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Abstract

This paper considers the information available to invariant unit root tests at and near

the unit root. Since all invariant tests will be functions of the maximal invariant,

the Fisher information in this statistic will be the available information. The main

finding of the paper is that the available information for all tests invariant to a

linear trend is zero at the unit root. This result applies for any sample size, over a

variety of distributions and correlation structures and is robust to the inclusion of

any other deterministic component. In addition, an explicit bound upon the power

of all invariant unit root tests is shown to depend solely upon the information. This

bound is illustrated via comparison with the local-to-unity power envelope and a brief

simulation study illustrates the impact that the requirements of invariance have on

power.



1 Introduction

It is well known that the properties, particularly the power, of unit root tests depend

upon the trending characteristics of the deterministic component in the maintained

model. Numerical and asymptotic evidence of this is contained in Perron (1989),

DeJong, Nankervis, Savin and Whiteman (1992), Zivot and Andrews (1992) and

Leybourne, Mills and Newbold (1998).

Analysis of this dependence appears in Durlauf and Phillips (1988), Phillips (1998)

and Ploberger and Phillips (2002, 2003) with derived asymptotic relationships be-

tween nonstationary processes and deterministic trends. The first two papers concern

the spurious success of regressions of unit root processes on linear trends, and vice-

versa. The latter two demonstrate that our ability to model nonstationary series is

limited by both the number and trending characteristics of deterministic components.

Despite this body of evidence a precise relationship between a unit root process

and a simple linear trend has not yet been detailed. This paper provides such a

relationship in the context of invariant unit root tests. The available information for

such tests is defined to be Fisher information in the maximal invariant, of which all

invariant tests must be functions, see Lehmann (1997). For the Sargan and Bhargava

(1983) formulation it is found that requirement of invariance with respect to a linear

trend implies that the available information is zero at the unit root. This result holds

over a family of sample distributions, for any additional deterministic components,

for any sample size and for a general class of innovation dependence.

The majority of asymptotic treatments of unit root testing adopt a local-to-unity

framework, for example that of Phillips (1987) and Elliott, Rothenberg and Stock

(1996). Supposing that the autoregressive parameter is in an asymptotic neighbour-

hood of one, say 1−O(cN), where cN → 0 as the sample size N →∞ then this paper

finds that the information is of order O(N2) in that neighbourhood. On the other

hand if cN is O(1) and the model trend stationary, then the information is of order

O(N).

The results of this paper help explain two key findings within the literature; that
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the inclusion of trends has a detrimental affect on the power of tests in general and

that this is specifically acute for locally most powerful tests. These findings are neatly

illustrated by the numerical work of Dufour and King (1991) and Elliott, Rothenberg

and Stock (1996). Following Rao (1945), Fisher information may be interpreted as a

metric on the space of densities. Furthermore, Efron (1975) and Kallenberg (1981)

argue that high curvature, which is inversely proportional to information, implies a

lack of efficiency for linear methods, such as locally most powerful tests.

This paper also derives a much stronger link between Fisher information and the

power of unit root tests. Specifically, it is shown that the power of any invariant

unit root test will be bounded above by its size plus a linear function of the available

information. Therefore the results of this paper are shown to have a direct bearing

on the power of any of the commonly used unit root tests.

There has been much success in terms of characterising the asymptotic distribu-

tion of unit root tests. Despite this success, excepting the simplest zero mean AR(1)

case, see Abadir (1993), we have no analytic expressions for asymptotic moments,

densities or distributions. Without such expressions, establishing results analogous

to those derived here would prove impossible. Consequently, our only knowledge of

the influence of trends on, for example the power of unit root tests, comes from Monte

Carlo experimentation. This paper provides an explicit link between the inclusion of

a trend, its impact upon information and thence the power of any invariant test.

It does not follow from the results that linear trends should be excluded from de-

terministic components in the unit root context. Instead, it highlights the importance

of determining the necessity of trends, prior to the unit root test being performed.

Tests for precisely this purpose have recently been constructed, see Vogelsang (1998)

and Bunzel and Vogelsang (2003). In particular, that they are robust with respect to

possibly nonstationary errors is crucial in the context of their use as a pre-unit root

specification test on the deterministic component.

The plan for the rest of the paper is as follows, the next section details the models,

the assumption under which the results hold and presents all of the results in a single

Theorem. Section 3 discusses the implication of these results and a conclusion follows.
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An appendix contains the proof of the Theorem and of a key Lemma.

2 Assumptions and Main Results

We will consider the formulation of the unit root hypothesis in the time series regres-

sion

yt = β1 + β2t+ z
0
tβ3 + ut ; ut = ρut−1 + εt ; t = 1, ..., N. (1)

In (1) β = (β1,β2,β03)
0 is a k×1 vector of unknowns, zt a (k−2)×1 vector of strongly

exogenous variables and εt a zero mean, stationary and ergodic innovation sequence,

having covariances E[εtεs] = σ2ω(|t − s|). Regressions of this type were introduced
by Sargan and Bhargava (1983) in the context of testing for a unit root. We shall

consider hypothesis tests of

H0 : ρ = 1 vs. H1 : |ρ| < 1, (2)

and in particular those tests which are, at least asymptotically, invariant with respect

to the deterministic and exogenous components in (1) and the marginal variance of

εt. Consistent, robust testing procedures for (2) in (1) are fully established within

the literature, see for example Elliott, Rothenberg and Stock (1996). Asymptotically

the resultant tests are invariant and thus our results will have some baring upon all

of these procedures.

