vector containing yields on the 1,2,3,5,7 and 10 year ma-

turities modelled in this study. Appendix 1 shows that this may be represented

as:

yt = α(Λ,K,Φ, C,D) + β(Λ,K,Φ)0Zt + et

et ∼N(0,∆);

∆= diag[δ1, δ2, δ3, δ4, δ5, δ6].
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which we may write using the transform (16) as:

yt = α(Λ,K,Φ, C,D) + β(Λ,K,Φ)0Θ+ β(Λ,K,Φ)0ΞXt + et (19)

The residuals et in these relationships are conventionally interpreted as measure-

ment errors and assumed to be independent of the errors wt in the dynamic system

(9). Appendix 2 derives the likelihood function for the joint model (18) and (19).

4 The empirical model

The algebra of the previous section provides an arbitrage-free model of the macro-

economy and the bond market, but can it provide a plausible description of the data

generating process? After all, VAR-type analysis, which eschews the restrictions im-

plied by structural models of monetary policy and the macroeconomy often generate

puzzling dynamic responses (Grilli and Roubini (1996)). This section describes the

dataset and the empirical results.

4.1 The data

In this paper I use the Retail Price Index excluding mortgage interest payments

(RPIX) to measure inflation (πt). This was the policy objective (with a target rate

of 2.5 %) between November 1992 and April 2004. As in previous macro-finance

studies, inflation is measured on an annual basis. The three month Treasury Bill

rate is used to represent the spot rate (rt). Both of these series were taken from

Datastream. Quarterly estimates of the GDP output gap (gt) were kindly provided

by Oxford Economic Forecasts. This measure is based on the production function

approach, building up potential GDP from estimates of the capital stock, labour force

and productivity, and then subtracting GDP to obtain the estimate of the output
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gap4. These data dictated the use of a quarterly time frame. The macro data are

shown in chart 15.

The gilt-edged yield data were taken from the Banks of England’s website and are

derived using the methodology discussed in Anderson and Sleath (2001). These data

are available monthly from the beginning of 1979, which determines the starting

point of my estimation period (1979 q1-2004q2). The 17 year indexed (l∗) and

conventional (y∗) discount gilt yields (the longest maturity for which a continuous

series are available from the Bank of England) influence the macro variables in this

model and are shown in chart 2. The former is only available since the first quarter of

1985 and so the equation for (l∗) is only fitted over the period 1985q1-2004q2. This

indexed yield is used as a lagged dependent variable in the other equations. These

were estimated over the period 1979 q1-2004q2 assuming that l∗ remained unchanged

at its value before that date6. The yield model is fitted to conventional yields for the

1,2,3,5,7 and 10 year maturities (yt), shown in chart 3.

Table 3 shows the means; standard deviations and first order autocorrelation

coefficients of these data. It also shows ADF test results (the 95% critical value of the

ADF test statistic is 2.83). Consistent with the preliminary OLS results mentioned

above, the ADF test suggest that we reject the null hypothesis of non-stationarity in

the case of the output and inflation variables. The results for the spot rate are not

decisive, but the null hypothesis of non-stationarity for the two long rates cannot be

rejected.

4This was used in preference to the OECD measure based on the trend filtering approach, since
this indicates that output was above trend in 2004, in contrast to the impression given by the
behaviour of inflation and other macroeconomic variables.

5These are annual rates in percentages. In the empirical model these were appropriately converted
to quarterly decimal fractions by dividing by 400.

6The indexed market was very thin during the early 1980s but there is little evidence from the
prices that are available that long term real rates of return shifted significantly over this period.
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4.2 The empirical model

The model of section 2 has a total of 78 parameters. However, 30 of these are used

for the risk adjustments in λ0 and Λ1. As explained, these parameters drive a wedge

between the coefficients estimated under the observed measure for the macromodel

dynamics and those estimated under the risk adjusted measure for the yield coeffi-

cients. In the general specification the two sets of parameters are largely separate7

and reflecting this, there is a degree of parameter indeterminacy in that specification.

