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1 Introduction

The empirical discrepancy approach to inference developed by the late Steve Corcoran
(1998) provides a general unifying framework for analysing different nonparametric
likelihood-based test statistics such as the empirical likelihood ratio (Owen, 1988),
the Euclidean likelihood ratio (Owen, 1990), the Kullback-Liebler statistic (DiCiccio
and Romano, 1990), and others. Empirical discrepancy inference is based on esti-
mating among all the distributions supported on the sample and satisfying a given
restriction, the closest to the empirical distribution function. The intuition behind
this approach is that without restrictions the empirical distribution function is an
optimal estimator (i.e. it is the maximum nonparametric likelihood estimator) of
the unknown distribution of the data, but when restrictions are present this is not
necessarily true. The estimated probabilities appearing in the resulting constrained
estimator of the distribution of the data can then be used to make inference about
the restrictions using a x? calibration. Thus the empirical discrepancy inference dis-
penses with the need for intensive Monte Carlo simulation, as typically required by
bootstrap approaches, requiring instead a numerical optimisation.

Confidence regions constructed using empirical discrepancy statistics have cover-
age error typically of order O (n™1) which is the same as for confidence regions based
on parametric likelihoods. However, it has been reported (see, for example, Owen
(1988), Corcoran, Davison and Spady (1995) and Baggerly (1998)) that in samples
of small/moderate size empirical discrepancy regions are often too narrow when the
asymptotic x? calibration is used. One possible way to obtain improved confidence
regions is to use a bootstrap calibration. The latter was proposed originally by Owen
(1988) in the context of empirical likelihood, but can be easily adapted to any em-
pirical discrepancy statistic. It works well (at least for empirical likelihood), but is
computationally quite expensive. Another possibility is to use a Bartlett correction.
The latter was investigated by a number of authors for specific empirical discrepancy
statistics. DiCiccio, Hall and Romano (1991), Chen (1993), Zhang (1996), and others
showed that empirical likelihood ratio admits a Bartlett correction. On the other
hand, Brown and Chen (1998) and Bravo (1999) showed, respectively, that neither
the Euclidean likelihood, nor the Kullback-Liebler and Hellinger statistics admit a
Bartlett correction. Baggerly (1998) investigated the issue of Bartlett correctability



for the class of empirical discrepancy statistics based on minimising the Cressie-Read
goodness-of-fit statistic (Read and Cressie, 1988, Ch. 1). This class is very large and
contains, apart from empirical likelihood and Kullback-Liebler, several commonly
used test statistics such as Neyman-modified x? and Pearson’s x?. Baggerly (1998)
showed that empirical likelihood is the only member of the Cressie-Read goodness-of-
fit statistics to admit a Bartlett correction. More generally, Corcoran (1998) showed
that empirical discrepancy statistics admit a Bartlett correction provided that the
discrepancy function satisfies two “regularity conditions” defined in (5) below. These
conditions are satisfied by the empirical likelihood ratio, but not by any of the other
above-mentioned empirical discrepancy statistics. Thus a large number of commonly
used empirical discrepancy test statistics cannot be Bartlett-corrected, at least in the
traditional sense.

The “regularity conditions” (5) ensure that the third and fourth cumulant of the
signed square root of an empirical discrepancy test statistic are, respectively, of order
O (n’?’/ 2) and O (n2). This, combined with an Edgeworth expansion argument, is
sufficient to obtain corrected test statistics that are accurate up to the order O (n™2),
but by no means necessary. Indeed, as is well-known in parametric likelihood infer-
ence, it is still possible to improve to third-order (i.e. up to O (n=2)) the accuracy of
asymptotic x? tests by means of so-called Bartlett-type corrections. The latter con-
stitute an extension of the traditional Bartlett correction to statistics other than the
likelihood ratio, and have been proposed in different forms and context by Chandra
and Mukerjee (1991), Cordeiro and Ferrari (1991) and Taniguchi (1991). A detailed
review of Bartlett and Bartlett-type corrections can be found in Cribari-Neto and
Cordeiro (1996).