Let y = (y1, ..., yN)
0 , ε = (ε1, ..., εN)

0, e = (1, 1, .., 1)0, τ = (1, 2, ...,N)0, Z =

(z1, ..., zN)
0, X = (e : τ : Z) and let σ2Ω = E[εε0] be the covariance structure of the

stationary innovation sequence. As a consequence (1) may be written as:

Tρ (y −Xβ) = ε, (3)

where Tρ = IN − ρL(1) and L(1) is the N ×N matrix lag-operator, having one’s on

the first lower off-diagonal and zero’s elsewhere.

We shall proceed under the following assumption on the density of y and the

family F of which it is a member.
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Assumption 1 (i) Let the density of y, given Z, be f(y;β, ρ,σ2Ω |Z) = f(y) ∈ F
with

F =
(
f : f(y;β, ρ,σ2Ω) =

q
£
(y −Xθ)0(σ2Σρ(Ω))−1(y −Xθ)

¤
|σ2Σρ(Ω)|1/2

)
,

where X and β are defined above, σ2 is a scalar and Ω an N ×N covariance

matrix so that Σρ(Ω) = T−1ρ Ω(T
−1
ρ )0. Furthermore, we assume q is a nonin-

creasing convex function on [0,∞).
(ii) Ω is such that, a) Σρ(Ω) depends on ρ for all ρ ∈ R and b) ||Ω||1 =
supj

PN
i=1 |Ωi,j| =

PN−1
k=0 |ω (k) | < M <∞, for all N.

It is presumed that the regressor set always includes a constant and a trend.

However, the augmented regressor set may include additional polynomial trends or

any random (exogenous) regressors to be conditioned upon. Assumptions upon the

initial condition which are consistent with Assumption 1 are either that it is constant

(without loss of generality, zero) or that it is exogenously distributed and so may

be conditioned upon and included in the regressor set. To illustrate how a non-zero

initial condition, y0, can be incorporated, suppose there are no other regressors, so

Tρ (y − β1e− β2τ − β3ȳ0) = u,

where ȳ0 = (y0, 0, .., 0)0. That is, in terms of the notation of Assumption 1, Z = ȳ0.

Thus for the first two values of y

y1 = β1 + β2 + β3y0 + u1

y2 = ρy1 + (1− ρ)β1 + (2− ρ)β2 − ρβ3y0 + u2,

and no other yi depends upon y0 explicitly. Although inference on β3 would not be

possible in this set-up, our inferences on ρ can be made invariant with respect to y0.

Therefore inference upon ρ will not depend upon β3 in the sense that neither the size

nor power of any suitable test will depend upon this nuisance parameter.

Part (ii) a) ensures that there are no common factors in the covariance structure

of the data, so ρ may be identified, in principle. Part (ii) b) guarantees the ‘finiteness’
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of Ω, with respect to the absolute column sum norm. It implicitly provides for the

ergodicity of the εt in that the columns/rows of Ω must be absolutely summable as

N →∞. Notice also that since ε is covariance stationary then Ω is Toeplitz.
Assumption 1 also implies the data has distribution within the family of elliptically

symmetric distributions. This family includes all finite mixtures of normals, including

multivariate t distributions, with the Cauchy as a limiting case. That is the kurtosis

of the {yt}may be any constant not depending upon the parameters, although skewed
distributions are ruled out.

To proceed define the N ×N − k matrix C by

CC0 =MT1X = I − T1X((T1X)0T1X)−1(T1X)0 ; C0C = IN−k,

so that C is the singular value decomposition of MT1X . Let w = C
0T1y, and consider

the group G = (a, g) , with a ∈ R and g ∈ Rk and with action

T1y → aT1y + T1Xg , (4)

then the maximal invariant, under G, for testing H0 in (3) is

v = w/|w| = C 0T1y
(y0T 01MT1XT1y)

1/2
, (5)

see Kariya (1980). Furthermore the density of and Fisher information in the maximal

invariant are given in the following Lemma, which is proved in the appendix.

Lemma 1 (i) The density of v on the surface of the unit N−k sphere, with respect
to normalised Haar measure, is

f(v; ρ) = detA−1/2
¡
vA−1v

¢−(N−k)/2
, (6)

where A = C 0T1Σρ(Ω)T
0
1C.

(ii) The Fisher information in v about ρ is

Iv(ρ) =
(N − k)Tr

h¡
A−1Ā

¢2i− £Tr(A−1Ā)¤2
2 (N − k + 2) , (7)

where A is defined above, Ā = C 0T1[dρΣρ(Ω)]T 01C and dρΣρ(Ω) denotes the

derivative of Σρ(Ω) with respect to ρ.
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To summarise; the density of v depends upon neither β or σ2, nor, given Assump-

tion 1, the distribution of the data. Thus the expression for Iv(ρ) is constant over

the family F . Generally, though, it will depend upon the structure of σ2Ω. We will
thus refer to (7) as the available information for invariant tests, in the sense that any

invariant test, or indeed any other function of the maximal invariant, will have Fisher

information bounded above by this quantity.

