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Abstract

JEL Classification: C13, C32, E30, E44, E52.
This paper develops a macroeconomic model of the yield curve and

uses this to explain the behaviour of the US Treasury market. Un-
like previous macro-finance models which assume a homoscedastic error
process, I develop a general affine model which allows volatility to be con-
ditioned by interest rates and other macroeconomic variables. Despite
the extensive use of stochastic volatility models in mainstream finance
papers and the overwhelming evidence of heteroscedasticity in macro-
economic and asset price data this is the first macro-finance model of
the bond market with this feature. My preferred empirical specification
uses a single conditioning factor and is thus the macro-finance analogue
of the EA1(N) specification of the mainstream finance literature. This
model performs well in encompassing tests that lead to a decisive rejec-
tion of the standard EA0(N) macro-finance specification. The resulting
specification provides a flexible 10-factor explanation of the behaviour of
the US yield curve, keying it in to the behaviour of the macroeconomy.
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1 Introduction

This paper develops an econometric model of the US economy and government bond

market that allows for a stochastic trend in both first and second moments. Theo-

retically, this model bridges the gap between the emerging macro-based model of the

term structure which assumes a homoscedastic error structure (following the sem-

inal paper of Ang and Piazzesi (2003)) and the conventional finance model, which

invariably allows for heteroscedasticity.

Empirically, the model is designed to accommodate the salient characteristics of

the historic US data that has been used in the macro-based research. These appear to

be influenced by a unit root or near-unit root process associated with the underlying

rate of inflation. This behaviour is hard to reconcile with the behaviour of the

yield curve because asymptotic forward rates and yields are not well defined if the

spot rate is driven by a heteroscedastic process containing a unit root (Campbell,

Lo, and MacKinlay (1996)). However, there is now a growing body of evidence

suggesting that macroeconomic and financial market volatility is driven by a similar

stochastic trend1. This observation suggests a way of accommodating unit and near-

unit roots in asset pricing models. For as (Campbell, Lo, and MacKinlay (1996))

note, if the stochastic trend drives the volatility as well as the central tendency of the

model, its asymptotic characteristics are determined by quadratic rather than linear

equations, allowing a regular asymptotic yield curve to emerge even if this trend is

non-stationary.

To investigate this possibility, this paper develops a heteroscedastic macro-finance

1Milton Friedman argued in his Nobel lecture (Friedman (1977)) that the volatility of inflation,
output and other macroeconomic variables could be related to the level of inflation itself. This
hypothesis has been developed and tested by Engel (1982), Fischer and Taylor (1981), Ball (1992),
Brunner and Hess (1993), Holland (1995), Caporale and McKiernan (1997) and others. There is
also an emerging literature on the effect of declining macroeconomic volatility on the equity risk
premium (Glosten and Runkle (1993),Scruggs (1998),Brandt and Wang (2003) and Lettau and
Wachter (2004)). However, as far as I am aware no one has tried to test this hypothesis on bond
market data.
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specification which conditions both the central tendency and the variance structure

of the model on a stochastic trend variable. In order to ensure that the variance

structure remains non-negative definite I employ ‘admissibility’ restrictions similar

to those proposed for the continuous time model by Dai and Singleton (2000). Mathe-

matically, this model has regular variance & asymptotic term structures and provides

a plausible description of the relationship between the risk premia and the condition-

ing variable. It is the macro-finance analogue of the model developed by Dai and

Singleton (2000) and Dai and Singleton (2002), which as they say: ‘builds upon a

branch of the finance literature that posits a short-rate process with a single sto-

chastic central tendency and volatility’. Empirically, this specification encompasses

the standard homoscedastic macro-finance model, which it rejects decisively. Despite

the extensive use of stochastic volatility models in theoretical and empirical finance

papers and the evidence of heteroscedasticity in macroeconomic and asset price data

this is the first macro-finance model of the bond market with this stochastic volatility

feature.

The paper is set out along the following lines. The next section develops a general

affine model of the economy and the bond market and shows how this can be used

to derive an affine term structure under the no-arbitrage assumption. This forms the

encompassing model for the empirical tests. Section 3 then discusses specializations

of this model that are admissible in the sense of Dai and Singleton (2000) and Dai

and Singleton (2002), notably the macro-finance analogues of their EA0(N) and

A1(N) and EA1(N) specifications. These models are tested against each other and

against encompassing specifications that allow a range of macroeconomic variables

to condition the price of risk and variance structures. These tests are reported in

section 4. As in the Dai and Singleton (2002) tests, the EA1(N) model emerges as

the preferred specification. Section 5 presents the results for this model. Finally,
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section 6 offers a conclusion.

2 Modelling the macroeconomy and bond market

This section sets out a general linear dynamic framework for modelling the economy

and the bond market and shows how this can be used to derive bond prices under

the no-arbitrage assumption. This model is the discrete time analogue of the general

affine model developed in a continuous time framework by Duffie and Kan (1996).

2.1 The macroeconomic framework

Suppose that the one-period interest rate r1,t is an element of an (N × 1) state

vector of time t−observable variables (or linear combinations of observable variables)

Yt = (y1t, y2t, ..., yNt, )
0; t = 1, ..., T described by a Vector Auto-Regression or VAR

with the state space representation2:

Yt = Θ+KYt−1 +Wt (1)

where Θ is an N×1 vector and K an N2 matrix of known coefficients and parameters

to be estimated. The first n of these equations are assumed to be stochastic and the

rest identities. Wt = (w
0
t, 01,N−n)0 is an N × 1 error vector, where is wt is n× 1 :

wt =Cvt; where : vt ∼ N(0n,1,∆t|Yt−1); (2)

∆t = diag[δ1,t, δ2,t, ..., δn,t]; t = 1, ..., T

C is an n2 lower triangular matrix with unit diagonals and vt is a n−vector of

stochastic error terms.

2A higher order system (for example (29) in section 2) can be arranged in this first order state
space form (as in (30)).
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Following Duffie and Kan (1996) and Dai and Singleton (2000) suppose that any

conditional heteroscedasticity in the errors is driven by square root processes in these

variables3. Suppose that there are m ≤ n stochastic volatility terms. The general

affine model decomposes each error into components that are conditioned by these

terms, plus an orthogonal residual term:

vt =
mX
s=1

ϑs,t
√
ys,t−1 + t; (3)

where ϑs,t and t are zero-mean stochastic error vectors with the properties:

E[ t
0
t] =∆0;

E[ϑs,tϑ
0
s,t] =∆s; s = 1, 2...m;

∆s = diag[δs,1, δs,2, ..., δs,m]; δs,p ≥ 0; s, p = 0, 1, 2...m;

E[ϑs,tϑ
0
qt] = 0; q 6= s; E[ϑs,t

0
t] = 0.

For this model to be valid, we clearly need to ensure that the variables ys,t−1entering

the square roots in the error structure remain non-negative. This is a difficult tech-

nical issue, which is deferred to section 3.2.

The state space representation (1), this error model can be written as:

Wt ∼ N(0,Ωt|Yt−1). (4)

3Preliminary tests showed no significant evidence of Autoregressive Conditional Heteroscedastic-
ity (ARCH) in this (quarterly) data set.
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where:

Ωt =

⎡⎢⎢⎣C∆tC
0 0n,N−n

0N−n,n 0N−n,N−n

⎤⎥⎥⎦
=Ω0 +

mX
s=1

Ωs(j
0
sYt−1); t = 1, ..., T.

Ωs =

⎡⎢⎢⎣C∆sC
0 0n,N−n

0N−n,n 0N−n,N−n

⎤⎥⎥⎦ ; s = 0, 1, ...,m.

and where js is a unit selection vector:

ys,t = j0sYt; s = 1, ..., n. (5)

Im denotes an m2 identity matrix and 0n,m the null matrix of dimension n×m.