In this paper we investigate the possibility of using Bartlett-type corrections for
empirical discrepancy statistics. To be specific we derive two Bartlett-type correc-
tions that can be applied to any empirical discrepancy statistics. This result is
of theoretical importance because it shows that the same corrections developed for
fully parametric models can be used in nonparametric settings. It is worth pointing
out that although we use the same arguments of Chandra and Mukerjee (1991) and
Cordeiro and Ferrari (1991), the actual derivation of the results of this paper does

not benefit from these papers since the necesary stochastic expansions are different



and involve moments rather than likelihood derivatives. The results of this paper are
also of practical importantce because they imply, at least in principle, the possibility
of obtaining test statistics with a desirable higher-order accuracy property without
resorting to computational intensive methods, such as the bootstrap.

In this paper we also use Monte Carlo simulations to evaluate and compare the
effectiveness of the proposed corrections in terms of finite sample accuracy and power.
Incidentally, we note here that, with the exception of Chen (1994) in the case of
empirical likelihood, most of the simulations studies on the higher-order properties
of empirical discrepancy statistics have been focused on their accuracy rather than
power properties. Thus, the results of this paper fills, at least partially, this gap
since they provide some Monte Carlo evidence on how Bartlett and Bartlett—type
corrections affect the power of empirical discrepancy statistics.

The remaining part of the paper is organised as follows: next section reviews
briefly the basic theory for empirical discrepancy statistics and recalls the necessary
asymptotic expansions. Section 3 derives two general Bartlett-type corrections for
empirical discrepancy statistics, whereas Section 4 derives explicitly the corrections
for the Cressie-Read goodness-of-fit statistic and reports the results of the Monte
Carlo study. Finally, Section 5 contains some concluding remarks and indications for
future research. An appendix contains the details of the calculations and proofs of
the main results

Notice that throughout the rest of the paper we follow tensor notation and indicate
arrays by their elements. Thus, for any index 1 < j,k,... < ¢, @/ is an R%valued
vector, a’* is an R7*%-valued matrix, etc. We also follow the summation convention,

that is for any two repeated indices, their sum is understood.

2 Empirical discrepancy tests for moment based

models

Let 71, ..., Z, be a sequence of independent R?-valued random vectors with common
unknown nonsingular distribution Fj, and let § € © C R? be an unknown parame-

ter vector associated with Fy. As in Qin and Lawless (1994), we assume that the



information about Fj and 6 is available in the form of the moment restriction
E[f(Z,00)] =0, (1)

for some specified unique value 6y of 8 with f(Z,0) : R x © — R* (s > p) valued
vector of known functionally independent functions. For simplicity, we shall consider
the class of just-determined moment based models, that is models where dim (0©) =
dim{f (Z,0)}, so that §; may be estimated by solving the sample analogue of (1).
Notice that this class of models is very large since it contains all M and most Z type
estimators.

For any a,b € R, let h(a,b) be a function which satisfies the requirement that
h(a,a) = 0. Let p; = F{Z;} be a nonparametric likelihood supported on Z; and
let p; = 1/n denote the nonparametric maximum likelihood estimator for p;. The
empirical discrepancy approach for testing the validity of the moment condition (1)
(i.e. Hp: 0 = 0y) is based on the following constrained minimisation

ep ) = iyt {3 hi) | S0 =1 Snszaa =0} )

where kj, is a normalising constant which depends on A (-, -) and is chosen so that the

test statistic is O, (1) as n — oo. Thus empirical discrepancy effectively reweights

the data so that the moment condition (1) holds at 6y and the discrepancy function
h (p;, p;) is minimised.

Let W (6p) denote the solution of (2) and let 9"h := 0"h (pi, pi) /Op; |,,—5,- The

i =Di "
following conditions are assumed to hold with probability 1.

A1 The intersection of the null space of the matrix | f(Z,,00) ... f(Z,,00)

with the unit simplex is nonempty;
A2 E (||f (Z, HO)H‘S) < oo for 6 big enough;
A3 limsupyy ., |[Eexp (' f (Z,00))] < 1, for 1 = (-1)"/*, t € R,
A4 "h =0, (n"/ kp) for r =1,...,4, and 9*h # 0.

