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Abstract

This paper explores the properties of a new nonparametric goodness of fit test, based

on the likelihood ratio test of Portnoy (1988). It is applied via the consistent series

density estimator of Crain (1974) and Barron and Sheu (1991). The asymptotic

properties are established as trivial corollaries to the results of those papers as well

as from similar results in Marsh (2000) and Claeskens and Hjort (2004).

The paper focuses on the computational and numerical properties. Specifically it is

found that the choice of approximating basis is not crucial and that the choice of

model dimension, through consistent selection criteria, yields a feasible procedure.

Extensive numerical experiments show that the usage of asymptotic critical values

is feasible in moderate sample seizes. More importantly the new tests are shown to

have significantly more power than established tests such as the Kolmogorov-Smirnov,

Cramér-von Mises or Anderson-Darling. Indeed, for certain interesting alternatives

the power of the proposed tests may be several times that of the established ones.



1 Introduction

Testing whether a sample has a particular distribution, in other words the goodness

of fit problem, has importance across many areas of applied statistics. Unsurprisingly

therefore there are a very large number of suggested procedures. The problem can

be formalised in that we have a sample {xi}ni=1 and we wish to test the hypothesis
that the xi are identically distributed copies of a random variable X with known

distribution function P (x), i.e.

H0 : xi ∼ iid X ; Pr[X ≤ x] = P (X). (1)

By far the most common formal statistical procedures for testing (1) are those

based upon the empirical distribution function, such as the Kolmogorov-Smirnov

and the Cramér-von Mises tests, see for example Darling (1957). Both these tests

are based upon distances of the empirical distribution function to the hypothesised

distribution function. Refinements involve use of a weighting function, leading to

a weighted measure of distance. Indeed for 50 years or so perhaps the preferred

statistical procedure has been the weighted Cramér-von Mises, or the Anderson-

Darling statistic, of Anderson and Darling (1952). A fuller historical perspective and

details of the many other procedures can be found, for example, in Conover (1999).

Stephens (1974) provides a Monte Carlo comparison of the powers of those tests based

upon the empirical distribution function.

The purpose of this paper is to introduce a nonparametric goodness of fit test

based upon the likelihood ratio test of Portnoy (1988). It is made nonparametric by

utilising the exponential series density estimator of Crain (1974, 1976 and 1977) and

also Barron and Sheu (1991). In common with two very related statistics, due to

Marsh (2000) and Claeskens and Hjort (2004), the principle is to test via the ratio

of the estimated density to that of the imposed null hypothesis. The difference lies

in how the null is to be imposed. Claeskens and Hjort (2004) assume that the null

density is uniform on (0, 1) and so their ratio is just the estimated density. Marsh
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(2000), on the other hand, utilises moment restrictions that the sample must satisfy

under the null, but not the alternative. Here, we use, as the null density, that member

of the, potentially infinite, exponential family which approximates the hypothesised

density.

Since the properties of the exponential series estimator and of the infinite di-

mensional likelihood ratio test are well known, this paper concentrates upon the

computational and numerical properties of the suggested procedure. The only the-

oretical results given here are a lemma dealing with the properties of the estimator

and a theorem detailing the asymptotic distribution of the statistics under the null

and fixed and local alternatives. Both can be trivially proved from existing results

due to Portnoy (1988), Barron and Sheu (1991) and Claeskens and Hjort (2004).

First, this paper finds that in practice the dimension of the series density estimator

need not be large. Consequently, this density estimator becomes a feasible basis

upon which to build a test. Specifically, therefore, the choice of dimension may

be data driven, in that we may apply a selection criterion over a relatively small

subset of possible dimensions. For illustration the information criteria of Akaike

(1974) and Schwarz (1978) are applied. In particular by using the precise form of the

likelihood ratio here, as opposed to that of Claeskens and Hjort (2004), consistency

of these criteria both under the null and alternative is assured. In addition it is found

that the choice of basis, for example whether polynomial or trigonometric, for the

approximating exponential is not crucial.

In terms of the properties of the proposed test statistics numerical comparisons

are made with the established procedures. Both the Kolmogorov-Smirnov and the

Cramér-von Mises tests and their weighted versions are used in the comparisons as are

both fixed dimension and selected dimension versions of the proposed statistics. An

extensive simulation study is carried out under the null to analyse the finite sample

performance of asymptotic critical values. The performance of all statistics is broadly

comparable, and thus not any basis upon which to choose. On the contrary though,
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it is demonstrated that the power can be significantly higher for all versions of the

proposed tests than for the established. In several cases of interest the power of the

likelihood ratio tests may be two or three times that of any of the established tests.

As well as being more powerful the tests based upon the series density estimator

enjoy another significant advantage. Supposing that the hypothesis is rejected then

the applied researcher will still have available a consistent approximation. Indeed

since this approximation is analytic rather than numerical, such as with a kernel

based estimator, it may itself be readily be used for prediction or various probability

calculations.

The plan for the rest of the paper is as follows. The next section summarises

the pertinent theoretical properties of the density estimator and details the practical

computational and numerical issues of choice of dimension and approximating basis.