However, starting with this and testing down showed that the last three columns of

the matrix Λ1 could be set to zero, leaving a specification in which the time variation

in the risk premia depends upon the two long rates, but not inflation, output or

spot rates. This reduces the number of parameters by 15, to give a model with 63

parameters, which are in the main well determined statistically8. This demonstrates

the benefit of using the macro dynamics to help inform the parameters of the yield

curve model and vice versa.

Table 2 reports the basic goodness of fit statistics for the 11 equations of this

model. The first row shows that the model explains 99% of the variance of the one

year yield, falling to a minimum of 98.3% for the 3 year, then increasing to 99.6%

in the 10 year area. The second row reports the Root Mean Square Errors (RMSE),

which show a similar (inverse) pattern. Tables 3(a)-(c) report the dynamic (κ,Φ);

stochastic (C,D,∆) and risk (Λ) parameters of the model. These are generally well

determined, although as is usual in a VAR, some are insignificant at the 5% level.

7Note however, that because mt−1 cannot affect the price of risk Φ̃02 = Φ02.
8Comparing this with the general model gave a loglikelihood ratio test statistic of 17.5, well

below the 95% critical value of 25.0 (p = 0.29).

14



4.3 Steady state properties

The long run properties of the model are determined by the normalisation described

in the previous section and the estimates of ρg, ρr, kg, kr and νg, νπ shown in Table

3(a). The first of these parameters is not significant, but the second estimate shows

that a change in l∗ increases the spot rate on a point for point basis, consistent

with the assumption that the risk premium at the long end of the indexed market

is negligible. The estimate for νπ is insignificantly different from unity, suggesting

a high degree of consistency between the inflation and spot rate equations. The

estimate for νg presents more of a puzzle, suggesting that there may be a relationship

between long run inflation (π∗) and unemployment (g). However, this effect is not

very well determined statistically and may reflect measurement error in the output

gap indicator.

One of the novel features of this model is the expectation variable (π∗) for the

inflation rate and (adding l∗) the yield curve. This is backed out of the data using

(15). The empirical version is:

π∗t = 4.661 + 0.949229y
∗
t − 0.738557l∗t + 0.12605πt + 0.14000 gt − 0.27830rt (20)

(43.33) (233.33) (-135.49) (9.55) (14.99) (-18.43)

+9. 619 9× 10−3πt−1 − 4. 293 3× 10−2gt−1 + 2. 500 2× 10−2rt

(−) (−) (−)

(The figures in parentheses show asymptotic t-ratios, which are calculated numeri-

cally.) This equation shows that (π∗) is essentially the difference between the con-

ventional and real yields used in the preliminary regressions, but that significant
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adjustments should to be made for the current (though not the lagged) values of the

macro variables. This variable is primarily an indicator of long run expectations in

product and factor markets. However, it provides an important test of the credibility

of monetary policy since if policy is credible (π∗) should be related to the inflation

objective (at least if this is expressed as an explicit target). Also, the deviation from

target (πt− π∗t ) should help the model to explain the interest rate responses of the

authorities.

The near-unit value of the estimate of νπ suggests a close alignment between

monetary policy and the markets’ inflation expectations. Time variations in π∗t throw

more light on this issue, suggesting that the precise expression and implementation

of the policy framework is important in influencing expectations. The implicit values

of (π∗) are shown (as the bold line) in Chart 4 alongside the simple proxy ((y∗t − l∗t ),

continuous line) and RPIX inflation itself (broken line). Allowing for the impact

caused by disequilibrium in the macroeconomy, π∗t gives an indicator which is less

variable than the simple indicator. However, the economy has been relatively stable

since 1992 and the difference between the two indicators since then has been small.

The π∗t measure is remarkably stable, but suggests that inflationary expectations fell

back between 1982 and 1986. This was associated with favourable developments in

the world economy, but a more interesting explanation lies in the Falklands War of

1982 and the re-election of the Thatcher government May 1983. This shift probably

reflects a move to a more credible monetary policy rather than a change in the policy

objective, but it is hard to be sure since the inflation objective was not made explicit

at the time.