A1 ensures the uniqueness of W () (as implied in Lemma 2 of Owen (1990)). A2-
A3 are sufficient to ensure that the Edgeworth expansion of W () obtained from
the formal delta method is valid in the sense of Bhattacharya and Ghosh (1978).

)



Note also that the Crameér condition A3 implies that F cannot be a distribution

supported on lattices. Finally A4 is the same regularity condition on the derivatives
of h assumed by Corcoran (1998).

Let 0= F [f (Zi,Ho)f(Zi,Ho)/} and let ¢7 (Z;,00) (j = 1,...,q) denote the jth
component of g (Z;,0y) := o f (Z;,0p). Furthermore let

oIk = B¢ (Z,00) ..g™ (Z,00)], AT =37 [g" (Zi,00) ..g™ (Zi, 00) — o] /m,

denote the standardised moments of f (Z;,6y) and the discrepancies between sample

and true moments, respectively. Note that o/ = 0 and a/* = §*, where 6% is the

Kronecker delta.

Corcoran (1998) showed that W (6y) admits a stochastic expansion of the form

nTIW (6y) = kh{

where

azd?h N aiaz0*h N atay0®h N ajo*h

ﬁAjAj 4 (CL% — CLQ) (a%bl — 561,2[)1 + 3a1b2>AjAjAkAk_
a2 a$
b—;Aj’“AjA’lc + MajklAjAkAl + albg_—ga?’blajklmAjAkAlAm +
a/l a/l al
D pot gt o ey 9250201 = 30B2) i mn g gt g g
aj aj
3 (aibs —4 2a'2b1)ajklAlmAjAkAm n
ay
2&2[)1 — (llbz : : _
TAJklAJAkAl} +0,(n7?), (3)
02 W3O n'{3(6°h)* — 9*ho*h}
——7, Gy = ———5——=3, (3= ’
kn?h P 2 (k)P (02h) 6 ( kn)® (32h)°
a? (0%h) b — aiaz0%h n a3dPh
on2 2 n? 6n3

(4)

2n?2 n2 2n3 24n4

Let W7 denote the signed square root of W (6y), and let x/t-J¢ denote the kth

(multivariate) cumulant of 7. As shown in the Appendix using W; and some addi-

tional calculations lead to the two regularity conditions derived by Corcoran (1998),

namely

OPh +2n0?h =0, 0*h+3n0°h =0, (5)

that imply &3 = O (n_3/2> and )" = O (n72).
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If one considers an Edgeworth expansion for the density fuw g, (x*) of any test
belonging to the class €D (), it is shown in the Appendix that they are of the
form furg,) (X?) oc e X°/? (A" {149 (x2) /n} + Ry, where the coefficient 1 (-)
is a polynomial in x? and the remainder R, is O (n™2) by the even-odd property of
the polynomials appearing in the Edgeworth expansion for the signed square root of
W () (see Barndorff-Nielsen and Hall (1988)). If (5) is not satisfied, then ¥ (-) is
nonlinear in x? and hence adjusting the statistic through multiplication or division
by a constant of the form 1+ B/n (i.e. the standard Bartlett correction) will not, in
general, eliminate the coefficient of order n~! in the adjusted statistic. In the next
section we show that, whether ¢ (-) is linear in x? or not, it is possible to improve the
approximation error of fi(s,) (x?) to the order O (n™?) by deriving two Bartlett-type

adjustments.

3 Bartlett-type adjustments for empirical discrep-
ancy tests: Theory

In this section we derive two Bartlett-type adjustments that can be used to improve
the accuracy of empirical discrepancy test statistics for the null hypothesis Hy : 8 = 6,
in (1). The first adjustment is the empirical discrepancy analogue of the one proposed
in parametric likelihood theory by Chandra and Mukerjee (1991), and is based on
an Edgeworth expansion argument for the signed square root of W (). Specifically,
consider a perturbed version W, of W7, where

1/2

Wiy = W 4 ()2 2 (CHMAFAL 4 CIR AR 4 CHRmAFALA™) . (6)

ai

and the C arrays are constants free of n, chosen so that Weay (6g) = Wiy, Wiy,
satisfies

Pr {Weons (60) < u} = /0 9o (0)dv + 0 (n7¥?) Wu >0, (7)

where g, (-) is the density of a chi squared random variate with ¢ degrees of freedom.