Similarly section 3 gives the asymptotic properties of the proposed tests and provides

a detailed analysis of its numerical properties in a comparative size and power study.

Section 4 concludes while all of the numerical results themselves are presented in an

appendix.

2 Exponential Series Density Estimation

2.1 Theoretical Results

The procedures and tests of this paper are based upon the series density estimator

introduced by Crain (1974) and further analysed by Crain (1976 & 1977) and Barron

and Sheu (1991). Specifically we wish to estimate the density of a random variable

x having distribution P (x). Throughout we shall assume that the data {xi}ni=1 are
i.i.d. copies of the random variable x, which satisfies the following:
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Assumption 1 (i) Let x be defined on the bounded sample space (a, b), a < b and

both finite and with density

p(x) = dP (x) :

½
(a, b)→ R,

Z b

a

dP (x) = 1, p(x) ≥ 0
¾
.

(ii) The log-density of x satisfies

lp(x) = ln [p(x)] ∈W r
2 ,

where W r
2 is the Sobolev space of functions, so that lp

(r−1)(x) = dr−1lp(x)
dxr−1 is

absolutely continuous and lp(r)(x) is square integrable on (a, b) for all r ≥ 2.

The density estimator of Crain (1974) is the limiting member of the exponential

family, vis.

lim
m→∞

pθ(x) = p0(x) exp
nXm

k=1
θkφk(x)− ϕm(θ)

o
, (2)

where in (2) the cumulant function is defined by

ϕm(θ) = log

Z b

a

p0(x) exp
nXm

k=1
θkφk(x)

o
dx. (3)

In (3) θ = (θ1, .., θm)
0 ∈ Rm, p0(x) is a reference probability density function on (a, b)

and the φk(x) are a set of linearly independent functions, forming a basis for a linear

space Sm on (a, b). Choice of Sm, for example whether polynomials, trigonometric

(and/or exponential) series and splines, will be the examined in numerical analysis

to follow.

The density estimator itself is defined as follows. Given the i.i.d. sample {xi}ni=1
the exponential series density estimator pθ̂(x) is the maximum likelihood estimator

(mle) in the family (2). Formally,

θ̂ = arg max
θ∈Rm

l(θ) = ln p0(x) +
nX
i=1

mX
k=1

θkφk(xi)− nϕm(θ). (4)

From (4) some key properties are immediately obtainable; first the score is given by

S(θ) =
dl(θ)

dθ
=

nX
i=1

φk(xi)− ndϕm(θ)
dθ

,
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while from (3) we have

dϕm(θ)

dθ
=

d

dθ

µ
log

Z b

a

p0(x) exp
nXm

k=1
θkφk(x)

o
dx

¶

=

d
dθ

³R b
a
p0(x) exp {

Pm
k=1 θkφk(x)} dx

´
R b
a
p0(x) exp {

Pm
k=1 θkφk(x)} dx

=

Z b

a

φ(x)pθ(x)dx,

where φ(x) = (φ1(x), ..,φm(x))
0 . Thus the mle is the solution to the set of m estimat-

ing equations; Z b

a

φ(x)pθ̂(x)dx = φ̄, (5)

where φ̄ = n−1
Pn

i=1 φ(xi). We can also define the Hessian,

H(θ) =
d2l(θ)

dθdθ0
= n

d2ϕm(θ)

dθdθ0
=
d

dθ0

Z b

a

φ(x)pθ(x)dx,

in the usual way for exponential models.

Indeed if m were fixed it is trivial to use these relations to derive asymptotic

distributions for the standardised score and mle. At present though, the mle θ̂ has

no obvious meaning in terms of the density being estimated, p(x). However, since x

and hence φ(x) are bounded then each element of φ̄ will obey a law of large numbers

as n→∞, specifically

n−1
nX
i=1

φk(xi)→p φ
0
k <∞ ∀ k = 1, ..,m. (6)

From (6) we can therefore define a θ0 which satisfies a set of equations, analogous to

those in (5), as Z b

a

φ(x)pθ0(x)dx = φ0, (7)

where φ0 = (φ01, ..,φ
0
m)

0
. As a consequence we must consider the relationship between

three points in the space of density functions, as defined by Assumption 1. We have

the ‘true’ density p(x), the approximating density pθ0(x) and the estimated density

pθ̂(x). The first two densities are related viaZ b

a

φ(x)p(x)dx = Ep(x)[φ(x)] = φ0 =

Z b

a

φ(x)pθ0(x)dx,

5



that is in terms of the basis φ(x), p(x) and pθ0(x) have the same moments. On the

other hand pθ0(x) and pθ̂(x) are related asymptotically viaZ b

a

φ(x)pθ0(x)dx = φ0 = lim
n→∞

φ̄ = lim
n→∞

Z b

a

φ(x)pθ̂(x)dx,

that is heuristically (these results will be formalised in a lemma to follow) pθ0(x) is

the limit of pθ̂(x).