There is another downward movement in π∗t in 1997-98. This is more instructive

because the 2.5% target for RPIX inflation was announced earlier: late in 1992

after the pound was forced out of the ERM. Chart 4 shows that the introduction
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of the target had little effect initially. Indeed, there is evidence of an increase in

inflationary expectations in September 1993 (π∗t , increased by 133 basis points in

Q3). Although inflation remained close to the target, π∗t remained well above 2.5%.

However, the handover of monetary control to the Bank of England following the

May 1997 election reduced both indicators, suggesting that the credibility of the

framework depends upon the operational arrangements for its implementation as

well as its precise expression. These indicators have been remarkably stable since

1998, broadly consistent with the 2.5 % target for the RPIX.

The π∗t indicator also gives a plausible account of policy reactions to deviations

from target. In particular, the large deviations (πt − π∗t ) which Chart 4 shows in

1979-82 and 1988-92 coincide nicely with the episodes of high policy interest rates

shown in chart 1, reflecting the use of this indicator in the macromodel. The next

section looks at the monetary and macro responses in more detail.

4.4 Dynamic properties

These dynamic responses are dominated by the diagonal elements of Φ1 which are

relatively large and significant (Table 3(a)). Table 4 reports the eigenvalues. The

first two roots are provided by the autoregressive coefficients for the long bond yields

(in the order φ22 and φ11) which imply a very high degree of persistence. The other

eigenvalues are associated with the macro variables. These are oscillatory, but the

imaginary (and real) components are relatively small, meaning that cyclical behavior

is weak. Consequently, the dynamics are dominated by exponential rather than

cyclical behaviour, which is is heavily damped.

This can be seen more clearly from the impulse responses of the macrosystem,

which show the effect of shocks to the five driving variables. Because innovations

in these variables (wt) are correlated it is unrealistic to vary them independently.
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Instead it is usual to work with the orthogonalised shocks (ut) which are determined

by the factorisation (7). Appendix 3 gives the technical detail.

At this stage the ordering of the macro variables in the vector zt becomes impor-

tant. Because any non-negative definite matrix has a triangular factorisation, the

ordering of the variables in zt does not affect the estimate of Σ, only the parameters

of the matrices C and D used to make the factorisation (34). Since C 0 is a lower

triangular matrix, this means that shocks to the first variable (u1) disturb all five

driving variables contemporaneously, shocks to the second (u2) affect the remaining

four variables but not the first and so on. This makes it important to order the

variables in terms of their degree of exogeneity or sensitivity to contemporaneous

shocks. In this model, l∗ and π∗ are ordered first on the view that macroeconomic

developments should not affect the steady state real rate of return or the long run

policy objective9. Next, I follow (Hamilton (1994)) and order prices before output.

There are various ways to justify this, but the negative contemporaneous correlation

between output and inflation means that with this arrangement, positive inflation

shocks coincide with negative output shocks. This allows u3 to be interpreted as a

negative supply shock. In turn, u4 increases output without any immediate impact

on inflation and is interpreted as a demand shock. Interest rates are sequenced after

these variables on the view that output and prices do not react immediately to mon-

etary policy. Thus the variable ordering is: long bond yields; inflation, output gap

then the spot rate.

These orthogonal shocks (ut) determine the innovations (wt) in the five driving

variables via (7). This may be interpreted as a system of linear regression equations,

9The ordering of this pair does not matter because I assume that shocks to these variables are
also independent.
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with the regression betas:

C 0 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0

0 1 0 0 0

c31 c32 1 0 0

c41 c42 c43 1 0

c51 c52 c53 c54 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0

0 1 0 0 0

0.32008 0.48864 1 0 0

0.29910 0.31058 -0.11681 1 0

0.98520 0.50953 0.53893 0.53209 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
These coefficients determine the immediate response of the driving variables to the

shocks. So a long rate shock is reflected immediately in the spot rate on (approxi-

mately) a point-for-point basis. In contrast, c32 indicates a relatively small adjust-

ment in the spot rate in response to a change in the inflation expectation (u2). A

unit supply shock (u3) puts up inflation by one point, depresses output by just over

a tenth of a point initially, and increases the spot rate by just over half a point.