We can prove the following theorem:

Theorem 1 For any test statistic belonging to ED (6y), there exist constants CI* CIkL Cikim
such that (7) holds, where



cik — b% - a% (a% — ay) (CL%IH — bagby + 3a152)5jk (24q) — adkl _ oIl g fmm n

a?b ab 4 72

a_il 2&2[)1 — a1b2 2 i 5_&% 2&2[)1 — a1b2 .
4b? af 2b, aj
a_%ag (5@2()1 — 3@1[)2) o E} ajlmaklm 4 {CL_%CLQ (5&261 - 3&162) .

by a$ 18 b af

a} <2a2b1 - a1b2>2 B 5_@% (2<l2b1 - a1b2> n 19} o H gl

4_17% a‘f 2b1 a‘{ ﬂ @ ’

oIkl _ ai [ b1 (2a5b —aiby ok
by |3a? 2 aj ’

2
gm0 | b 2agbi — bz ) | (abs = 205D\ U}
C 12b1[ a%+6{< ! + o e

(a% — CLQ) (a%bl — 5&261 + Salbg) ﬁ

6 2
6a3 aj

{_(I_% [45) (5(12b1 - 3(11(72) 4 CL% (2@2[)1 — albg>2 4

3] 7% '™ 4

6b, ab 2403 at

5&% <2a2b1 — G1b2> _ l} [3] ajkna/lmn‘ (8)

12b1 CL411 54

Proof. See the Appendix B

One can now verify that the rth cumulant <" of Weps (6o) is k" {Wenr (60)} =
271 (r — 1)lq + R, where the remainder R, is of order O (n~?) using the same argu-
ments of Barndorff-Nielsen and Hall (1988).

The second type of adjustment is based on the approach developed by Cordeiro
and Ferrari (1991). Using (22), proceeding as in the proof of Theorem 1, it follows
after some lengthy algebra that the density of W () is

3
drgg+ar (% -
i (@) = gy ) + 32 P22 O 0 (5o902), )
r=0
where

Define now the modified statistic

Wer (60) = W (60) [1—{% e AW G0)} i (10)

ming(g+2)...(g+2(r—1))
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where the O (1) terms ¢, are chosen so that they satisfy:
Pr {Wer (60) < u} = / 94 (W) dv+ 0 (n™%2)  Vu >0, (11)
0
We can prove the following theorem:

Theorem 2 For any test belonging to ED (6y), there exist unique constants ¢y, co, 3

such that (11) holds, where

2 2p, — b b b
A (a7 — ag) (ajby _ Sashy + 3aibs) (1 — 3k, ) kng (24 q) +
a3

ag

l@b_i 43 { <2a2bl Za1b2> n <a1b3 —526L351>} (1 B khb—;ﬂ L
2 aj ai ay aj

l{ﬁ + 2&2 (5&2[)1 — 3&1[)2) + 5 (Cleg — 2a2b1) } ]{Jh—

a a$ af
b2 2asby — arby \ b by — 3a.b
12_}1_‘_9 a214a12 +12_1@2(5@216 3@12)
aj aj ay aj

bl 2@261 — CleQ l{?% bl 2b1 2(12()1 — albg kg
qo— (2L TR Th L LY 2 ikt B L

a? ( aj )} 6 + a? a? +3 af G | CImAIK +

1/2) 2
2a2b1 — Glbg aq B b1 @ + (05} (5a2b1 - 3a1b2) 4
af bt @ 4 a$

3_61 _ CL_% 2a2b1 — albg 2@2[)1 a1b2 kr —
402 Ab 2t (T

{ 2b1 (2&2[)1 — a1b2>} {<2a2b1 — G1b2> bl } kh
—=5+3
af 12

{ b2 9 (2&2()1 — albg> bl Q9 (5@2()1 — 3a1b2)