On the basis of Lemma 1, we are able to demonstrate the following facts about

information at and near the unit root. First, information vanishes at the point

of unity, that is the available information is zero at the unit root. For any other

point information is non-zero and in any asymptotic neighbourhood, generally it will

grow as the square of the sample size. Asymptotic neighbourhoods are of specific

interest for unit root tests and so we prove that the asymptotic power (minus size)

of any invariant unit root test can be bounded above by a simple function of the

available information and the radius of the asymptotic neighbourhood. These results

are contained in the following theorem, again proved in the appendix.

Theorem 1 (i) For all sample sizes N, for all sets of exogenous or fixed regressors

Z and for all Ω that satisfy Assumption 1(ii), the Fisher information in v is

zero at ρ = 1, i.e. Iv(1) = 0.

(ii) Define any asymptotic neighbourhood of the unit root by 1−ρ = O(cN) > 0,
with cN → 0 as N →∞, then in that neighbourhood

Iv(1−O(cN )) = O(N2).

(iii) Let PV (ρ) be the power of any invariant unit root test, of size δ, against

the alternative with 1− ρ = cN then for some c∗ ∈ (0, cN),

PV(ρ) ≤ δ +
1

2
c2NIv (1− c∗) .
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3 Discussion and Analysis

Theorem 1 demonstrates that the available information is zero at a unit root, but

generally non-zero in any asymptotic neighbourhood. Moreover, an explicit relation-

ship between the power of invariant tests is derived. In this section the implication of

results will be discussed, in particular within the context of the inferential problem

of testing for a unit root.

3.1 Available Information is Zero at a Unit Root.

The strongest result contained in Theorem 1 is that the information vanishes in model

(3) at the unit root, whenever a trend is included as a regressor. This result holds

for all other sets of variables zt, including higher-order polynomial trends and for any

Ω defined for a stationary error sequence. The crucial relationship, which leads to

all of the results in this paper is that the derivative of the autoregressive covariance

matrix is matrix collinear with the outer product of the trend, vis.

dΣρ
dρ

¯̄̄̄
ρ=1

= ττ 0 −Σ(1), (8)

where Σρ = T
−1
ρ

¡
T−1ρ

¢0
. Consequently, any projection of the derivative in the space

orthogonal to a trend yields a covariance derivative at unity which is equal to minus

the covariance. The properties of invariant unit root tests when a linear trend is

included follow as a consequence of this relationship.

Formally this result holds only for the inclusion of a linear trend. However, it may

be inferred that ‘trend-like’ regressors will have a negative impact upon available

information. This follows since the projection orthogonal to such regressors will

be ‘close’ to being orthogonal to τ, and thus the quantity A−1Ā in (7) evaluated

at the unit root will be ‘close’ to the identity. Examples would be inclusion of

structural breaks in the constant, periodic functions with long periods or the inclusion

of strongly trending exogenous variables.

Part (i) also points to another valuable prediction. Efron’s (1975) statistical cur-

vature is inversely proportional to the information, while Kallenberg (1981) argues
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that large curvature implies a shortcoming of locally most powerful tests. In the

extreme case of the inclusion of τ as a regressor curvature will be unbounded. There-

fore, we would expect inclusion of trending regressors to have a significant negative

impact upon the power of locally most powerful testing procedures. Indeed this is

explicitly borne out in numerical work contained in Forchini and Marsh (2000).

Later in this section we will discuss the information in an asymptotic neighbour-

hood of 1. Before getting there though it is worth pointing out that since Iv(ρ) is

differentiable in ρ (in fact it is analytic in ρ, since Σ(ρ) as defined is infinitely dif-

ferentiable for every ρ), then we can find arbitrarily small and positive κ1 and κ2 so

that

ρ > 1− κ1 → Iv(ρ) < κ2.

That is information is vanishingly small in non-asymptotic neighbourhoods of unity.

In asymptotic neighbourhoods the story is quite different, as is apparent from part

(ii) of the Theorem.

Suppose that we take the density in (6) as a likelihood for ρ and with a score

given by

Sv(ρ) = −Tr[A
−1Ā]
2

+
N − k
2

v0A−1ĀA−1v
v0A−1v

.

Then since V ar[Sv(ρ)] = Iv(ρ) it follows that Sv(1) = 0 for all v. That is the score is

constant at the unit root. Although certainly unusual the fundamental implication

of the score being constant is the implication that the maximum likelihood estimator

for ρ based upon (6) will not converge uniformly. However, since there is no uniform

convergence in autoregression, in any case, in fact this curiosity does not seem to

have serious inferential consequences.