Charts 5(a)-(e) show the dynamic responses (in percentage points) of inflation,

output and interest rates to shocks in the structural errors (u). Since l∗ and π∗ are

driven by simple autoregressions, their responses are not illustrated. For diagnostic

simplicity, shocks to l∗ and π∗ are assumed to be permanent, while the other three

error terms are perturbed for just one period, after which they are set back to zero,

allowing the dynamics effects to work through. These tables show the effects over

the first 40 quarters (10 years) and the horizontal axis is calibrated in terms of
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quarters. The effects of the macro shocks are generally quick and cyclical, reflecting

the eigenvalues discussed earlier, while the effect of shocks to the long bond yields

persist. The tables show the effect of these shocks on inflation (dotted line), output

(broken line) and interest rates (unbroken line).

Chart 5(a) shows the effect of permanent shock to the long term rate of return

(u1). This has (approximately) a point-for-point impact upon the spot rate, reflecting

the coefficients discussed earlier. The initial effect on inflation is positive, but the

long run impact is restricted to be zero. Chart 5(b) shows the effect of permanent

shock to the inflation expectation (u2). To interpret this, I now reverse the signs

on these effects, to show the effect of a reduction in π∗ (which is more realistic over

this period). The spot rate lags inflation slightly, so real rates increase temporarily,

helping to push the system to a lower inflation target. Output falls initially, but this

fall is then reversed as a result of the effect of lower inflation on output.

The effect of inflation on output - one of the noteworthy features of this model

- is shown more clearly in Chart 4 (c). This shows the effect of a negative supply

side shock (u3). Recall that the impact effect is to depress output (c43). This is

reinforced by the negative dynamic effects of inflation on output (φ33,21 and φ34,21).

These probably reflect real balance and other inflationary effects on consumption

which are a well known feature of the UK economy (Davidson and Yeo (1978)). The

initial responses of inflation and interest rates to the supply shock are positive, but

Chart 5 (c) reveals that these effects are quickly countered by the fall in output.

As we would expect, Chart 5(d) shows that the output gap (representing a demand

shock) has a positive effect on inflation and interest rates. The spot rate responds

immediately, but adjusts back towards its initial level quickly. This swift policy

response is effective, bringing output (and inflation) back down again over a five year

timespan, without inducing oscillations in their behaviour. In this respect monetary
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policy appears to have been very timely.

Finally, Chart 5(d) shows the effect of innovations in interest rates on the economy.

The effect on the spot rate itself decays away exponentially, without policy reversals.

Inflation falls in response to higher interest rates and although the effects may look

small, the price level is 3.8% lower after 10 years. Output falls initially, but this

effect is soon countered by the favourable real balance effect. There is no evidence

here of the ‘price puzzle’ that has dogged previous VAR-based studies of monetary

policy10 . Taken together, these responses give a plausible description of the macro

dynamics, with π∗ acting as a lead indicator of output and inflation. Shocks to l∗

and π∗ are assumed to be persistent, but the system is back close to its initial values

after a five year period following supply and demand side shocks.

4.5 Yield curve responses

The impulse response patterns for the bond yields are determined by (35) and thus

depend upon the sensitivity of the macro factors to shocks (given by the impulse

responses of the previous section) and the sensitivity of yields to the macro factors

(the beta coefficients βm or factor loadings). The factor loadings are reproduced for

all maturities up to 10 years in Chart 6. The separate panels show the loadings on

the factors, plotted as a function of maturity expressed in quarters, shown on the

horizontal axis. These loadings depend upon the risk adjusted dynamics, reflected in

the eigenvalues of the matrix Φ̃ reported in Table 4.

The first panel shows the loadings on l∗ (broken line) and π∗ (continuous line).

The slow-moving nature of these variables means that these loadings increase with

10The price puzzle was defined by (Grilli and Roubini (1996)) as follows: ‘When monetary policy
is identified with innovations in interest rates, the response of the price level is wrong as monetary
tightening is associated with a permanent increase in the price level rather than a decrease’. This
problem goes back to Sims (1992). My preliminary work on UK macro VARs revealed similar
problems - if long term yields are not included in the VAR then inreases in short term interest
rates apparently increase the price level. However, the inclusion of long term yields - which better
anticipate inflationary developments - seems to solve this problem.
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maturity over this range. The next panel shows the loadings on π (dotted line), g

(broken line) and r (continuous line). The identity between the one quarter yield

and the spot rate means that the contemporaneous spot rate has a unit coefficient

at a maturity of one quarter and other factors have a zero loading (24). The interest

rate loadings tend to decline monotonically with maturity, while those of the other

macro factors exhibit a humped shape.