12— 12—
1 CLZ]% a?

bl 2&261 — a,lbg k’}zl bl 2b1 2&2[)1 — a162 kh ik Kl
42— | ———— = P s 2 -Z Jj
a1< aj )}12+ a? a? 3 af 4 e

b1 bl 2@2[)1 — (11b2 a1b3 — 2@3[)1 9 iikk
- = 3 ko)
“ a% [ 2&1 {< azll > ( a? ne N

(a? — ay) (a3by — bagby + 3aibs) by
1 2(11@6 2U1 12_23kh (2+C])+
1 ai
12b_2+9<2a2611a1b2> 12&&2(5&2()1(}-3&1()2)_
aq ay aj aj

by [2asb; —arby\ | ki by 2by 2a3by — arby ) | kil wt ik
gt (29201 — P2 ) [ B D1 ) 201 20201 — d192 Fh | gkl j
( al >}6 A I 3] T



2b 2a9b1 — a1 b 2a:b1 — a1b by | k?
H__;+3 (w)} {(%) __;}_u
aj aj ai ai ) 12

{1217_% 19 (2&2[)1 — a1b2>2 i 12% (05} (5&2[)1 - 3&1[)2)

af at ai af
by [2asby —arby\ | k2 by [ 20y 2a5b; — arby\ | K} ik Kl
gt (20200 — b2\ U B D1 ) 2 g (2020 = Oa ) L K|
a? ( aj 12 a? a? + aj 2 | ¢
EBoy [ 20y 2a5by — arby\ | * ik kil kL jkl
c3 = %2 @ +3 —a (9a a™ 4+ 60 ) . (12)

Proof. See the Appendix B

As for the perturbed statistic Weys (6), one can verify that the rth cumulant "
of Wer (60p) is k" {Wer (69)} = 277! (r — 1)!q¢+ R,, where the remainder R, is of order
O (n™?) by the same arguments of Barndorff-Nielsen and Hall (1988).

Remark 1. Both Bartlett-type adjustments (8) and (12) depend on the deriva-
tives of the discrepancy function and on the third and fourth (multivariate) standard-
ised moments of the moment vector E [f (Z,0y)] = 0 under investigation. In the case
of a vector mean, i.e. £ (Z) = 6, and for a given discrepancy function (or family of),
it is possible to give a qualitative characterisation of both adjustments in terms of
(multivariate) skewness and kurtosis of the underlying unknown distribution of the
data. See next section for an example. For general moment functions, however, a
similar characterisation is typically not possible.

Remark 2. Cribari-Neto and Cordeiro (1996) noted that there are alternative
definitions of the Bartlett-type correction of Cordeiro and Ferrari (1991) that are
all equivalent up to O (n™!). Let B, denote the O (n™') term appearing in the
modified statistic (10), and let 7' (B,) denote any transformation of B, such that
T(B,)=1- B, + 0O (n?). It then follows that

WCFT (00) =W (00) T (Bn) = WCF (00) + @) (n_2> .

Examples of Wepr (6p) include the scale 1/(1+ B,) and exponential exp (—B,,)

transformations which produce, respectively, the scale and exponential Bartlett-type

10



correction, namely
Wers (00) = W (6) / (14 By), and Werg (6p) = W (0) exp (—B,,) - (13)

Using simulations Cribari-Neto and Cordeiro (1996) showed that in a number of
situations of practical relevance both Bartlett-type corrections in (13) are superior to
the original one in terms of finite sample properties. Interestingly, the same conclusion
seems to hold in the case of empirical discrepancy statistics; see next section for more
details.

Remark 3. As in the case of Bartlett-type corrections for fully parametric mod-
els, the Bartlett-type corrections derived in this paper may produce modified statistics
that are not necessarily monotonic transformations of the original statistic. Thus it
might happen that large values of the original statistic produce small values of the
modified statistics, and this can negatively affect the power of the modified statistic.
One possible solution to this potential problem is to consider monotonic adjustments
of the original statistic, like, for example, those suggested by Kakizawa (1996), and
Cordeiro, Ferrari and Cysneiros (1998). Note, however, that even with monotonic ad-
justments the modified statistic might still be less powerful than the original one. For
example, the Bartlett correction for empirical likelihood is a monotonic adjustment,
yet as illustrated in Figures 1 and 2 below the Bartlett corrected empirical likelihood

ratio is less powerful than the original one.