2.2 The bond pricing framework

The baseline VAR model is naturally defined under the observed or historical proba-

bility measure P and can be estimated by linear regression methods using historical

data. However, the object of this paper is to use this structure to model the macro-

economy and yield curve simultaneously. To develop a consistent yield model we

switch to the Risk Neutral (RN) measure Q. The nature of this change of measure

will become clearer in the final part of this section, but for now we just note that it

rules out arbitrage opportunities.

Define Ẽt and Ṽt as the t−conditional expectations and variance operators under

the RN probability measure Q. Harrison and Kreps (1979) show that absent arbi-

trage, asset prices are discounted martingales under this measure. Specifically, the

price of an τ−period discount bond Pτ,t equals the discounted risk neutral expecta-
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tion Ẽt of the (τ − 1) period bond price (i.e. its own value) in the next period:

Pτ,t = exp[−r1,t]Ẽt[Pτ−1,t+1]; τ = 1, ...,M. (6)

The risk neutral pricing measure is obtained by using the adapted process:

Yt = Θ̃+ K̃ Yt−1 + W̃t (7)

to model the macroeconomic dynamics. As we will see, the coefficients Θ̃ and K̃ shift

relative to those observed under the observed probability measure (Θ,K) in a way

that reflects the effect of the conditioning variables on volatility and the price of risk.

Importantly, the error variances are not affected by the change of measure.

If we adopt the affine log-price trial solution:

−pτ,t = γτ +Ψ
0
τYt; τ = 1, ...,M. (8)

(where pτ,t is the natural logarithm of Pτ,t) then prices are conditionally lognormal

under both measures. This allows us to evaluate expectations like (6) using the well

known formula for the expectation of a lognormally distributed variable:

Pτ,t = exp[−r1,t + Ẽt[pτ−1,t+1] +
1

2
Ṽt[pτ−1,t+1]]; (9)

Differences between the coefficients under measures P and Q determine the liq-

uidity premia in an arbitrage free model. To see this, define Et and Vt as the condi-

tional expectations and variance operators under the historical probability measure,

P. Under this measure the expected payoff on the τ−period bond after one period
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is:

Et[Pτ−1,t+1] = exp[Et[pτ−1,t+1] +
1

2
Vt[pτ−1,t+1]]

Note that Vt[pτ−1,t+1] = Ṽt[pτ−1,t+1]. Dividing by Pτ,t and then using (8), (7),(6)

and (9) gives the expected gross return:

Et[Pτ−1,t+1]
Pτ,t

= exp[r1,t +Ψ
0
1,τ−1(Θ̃−Θ+ (K̃−K)Yt)]

Taking logarithms of each side expresses this as a percentage and subtracting r1,t

then gives the expected excess return or risk premium:

logEt[Pτ−1,t+1]− pτ,t − r1,t = Ψ
0
τ−1(Θ̃−Θ+ (K̃−K)Yt); τ = 1, ...,M (11)

Equation (9) can also be used to derive recursion relationships determining the

parameters of the yield equation (8). Since −pτ,t = r1,t for τ = 1, these parameters

must satisfy the starting values:

γ1 = 0; Ψ1 = jr. (12)

For τ = 2, ...,M we take the (negative of the) logarithm of (9) and evaluate means

and variances using (1) and (4) to get:

−pτ,t = r1,t − Ẽt[pτ−1,t+1]− 1
2
Ṽt[pτ−1,t+1]; (13)

= j0rYt + γτ−1 +Ψ
0
τ−1(Θ̃+ K̃ Yt)

−1
2
{Ψτ−10Ω0Ψτ−1 +

mX
s=1

Ψτ−10ΩsΨτ−1j0sYt}

Comparing this with (8) and equating coefficients on each state variable gives the
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restrictions:

Ψτ = K̃0Ψτ−1 + jr − 1
2

mX
s=1

Ψτ−10ΩsΨτ−1js, and (14)

γτ = γτ−1 +Ψ
0
τ−1Θ̃−

1

2
Ψτ−10Ω0Ψτ−1; τ = 2, ...,M. (15)

Defining the τ -period ahead forward interest rate as fτ,t = pτ,t − pτ+1,t, these re-

strictions give the forward rate structure:

fτ,t = γτ+1 − γτ + [Ψτ+1 −Ψτ ]Yt (16)

=Ψ0τ Θ̃−
1

2
Ψτ

0Ω0Ψτ + [(K̃− IN )Ψτ + jr − 1
2

mX
s=1

Ψτ
0ΩsΨτ js]0Yt

τ = 1, ...,M.

The asymptotic characteristics of the yield curve follow directly from the first line of

this system. This shows that if the factor coefficients Ψτ converge upon a constant

vector (limτ→∞Ψτ = Ψ∗), then the asymptotic forward rate (and hence the discount

and coupon bond yield) is also a constant:

f∗ = limτ→∞fτ,t = γ∗τ+1 − γ∗τ = Ψ
∗0Θ̃− 1

2
Ψ∗0Ω0Ψ∗. (17)

Relationships ((14) and (15)) can be solved recursively for the coefficients Ψτ and

γτ , given the starting values (12). These coefficients then determine pτ,t in (8) and

hence the τ−period discount yield:

rτ,t =−pτ,t(Θ̃, K̃)/τ (18)

= ατ (Θ̃, K̃) + bτ (Θ̃, K̃)0Yt; where :

ατ = γτ (Θ̃, K̃)/τ ; bτ = Ψτ (Θ̃, K̃)/τ .
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Formally, this is a closed form representation because it is defined in terms of a

finite number of elementary operations4. The slope coefficients of the yield system

bτ (Θ̃, K̃) are known as ‘factor loadings’ and depend critically upon the eigenvalues of

the adapted macro system (7). Stacking the M yield equations (18) and adding an

error vector et gives a multivariate regression system for the M -vector of yields rt :

rt = α(Θ̃, K̃) +B(Θ̃, K̃)0Yt + et (19)

et ∼N(0, P );

P = diag[ρ1, ρ2, ..., ρM ].

where et is an error vector. The standard assumption in macro-finance models is

that this represents measurement error which is orthogonal to the errors Wt in the

macro system (1). The encompassing model assumes m = n.

3 Specializing the model

The structure defined by ((1), (4) and (19)) provides a general affine modelling frame-

work. This represents the discrete time equivalent of the continuous time affine spec-

ification of Duffie and Kan (1996). It is a reduced form and as such it is hard to

interpret and contains a large number of parameters. Moreover, as Dai and Sin-

gleton (2000) note, the variance structure of the general affine model is endogenous

and there is nothing to ensure it remains non-negative. In this section we interpret

and specialise the model using the structure provided by Stochastic Discount Factor.

Then we look at models that are admissible in the sense of Dai and Singleton (2000).