The impulse response patterns for the yield model are shown in Charts 7 (a)-

(d). These report the effects on the 1 - 10 year yields of the inflation, output and

interest rates shocks described in the previous section. Although the model is fitted

using only 6 yield observations in each period, in principle it can be used to compute

the yield response at any maturity. The loading pattern means that the impulse

response patterns for the short maturity yields are similar to those for the spot rate.

Consistent with the earlier results, the effects of macro shocks disappear very quickly,

while those of the unobservable variable underpinning the long bond yield are very

persistent.

Finally, Chart 8 shows the holding period risk premia (annualised one-period

ahead expected excess returns) implied by the model. In an arbitrage-free model,

the risk premium on an m−period bond (31) is equal to the covariance between the

(m − 1)-period bond price and the nominal SDF (which is related to the marginal

rate of intertemporal substitution in a utility-based model). Over this period, this

covariance tends to fall with the degree of macroeconomic disequilibrium, explaining

the fall in the premia shown in the chart. Appendix 1 shows (30), that these premia

depend upon differences between the observed and risk neutral probability measures,

as well as the factor loadings at each maturity. The risk premia tend to increase over

the maturity range shown in the chart, largely as a consequence of the increase in

the factor loadings on l∗ and π∗.
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5 Conclusion

The model reported in this paper is based on the idea that we can use the markets’

inflation expectations to represent the UK monetary authorities’ medium inflation

objective, allowing for time variation in this aspiration. This variable (π∗t ) takes

the long conventional gilt yield and adjusts it to allow for the risk premium, as

determined by a macro-finance model of the yield curve. This adjustment reflects

the disequilibrium in the UK economy, which was particularly significant before 1992.

Because π∗t drives the macro dynamics in this model, it is informed by the behaviour

of the macroeconomy as well as the bond market.

The empirical model provides an interesting account of UK monetary policy since

1979, as well as furnishing a useful description of the gilt-edged yield curve. The π∗t

indicator is surprisingly stable, more so than a simple difference of indexed and

conventional yields, but being forward-looking, can shift abruptly in response to

political events like wars, general elections and changes in the monetary regime. It

reveals a progressive downward movement in expectations between 1980 and 1998,

followed by a stabilisation. The movements in this variable since 1992 are particularly

revealing, suggesting that the announcement of an inflation target may not be credible

unless it is supported by appropriate operational arrangements. The π∗t indicator

acts as a leading indicator of activity and inflation while (πt − π∗t ) also gives a good

explanation of monetary policy reactions to the gap between inflation and the policy

objective.

The model has plausible dynamic responses, in contrast to many VAR-type results

(Grilli and Roubini (1996)). Its use of long term yields as explanatory variables seems

to solve the notorious price puzzle - the tendency for increases policy interest rates to

anticipate inflationary developments and apparently cause inflation. The hypothesis
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of a unit root cannot be rejected in the case of the two long term yields and the

behaviour of these variables dominates the dynamics of the model, suggesting that

expectations are highly persistent. However, the responses of the macro variables

to deviations between inflation and the policy objective (πt − π∗t ) are surprisingly

rapid. Remarkably, they are exponential in nature, suggesting that monetary policy

has been very effective, securing the objective quickly, without policy reversals or

cycles. As in previous UK studies, the model reveals a strong real balance effect of

inflation on activity.