We can analyse convergence of the density estimator in the following terms; con-

sider a hyperplane of densities Cm defined by

Cm =
½
q(x) :

Z b

a

φ(x)q(x)dx = φ0

¾
,

so that we have pθ0(x) ∈ Cm while p(x) ∈ C∞. Hence convergence on the triangle
of densities follows from θ̂ →p θ0 while Cm → C∞ as respectively n and m tend to

infinity.

This paper will consider goodness of fit tests which are based upon Portnoy’s

(1988) likelihood ratio test. Comparative tests, such as the Kolmogorov-Smirnov or

Cramér-von Mises are based upon norms on the space of distributions (respectively

the sup and L2 norms) and convergence of the empirical distribution in those norms.

Instead here we will exploit convergence of the exponential density with respect to

relative entropy (or Kullback-Leibler distance), defined for densities satisfying As-

sumption 1 by

D(p1|p2) =
Z b

a

ln

µ
p1
p2

¶
p1dx.

Strictly speaking D(p1(x)|p2(x)) is not a norm, although we can trivially, if needed,
construct Λ(p1, p2) = (D(p1|p2) +D(p2|p1)) . Since we’re interested in the convergence
of the estimator pθ̂(x) to p(x), then as in Barron and Sheu (1991) the following

decomposition is central;

D(pθ̂(x)|p(x)) = D(pθ̂(x)|pθ0(x)) +D(pθ0(x)|p(x)). (8)

In terms of the heuristic arguments above the vanishing of the first term in (8) reflects

convergence of θ̂ to θ0 while that of the second reflects Cm → C∞. Specifically, these
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results may be formulated in the following Lemma, which contains the pertinent

results of Crain (1974) and Barron and Sheu (1991).

Lemma 1 Let θ0 be a solution of (7) then

(i) pθ0(x) is the unique member of (2) in Cm and moreover,

(ii) as m→∞ the relative entropy (Kullback-Leibler divergence) of pθ0(x) to p(x) is

D(pθ0(x)|p(x)) = Or
¡
m−2r

¢
,

where r is the ‘smoothness’ of the log-density lp(x) as defined in Assumption 1.

(iii) Suppose that m3/n → 0 as m,n → ∞, then the maximum likelihood estimator

in the family (2), pθ̂(x), given by (5) converges, in relative entropy, to p(x) according

to

D(pθ̂(x)|p(x)) = Opr
³
m−2r +

m

n

´
. (9)

Part (i) states the existence and uniqueness of θ0 given the moment sequence φ0

and therefore also implies the existence and uniqueness of the mle, θ̂. Part (ii) reflects

the success with which we are able to approximate p(x) with an (infinite) exponential,

while part (iii) concerns our ability to estimate that exponential. Optimising the rate

of convergence implies a rate of increase of m = O(n
1

2r+1 ) with a maximin rate, when

r = 2, of O(n1/5). On the other hand if it is known that p(x) is analytic then m can

grow arbitrarily slowly.

2.2 Computational Results

Although the primary aim of this paper is to propose and analyse a goodness of fit test

based upon convergence of relative entropy, specifically the entropy D(pθ̂(x)|pθ0(x)),
a secondary aim to assess the efficacy of the series density estimator itself. Supposing

that the goodness of fit hypothesis (1) is rejected, then at least the estimator itself may

be useful in its own right, whether for prediction or simple (approximate) probability

calculations.
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In order to implement the estimator, notice that the mle is given by (4), which

we may rewrite as

θ̂ = arg max
θ∈Rm

l(θ)− ln[p0(x)]

(10)

=
Xn

i=1

Xm

k=1
θk(φk(xi)− φ̄k)− n log

Z b

a

exp
nXm

k=1
θk(φk(xi)− φ̄k)

o
dx,

and since at the mle the contribution of the first term of (10) is zero then

θ̂ = arg min
θ∈Rm

LU(θ) =

Z b

a

exp
nXm

k=1
θk(φk(x)− φ̄k)

o
dx. (11)

Analogously, the approximate model pθ0(x) can be found, for any m by

θ0 = arg min
θ∈Rm

LR(θ) =

Z b

a

exp
nXm

k=1
θk(φk(x)− φ0k)

o
dx.

Consequently and given a moment sequence - whether population or sample - the min-

imum argument of these functions can readily be found. In this paper all calculations

were performed using Mathematica v.4 and its internal optimisation routine.

There are two issues of practical concern. The first relates to p(x) and our ability

to approximate it with pθ0(x). Closely related to that is the second, the choice of

m, the dimension of θ, in any subsequent procedure based upon the density estima-

tor. We can measure the efficacy of the approximate model, for any given p(x), via

evaluation of

D(pθ0(x)|p(x)) =
Z b

a

µ
ln

·
p(x)

p0(x)

¸
−
Xm

k=1
θ0kφk(x)− ϕm(θ)

¶
p(x)dx. (12)

Specifically and without loss of generality we will choose (a, b) = (0, 1) and p0(x) =

1. Then for two choices of p(x),

p1(x) = 3x2 ; p2(x) =
3
√
x

2
, (13)

we chose two different bases

φk(x) = Cos[πix] ; φk(x) = x
k, (14)
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and evaluated (12) for each combination for values of m = 1, 3, 5.., 15. The results

are recorded in Table 1 in the appendix. From even this limited analysis two aspects

are clear. As expected the entropy vanishes exponentially with m, so that choosing

very large m, beyond say m = 7, has a very limited effect. The relative entropy using

the trigonometric basis is perhaps ‘smoother’ than that of the polynomial. However,

in practical terms there is very little to choose between them, at least given these

densities. Notice also that since linear transformation of the basis (φ1(x), ..,φm(x))

would imply simply another member of (2). Thus there is no theoretical justifica-

tion for, for example, orthonormalising the bases, or indeed taking any other linear

transformation.