4Although the number of operations implied by the heteroscedastic system is very large for long
maturities, this model is linear in variables. This means that when calculating the likelihood (see
appendix 3) ατ and βτ need only be calculated once for each maturity, irrespective of the number
of observations. Moreover these calculations are recursive: the one year calculation feeds into the
two year calculation and so on. This system is also recursive in the sense that the slope parameters
affect the intercept coefficients, but not vice versa.
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3.1 SDF models

If arbitrage is ruled out, the price Pτ,t of an τ -period discount bond must also be

described by the pricing kernel (Cochrane (2000), Campbell, Lo, and MacKinlay

(1996)):

Pτ,t = Et[Mt+1Pτ−1,t+1]; τ = 1, ...,M. (20)

Mt+1 is a nominal stochastic discount factor (SDF) with the logarithm mt+1. For

the error model (3):

−mt+1 = ωt + r1,t + λ0tC
0
t+1 +

mX
s=1

ζ 0sC
0ϑs,t+1

p
j0sYt (21)

where λt and ζs; s = 1, 2...m are n−vectors of coefficients related to the prices of

different types of risk, the first of which may depend linearly upon Yt. Define the

deficient vectors Z0s = [ζ
0
s, 0n×(L−1),1] and Λ0t = [λ

0
t, 0n×(L−1),1]. Let:

Λt = Λ0 + ΛYt = Λ0 +
nX

s=1

Λsj
0
sYt (22)

where (like Λt), Λs; s = 0, ...,m are deficient. Using (2) and (21) we see that Mt+1 is

lognormally distributed conditional upon Yt.

This model is just identified in the standard homoscedastic case m = 0, otherwise

it is overidentified. Appendix 1 shows that the general model ((8), (12) (14) and

(15), with m = n) can be interpreted using the SDF approach by assuming that:

Λ = 0N2 (23)
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and defining the risk-adjusted parameters as:

K̃=K− Ξ (24)

Θ̃=Θ− Ω0Λ0

where Ξ is an N2 adjustment matrix with the columns:

ξs = Ωsζs ; s = 1, ..., n (25)

= 0N,1 ; s = n+ 1, ..., N.

Recall that these adjustments determine the risk premia in an arbitrage-free model.

Substituting (25) into (11) shows that the premium on a τ−period discount bond

is equal to the covariance between the τ − 1 period bond price and the SDF. In

the general model these premia depend entirely upon the effect of changes in the

macroeconomic variables on volatility. This model is just identified.

When 0 < m < n, two different types of specification are possible. If we maintain

(23) we get the affine class, in which the time variation in the risk premia still

depends upon changes in stochastic volatility. Alternatively, we get the ‘essentially

affine’ class, as defined by (Duffee (2002)), in which variations in Yt can affect the

premia. Appendix 1 shows that in this case the shift from the observed probability

measure to the risk-neutral pricing measure is effected by using the risk adjustment

(24) where now:

ξs = Ω0Λs + Ωsζs ; s = 1, ...,m (26)

=Ω0Λs ; s = m+ 1, ..., n

= 0N,1 ; s = n+ 1, ..., N.
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The risk parameters in the first line are not separately identified so we set Λs =

0m,1; s = 1, ...,m to resolve the indeterminacy. Obviously, for m < n, the essentially

affine specification encompasses the affine one with the same number of volatility

terms.

3.2 Admissible models

As noted, the variance structure of the general affine model is endogenous and there

is nothing to ensure it remains non-negative. To deal with this problem Dai and

Singleton (2000) analyse specializations that are ‘admissible’ in the sense that they

ensure a non-negative definite variance structure when the factors underpinning this

structure are continuous random variables. Using their notation, an admissible model

with m volatility terms, N state variables and constant Λt (23) is denoted Am(N).

An admissible ‘essentially affine’ model results if we assume (22) instead of (23) and

is denoted EAm(N). These models are special cases of the general affine specification

developed in the previous section, represented in this paper as GAm(N).

The first of these admissible specifications is the standard homoscedastic model

EA0(N) of the macro-finance literature. In this case the quadratic terms in (14)

vanish, making this system linear:

Ψτ = K̃0Ψτ−1 + jr (27)

If the roots of the dynamic response matrix K̃ are less than unity in absolute value

then there is an elementary solution for the factor coefficients:

Ψτ = (IN − K̃0)−1(IN − (K̃0)τ )jr (28)

In this case the asymptotic factor coefficients are constant Ψ∗ = (IN − K̃0)−1jr and
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so is the rate structure (given (17)). However, it is well known that this specifica-

tion has irregular asymptotic properties when the RN dynamics are non-stationary

(Dewachter and Lyrio (2003)). Campbell, Lo, and MacKinlay (1996) provide a useful

discussion of the single factor discrete time case. Obviously, if (7) has a unit root

then so does (27). Consequently, the long maturity slope coefficients Ψ∗τ are time

(or maturity) trends not constants and long rates turn negative, tending to minus

infinity with maturity. If the system is transformed so that the first variable of the

system follows a unit root (or near-unit root) process and the others are stationary

(see next section) then it can be shown (by suitably factorising (7) and (27)) that

the associated factor loading follows a time trend asymptotically while the others are

constant. Consequently, this variable dominates the behaviour of the long term yields

and their risk premia. In the case of a near-unit root, the asymptotic forward rate is

well defined, but adopts a very large negative value. Again, this root dominates the

behaviour of the long maturity yields.

Empirically, as Dewachter and Lyrio (2003) observe, the historical US data which

has been used in this literature appears to have a non-stationary common trend re-

lated to the underlying rate of inflation, making this problematic5 . However, Camp-

bell, Lo, and MacKinlay (1996) note that the asymptotic slope parameters are de-

termined by quadratic equations in the general affine model and can be positive even

if the model has a stochastic trend. To investigate this possibility, we develop an

admissible model EA1(N) which conditions the central tendency and the variance

structure of the model on the stochastic trend variable. Mathematically, this model

has regular variance and asymptotic term structures as well as providing a plausible

description of the relationship between the risk premia and the conditioning variable.

5 It may be tempting to regard this as a theroetical curiosity, but with the US Treasury resuming
30 year issuance and the British and French Treasuries issuing 50 year bonds, this asymptotic
behaviour is now a practical consideration.
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Empirically, unlike the standard model EA0(N), this model is accepted as a data-

consistent simplification of the general affine model GAm(N) described by (7), (12),

(14) and (15).

3.2.1 Single conditioning factor models: A1(N);EA1(N);GA1(N);

This single factor framework is designed to accommodate the salient characteristics

of the historic US data commonly used in this literature. I specialise this in a way

that allows regular variance and yield properties to be preserved. As we have seen,

interest and inflation rates appear to have a non-stationary common trend related

to the underlying rate of inflation and there is now mounting evidence that their

volatility is related to a similar trend. This suggests a model with a single factor

(m = 1) determining mean values and conditioning volatility. This is the macro-

finance analogue of EA1(N): the preferred model of Dai and Singleton (2002). As Dai

and Singleton (2000), note the single factor specification avoids the awkward features

of higher order conditioning models like A2(N) and A3(N) and their essentially affine

equivalents.

Suppose that the original data consists of an n−vector of time t−observable

variables xt = {x1t, x2t, ..., xnt}0; t = 1, ..., T described by a Vector Auto-Regression

or VAR congruent with (1):

xt = ς +ΣLl=1Φlxt−l + ut (29)

ut ∼N(0,Σt); t = 1, ..., T
0

where ut = Hνt is a n−vector of stochastic error terms and Σt = H∆tH
0. The state

space representation is:

Xt = Υ+ΦXt−1 + Ut (30)
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where: Υ0 = {υ0, 01,N−n} & U 0t = {u0t, 01,N−n} are deficient N = n × L vectors;

X 0
t = {xt, xt−1, ..., xt−L} and:

Φ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Φ1 Φ2 ... ΦL−1 ΦL

In 0n,n ... 0n,n 0n,n

0n,n In ... 0n,n 0n,n

0n,n 0n,n ... In 0n,n

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(31)

is an N2 matrix. Under the measure Q the dynamics are of the form (30), but with

Υ̃ & Φ̃ replacing Υ & Φ.