The research presented here is able to identify the private sector’s medium term

inflation expectation and explore its relationship with the objectives of monetary

policy, but can say very little about the formation of short run expectations. However,

there is now an increasing amount of data for the index linked market across a

range of maturities, which could in principle be used to calibrate expectations at

shorter maturities, including the two year maturity. This would allow a more precise

analysis of the relationship between private sector expectations and the inflation

target announced since 1992, which was been expressed as a two-year objective. The

significance of any risk premia could in principle be checked a real discount function

developed along the lines set out in appendix 1 for the nominal one. This research

might also lend itself to a structural analysis of private sector pricing decisions, but

is beyond the scope of the present paper and remains on the agenda for future work.
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6 Appendix 1: A macro-based yield curve model

Suppose the spot rate rt = j0Zt where j0 is a selection vector and the state vector is

described by (9). Absent arbitrage, the price Pm,t of an m-period discount bond is

the stochastically-discounted value of its value Pm−1,t+1 in the next period. This is

given by the pricing kernel:

Pm,t = Et[Nt+1Pm−1,t+1].

where Nt+1 is the nominal Stochastic Discount Factor (SDF), with logarithm:

−nt+1 = δt + rt + λ0twt+1 (21)

and where λt reflects the correlation between consumption and wt (which determines

the price of risk and hence the risk premia). Conditional lognormality extends to bond

prices, allowing us to use the standard formula for the expectation of a lognormally

distributed variable to get:

pm,t = Et[nt+1 + pm−1,t+1] +
1

2
Vt[nt+1 + pm−1,t+1] (22)

(using lower case symbols to represent logarithms and Et and Vt the conditional

expectation and variance). In the special case m = 1, with rt = −p1,t and p0 = 0:

p1,t =Et[nt+1] +
1

2
Vt[nt+1]

=
1

2
λt
0Σλt − (rt + δt)

=−rt
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which implies:

δt = λ0tΣλt/2. (23)

Now we adopt the affine log price trial solution (11). For m = 1:

rt = −p1,t = γ1 +Ψ
0
1Zt = j

0Zt.

which gives the initial conditions:

γ1 = 0; Ψ
0
1 = j

0. (24)

I follow Ang and Piazzesi (2003) and others in assuming that the price of risk depend

upon linearly upon the state variables:

λt = λ0 + Λ1
0Zt (25)

Substituting (11) and (23) into (22):

−pm,t = j0Zt+γm−1+Ψ0m−1(K+ΦZt)−Ψm−10Σ(λ0+Λ10Zt)−
1

2
Ψm−1

0ΣΨm−1. (26)

Equating this with (11) gives the recursion:

Ψ0m = Ψ
0
m−1Φ̃

0 + j0 (27)

γm = γm−1 +Ψ
0
m−1K̃ −

1

2
Ψm−1

0ΣΨm−1. (28)
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where K̃ = K − Σλ0 and Φ̃0 = Φ0 − ΣΛ01 represent the dynamics under the risk

neutral pricing measure, obtained by substituting these for K and Φ in (9):

Zt = K̃ + Φ̃0Zt−1 +Wt. (29)

The recurrence relationship (27) gives an elementary solution for the slope pa-

rameters in the yield model, making it easy to see the relationships between these

coefficients and the macro dynamics: (12). The time variation in the yield curve de-

pends upon the eigenvalues of this matrix, which for the empirical model are shown

in the final column of table 4. The behaviour at the long end is dominated by the

eigenvector or composite variable associated with the largest eigenvalue (the slowest

speed of adjustment). In the empirical model these are associated with l∗ and π∗.

The remaining eigenvalues reflect the speed of adjustment of the macro variables,

which is much faster. Consequently, the coefficients of π∗ and l∗ in the 17 year

discount yield y∗ equation (20) are much larger than those of the macrovariables,

which is why we can use ( y∗− l∗) as a proxy for π∗ in preliminary specification tests

without worrying unduly about the distortion caused by short term macroeconomic

fluctuations.

The risk premia in the arbitrage free pricing model are determined by differences

between the parameters defining the dynamics under the observed (κ,Φ) and risk

neutral (κ̃, Φ̃) measures. To see this, first evaluate the price of today’s m−period

bond expected next period using (11):

Et[Pm−1,t+1] = exp[Et[pm−1,t+1] +
1

2
Vt[pm−1,t+1]]

= exp[−γm−1 −Ψ0m−1[κ+ΦZt] +
1

2
Ψm−1

0ΣΨm−1].
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Dividing this by the current price and substituting this using (26) gives the expected

gross return:

Et[Pm−1,t+1]

Pm,t
= exp[rt −Ψm−10Σ(λ0 + Λ10Zt)]

Taking the logarithm expresses this as a percentage and subtracting the spot rate

then gives the expected excess return or risk premium:

log{Et[Pm−1,t+1]}− pm,t − rt =−Ψm−10Σ(λ0 + Λ10Zt) (30)

=Ψm−1
0 [(κ̃− κ) + (Φ̃0 − Φ)Zt]

where : Φ̃0 = Φ0 − ΣΛ01; κ̃ = κ− Σλ0.