3.2 Characterisation of information at Unity.

The ‘availability’ of information is determined by the invariances that we demand

our statistics to obey. To illustrate suppose that we take as a baseline model

Tρ (y − β1e− β2τ) = ε ; E(εε0) = σ2I. (9)

8



In (9) there are three nuisance parameters, β1, β2 and σ2. Theorem 1 deals with the

information available for tests which are invariant with respect to a constant, trend

and length, respectively. The maximal invariant is derived via transformations of the

data as in

y →
 β̂ = ((T1X)

0T1X)−1T1y

w = C 0T1y

 and w→
 s2 = w0w

v = w/|w|

 . (10)

Within the context of (9) more restrictive models can be characterised by our knowing

the values of the parameters. For example, if we knew all three values then y itself

(or T1y) would be the maximal invariant (in the trivial sense) and the information in

T1y is well known to be

IT1y(ρ) = Iy(ρ) = E

"
NX
i=2

y2i−1

#
=
N−1X
j=1

jX
i=1

ρ2i.

On the other hand, for example as in Müller and Elliott (2003), we could assume

that the variance in (1) of ε satisfies σ2 = IN (see their Condition 1), i.e. σ2 is

known. Thus length invariance is not required and only the first transformation in

(10) is necessary, giving a maximal invariant w = C0T1y ∼ F(C0Σρ(Ω)C). Fisher
information in w is readily found to be

Iw(ρ) =
Tr[(A−1Ā)2]

2
.

Thus for three cases for (9) we can evaluate the available information at unity, vis.

Known Parameters Maximal Invariant Information at Unity

β1,β2 and σ2 T1y IT1y(1) =
N(N−1)

2 = O(N2)

σ2 w = C 0T1y Iw(1) =
(N−k)
2 = O(N)

none v = w/|w| Iv(1) = 0

.

Thus what we are able to assume is known in the model has a significant quantitative

effect, on the rate at which information accrues at unity.
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3.3 Characterisation of information over (non)stationarity regimes.

Since the majority of distributional approximations for unit root tests are derived

via local to unity asymptotics (e.g. Phillips (1987)), part (ii) of Theorem 1 also

gives the properties of Fisher information in any asymptotic neighbourhood of unity.

Specifically, for model (1) we find that for 1− ρ = O(cN ), where cN → 0 as N →∞,
then Iv(ρ) is O(N2). Asymptotic distributional approximations are most conveniently

made in the regime in which cN = c/N, for constant c, as in Elliott, Rothenberg and

Stock (1996) who derive ‘optimal’ tests for c = 0 against c > 0.

However, other neighbourhoods are of interest, for example if cN = c/
√
N, which

corresponds with the limiting cases of both Chan and Wei (1987) and Phillips (1987).

In this neighbourhood, at least in the simplest autoregression, asymptotic Gaussianity

of estimators may obtain, rather than the Weiner process driven asymptotics of the

former case. Theorem 1 demonstrates that for any asymptotic neighbourhood of

unity the rate of increase in available information is O(N2). That is information is

zero only at the point ρ = 1.

As a consequence of the results of Theorem 1 we can asymptotically quantify

the available information over the three regimes of interest for unit root inferences.

Letting the autoregressive parameter be ρ = 1 − O(cN) then as N → ∞ we can

characterise the unit root regime as cN = 0, any local-to-unity regime as cN =

o(1) and the stationary regime as cN = O(1). For the stationary case consider the

transformations in (10), so that we can write the density of y as

f(y; ρ,β,σ2) ∝ f(β̂, w; ρ,β,σ2) = f
³
β̂ | s2, v; ρ,β,σ2

´
f(s2 | v; ρ,β,σ2)f(v; ρ),

hence the information in y may be partitioned as

Iy(ρ) = Iβ̂|s2,v(ρ) + Is2|v(ρ) + Iv(ρ),

where

Iβ̂|s2,v(ρ) = −E
d2 ln

³
f(β̂|s2, v; ρ,β,σ2

´
dρ2

 , Is2|v(ρ) = −E
"
d2 ln

¡
f(s2| v; ρ,β,σ2¢
dρ2

#
.
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Since information is non-negative we have Iv(ρ) ≤ Iy(ρ) = O(N) for |ρ| < 1.
We can also, therefore, quantify the rate at which information will accrue in

different regimes. To summarise, supposing that the autoregressive parameter is

ρ = 1−O(cN ) ∈ (−1, 1], then as N →∞;

if cN = 0 then Iv(ρ) = 0

if cN = o(1) then Iv(ρ) = O(N2)

if cN = O(1) then Iv(ρ) = O(N).

3.4 Information and power.

Part (iii) of the Theorem gives a direct link between Fisher information and the power

of any trend invariant unit root test. Specifically, power is bounded by the size of the

test plus a linear function of the information. Therefore, information being zero at

the unit root implies directly that power will be small in a neighbourhood of unity.

In general the bound on the power of any invariant test for (2) is given by

PV(ρ) ≤ δ +
1

2

©
(1− ρ)E [|Sv(1)|] + (1− ρ)2Iv(ρ

∗)
ª
.

This bound is specifically tightened by the inclusion of a linear trend in that the first

term vanishes due to the constancy of the score. In order to illustrate the efficacy of

the bound in this case, consider testing ρ = 1 in model (9).