In fact the density functions have been chosen with care. They represent the den-

sities of the cube root and the square of the cube root of a uniform random variable,

respectively. Deliberately we have not chosen the uniform density for p(x).The reason

is that the uniform is a member of (2) but with m = 0. As a consequence the analysis

would no longer be fully nonparametric. This turns out to be extremely important

in terms of the density estimator, and the choice of m, whether we may consistently

estimate the density p(x).

We will consider two criteria for choosing m, the Akaike Information Criteria

(AIC) of Akaike (1974) and the Bayesian Information Criteria (BIC) of Schwarz

(1980). Labeling the respective optimal choice of m over a set of integers M given

these criteria as m̂A and m̂B, then given the log-likelihood in (4) and assuming p0(x) =

1,

m̂A = argmax
m∈M

Ã
nX
i=1

mX
k=1

θ̂kφk(xi)− nϕm(θ̂)−m
!

m̂B = argmax
m∈M

Ã
nX
i=1

mX
k=1

θ̂kφk(xi)− nϕm(θ̂)− m
2
lnn

!
. (15)

Although, both the AIC and BIC are consistent, in the strict sense, for m only over
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a finite set M, see for example Haughton (1988), since for all θ

nX
i=1

mX
k=1

θkφk(xi)− nϕm(θ) = O(n) and m3/n→ 0,

then both

m̂A →∞ and m̂B →∞ as n→∞, m̄→∞, m̄3/n→ 0,

where m̄ = max(M). That is, asymptotically, either criterion will deliver a consistent

density estimator.

To illustrate, for six sample sizes between 25 and 800 random samples {xi}n1 ,were
generated as i.i.d. copies of

X3 = U ∼ U(0, 1) implying p(x) = 3x2,

the polynomial basis functions φk(x) = xk were chosen and the criteria given in (15)

were maximised over the restricted set M ={1, 2, 3, 4, 5} and the estimated values
m̂A and m̂B, recorded. This was repeated for 5000 Monte Carlo replications and the

proportions of outcomes of m̂A and m̂B for each member of M are given in Tables 2a

and 2b, in the Appendix. In addition, for each sample size, the Monte Carlo sample

averages for each are recorded. As expected the BIC tends to choose a slightly more

parsimonious model for a given sample size. In parametric models this is viewed as

an advantage. For a nonparametric density estimator this may not necessarily be the

case, particularly if we are only optimising over a very restricted subset.

To return to the issue of not choosing p(x) = 1, suppose that instead we let

X ∼ U(0, 1). In this case, the solution to (7) is θ0 = 0, for every m. Since M can not

include 0 then as n→∞ m̂A and m̂B can not converge to 0. Thus neither criterion

can be consistent, at least under the null hypothesis. Moreover, since the primary

aim is to provide a goodness of fit test, and since the density cannot be uniform under

both the null and the alternative, this would imply very different properties of the

estimator under the null and the alternative.
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3 A Goodness of Fit Test

3.1 Theoretical Results

The proposed test is essentially the likelihood ratio test of Portnoy (1988) applied in

the context of the exponential series estimator of Crain (1974) and Barron and Sheu

(1991). That is, we transform the original goodness of fit hypothesis H0 : X ∼ P (X),
to

H0 : lim
m→∞

X ∼ Pθ0, (16)

where pθ(x) = dPθ and θ0 is the unique solution to (7). The likelihood ratio for

testing (16) is given by

Λm = 2 log

·
pθ̂(x)

pθ0(x)

¸
= 2n

"
nX
i=1

mX
k=1

(θ̂k − θ0)φk(xi)−
³
ϕm(θ̂)− ϕm(θ0)

´#
, (17)

where x = (x1, ..., xn), θ̂ =
³
θ1, .., θ̂m

´
solves (5) while φ and ϕm are defined above.

H0 will be rejected in favour of any complimentary alternative for large outcomes of

Λm.

Notice that the ratio given here differs subtly from the statistics proposed by

Marsh (2000) and Claeskens and Hjort (2004) in the denominator. In the former a

profile likelihood ratio test, in the spirit of Murphy and van der Vaart (1997), was

proposed while the latter utilised a constant denominator, i.e. the uniform density.

The first approach is unnecessarily complex for the current problem, while the second,

as was indicated in the previous section, leads to potentially very different behaviour

of the density estimator under the null and any alternative.