Substituting (25) into the first line of this representation shows that the risk premium

is equal to the covariance between the nominal SDF and the (m − 1)-period bond

price:

log{Et[Pm−1,t+1]}− pm,t − rt = −Ψm−10Σλt. (31)

7 Appendix 2: The likelihood function

This appendix derives the Likelihood function and describes the numerical optimisa-

tion procedure.

Because the macro and yield errors are assumed to be orthogonal, the likelihood of

the joint model is the sum of macro and yield components. First, consider the macro

component of the likelihood function. Note from (6) and (18) that ηt ∼ N(0,Σ)

where: Σ = Ξ01C
0DCΞ1. This means that the log likelihood for period t can be

written as:
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LMt =−(N/2) ln(2π)− ln(|Σ|)/2− η0t(Σ)
−1ηt/2 (32)

=−(N/2) ln(2π)−
NX
n=1

ln(dn)/2− ln(β2)− ut0D−1ut/2

where : ut = (Ξ
0
1C

0)−1ηt = (Ξ
0
1C

0)−1[xt − k − F 0xt−1 −G0mt−2]

(using |D| = ΠNn=1dn, |Ξ1| = β2 and |C 0| = 1). Because the first (l∗) equation is

dummied out of this system (i.e. the errors η1,t = 0) over the first T1 = 20 periods

the likelihood for these periods reduces to

LM−t = −((N − 1)/2) ln(2π)−
NX
n=2

ln(dn)/2− ln(β2)− ut0D−1t ut/2

(19) can be used to represent the likelihood of the yield observation yt:

Lyt =−(M/2) ln(2π)−
MX
m=1

ln(δm)/2− vt0∆−1vt/2;

where :

vt = yt − α+ β(Λ,K,Φ)0Θ+ β(Λ,K,Φ)0ΞXt.

Summing over T periods gives the loglikelihood for the full dataset:

LM =−(T (N +M)/2− T1/2) ln(2π)− T
NX
n=1

ln(dn)/2 + T1 ln(d1)/2− T ln(β2)

−T
MX
m=1

ln(δm)/2−
TX
t=1

{ut0D−1ut/2− vt0∆−1vt/2}.
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8 Appendix 3. The impulse responses

To derive the impulse responses I use the lag operator L (where Zt−1 = LZt) to

rewrite (9) as (I − Φ0L)Zt = Wt, omitting the intercept constants K. Since its

eigenvalues are less than unity in absolute value, this system can be inverted to give

the Wald (MA) representation:

Zt = (I − Φ0L)−1Wt (33)

=
∞X
i=0

Φ0iWt−i

=
∞X
i=0

Φ0iA0Ut−i.

U 0t is a set of orthogonal disturbances: U
0
t = (u0t, 013) obtained by factorising Wt

using a relationship similar to (7):

Wt = A
0Ut (34)

where:

A =

⎡⎢⎢⎣ C0 053

035 033

⎤⎥⎥⎦ ;

Similarly, using (19) and omitting the intercept constants:

yt = β(Λ,K,Φ)Zt (35)

= β(Λ,K,Φ)
∞X
i=0

Φ0iA0Ut−i.
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Chart 1: Macroeconomic variables
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Chart 2: 17 year gilt yields
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Chart 4: Inflation and measures of the policy objective
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Chart 5: The macroeconomic impulse responses
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Chart 6: The yield factor loadings
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Chart 7: The bond market impulse responses
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Chart 8: Risk Premia
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Table 1: Data Summary Statistics (1979Q4-2004Q2)

l∗ y∗  g r y1 y2 y3 y5 y7 y10

Mean 3.3001 8.8089 5.5441 -2.2863 8. 809 8.5154 8.5856 8.6437 8.7401 8.8052 8.8027
S. D. 0.8826 2.6991 3.8221 2.3485 3.7069 3.1393 2.9732 2.9008 2.8695 2.8913 2.9008
ADF. -2.211 -1.344 -4.129 -3.1735 -2.304 -2.199 -1.997 -1.773 -1.368 -1.375 -1.356