Based upon a sample of size 500 and putting ρ = 1 − c/N , with c = O(1), the

asymptotic power envelope (the power of the set of point optimal tests of size δ) can

be approximated via the experiments described in Section 4 of Elliott, Rothenberg

and Stock (1996) and which were precisely replicated here. Let Π(c) denote the

asymptotic power envelope at the point c which is approximated via 100,000 Monte

Carlo replications, with standard error in the fourth decimal place. From part (iii)

of Theorem 1 it must be that

Π(c) ≤ PUB(c, c∗) = δ +
1

2

³ c

500

´2
Iv (1− c∗/500) , (11)

at each point c and for some c∗ ∈ (0, c). Below in Figure 1, both Π(c) and PUB(c, c/2)
with δ = 0.05 are plotted over the range c ∈ (0, 25). Very close to unity this particular
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bound is very tight, less so for larger c. However, it should be borne in mind that

what is graphed is a numerical bound with a uniform value of c∗ = c/2. Point-wise

it would be possible to improve upon this, perhaps significantly so for large c.

As was seen above in section (3.2) there is an intimate relationship between what

we are willing to assume as known in the model, and hence the required invariances,

and information at unity. We can also, therefore, explore the impact that the in-

variance requirements have on the power envelope for the unit root. For model (9)

we can characterise six different cases. For the purposes of experiment these can be

represented by data (yt)N1 generated by

M1 : yt = ut

M2 : (yt − β1) = ut (12)

M3 : (yt − β1 − β2t) = ut,

where ut = ρut−1+εt, εt ∼ iidN(0,σ2) and for each model σ2 will either be presumed
known (σ2 = 1) or unknown. For each case both the maximal invariant and the point

optimal test can easily be derived. If we also define a matrix C1, so that

C1C
0
1 = I −

T1ee
0T 01

e0T 01T1e
,

then for each case;

Model Maximal Invariant Point Optimal (PO) test

M1 :
σ2 known

σ2 unknown

T1y

v0 = T1y/|T1y|

y0T 01 (I −Σ(ρ))T1y

v00Σ(ρ)−1v0

M2 :
σ2 known

σ2 unknown

w1 = C
0
1T1y

v1 = w1/|w1|

w01 (I −C 01T1Σ(ρ)T1C1)w1

v01 (C 01T1Σ(ρ)T1C1)
−1 v1

M3 :
σ2 known

σ2 unknown

w = C0T1y

v = w/|w|

w0 (I −C 0T1Σ(ρ)T1C)w

v (C 0T1Σ(ρ)T1C)−1 v

. (13)

In each case the PO test rejects for observed outcomes smaller than some pre-specified

constant, chosen so that the size is fixed at δ = 0.05. The asymptotic power envelope
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for each case was approximated by simulations like those described above. The results

are presented in Table 1 below.

The most restrictive case (M1, σ2 known) provides an absolute power upper

bound, in the sense that in this case the test satisfies the Neyman-Pearson lemma in

the strictest sense. All other cases can be compared to this benchmark. Of interest

are the values of c at which the power envelope is 0.5, at which point Elliott, Rothen-

berg and Stock (1996) define their nearly efficient test. For the most restrictive case

this is approximately 6.5 whereas for the most general it is 17.5 (M3, σ2 unknown).

Collectively the results are really self explanatory. Of note though are two things.

Near the null hypothesis the effect of requiring both trend and length invariance is

dramatic, implying powers close to just 20% of benchmark. Additionally, the as-

sumption that σ2 is known is not quite as benign as perhaps suggested in Müller and

Elliott (2003). Although what is clear is that what is most crucial is the assumption

about the trend.

4 Conclusions

This paper has proven that inclusion of a trend in the Sargan and Bhargava (1983)

formulation implies zero available information at the unit root. Both the explicit

bound on power by information and the numerical work suggest that low power is

an inevitable consequence of the requirement of invariance to a trend. This precise

relationship between the inclusion of a trend and information at the unit root and

also the explicit bound on the power of invariant unit root tests add significantly to

our understanding of this problem.

From an applied perspective, determining the necessity of a trend becomes of

paramount importance. Fortunately, recent work by Vogelsang (1998) and Bunzel

and Vogelsang (2003) provides procedures which seem to fit this requirement. In

particular procedures for testing the significance of the trend which are robust to

non-stationarity of the errors.
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A Figure and Table

Figure 1: Plot of PUB(c, c/2) (Solid) vs. Π(c) (Dashed)

5 10 15 20 25

0.5

1

1.5

2

2.5

Table 1: Powers of the point optimal tests given in (13),

for the models in (12) with cases A (σ2 known) and B (σ2 unknown).

c MA
1 MB

1 MA
2 MB

2 MA
3 MB

3

1 .083 .079 .061 .060 .058 .050

2 .130 .117 .070 .061 .066 .052

3 .197 .193 .095 .079 .087 .061

5 .346 .328 .144 .122 .099 .072

7 .538 .524 .196 .176 .146 .104

10 .793 .783 .353 .248 .235 .157

15 .964 .964 .671 .624 .473 .399

20 .997 .996 .870 .867 .700 .629

25 1.00 1.00 .972 .972 .877 .839
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Appendix:
Proof of Lemma 1: Part (i) follows immediately from the results of Kariya

(1980), although it is worth noting that the result does not depend in any way upon

the particular form of covariance matrix chosen in that paper.
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For part (ii) we have that the log-likelihood is

Lv(ρ) = −1
2
lndetA− N − k

2
ln
¡
v0A−1v

¢
,

and hence the score is

Sv (ρ) =
dLv(ρ)

dρ
= −Tr[A

−1Ā]
2

+
N − k
2

v0A−1ĀA−1v
v0A−1v

, (14)

from which it is possible to obtain

Iv (ρ) = E
h
(Sv (ρ))

2
i
.