By utilising the form as in (17) the asymptotic results of both Portnoy (1988)

Barron and Sheu (1991) may be employed directly. That is it is relatively trivial

to establish the asymptotic distribution of the criterion and that the test will be
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consistent against any complimentary fixed alternative,

H1 : lim
m→∞

X ∼ Pθ, θ 6= θ0. (18)

We can also define local alternatives, as in Claeskens and Hjort (2004), defined by

HL
1 : lim

m,n→∞ ; m3/n→0
X ∼ Pθc, θc − θ0 = c

r√
m

n
, (19)

where c = {cj}nj=1and establish that the test has non trivial power against this local
alternative. These results are presented, without proof, in the following theorem.

Theorem 1 Suppose that data {xi}ni=1 is generated such that Assumption 1 is satis-
fied, then;

(i) Under the null hypothesis H0 in (16)

lim
m,n→∞ ; m3/n→0

Λm −m√
2m

∼ N(0, 1) + op(1).

(ii) Under any complimentary alternative H1 in (18), for any finite critical value kα,

of size α < 1

lim
m,n→∞ ; m3/n→0

Pr

·
Λm −m√
2m

≥ kα
¸
= 1.

(iii) Under the local alternative HL
1 in (19)

lim
m,n→∞ ; m3/n→0

Λm −m−m1/2
Pm

j=1 c
2
j³

2m+ 4m1/2
Pm

j=1 c
2
j

´1/2 ∼ N(0, 1) + op(1).
3.2 Computational Results

As with the density estimator itself, at least theoretically, all is straightforward. The

purpose of this section, however, is to highlight the ease of implementation of the

test, and to compare its numerical performance with already established procedures.

First we will examine the usefulness of asymptotic critical values, in terms of their

finite sample performance. The use of asymptotic critical values is not strictly neces-

sary since the problem is distribution free and exact critical values are thus available
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via Monte Carlo. However, direct numerical comparisons with some commonly used

goodness of fit tests will yield some insights to the behaviour of the proposed statis-

tics, under the null hypothesis. Specifically we shall compare the Monte Carlo size of

asymptotic critical values of the likelihood ratio statistics with both the Kolmogorov-

Smirnov and Cramér-von Mises statistics. These are given by

KS = max
i

√
n |Fn(xi)− P (xi)|

CM = n
nX
i=1

(Fn(xi)− P (xi))2 ,

where Fn(.) is the empirical distribution function and P (.) is the hypothesised distri-

bution.

For comparison we shall consider the finite sample size of critical values based

upon three different asymptotic approximations. Specifically, these approximations

are based upon

lim
m,n→∞

λm =
Λm −m√
2m

∼ N(0, 1)

lim
n→∞

Λm ∼ χ2m

lim
n→∞

ΛBm =
Λm
bm
∼ χ2m,

where bm = E[Λm]/m is a Bartlett correction, see Lawley (1956), to the asymptotic

chi-square likelihood ratio Λm. Since the goodness of fit problem is distribution free

bm can readily be calculated numerically via simulation.

Details of the experiments are as follows. Fixing p(x) = 3x2 and choosing the

polynomial basis samples of sizes n = 50, 100, 200 and 400 on X ∼ p(x) were gen-
erated 5000 times with likelihood ratios Λ3,Λ4 and Λ5 constructed as in (17) and

subsequently the Akaike and Schwarz criteria applied over M = {3, 4, 5} to give Λm̂A

and Λm̂B
respectively. Note that for the calculation of the Bartlett corrected statistics

only the first 200 replications were used to calculate bm. Likewise, in each replication,

the criteria KS and CM were also calculated. Then for three different sizes, 0.1, 0.05

and 0.01, the proportion of outcomes of these statistics exceeding the asymptotic
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critical value was recorded. For the KS and CM statistics the asymptotic critical

values tabulated in Anderson and Darling (1952) were employed. All of the Monte

Carlo rejection proportions are contained in Tables 3a through 3f.

Although one could generate critical values for the likelihood ratio statistics (al-

though since a grid over both m and n would be required this would be very time

consuming) the tables do contain some useful information. First, one should dismiss

the possibility of using normal critical values as allowing m to be large enough for

these to be accurate is neither practical nor indeed warranted according to the Akaike

and Schwarz criteria. On the other hand, the asymptotic chi-square versions fair far

better with performance not dissimilar to that of the KS and CM . In particular us-

ing the Bartlett correction in this efficient way (if we were to use all 5000 replications

then we might as well simply use them to obtain an exact critical value) proves useful

for the smaller sample sizes.

The results in Tables 3a through 3f only establish that there is no basis for choosing

between the likelihood ratio tests described in this paper and the established goodness

of fit procedures in terms only of the properties of these tests when the null hypothesis

is true. Consequently, we need to compare the power properties of the tests when the

alternative is instead true.

To proceed suppose that the null hypothesis is that an independent sample {yi}ni=1
is generated from a standard normal random variable Y, i.e.