Output gap (g) is from Oxford Economic Forecasts; RPIX Inflation () and 3 month Treasury bill rate (r) are from Datastream. Yield data
are UK Gilt edged discount bond equivalent data compiled by the Bank of England. Mean denotes sample arithmetic mean expressed as
percentage p.a.; S. D. standard deviation and ADF the Augmented Dickey-Fuller test for non-stationarity.

Table 2: Residual Error Statistics (1979Q4-2004Q2)

l∗ y∗  g r y1 y2 y3 y5 y7 y10

R2 0.986253 0.963816 0.735918 0.63205 0.878529 0.990632 0.989038 0.98314 0.984166 0.990275 0.996042
RMSE 0.104804 0.513436 1.83419 1.42462 1.29196 0.303847 0.311298 0.376658 0.361075 0.285129 0.182487

The first row reports the R2 and the second the Root Mean Square Error (RMSE).



Table 3a: The dynamic structure

parameter estimate t-value
g -0.16107 -0.857
r 0.99832 7.385
g 0.6891 2.289
r 1.0541 14.556
kg -0.14111 0.776
kr 1.09113 1.334
11 0.92582 56.666
22 0.97511 686.020
1 0.22253 34.213
2 0.30101 47.285

33

parameter estimate t-value
33,11 -0.19359 -34.352
33,12 -0.24894 -42.131
33,13 -0.04742 -9.683
33,21 -0.11153 -18.630
33,22 0.286189 42.970
33,23 0.074191 15.376
33,31 -0.17856 -75.337
33,32 0.185231 68.294
33,33 -0.07334 -28.530

34

parameter estimate t-value
34,11 1.09362 188.786
34,12 0.29054 47.385
34,13 0.01559 3.155
34,21 -0.14373 -24.458
34,22 0.57689 84.209
34,23 -0.09671 5.221
34,31 0.04689 1.999
34,32 -0.23612 -86.588
34,33 0.99972 327.969



Table 3b: The error structure
D
parameter estimate t-value
d1 0.000521 41.024
d2 0.001128 11.732
d3 0.001988 35.422
d4 0.001751 9.105
d5 0.001862 9.288
Δ

1 1. 0267  10−3 7.099
2 1. 0737  10−3 6.916
3 1. 1730  10−3 6.902
5 1. 1343  10−3 6.887
7 1. 0053  10−3 6.890
10 8. 0589  10−4 6.625

C
parameter estimate t-value
c31 0.320082 6.1851
c32 0.4886426 19.930
c41 0.299102 0.557
c42 0.310582 2.731
c43 -0.11681 -5.574
c51 0.985205 12.145
c52 0.509531 3.182
c53 0.538939 60.793
c54 0.532091 10.488



Table 3c: The price of risk
0

parameter estimate t-value
0,1 -446.931 -9.126
0,2 -147.386 -22.206
0,3 257.183 37.127
0,4 -60.250 -5.822
0,5 0.577307 0.297

1
1

parameter estimate t-value
1,11 -2923.66 -59.245
1,12 -53.9719 -1.777
1,13 213.466 6.506
1,14 -81.9515 -3.681
1,15 90.3719 0.508

1
2

parameter estimate t-value
2,11 71.5884 1.122
2,12 -196.809 -20.775
2,13 109.42 12.632
2,14 186.51 15.320
2,15 -145.704 -9.181



Table 4: Eigenvalues of dynamic responses under the observed ( and risk neutral (̃) measures
(in order of absolute value)

 ̃

0.975117 0.988713
0.925823 0.986828

0.921874  0.00825223I 0.921874  0.00825223I
0.682797 0.682797
0.408807 0.408807
−0.393002 −0.393002
0.111896 0.111896