To get an admissible model in which there is a single factor conditioning the vari-

ance structure (A1(N) or EA1(N)), we need to transform this model into a recursive

system in which the conditioning factor y1,t is linear in Xt:

y1,t = υ1+µ1Xt

and is determined by an independent I(1) or AR(1) model under both measures P

and Q. Under the risk neutral measure used for pricing we model this as:

y1,t = κ̃11y1,t−1 + w1,t (32)

w1,t ∼N(0, δ1,1 y1,t−1); δ1,1 ≥ 0.

To conform to (32), the vector of coefficients defining the volatility factor µ1 must be

an eigenvector of Φ̃ and κ̃ must be the associated eigenvalue. The first element of µ1

is normalised to unity: µ1 = {1, µD1 }. This restriction saves N−1 degrees of freedom

compared with the unrestricted model GA1(N). Replacing x1,t with y1,t in xt (keep-
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ing the remaining elements, xDt unchanged) and partitioning µ1 = {µ0, µD1 , ..., µDL−1}

(with µ0 = {1, µD0 }) conformably with Xt gives yt = {y1,t, xDt }, where:

yt = υ+
LX
l=0

Mlxt−l (33)

where : υ =

⎡⎢⎢⎣ υ1

0n−1,1

⎤⎥⎥⎦ ;M0 =

⎡⎢⎢⎣ 1 µD0

0n−1,1 In−1

⎤⎥⎥⎦ ;

Ml =

⎡⎢⎢⎣ µDl

0n−1,n

⎤⎥⎥⎦ , l = 1, ..., L− 1;ML = 0n,n

with the inverse:

xt =M−1
0 [yt − υ −

LX
l=1

Mlxt−l ] ; M−1
0 =

⎡⎢⎢⎣ 1 −µD0
0n−1,1 In−1

⎤⎥⎥⎦ . (34)

Making a similar replacement in Xt gives the transformed state vector:

Yt =

⎡⎢⎢⎣ y1,t
XD
t

⎤⎥⎥⎦ =
⎡⎢⎢⎣ υ1

0N−1,1

⎤⎥⎥⎦+
⎡⎢⎢⎣ 1 µD1

0N−1,1 IN−1

⎤⎥⎥⎦
⎡⎢⎢⎣x1,t
XD
t

⎤⎥⎥⎦ (35)

=H+MXt

Premultiplying (30) byM puts this in the form (1): Yt = Θ+KYt−1 +Wt, where:

K =MΦM−1

Θ = (I −K)H+MΥ

Wt =MUt

C =M0H

⇔

Φ =M−1KM

Υ =M−1[Θ− (I −K)H]

Ut =M−1Wt

H =M−1
0 C

(36)
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which implies the yield structure (19). This is an invariant transform as defined by

Dai and Singleton (2000) because it preserves the dynamic characteristics of the spot

rate.

The A1(N) and EA1(N) models specify the factor dynamics as a recursive system

in which the conditioning variable is determined independently of the remaining

state variables, but can then influence the means and variances of these variables.

Importantly, because the instantaneous volatility of w1,t is proportional to y1,t−1, the

variance of the shocks to this factor goes to zero if it nears zero, making non-negative

values very unlikely. If the conditioning factor is a continuous random variable as

in Dai and Singleton (2000) the admissibility conditions ensure that this factor (and

hence the variance structure) is non-negative definite. GA1(N) provides a test of

the admissibility restrictions. It conditions the macro variances on y1,t but drops

the exclusion restrictions on the first row of K and K̃, increasing the number of

parameters by (N − 1) +(n − 1) compared to the specification EA1(N). It thus

encompasses A1(N) and EA1(N) (as well as EA0(N) which is specified next).

3.2.2 The homoscedastic model: EA0(N)

The standard macro-finance model (EA0(N)) is admissible simply because the vari-

ance structure is constant: Ωs = 0; s = 1, ...,m. To capture time variation in the

risk premia, Λt is instead assumed to depend upon the conditioning variables (22).

In principle, they could be conditioned by any of the N state variables, but to pre-

serve degrees of freedom, it is usually assumed that only a few primary variables

are relevant. In this case we use yt−1. This makes the model comparable with the

other models and has a greater degree of explanatory power than conditioning on the

un-transformed variables xt−1. The model maintains the exclusion restrictions on K

and saves N − 1 degrees of freedom compared to GA1(N). These are in addition to
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the n saved by the assumption of heteroscedasticity .

3.2.3 The encompassing model: GAn(N)

This model assumes m = n and thus allows both volatility and the risk premia to

depend upon all of the stochastic variables (yt−1). All of the other models are nested

within it. Unfortunately admissible specifications of orderm > 1 have some awkward

properties which are unlikely to match those of the data, as noted by Dai and Sin-

gleton (2000), so admissibility restrictions are not imposed on this model. Dropping

the exclusion restrictions on the first row of K increases the number parameters by

N−1 and adding in an extra N−1 volatility terms adds another N(N−1) compared

to the specification EA0(N).

4 Model estimation and evaluation

The specification of the previous section provides various descriptions of the macro-

economy and discount bond markets in an arbitrage-free world. But can any of these

provide a plausible parsimonious description of the data generating process? This

section describes the data set and empirical results.

4.1 The data

The macromodel used in this research was initially based on the specification devel-

oped by Svensson (1999); Rudebusch (2002); Smets (1999) and others. It represents

the behaviour of the macroeconomy in terms of the output gap (gt); the annual CPI

inflation rate (πt) and the 3 month Treasury Bill rate (r1,t)6. The output gap series

was the quarterly OECD measure, derived from a Hodrick-Prescott filter, the other

data series were provided by Datastream. These macroeconomic data are shown in

6 In view of the doubts about the short yield interpolation procedure of McCulloch and Kwon
(1991) expressed by Ahn and Gao (1999) and others, I used this in preference to their three month
maturity yield interpolation.
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chart 1.

This specification is often called the ‘central bank model’ since it provides a basic

dynamic description of an economy in which the central bank targets inflation using

a Taylor rule. However, it can generate puzzling dynamic responses, because the

policy interest rate usually anticipates inflationary developments. To address this

problem, we follow Grilli and Roubini (1996) and introduce a long bond yield (r∗t )

into the macromodel. This reflects long term inflation expectations and allows the

yield differential against Fed Funds to reflect the stance of monetary policy (Estrella

(2005)). I used the 17 year discount bond yield, the longest for which a continuous

series is available (r∗t = r68,t). Together with the other yield data, this was taken

from McCulloch and Kwon (1991), updated by the New York Federal Reserve Bank7.

These data have been extensively used in the empirical literature on the yield curve.

To represent this curve I use 1,2,3, 5,7 and 10 year maturities. Historical data for

longer maturities are sparse and seldom used in empirical yield curve analysis. These

yield data are available on a monthly basis, but the macroeconomic data dictated

a quarterly time frame (1961Q4-2004Q1, a total of 170 periods). These yield data

are shown in chart 2. The 10 year yield is shown at the back of the chart, while the

shorter maturity yields are shown at the front.

Table 1 shows the means; standard deviations and first order autocorrelation

coefficients of these data. It also shows ADF test results: for this test and sample

size, the 5% critical value of the ADF test statistic is 2.83. The ADF test suggest

that we reject the null hypothesis of non-stationarity in the case of the output gap.

however, it provides clear evidence of stochastic trends in the inflation, short and

long rate variables. Importantly, the real yield (r∗t −πt) and the yield gap (r∗t − r1,t)

have acceptable ADF statistics (respectively −3.18 and −2.99, but not reported in

7 I am grateful to Tony Rodrigues of the New York Fed for supplying a copy of this yield dataset.
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the table), supporting the hypothesis that there is a single stochastic trend in these

data.