H0 : Y ∼ N(0, 1). (20)

Thus define

X = 3
p
Φ(Y ) ∼ P (x) ; dP (x) = 3x2,

where Φ(.) is the standard normal distribution function and apply the density estima-

tor to the sample {xi}Ni=1 , xi ∼ iidX, again using the polynomial basis. The powers
of the likelihood ratio tests will be compared to those of the KS and CM tests as
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well as weighted versions of these given in Anderson and Darling (1952), defined by

KSπ = max
i

√
n

¯̄̄̄
¯ (Fn(xi)− P (xi))p
P (xi) (1− P (xi))

¯̄̄̄
¯

AD = CMπ = n
nX
i=1

(Fn(xi)− P (xi))2
P (xi) (1− P (xi)) ,

the weighted Cramér-von Mises being known as the Anderson-Darling statistic.

We shall only consider the powers of general goodness of fit tests, not any of the

many available normality tests, such as those of Shapiro and Wilk (1965). There are

two reasons for this. First the hypothesis in (20) is indicative and not the focus of

the paper. Second it is difficult to fairly compare the powers of entirely nonpara-

metric procedures, such as those based on the empirical distribution or a density

estimator, with statistics designed with specific null distributions in mind. Indeed

as Stephens (1974) comments on the results of Shapiro, Wilk and Chen (1968) when

such comparisons are made the results may be misleading.

The power the tests under consideration will be compared under four sets of

alternatives, as in

HA
1 : Y ∼ N (0.05× µ, 1) ; µ = 1, ..., 7

HB
1 : Y ∼ N(0, (1 + 0.05× µ)2) ; µ = 1, .., 7

HC
1 : Y ∼ χ2v − v√

2v
; v = 5, 10, ..., 35 (21)

HD
1 : Y ∼

r
v − 2
v
tv ; v = 3, 4, .., 9,

where χ2v and tv represent, respectively, chi-square and Student-t random variables

on v degrees of freedom. Moreover, since under each of these alternatives Y has a

well defined density function we can define a point optimal likelihood ratio test, given

by

POj = 2
nX
i=1

ln
f(yi |Hj

1)

φ(yi)
, j = A,B,C,D,

where φ(yi) is the standard normal density function. The power of the POj tests will

then provide an absolute benchmark against which to judge that of the others.
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The experiments proceeded as follows. Fixing n = 200 exact critical values for

all of the tests were obtained via simulations under the null hypothesis, as described

above. Using 5000 replications the rejection proportions for the likelihood ratio tests

Λ3,Λ4 and Λ5 as well as the information criteria based versions Λm̂A
and Λm̂B

, for all

four versions of the Kolmogorov-Smirnov and Cramér-von Mises tests (KS,KSπ, CM

andAD) and for the point optimal tests POj ,were simulated under every combination

of alternatives given in (21). The results, for each set of alternatives, are presented

in Tables 4a through 4d.

The alternatives in (21) were chosen so as to isolate, as far as is possible, alter-

natives which change the moments of Y one at a time. The exception being for HC
1

under which Y has kurtosis of 12/v. Table 4a gives powers against changes in the

mean. Under these alternatives the established procedures have, in fact, a slender

advantage, particularly the Anderson-Darling statistic. Also most of the tests have

powers which are a significant fraction of those for the point optimal test. However,

the picture is very different for the other alternatives. If it is the variance which

changes under the alternative then two features are obvious from Table 4b. First, all

versions of the likelihood ratio test have powers significantly larger than the estab-

lished tests, although the advantage over the AD statistic is less than it is over the

others. Second, the power of all of the tests is lower in comparison with the point

optimal.

The results are very similar for the skewed chi-square alternative, Table 4c. The

powers of all the likelihood ratio tests are similar overm and hence so for the informa-

tion criteria versions, they are also significantly higher than those of the established

tests. In this case though it is the weighted Kolmogorov-Smirnov which performs

the best amongst the four established tests. Again all tests have powers which are

low compared to the point optimal. For the high kurtosis Student-t alternative the

likelihood ratio tests are again significantly more powerful, equally so over all the

established tests.
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Overall it is clear that with the exception of the case where only the mean changes

under the alternative all versions of the proposed likelihood ratio tests have powers

which are significantly more powerful than established procedures. In many cases the

powers are orders of magnitude higher. This seems to be coincident with cases where

the power of the established nonparametric procedures are very low compared to the

fully parametric, and therefore in this context infeasible, point optimal test.

In addition, the powers of the Λm tests are not sensitive tom, and so the powers of

tests based upon the Akaike or Schwarz criteria are very similar. On the other hand,

the relative powers of the established tests vary across alternatives. For example

the weighted Kolmogorov-Smirnov has high power against skewed alternatives but

is by far the worst against alternatives involving higher variances and lower power

for the other cases. The Anderson-Darling statistic has more-or-less the opposite

relative power characteristics. Consequently, in the absence of any information about

the alternative we would not know which version of the established tests to use.

However, either of the Akaike or Schwarz criterion likelihood ratio tests offers both

consistency over various alternatives and for at least three of the alternatives it has

significantly more power.

4 Conclusions

This paper has presented a nonparametric likelihood ratio test for the goodness of fit

hypothesis based upon a consistent exponential series density estimator, by bringing

together the results of Crain (1974), Portnoy (1988) and Barron and Sheu (1991).