4 Bartlett-type adjustments for empirical discrep-

ancy tests: Applications

In this section we illustrate Theorems 1 and 2 by deriving the Bartlett-type adjust-
ments for the empirical discrepancy statistic based on the Cressie-Read goodness-
of-fit statistic recently introduced by Baggerly (1998). Let k, = —2/(A+1) and
h(pi,pi) = 27! {1 - (pi/ﬁ,‘)f)‘} where —oo < A < oo is a user-specified parameter.
For this choice of the discrepancy function h (p;,p;), the constrained minimisation

defined in (2) becomes

R 00) = gt {5y {1 /Y =1 s (2o =0},

=1
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Let WCRx () denote the solution of CR (6y); Baggerly (1998) showed that unless
A =0 (i.e. empirical likelihood) the Cressie-Read goodness of fit statistic WCRo (6;)
does not admit a traditional Bartlett correction. In fact, it can be verified that, unless
A =0, WER (0y) does not satisfy (5). Thus the Cressie-Read goodness-of-fit statistic
provides a natural example of empirical discrepancy statistic where the Bartlett-type

corrections are necessary to obtain improved inferences.

Calculations show that the three arrays of constants C7% Ckl Cikim (8) of Theo-

rem 1 are
; 2 gkl (3= X —4M%)
Cjk — i\6 ( 342\ + )\2) 5jk (2 + q) Oé4 + ( B )a]lmaklm +
A (11—; 4)\) aklalmm okl _%ajkl,
: AB+2)) X (14+N)? A(1+4)) A
jklm AT T 27 gklm M S jk clm jkn lmn. 14
C YRR 9% [3] 6776 BT 3] 7" ™™, (14)

Thus, using (14) it follows after some further algebra that the modified test statistic
Wen (00) (7) is

A ) )\2 ) kil
WERY (6y) = W (6) +n l—goﬂ’dAJAle + {§ (—3 + 2\ + )\2> 6% (24 q) — 0‘2 +
2
(3 A—4A )ajlmak:lm A (1 + 4>‘) ajklalmm} AJAk'/n 4+
9
3 + 2)‘ jk:lm )‘2 (1 + )‘)2 jk ¢lm A (1 + 4)\) jkn lmn
{ + 18 3] 6776 71 3] &’ -
)\ jko lmo i Ak Al Am
oﬂ ATARATA™| . (15)
Turning to the second adjustment, calculations show that the three constants (12)
of Theorem 2 are
a = {18077 45X (A — 1) ¥k — 120750/ — 18X°¢ (¢ + 2)} ,
A . . ) )
& = = {—9 (3+2X\) @@ 15 (1 — \) a?* oM 4+ 12 (1 + ) a?™ad* 4 27Aq (¢ + 2)} ,
X k. kil ikl jki
G = 3 (304” o™ 4+ 207" ) (16)

As for the modified test statistic Won? (6p), using (16) gives the second modified

empirical discrepancy test statistic I/VSRA (6p), namely

W (6,) A P O VI
CRA — _ 0 jik Kkl
Wer (0o) W (0o) [q { 5 3 + T
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2

A

1 Qa +

1 {_A@+2M .
q(q+2)

AM1+N) ., SA(1 — \) addkaklt 3)\2
Maaklajkl_,_ ( ) o a +—q(2+q)p W(0) +
3 36 4
)‘2 i1k Kl ikl 7kl 2
JJ 2 J J . 1
ICESICETY (3a77k ! + 207M )W(@o)] (17)

As mentioned in Remark 1 of the previous section, if the parameter of interest is
a vector of means it is possible to characterise the magnitude of the Bartlett-type
corrections in terms of skewness and kurtosis x := a#** — ¢ (q + 2). In particular, in
the case of the Cressie-Read statistic considered here the following can be said about
the modified statistics (15) and (17) (or equivalently (13)). Symmetric distributions
with heavy tails, that is if a/* = a#7%* = 0 and & > 0 for all j, k, [, produce typically
larger Bartlett-type corrections. Note however that for A < —2/3 or A > 0 the
magnitude of the corrections will be reduced. On the other hand, skewed distributions
reduce the corrections by a/*a’* /3, but at the same time because of the nonlinear
dependency of the two skewness coefficients on the parameter A\, and of the nonlinear
structure of the adjustments themselves it is not possible to assess the overall effect
of nonzero skewness on the magnitude of the adjustments.