4.2 Testing the empirical models

Preliminary work designed to estimate the dimensionality of the model estimated

OLS regression equations for the four macro variables. These are in the order: the

long rate (r∗), the inflation rate (π), the output gap (g); and the 3-month Treasury

bill discount rate (r)8 . This system was estimated for L = 2, 3, 4 and 5 lags, with

both fixed and heteroscedastic error structures and the results suggested the use of a

three-lag model. This gives a system with a vector Xt of twelve state variables (i.e.

current and two lagged values of each macro variable). Existing macro finance models

invariably use a first order dynamic specification, without testing this restriction.

Table 2 shows the likelihood statistics for the models specified in section 3. Recall

that model M1 (i.e. A1(12)) conditions the volatility upon y1,t and defines the risk

premia consistently with this error specification as in (11). It uses 79 parameters as

indicated in the second column of Table 2: θ (4×1−1);K (4×12−11);M1(11);C(6);

λ0(4);λ1(4);∆0(4 − 1); ∆1(4);υ(1) and P (6). Model M2 is the ‘essentially affine’

version of this model EA1(12) and uses another 9 parameters (for Λ) and M3 is the

‘general affine’ version (GA1(12)). We reject M1 in favour of M2. M4 is the standard

homoscedastic error version of this model, EA0(12). It is nested within models M3

and M5, the general 4-factor stochastic volatility model (EA4(12)) and decisively

rejected against both. The EA1(12) specification, M2, is however an acceptable

simplification of both M3 and M5. As in Dai and Singleton (2002), it is therefore the

preferred specification.

8As in a VAR analysis, the ordering of the variables in the vector yt does not affect the reduced
form results, but it does affect the impulse responses, discussed in the next section.
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5 Model parameters and properties

These tests strongly support the hypothesis underpinning the EA1(12) specification:

of a single variable conditioning the variance structure in an admissible way. But

what light does this model throw upon the issues raised in the introduction? In

particular, how well does handle the unit root problem? What does it say about the

efficacy of monetary policy?

5.1 The empirical macro model

We now look at the characteristics of this specification (model M2) in detail. Results

for the other models are available upon request from the author. Table 1 reports the

basic goodness of fit statistics for the ten equations comprising M2. The first row

shows that the model explains 94% of the variance at the short end of the yield curve,

rising gradually to 98% in the 10 year area. The parameters of the model are set out

in Tables 3 and 4. These are generally well determined, although as we would expect

in VAR type analysis, some of the off diagonal dynamic coefficients are insignificant.

As in previous studies, some of the risk parameters are poorly determined.

The time variation in the error structure and the risk premia is driven by the

transformed variable:

y1,t = r68,t +0.011567 −0.063663πt +0.001033gt −0.031542r1,t

(31.44) (−5.59) (0.08) (−2.55)

+0.061046r68,t−1 +0.055560πt−1 −0.065624gt−1 +0.037318r1,t−1

(4.20) (5.08) (−5.57) (2.99)

+− 0.100899r68,t−1 +0.0300947πt−2 +0.026869gt−2 −0.068729r1,t−2

(−6.93) (2.55) (2.24) (5.61)

21



This volatility factor is clearly dominated by the current value of the long bond yield9.

However the contribution of other variables is significant, particularly the change in

the rate of inflation. The y1,t estimates are plotted against the rate of inflation and

the spot rate in chart 3. Solving the model recursively conditional upon y1,t shows

the steady state effect of a unit increase in y1,t is to raise the steady state rate of

inflation by 0.445 and the spot rate by 0.9390 percentage points, implying a rise in

the real rate of interest.

We now consider the dynamic properties of the macro model in terms of (a) its

eigenvalues and (b) impulse responses. The autoregressive coefficient associated with

y1,t is κ11 = 0.98809. This increases to κ̃11 = 0.99044 under the measure Q, which is

very close to unity. Nevertheless, because this drives both first and second moments,

the asymptotic forward rate is positive: 3.79%. In contrast the asymptotic forward

rate from the homoscedastic equivalent, model M4 is (-)40.05%, reflecting the near-

unit root problem discussed in the previous section. It may be shown analytically that

with φ̃11 > φ11, the asymptotic risk premia are positively related to the stochastic

trend y1,t. Chart 4 shows a times series plot of the risk premia for selected maturities.

κ̃11 is the principal eigenvalue of the adjustment matrix Φ. The other eigenvalues

of Φ are shown in table 5. These indicate a much faster adjustment than in the

case of y1,t. Three pairs of roots are sinusoidal, reflecting the cyclical nature of the

macroeconomic data.

These cyclical effects are seen more clearly in the impulse responses, which show

the dynamic effects of innovations in the macro variables on the system. Because

these innovations are correlated empirically, we work with orthogonalised innovations

using the triangular factorisation of Σt (defined in (29)). This is evaluated as Σ̄ =

9The models of liquidity premia developed by Glosten and Runkle (1993) and Scruggs (1998)
are similar in this respect. The first conditions volatility on the yield gap and the second on a short
term interest rate.
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M−1
0 C(∆0+∆1ȳ1)C

0(M0
0)
−1 at the mean value (ȳ1 = 0.07557) of the scale variable

y1,t and factorised as GzG0 = Σ̄ where:

G =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0

−0.06546 1 0 0

0.34674 −0.02816 1 0

0.20532 0.28696 0.10548 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(37)

:

z = diag{1.11386× 10−5, 6.19261× 10−6, 8.50651× 10−6, 2.33839× 10−5} (38)

This allows us to calculate the perturbations ut in the macro variables xt in a way

which allows for their contemporaneous correlation using the arrangement:

ut = Gεt (39)

where εt is vector of four shocks which being orthogonal can be varied independently.

The orthogonalised impulse responses show the effect on the macro system of increas-

ing each of these shocks by one percentage point for just one period using the Wald

representation of the system as described in appendix 3.

This arrangement is affected by the ordering of the macro variables in the vector

xt, making it sensible to order the variables in terms of their likely degree of exo-

geneity or sensitivity to contemporaneous shocks. The effect of fast-mean reverting

macroeconomic shocks on the long yield should in principle be small, leaving this to

reflect slow-moving expectational influences, so this is ordered first in the sequence.

This means that independent shocks to output inflation and interest rates can then
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be interpreted as sudden shocks that are not anticipated by the bond market. Follow-

ing (Hamilton (1994)) inflation is ordered before the output gap, on the Keynesian

view that macroeconomic shocks are accommodated initially by output rather than

price10. Interest rates are placed after these variables on the view that monetary

policy reacts relatively quickly to disturbances in output and prices. Thus the vari-

able ordering is: long bond yield; inflation, output gap and spot rate. This means

that shocks to the long yield (ε1) disturb all four variables contemporaneously as

indicated by the first column of the matrix shown in (37), independent shocks to

inflation (ε2) affect output and interest rates but not the long yield, and so on.

Chart 5 shows the results of this exercise. The continuous line shows the effect

of each independent shock on the spot rate, the dashed line the effect on the long

yield, the broken line the effect on inflation and the dotted line the effect on output.

Elapsed time is measured in quarters. Panel (i) shows the effect of a shock to the

long bond yield (ε1). This might reflect an increase in the bond market’s expected

rate of inflation or the underlying real rate of return in the economy. Output and the

spot rate increase immediately, but inflation does not (37), meaning that real interest

rates increase initially. The long yield acts as a leading indicator for both output and

inflation. Output peaks after one year and inflation after three 3 years. The increase

in real rates then causes a large fall in output, which brings inflation back close to its

initial level after 10 years. After that, there are further cycles in inflation (which are

not shown in the charts) but these are heavily damped. In contrast, interest rates

adjust downward very slowly, remaining high in real terms, reflecting the near-unit

root in the macromodel which is associated with the long bond yield.