That, by definition, E [Sv (ρ)] = 0 immediately implies

E

·
v0A−1ĀA−1v
v0A−1v

¸
=
Tr[A−1Ā]
N − k , (15)

so that the only other expectation to be calculated is

E

"µ
v0A−1ĀA−1v
v0A−1v

¶2#
.

Noting that we can write v = w/|w|, where w is spherically symmetric with mean 0
and V ar[w] = A, then

E

"µ
v0A−1ĀA−1v
v0A−1v

¶2#
= E

"µ
w0A−1ĀA−1w
w0A−1w

¶2#
= E

£
r2z
¤
,

where

rz =
z0A−1/2ĀA−1/2z

z0z
,

and z = A−1/2w. Further, since rz is independent of |z| =
√
z0z, we have

E[|z|4r2z ] = E[(z0z)2]E[r2z ],

and hence

E[r2z ] =
E[(z0A−1/2ĀA−1/2z)2]

E[(z0z)2]
=
V ar[(z0A−1/2ĀA−1/2z)] +E

£
(z0A−1/2ĀA−1/2z)

¤2
E[(z0z)2]

=
2Tr

£
(A−1Ā)2

¤
+ Tr

£
A−1Ā

¤2
2(N − k) + (N − k)2 . (16)
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The expression for the information follows from squaring (14), utilising the expecta-

tions given in (15) and (16) and rearranging.

Proof of Theorem 1: For part (i), from Lemma 1, Fisher information in v at

ρ = 1 is given by

Iv(1) =
(N − k)Tr

h¡
A−11 Ā1

¢2i− £Tr(A−11 Ā1)¤2
2 (N − k + 2) , (17)

where

A1 = C
0T1Σ1(Ω)T 01C ; Ā1 = C

0T1
∂Σρ(Ω)

∂ρ

¯̄̄̄
ρ=1

T 01C ,

while the derivative of the covariance matrix is

∂Σρ(Ω)

∂ρ
= T−1ρ L(1)T−1ρ Ω(T

−1
ρ )0 + T−1ρ Ω(T

−1
ρ )0(L(1))0(T−1ρ )0,

so that,

Ā1 = C
0
³
L(1)SΩ+ΩS0(L(1))0

´
C,

where S = T−11 , is the lower-triangular partial summation matrix. Consider the

derivative of the matrix Σρ = Σρ(IN),

dΣρ =
dΣρ
dρ

= T−1ρ L(1)T−1ρ (T−1ρ )0 + T−1ρ (T−1ρ )0(L(1))0(T−1ρ )0,

which at the unit root evaluates to

dΣ1 = SL
(1)SS0 + SS0(L(1))0S0. (18)

From the identity,

S + S0 − IN = (T1τ)(T1τ)0, (19)

where τ = (1, 2, 3, ...,N)0 and substituting L(1) = IN − T1 into (18) we obtain

dΣ1 = ττ 0 − SS0, (20)

which forms the fundamental relationship between the unit root covariance and the

time trend.
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Since Ω is Toeplitz and symmetric we can write

Ω =
XN−1

k=0
ω(k)Fk ; Fk =

¡
Lk + L

0
k

¢
,

where Lk = (L(1))k and put L0 + L00 = I, so that

Ā1 =
XN−1

k=0
ω(k)C 0

³
L(1)SFk + FkS

0(L(1))0
´
C.

Furthermore, L(1)S = (S − IN) = SL(1) and hence

Ā1 =
XN−1

k=0
ω(k)C0

¡
(S − IN)Fk + Fk(S0 − IN)

¢
C

=
XN−1

k=0
ω(k)C0

¡
(S − IN)Fk + FkS0

¢
C −C0ΩC. (21)

The last term in (21) is just −A1, and the quadratic forms in C0 can be rewritten as
in

Ā1 =
XN−1

k=0
ω(k)C 0

¡
(S − IN)Lk + (S − IN)L0k + LkS0 + L0kS0)

¢
C −A1

=
XN−1

k=0
ω(k)

©
C 0Lk

¡
S + S0 − IN

¢
C +C0

¡
S + S0 − IN

¢
L0kC

ª−A1,
where we have exploited (S − IN)Lk = Lk(S − IN). Thus using (19), we have

Ā1 =
XN−1

k=0
ω(k)

©
C 0Lk

¡
(T1τ)(T1τ)

0¢C +C0 ¡(T1τ)(T1τ)0¢L0kCª−A1,
and finally since (T1τ)0C = 0 = C0(T1τ), as X includes a trend, then Ā1 = −A1, and
substitution into (17) gives, as required Iv(1) = 0.

For part (ii) we require an expansion of the matrices A−1 and Ā appearing in (7).