The test is very similar to ones provided by Marsh (2000) and Claeskens and Hjort

(2004). However, it is simpler to use that the latter and has an advantage over the

latter in terms of the consistency of selection criteria for the dimension.

Computationally it is shown that the procedure is feasible, since the dimension of

the estimator need not be large and the choice of basis is not crucial. Indeed if the

hypothesis is rejected the resultant parsimonious, analytic approximation may still,
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in itself, be useful.

In terms of the numerical properties of the tests under the null hypothesis there is

little basis for choosing. This is true, in particular since the distribution free nature of

the problem implies exact critical values can easily be obtained. Under the alternative

however the new tests may be significantly more powerful than tests based upon

the empirical distribution function, included the favoured Anderson-Darling (1952)

statistic. In addition, since the power properties of such tests are not relatively

consistent, in the absence of information about the alternative the proposed tests

would seem to have a clear power advantage.
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Appendix
This appendix contains all of the tables of results for the experiments described

in sections 2 and 3.
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Table 1: Entropy D(pθ0(x)|p(x)) for the densities in (13) and
given bases (14) and increasing m.

φk(x) p(x) m

1 3 5 7 9 11 13 15

Cos[πkx] p1(x) .0186 .0029 .0020 .0018 .0018 .0017 .0017 .0016

p2(x) .0132 .0045 .0024 .0020 .0017 .0015 .0012 .0011

xk p1(x) .0233 .0018 .0016 .0015 .0016 .0013 .0015 .0016

p2(x) .0113 .0030 .0021 .0016 .0020 .0016 .0019 .0013

Table 2a: Proportions of outcomes and mean of m̂A.

n m E[m̂A]

1 2 3 4 5

25 0.344 0.213 0.256 0.146 0.041 2.328

50 0.132 0.210 0.287 0.236 0.135 3.029

100 0.015 0.106 0.318 0.321 0.240 3.666

200 0.000 0.012 0.117 0.383 0.488 4.347

400 0.000 0.000 0.022 0.370 0.608 4.587

800 0.000 0.000 0.002 0.201 0.797 4.796

Table 2b: Proportions of outcomes and mean of m̂B.

n m E[m̂B]

1 2 3 4 5

25 0.612 0.205 0.150 0.031 0.002 1.605

50 0.401 0.307 0.214 0.063 0.015 1.984

100 0.183 0.343 0.321 0.134 0.019 2.464

200 0.015 0.217 0.359 0.277 0.132 3.295

400 0.000 0.015 0.228 0.460 0.297 4.039

800 0.000 0.003 0.010 0.458 0.529 4.512
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Table 3a: Rejection proportions of asymptotic

critical values (m = 3).

sample size 50 100 200 400

sig. level

0.10 0.114 0.097 0.105 0.099

λ3 0.05 0.083 0.067 0.077 0.066

0.01 0.048 0.028 0.043 0.031

0.10 0.111 0.093 0.101 0.096

Λ3 0.05 0.063 0.045 0.059 0.041

0.01 0.018 0.007 0.015 0.007

0.10 0.102 0.092 0.100 0.097

ΛB3 0.05 0.057 0.043 0.059 0.047

0.01 0.015 0.009 0.015 0.009

Table 3b: Rejection proportions of asymptotic

critical values (m = 4).

sample size 50 100 200 400

test sig. level

0.10 0.097 0.099 0.101 0.079

λ4 0.05 0.071 0.059 0.068 0.052

0.01 0.032 0.022 0.030 0.021

0.10 0.094 0.093 0.095 0.094

Λ4 0.05 0.052 0.042 0.052 0.042

0.01 0.014 0.007 0.012 0.007

0.10 0.096 0.107 0.110 0.105

ΛB4 0.05 0.057 0.051 0.063 0.053

0.01 0.015 0.009 0.017 0.012
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Table 3c: Rejection proportions of asymptotic

critical values (m = 5).

sample size 50 100 200 400

test sig. level

0.10 0.048 0.055 0.067 0.092

λ5 0.05 0.027 0.030 0.042 0.055

0.01 0.012 0.008 0.020 0.011

0.10 0.091 0.088 0.093 0.105

Λ5 0.05 0.035 0.036 0.048 0.053

0.01 0.009 0.007 0.017 0.011

0.10 0.109 0.110 0.101 0.104

ΛB5 0.05 0.061 0.060 0.058 0.054

0.01 0.017 0.015 0.015 0.013

Table 3d: Rejection proportions of asymptotic

critical values (AIC version).

sample size 50 100 200 400

test sig. level

0.10 0.102 0.089 0.084 0.087

λm̂A
0.05 0.073 0.056 0.056 0.054

0.01 0.039 0.021 0.026 0.015

0.10 0.104 0.092 0.095 0.100

Λm̂A
0.05 0.057 0.044 0.051 0.049

0.01 0.016 0.007 0.015 0.009

0.10 0.101 0.102 0.103 0.101

ΛBm̂A
0.05 0.057 0.050 0.061 0.053

0.01 0.015 0.010 0.017 0.011
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Table 3e: Rejection proportions of asymptotic

critical values (BIC version).