Panel (ii) shows the effect of an independent shock to inflation (ε2), essentially an

10Since the contemporaneous correlation betweeen inflation and output is very low (reflected in
the coefficient g32 = −0.02816 in (37)) the ordering of these variables makes no material difference
to the impluse responses.
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inflationary impulse that is not anticipated by the bond market. The initial effect on

the spot rate is only about a quarter of a point, so real interest rates fall. However,

output falls back, reaching a trough after falling by 0.8% after two years, reflecting

real balance and other contractionary inflationary effects. The fall in output has the

effect of reversing the rise in inflation, setting up cycles in these variables. However,

these are heavily damped, reflecting the complex eigenvalues shown in table 4. In

contrast to the effects of the long bond yield shown in the first panel which are highly

persistent in the case of interest rates, the system is close to its initial level after 10

years following this inflationary impulse. The other two panels show similarly fast

responses. The spot rate increases by 0.6% in response to an independent output

shock, and this together with the contractionary real balance effect of higher inflation

moderates the expansionary impulse. The effect of a rise in the spot rate is shown in

the final panel. The initial effect is to depress output, but inflation responds with a

short lag. Indeed, the lower inflation rate apparently boosts output by positive real

balance effects after two years.

Chart 8 shows the results of an ANOVA study which decomposes the conditional

forecast variance of each of the 3 macro variables into the separate effects of surprises

to the four orthogonal shocks defined in (39). (The variance of the long bond yield

is dominated by the innovations in this variable and these results are not reported.)

These effects are calculated using the method described in appendix 3. Initially the

variances of these variables are strongly influenced by their own innovations. However

the influence of the long bond innovations builds up over time, particularly in the

case of the spot rate, where this explains over half of the total forecast variance 10

years ahead.
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5.2 The empirical yield model

The impulse response patterns for the bond yields are determined using (49) and so

depend upon the sensitivity of each yield to the macro factors (the beta coefficients

or factor loadings) and the sensitivity of the macro factors to shocks (given by the

impulse responses of the previous section). Chart 6 shows the factor loadings as a

function of maturity expressed in quarters. These loadings depend upon the risk

adjusted dynamics, reflected in the eigenvalues of the matrix Φ̃ reported in Table 4.

The first panel shows the loadings on r1,t (continuous line) and r68,t (broken line).

The spot rate is the link between the macro model and the term structure. Since it is

the 3 month yield, this variable has a unit coefficient at a maturity of one quarter and

other factors have a zero loading (12). The spot rate loadings then tend to decline

monotonically with maturity, reflecting the relatively fast adjustment process. In

contrast, the slow-moving nature of the long yield means that its loading increases

with maturity over most of this range. The next panel shows the loadings on π

(dotted line) and g (broken line) which are relatively small and exhibit a humped

shape.

The impulse response patterns for the yield model are shown in Charts 8 (a)-(d).

These show the effects on the 1 - 10 year yields of the independent shocks described

in the previous section. Although the model is fitted using only 6 yield observations

in each period, in principle it can be used to compute the yield response at any

maturity. The loading pattern means that the impulse response patterns for the

short maturity yields are similar to those for the spot rate. Consistent with those

results, the effects of macro shocks disappear very quickly, while the expectational

and other effects associated with the long yield are very persistent.

Recall that Chart 4 shows the holding period risk premia (annualised one-period
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ahead expected excess returns) implied by the model. Although Λt is flexible in

the EA1(N) specification, most of the time variation in the risk premia results from

variation in the stochastic volatility term. The premia rise and then fall with the

degree of macroeconomic volatility. The risk premia tend to increase over the matu-

rity range shown in the chart, largely as a consequence of the increase in the factor

loadings on y1,t. As noted, this stochastic trend dominates the behaviour of the long

maturity premia.

The lower right hand panel of Chart 8 decomposes the conditional forecast vari-

ance of the 5 year yield into the separate effects of surprises to the four orthogonal

shocks defined in (39). The ANOVA charts for the 7&10 year yields show a simi-

lar pattern. These effects are calculated using the method described in appendix 3.

Innovations in the three macro have a modest contribution for near-term forecasts,

but are increasingly dominated by innovations in the long bond innovations. This

explains over 95% of the total forecast variance 10 years ahead.

6 Conclusion

Heteroscedasticity is a common feature of macroeconomic and financial data. The

work reported in this paper reflects this feature, providing strong support for the

specific hypothesis that the volatilities of US macroeconomic data are influenced

by the underlying level of inflation, reflected in long term interest rates and other

nominal variables. This finding has major implications for economic policy and the

financial markets. The specification developed here extends the new macro-finance

model of the yield curve to allow for macroeconomic volatility, bringing it into line

with the mainstream finance model with its emphasis on stochastic volatility.

The preferred specification EA1(N) is an admissible model which conditions the

central tendency and the variance structure of the model on the stochastic trend
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variable. Although it is of the ‘essentially affine’ class and allows the risk premia to

depend in a flexible way upon variations in macroeconomic variables, these premia

are dominated by the underlying stochastic volatility trend. This trend is closely

associated with the long bond yield. The use of this yield in the VAR underpinning

the system helps to solve the price and other puzzles that have hampered empirical

work on the basic central bank model of monetary policy (Grilli and Roubini (1996)).

Initial dynamic specification tests suggested a third order system, indicating that

the first order specification assumed in the existing macro finance literature is too

restrictive.

This VAR gives a plausible description of the macro dynamics, with the long yield

apparently acting as a proxy for slow-moving exogenous influences on output and in-

flation. These influences could reflect autonomous output and inflation expectations

(as for example in the model of Dewachter and Lyrio (2003)), or perhaps shifts in

the monetary authorities target for inflation . Shocks to the stochastic trend are

highly persistent, but the system is back close to its initial values after a five year

period following independent shocks to output inflation and interest rates. Three

pairs of roots are sinusoidal, reflecting the cyclical nature of macroeconomic data.

Short term yields are naturally dominated by short run fluctuations in the macroeco-

nomic variables driving the spot rate. But as maturity increases these effects decay

away quickly, reflecting the remarkably fast conditional mean reversion of the macro

variables. This leaves the 10 year rate dominated by fluctuations in the long bond

yield.

Mathematically, this model has regular variance and asymptotic term structures

as well as providing a plausible description of the relationship between the risk pre-

mia and the conditioning variable. Empirically, unlike the standard model EA0(N),

this model is accepted as a data-consistent simplification of the general affine model
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GAm(N). It provides a 12-factor explanation of the behaviour of the Treasury curve,

keying it in to the behaviour of the macroeconomy. It can use a relatively large

number of factors because the parameters of the model are informed by the macro

data as well as the yield curve (with a total of 1700 data points). This research opens

the way to a much richer term structure specification, incorporating the best features

of the macro-finance and mainstream finance model.
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7 Appendix 1: The SDF approach

This appendix uses the SDF approach to derive the constraints across the yield coef-

ficients implied by the specifications that are described in section 2. The conditional

lognormality of the SDF and prices allows us to write (20) as:

pτ,t = logPτ,t = Et[mt+1 + pτ−1,t+1] +
1

2
Vt[mt+1 + pτ−1,t+1]; τ = 1, ...,M. (40)
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Substituting (1),(4),(8) & (21) into this equation and evaluating means and variances:

−pτ,t = r1,t + ωt + γτ−1 +Ψ
0
τ−1(Θ+KYt) (41)

−1
2

mX
s=1

(Zs +Ψτ−1)0Ωs(Zs +Ψτ−1)(j0sYt)

−1
2
(Λt +Ψτ−1)0Ω0(Λt +Ψτ−1).