To proceed consider the matrix defined by

{T−1ρ }i,j =
 ρ|i−j| : if i ≥ j
0 : otherwise

 .
Letting ρ = e−cN , so that 1 − ρ = O(cN ) with cN → 0, and put c∗k ∈ (0, cN)

for k = 1, 2, .., N − 1, then each lower diagonal of T−1c = T−1ρ has a mean value

expansion, so that

T−1c = S − cNS∗, (22)

S∗ =
N−1X
k=1

Lk

³
ke−kc

∗
k

´
,
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and Lk is defined in the proof of part (i).

Application of the expansion given in (22) yields

A = A1 − cNA2
Ā = −A1 − cNQ1, (23)

where

A2 = C 0T1
³
SΩS∗

0
+ S∗ΩS0 + cNS∗ΩS∗

0´
T 01C = A

∗ + cNA3,

Q1 = C 0T1
³
3(W1 +W

0
1)− 3cN(W2 +W

0
2) + (cN )

2 (W3 +W
0
3)
´
T 01C

= Q2 + cNQ3, (24)

with W1 = SL(1)SΩS∗
0
, W2 = SL(1)S∗ΩS∗

0
and W3 = S∗L(1)S∗ΩS∗

0
. Using SL(1) =

I −S and the fact that S∗ commutes with Lk then similar to the steps taken toward
the end of the proof of part (i) we can show that

C0T1
¡
W1 +W

0
1

¢
T 01C = C

0T1
³
SΩS∗

0´
T 01C.

Consequently, and since Q2 is symmetric, we have

Q2 =
3

2
A∗, (25)

that is the leading terms of A2 and Q1 are proportional.

We require an expansion for A−1, and so note that the matrices A and A1 are

symmetric and positive definite, while cNA2 is symmetric and positive semi-definite.

Consequently, both

AA−11 =
¡
I − cNA2A−11

¢
and cNA2A

−1
1

are positive semi-definite, which implies that

0 ≤ ξ0
£
c∗NA2A

−1
1

¤
ξ

ξ0ξ
≤ 1, (26)

for any ξ ∈ RN−k. Hence the spectrum of cNA2A−11 lies between 0 and 1 and so we

can write

A−1 = A−11
£
I − cNA2A−11

¤−1
= A−11

I + ∞X
j=1

¡
A2A

−1
1

¢j = A−11 [I + cNQ4] ,
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where Q4 =
P∞
j=1 (cN)

j−1 ¡A2A−11 ¢j.
Therefore the crucial quantity appearing in (17) may be written as

ĀA−1 = − (A1 + cNQ1)A−11 (I + cNQ2) . (27)

Squaring (27) and taking the trace we have

Tr
h¡
ĀA−1

¢2i
= N + 2cNTr[Q1A

−1
1 +Q4] + (cN )

2 Tr[(Q1A
−1
1 +Q4)

2]

+2 (cN )
2 Tr[Q1A

−1
1 Q4] + 2 (cN)

3 Tr[(Q1A
−1
1 +Q4)Q1A

−1
1 Q4]

+ (cN)
4 Tr[(Q1A

−1
1 Q4)

2], (28)

while taking the trace of (27) and then squaring we obtain

Tr
£
ĀA−1

¤2
= N2 + 2NcNTr

£
Q1A

−1
1 +Q4

¤
+

+(cN)
2
³
Tr
£
Q1A

−1
1 +Q2

¤2
+ 2NTr

£
Q1A

−1
1 Q2

¤´
+2(cN)

3 Tr[Q1A
−1
1 +Q2]Tr[Q1A

−1
1 Q2] + (cN)

4 Tr[Q1A
−1
1 Q2]

2.

(29)

Thus, for sufficiently large N , for 1− ρ = O(cN) and from (28) and (29), we have

Iv(1−O(cN )) ∼
Tr
h¡
ĀA−1

¢2i
2

− Tr
£
ĀA−1

¤2
2N

= 0 +
1

2
(cN)

2

(
Tr
£
(Q1A

−1
1 +Q4)

2
¤− Tr £Q1A−11 +Q4

¤2
N

)

+(cN)
3

(
Tr
£
(Q1A

−1
1 +Q4)Q1A

−1
1 Q4

¤− Tr £Q1A−11 +Q4
¤
Tr[Q1A

−1
1 Q4]

N

)

+
1

2
(cN)

4

½
Tr
£
(Q1A

−1
1 Q4)

2
¤− Tr[Q1A−11 Q4]2

N

¾
. (30)

If we utilise the expansions given in (24) and the fact that the leading terms in A2

and Q1 are proportional, then the information has an asymptotic leading term of

Iv(1−O(cN)) ∼ 1
2
(cN)

2

(
Tr

"µ
5

2
A2A

−1
¶2#
− Tr

£
5
2A2A

−1¤2
2N

)
.

From the inequalities

Tr

"µ
5

2
A2A

−1
¶2#
− Tr

£
5
2A2A

−1¤2
2N

≤ Tr

"µ
5

2
A2A

−1
¶2#

≤ Tr

·
5

2
A2A

−1
¸2
,
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and noting that (26) implies for cN > 0 that the eigenvalues of cNA2A−11 are O(1),

then we have

Tr
£
cNA2A

−1¤ = O(N),
which subsequently implies that

Lim
cN→0+,N→∞

Iv(1−O(cN)) = O(N2).