sample size 50 100 200 400

sig. level

0.10 0.108 0.095 0.096 0.095

λm̂B
0.05 0.078 0.074 0.067 0.048

0.01 0.043 0.036 0.034 0.016

0.10 0.109 0.087 0.097 0.101

Λm̂B
0.05 0.057 0.044 0.055 0.050

0.01 0.017 0.007 0.014 0.008

0.10 0.101 0.096 0.103 0.097

ΛBm̂B
0.05 0.057 0.045 0.056 0.048

0.01 0.015 0.008 0.013 0.010

Table 3f: Rejection proportions of asymptotic

critical values (KS and CM tests)

sample size 50 100 200 400

test sig. level

0.10 0.065 0.083 0.089 0.090

KS 0.05 0.031 0.037 0.041 0.043

0.01 0.006 0.007 0.007 0.008

0.10 0.110 0.107 0.102 0.096

CM 0.05 0.048 0.053 0.048 0.048

0.01 0.015 0.012 0.009 0.009
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Table 4a: Power of all tests under HA
1 : Y ∼ N(0.05× µ, 1)

µ

Test 0.05 0.10 0.15 0.20 0.25 0.30 0.35

POA 0.145 0.384 0.631 0.873 0.974 0.996 1.000

Λ3 0.086 0.191 0.409 0.641 0.862 0.969 0.992

Λ4 0.081 0.169 0.382 0.614 0.843 0.943 0.981

Λ5 0.075 0.165 0.373 0.609 0.831 0.938 0.976

Λm̂A
0.078 0.169 0.380 0.614 0.839 0.943 0.979

Λm̂B
0.082 0.179 0.394 0.627 0.850 0.955 0.985

KS 0.084 0.191 0.400 0.622 0.834 0.961 0.992

KSπ 0.057 0.076 0.159 0.297 0.487 0.722 0.867

CM 0.099 0.229 0.479 0.726 0.906 0.985 0.998

AD 0.108 0.263 0.524 0.780 0.937 0.991 0.999

Table 4b: Power of all tests under HB
1 : Y ∼ N(0, (1 + 0.05× µ)2)
µ

Test 0.05 0.10 0.15 0.20 0.25 0.30 0.35

POB 0.247 0.629 0.886 0.978 0.997 0.999 1.000

Λ3 0.102 0.276 0.485 0.764 0.911 0.978 0.996

Λ4 0.097 0.259 0.478 0.751 0.910 0.984 0.998

Λ5 0.093 0.259 0.488 0.760 0.913 0.983 1.000

Λm̂A
0.096 0.262 0.482 0.757 0.912 0.983 0.999

Λm̂B
0.099 0.266 0.481 0.759 0.911 0.981 0.997

KS 0.059 0.089 0.166 0.247 0.412 0.591 0.714

KSπ 0.050 0.058 0.061 0.061 0.065 0.128 0.243

CM 0.062 0.100 0.189 0.288 0.495 0.687 0.831

AD 0.074 0.175 0.367 0.632 0.847 0.955 0.993
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Table 4c: Power of all tests under HC
1 : Y ∼ χ2(v)−v√

2v

v

Test 35 30 25 20 15 10 5

POC 0.640 0.696 0.786 0.871 0.958 0.999 1.000

Λ3 0.318 0.406 0.451 0.557 0.699 0.895 1.000

Λ4 0.305 0.387 0.428 0.539 0.681 0.879 1.000

Λ5 0.309 0.390 0.421 0.537 0.676 0.868 1.000

Λm̂A
0.308 0.390 0.427 0.540 0.681 0.875 1.000

Λm̂B
0.312 0.397 0.438 0.547 0.689 0.885 1.000

KS 0.143 0.162 0.184 0.223 0.272 0.369 0.662

KSπ 0.181 0.218 0.278 0.413 0.631 0.965 1.000

CM 0.147 0.165 0.183 0.221 0.285 0.388 0.739

AD 0.134 0.143 0.179 0.221 0.300 0.492 0.931

Table 4d: Power of all tests under HD
1 : Y ∼

q
v−2
v
tv

v

Test 9 8 7 6 5 4 3

POD 0.619 0.678 0.784 0.872 0.954 0.995 1.000

Λ3 0.134 0.164 0.212 0.282 0.434 0.742 0.996

Λ4 0.132 0.154 0.204 0.268 0.429 0.736 0.998

Λ5 0.129 0.159 0.207 0.277 0.431 0.752 0.995

Λm̂A
0.131 0.158 0.206 0.274 0.431 0.745 0.996

Λm̂B
0.132 0.160 0.209 0.277 0.412 0.742 0.996

KS 0.079 0.085 0.102 0.132 0.196 0.376 0.908

KSπ 0.086 0.093 0.108 0.136 0.198 0.353 0.863

CM 0.073 0.079 0.092 0.117 0.184 0.378 0.961

AD 0.083 0.091 0.102 0.142 0.237 0.509 0.979
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