In the special case τ = 1, with p0 = 0:

p1,t =Et[mt+1] +
1

2
Vt[mt+1]

=−(r1,t + ωt)− 1
2

mX
s=1

Z0sΩsZs(j
0
sYt)−

1

2
Λt
0Ω0Λt

=−r1,t

(using (8)). This implies the restrictions:

ωt = −1
2

mX
s=1

Zs
0ΩsZsj0sYt −

1

2
Λt
0Ω0Λt (42)

The equation (13) defining the general affine yield model can be derived using the

SDF approach by adopting (4) and (23) with m = n. With (42), this simplifies (41)

to:

−pτ,t = r1,t + γτ−1 +Ψ
0
τ−1(Θ− Ω0Λ0 + (K−

nX
s=1

Ωsζs(j
0
sYt)−

1

2
Ψτ−10Ω0Ψτ−1

−1
2
Ψτ−10ΩsΨτ−1(j0sYt )
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which is of the form (13) with (24) and (25). To represent the essentially affine model

with m < n, substitute (4) and (42) into (41), simplifying it to:

−pτ,t = r1,t + γτ−1 +Ψ
0
τ−1(Θ− Ω0Λ0 + (K−

mX
s=1

Ωsζsj
0
s − Ω0

nX
s=1

Λsj
0
s)Yt)

−1
2
Ψτ−10Ω0Ψτ−1 − 1

2
Ψτ−10ΩsΨτ−1(j0sYt )

which is of the form (13) with (24) and (26).

8 Appendix 2: The likelihood function

This appendix derives the likelihood function and describes the numerical optimisa-

tion procedure. For simplicity I assume m = 1, but the likelihood for the m = n

specifications follow straightforwardly.

The first n equations of (36) are stochastic:

yt = θ +K1yt−1 +ΣLl=2Klxt−l + Cut (43)

ut ∼N(0,∆0 +∆1y1,t−1)

while the rest are identities.

Admissibility (32) is ensured by imposing exclusion restrictions on all but the

first element of the first row of K to get {κ11,0N−1,1}. Similarly, the first row of K1

is {κ11,0n−1,1} and for Kl the first row consists of zero coefficients. Since there is a

single conditioning factor, the risk adjustment in (24) and (25) only affects the first

column of K̃1 in the A1(N) specification so these exclusion restrictions are preserved

under the measure Q. For EA1(N), I set the first row (and column) of Λ1 to zero,

adding an extra (N−1)2 risk coefficients to model A1(N). The restricted macromodel

is set up under the measure P as (43), which can be expressed in terms of the original
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variables (using (33) and (34)) as:

xt = ς +ΣLl=1Φlxt−l + ut (44)

where : ς =M−1
0 [θ − (In −K1)]υ; ut =M−1

0 wt;

Φ1 =M−1
0 [K1M0 −M1];Φl =M−1

0 [K1Ml−1+Kl −Ml], l = 2, ..., L.

The restricted yield model is set up under the measure Q as (19) and then Yt is

replaced using (33):

rt = α(Θ̃, K̃) +B(Θ̃, K̃)0Yt + et (45)

= α+B1yt−1 +ΣL−1l=1 Blxt−l + et

=ψ +ΣL−1l=0 πlxt−l + et

where : ψ = α+B1ς;π1 = B1M0;πl = [B1Ml +Bl], l = 1, ..., L− 1.

Because the macro and measurement errors are assumed to be orthogonal, the

likelihood of the joint model is the sum of macro and yield components. First,

consider the macro component. Using (2) & (44) and the fact that C andM0 have

unit determinants, the loglikelihood for period t can be written as:

LMt =−(n/2) ln(2π)− ln(|∆t|)/2− νt
0∆−1t νt/2 (46)

=−(n/2) ln(2π)−
nX
i=1

ln(δ0i + δ1i [v+
LX
l=0

Mlxt−l−1])/2

−νt0(∆0 +∆1 [v+
LX
l=0

Mlxt−l−1])−1νt/2

where:

34



νt = C−1M0(xt − ς − ΣLl=1Φlxt−l);

and where the restricted coefficient matrices ς,Φl are defined in (44). The term

in square brackets represents y1,t−1 using (33). Summing over T periods gives the

loglikelihood for a stand-alone VAR: Similarly, (45) and (19) can be used to represent

the likelihood of the yield observation rt:

LRt =−(M/2) ln(2π)−
MX
τ=1

ln(ρτ )/2− et
0P−1et/2;

where :

et = rt − ψ − ΣL−1l=0 πlxt−l;

and where the restricted coefficient matrices ψ, πl are defined in (45). Adding (46)

and summing over T periods gives the loglikelihood of the joint system:

L=−(T (n+M)/2) ln(2π)

−
TX
t=1

nX
i=1

ln(δ0i + δ1i [v+
LX
l=0

Mlxt−l−1])/2−
TX
t=1

MX
τ=1

ln(ρτ )/2

−
TX
t=1

νt
0(∆0 +∆1 [v+

LX
l=0

Mlxt−l−1])−1νt/2−
TX
t=1

et
0P−1et/2

9 Appendix 3. The impulse responses

Define the lag operator L (where Xt−1 = LXt) and rewrite (30) setting Υ = 0 as

(I − Φ0L)Xt = Ut. Since its eigenvalues are less than unity in absolute value, this
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system can be inverted to give the Wald (or MA) representation:

Xt = (I − ΦL)−1Ut (47)

=
∞X
i=0

ΦiUt−i

=
∞X
i=0

ΦiAEt−i

where

Ut = AEt; Et = {ε0t; 01,N−n)0;A =

⎡⎢⎢⎣ G 0n,N−n

0N−n,n 0N−n,N−n

⎤⎥⎥⎦
and where εt is a set of orthogonal disturbances defined by (39). Similarly, substi-

tuting Yt in (45) using (35) and (47), omitting the intercept constants:

rt = B0M
∞X
i=0

ΦiAEt−i. (49)

This representation shows that the impact of the n− th element of εt on the m− th

element of Xt+i is given by element mn of the matrix ΦiA, while the impact on the

m− th element of rt+i is given by element mn of the matrix B0MΦiA.

Similarly the t−conditional covariance matrix for Xt+i is:

Vt[Xt+i] =
iX

j=0

Φi−jAVt[Et+j ]A0(Φ0)i−j

Evaluating Vt[Et+j ] at the mean value:
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MΩ̄M0 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

GzG0 0 ... 0

0 0 ... 0

0 0 ... 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
gives:

Vt[Xt+i] =
iX

j=0

Φi−jAMΩ̄M0A0(Φ0)i−j

.Vt[rt+i] =
iX

j=0

B0MVt[Xt+i]M0B

=
iX

j=0

B0MΦi−jAMΩ̄M0A0(Φ0)i−jM0B.