For part iii), let V be the rejection region for any invariant test, having size δ, of

H0 : ρ = 1 against H1 : |ρ| < 1. Let PV(ρ) be the power of that region and define the
power gain (i.e. power minus size) as

∆π = PV(ρ)− δ =

Z
V
(f(v; ρ)− f(v; 1))dv.

Following Würtz (1997) the power gain satisfies the following bound

∆π ≤ ∆(1, ρ) = 1

2
kf(v; 1)− f(v; ρ)k1 =

1

2

Z
v0v=1

|f(v; 1)− f(v; ρ)| dv, (31)

where ∆(1, ρ) is called the displacement function, and k.k1 is the L1 norm.
By Taylor’s theorem we may write

f(v; ρ) = f(v; 1)− (1− ρ)df(v; 1)− (1− ρ)2

2
d2f(v; ρ̃)

for some ρ̃ ∈ (ρ, 1) and where we have written

dfv(1) = df(v; ρ)/dρ|ρ=1 and d2f(v; ρ̃) = d2f(v; ρ)/d2ρ
¯̄
ρ=ρ̃

.

Further we can write

df (v; ρ)

dρ
= Sv(ρ) f (v; ρ) ,

d2f (v; ρ)

dρ
=

h
Hv(ρ) + (Sv(ρ))

2
i
f (v; ρ) ,

where

Sv(ρ) =
d ln[f (v; ρ)]

dρ
; Hv(ρ) =

d2 ln[f (v; ρ)]

dρ2
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so that

f(v; 1)− f(v; ρ) = (1− ρ)Sv(1) f(v; 1) +
(1− ρ)2

2

h
Hv(ρ̃) + (Sv(ρ̃))

2
i
f(v; ρ̃).

Thus we have,

kf(v; 1)− f(v; ρ)k1 =

°°°°(1− ρ)df(v; 1) +
(1− ρ)2

2
d2f(v; ρ̃)

°°°°
1

≤ k(1− ρ)Sv(1)f(v; 1)k1
+
(1− ρ)2

2

°°°hHv(ρ̃) + (Sv(ρ̃))2i f(v; ρ̃)°°°
1
,

and we can define ρ∗ so that

ρ∗ = argmax ρ̃∈(ρ,1)
°°°hHv(ρ̃) + (Sv(ρ̃))2i f(v; ρ̃)°°°

1
.

Then since E
h
(Sv(ρ))

2
i
= E [−Hv(ρ)] we have

kf(v; 1)− f(v; ρ)k1 ≤ k(1− ρ)Sv(1)f(v; 1)k1
+
(1− ρ)2

2

½Z
v0v=1

[−Hv(ρ∗) + |Hv(ρ∗)|] f(v; ρ∗)dv
¾
.

Now partition the unit sphere into two regions

s1(v) ∪ s2(v) =
©
v : v0v = 1

ª
,

in which

s1(v) = {v : Hv(ρ∗) < 0}
s2(v) = {v : Hv(ρ∗) ≥ 0} ,

so that Z
v0v=1

[−Hv(ρ∗) + |Hv(ρ∗)|] f(v; ρ∗)dv =
Z
s1(v)

[−2Hv(ρ∗)] f(v; ρ∗)dv,

since −Hv(ρ∗) + |Hv(ρ∗)| = 0 on s2(v). Consequently,Z
s1(v)

[−2Hv(ρ∗)] f(v; ρ∗)dv =

Z
v0v=1

[−2Hv(ρ∗)] f(v; ρ∗)dv +
Z
s2(v)

[2Hv(ρ
∗)] f(v; ρ∗)dv

≤
Z
v0v=1

[−2Hv(ρ∗)] f(v; ρ∗)dv,
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since both Hv(ρ∗) and f(v; ρ∗) are positive on s2(v) and so we haveZ
v0v=1

[−Hv(ρ∗) + |Hv(ρ∗)|] f(v; ρ∗)dv ≤ 2Iv(ρ∗),

where Iv(ρ∗) is Fisher information evaluated at ρ = ρ∗. Thus, irrespective of the

particular set of regressors, from (31) it follows that

PV(ρ) ≤ δ +
1

2

©
(1− ρ)Eρ=1 [|Sv(1)|] + (1− ρ)2Iv(ρ

∗)
ª
. (32)

When the set of regressors includes a linear trend we have

f (v; ρ) ∝ |A|−1/2 ¡v0A−1v¢−(N−k)/2
d ln(f (v; ρ))

dρ
= −Tr

£
A−1dA

¤
2

+
(N − k)
2

v0A−1ĀA−1v
v0A−1v

where A and Ā (respectively B and B̄ in the case of v2) are defined above. Thus at

ρ = 1 we have

d ln(f(v; 1)) =
d ln(f (v; ρ))

dρ

¯̄̄̄
ρ=1

=
Tr
£
A−11 Ā1

¤
2

− (N − k)
2

v0A−11 Ā1A
−1
1 v

v0A−11 v
= 0, (33)

since Ā1 = (dA)ρ=1 = −A1. Substituting (33) into (32) and putting cN = 1− ρ and

c∗ = 1− ρ∗ gives the result.
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