The m − th diagonal element of each matrix shows the conditional variance of the

m− th macro variable or yield maturity respectively. The contribution of the n− th

element of εt is calculated by setting all but the n− th element of z to zero.
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Chart 1: Macroeconomic variables
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Chart 2: US Treasury discount yields



Chart 3: Inflation and the stochastic trend
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Chart 5: Model M1 macroeconomic impulse responses
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Chart 6 : Model M2 Factor loadings
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Each panel shows the effect of a shock to one the four driving variables. These shocks increase each variable in turn by one percentage
point compared to its historical value for just one period. The dynamic effects allow for orthogonality, using the formulae described in
appendix 3. For example, a shock to the long rate increases the output, inflation and interest rates immediately, reflecting the empirical
correlation between surprises in these variables. The continous line shows the effect on the spot rate, the dashed line the effect on the long
yield, the broken line the effect on inflation and the dotted line the effect on output. Elapsed time is measured in quarters.
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Chart 7: Model M2 yield impulse responses
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Chart 7 (a): Dynamic response of yields to long yield

(i) Long bond shock
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Chart 7 (b): Dynamic response of yields to inflation

(ii) Inflation shock
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Chart 7 (c): Dynamic response of yields to output shock
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Chart 7 (d): Dynamic response of yields to spot rate
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Chart 8: Model M1 Analysis of Variance
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Each panel shows the contribution to total variance of innovations in each of the orthogonal shocks representing innovations in each of
the four driving variables. These calculations use the formulae described in appendix 3. The continous dashed line shows the effect of
innovations in the long yield, the broken line those in inflation the dotted line those in output and the continuous line those in the spot rate.
Elapsed time is measured in quarters.
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Chart 8: Model M1 Analysis of Variance
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Each panel shows the contribution to total variance of innovations in each of the orthogonal shocks representing innovations in each of
the four driving variables. These calculations use the formulae described in appendix 3. The continous dashed line shows the effect of
innovations in the long yield, the broken line those in inflation the dotted line those in output and the continuous line those in the spot rate.
Elapsed time is measured in quarters.

2



Table 1a: Data Summary Statistics 1961Q4-2004Q1

r68 g r1 r4 r8 r12 r20 r28 r40

Mean 7.5567 4.0391 -0.6889 6.3239 6.3954 6.6305 6.7849 7.0021 6.7849 7.2513

Std. 2.28891 2.97537 2.33137 2.76685 2.80915 2.72748 2.64306 2.53722 2.47168 2.41235

Auto. 0.9971 0.99211 0.4632 0.9815 0.9892 0.9923 0.9944 0.9953 0.9963 0.9969

ADF -2.091 -2.411 -4.133 -2.110 -2.100 -2.063 -2.031 -2.043 -1.991 -1.951

Inflation ( ) and interest rates are from Datastream. Output gap (g) is from OECD. Yield data are US Treasury discount bond equivalent
data compliled by McCulloch and Kwon (1990), updated by the New York Federal Reserve Bank. Mean denotes sample arithmetic mean
expressed as percentage p.a.; Std. standard deviation and Auto. the first order quarterly autocorrelation coefficient. ADF is the Adjusted
Dickey-Fuller statistic.

Table 1b : Residual Error Statistics M1, 1961Q4-2004Q1

r68 g r1 r4 r8 r12 r20 r28 r40

R2 0.944102 0.968076 0.9081 0.908258 0.94466 0.952015 0.958435 0.970747 0.977934 0.981334

RMSE 0.541159 0.531619 0.706754 0.838048 0.660836 0.59747 0.538853 0.433951 0.367156 0.329587

The first row reports the unweighted R2 and the second the unweighted Root Mean Square Error (RMSE).

Table 2: Model Evaluation

Model Volatility Premium Parameters Loglikelihood 

(M) Specification* affine in: affine in(**): k(M) k(2)-k(M) k(3)-k(M) k(5)-k(M) L(M) 2x(L(2)-L(M)) 2x(L(3)-L(M)) 2x(L(5)-L(M))

M1 A1(12) y 1,t-1 y 1,t-1 79 9 23 48 488.2 19.00 37.80 43.20

16.92 35.17 65.17

p 0.03 0.03 0.67

M2 EA1(12) y 1,t-1 y t-1 88 14 39 497.7 18.80 24.20

23.68 54.57

p 0.17 0.97

M3 GA1(12) y 1,t-1 y t-1 102 25 507.1 5.40

37.65

p 1.00

M4 EA0(12) (-) y t-1 87 15 40 431.1 152.00 157.40

25.00 55.76

p 0.00 0.00

M5 GA4(12) y t-1 y t-1 127 509.8

(*) Model specification Sm (N) , where: 

S denotes specification, m the number of variables conditioning volatility and N  the number of state variables. 

Specification S=A denotes 'admissible', EA 'essentially affine' and GA 'general affine' models. 

The general affine model does not ensure a non-negative variance structure, but the A and EA structures do. 

(**) Risk premia depend exclusively upon volatility in the admissible model and on variations in vol

 in the essentially affine model. 



Table 3: The dynamic structure of Model M2

parameter estimate t-value

K1

1,11 0.990010 455.99

1,21 0.200532 8.14

1,22 1.157965 55.34

1,23 0.085667 3.04

1,24 0.116986 6.64

1,31 0.062386 18.78

1,32 -0.122659 -19.53

1,33 1.068134 98.35

1,34 0.012787 4.75

1,41 0.088984 38.22

1,42 0.040663 12.16

1,43 0.222411 76.30

1,44 0.964865 457.32

parameter estimate t-value

K2

2,21 -0.169998 -8.01

2,22 -0.055608 -2.47

2,23 0.023922 0.86

2,24 -0.110861 -5.98

2,31 -0.007737 -2.22

2,32 0.004608 0.89

2,33 0.047740 8.38

2,34 -0.239861 -92.46

2,41 0.002609 1.12

2,42 0.109077 31.88

2,43 0.050708 16.01

2,44 -0.295528 -159.69

parameter estimate t-value

K3

3,21 0.051416 2.21

3,22 -0.095410 -3.00

3,23 -0.007349 -0.28

3,24 -0.051768 -2.87

3,31 -0.015809 -4.57

3,32 0.041108 9.00

3,33 -0.185459 -44.96

3,34 0.012787 4.75

3,41 0.000845 0.36

3,42 -0.099111 -32.70

3,43 -0.219727 -78.55

3,44 0.223630 114.56

parameter estimate t-value

M1

M1,2 -0.063663 -5.59

M1,3 0.001033 0.08

M1,4 -0.031542 -2.55

M1,5 0.061046 4.20

M1,6 0.055560 5.08

M1,7 -0.065624 -5.57

M1,8 0.037318 2.99

M1,9 -0.100899 -6.93

M1,10 0.030094 2.55

M1,11 0.026869 2.24

M1,12 0.068729 5.61

Table 4: The error and risk structure of Model M2

parameter estimate t-value

0

02 1. 012 10 6 27.18

03 2. 7722 10 6 8.64

05 3. 4223 10 9 0.05

0

0,1 -1.160191 -0.33

0,2 -508.3317 -14.00

0,3 -7.826042 -2.28

0,4 -67.41729 -25.14

12

12,2 -0.078233 -1.32

12,3 -0.006995 -1.62

12,4 -0.072254 -1.42

14

14,2 0.004722 1.42

14,3 -0.001155 -0.41

14,4 0.001511 0.73

parameter estimate t-value

1

11 1. 4738 10 4 16.63

12 6. 8558 10 5 20.39

13 3. 6184 10 5 4.26

15 3. 0934 10 4 41.20

1

1,1 -8.23432 -1.25

1,2 -119.52 -0.38

1,3 0.285029 0.06

1,4 -64.09623 -11.84

13

13,2 -0.000450 -0.10

13,3 0.011791 0.15

13,4 0.003076 0.91



Table 5: Eigenvalues of the dynamic responses under the historical
(Φ) and RN (Φ̃) measures
(in order of absolute value)

Φ Φ̃
0.99000 0.99090

0.935648± 0.118287i 0.89513
0.899875 0.863725± 0.144256i

0.469379± 0.124197i 0.507712± 0.126573i
−0.00470196± 0.362674i −0.00588641± 0.356612i
−0.254779± 0.0674404i −0.259492± 0.0691647i

1