It is important to note that although both (15) and (17) are asymptotically x? with
an approximation error of order O (n?), the computation of the two modified test
statistics is rather different. The modification proposed by Chandra and Mukerjee
(1991) involves computation of quantities such as a/* A7 AW and a7*m A7 Ak AL A™;
these take, respectively, O (ng®) and O (ng*) time to compute. On the other hand,
the modification proposed by Cordeiro and Ferrari (1991) requires the computation of
most three-fold summations like for example a?/*a*. To further illustrate this point,
consider the case of empirical likelihood (A = 0). By (15) the resulting modified test
statistic is

kil jlm . klm .
Mﬁww=W%%(a S )NM, (18)

2 3
whereas by (17) the resulting modified test statistic is

1 (ajjkk okl okl

WERS (60) =W (00) — o S5 = S | W 60 (19)

and coincides with the (original) Bartlett-corrected version of DiCiccio et al. (1991).

In the case of univariate problems the two adjustments (18) and (19) coincide since

13



AIAR = W (0y) /n. Indeed, in general, the computational difference between (15)
and (17) disappears in the case of univariate problems, since both adjustments are
functions of the test statistic itself and the unknown moments of the data. This
suggests that, unless one is considering univariate problems, the Cordeiro and Ferrari
(1991) adjustment (10) and (17) seems preferrable on the grounds of computational
simplicity, especially when ¢ is large.

It should also be noted that both (15) and (17) depend on the population moments
adt-ix of f(Z,6y) which are usually unknown. In practice, these moments can be

replaced by the n'/? consistent estimates

o ikl i (i _1/2)jm (f] _1/2>kn (i _1/2)10 Fm (Zi’§> #n (Zu@) fo (Zi7§> /n,
=1
A S (S () (200 (205) (20)
where

S =3 f7(2,0) £ (20 fn, 0 =60+ 0, (01,
i=1
without affecting the order of the coverage error of the resulting approximation.

To investigate the finite sample effectiveness of the two modified statistics (15)
and (17) we have used simulations. As mentioned in the previous section, there are
a number of alternative versions of the modified statistic Wir* (6g) . In the simula-
tions we considered the original as well as the scale and exponential versions defined
in (13). While all three corrections reduced the size distortion of the original test
statistics (with the scale correction being the most effective) the exponential one was
found to be superior in terms of power, and thus we decided to report only the result
of the latter'. We considered three different test statistics all belonging to the Cressie-
Read goodness-of-fit statistic CR (6p), namely the Euclidean likelihood CR_ (6)
(A = —2), the Kullback-Liebler CR_; () (A = —1), and the empirical likelihood ra-
tio CRo (Ag) (A =0), and their modified versions Wi (6g) and Wary, (6o). Note,
however, that in the case of empirical likelihood we used the original modified version
WER® (6y) as given in (19). We were interested to test a null hypothesis about the
population mean 6 = y = E(Z) and considered three univariate and two bivariate
cases. In the first univariate case samples were drawn from the standard normal dis-

tribution; the null hypothesis is Hy : = 0 and the required standardised moments

IThe full set of simulations’ results is available upon request.
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are a® = 0 and o* = 3. For the second univariate case, samples were drawn from
a X3 (chi-squared distribution with four degrees of freedom); the null hypothesis is
Hy : = 4 and the required (standardised) moments are o® = 2'/2 and o* = 6.
For the third univariate case, samples were drawn for a t5 ( t-distribution with five
degrees of freedom); the null hypothesis is Hy : ¢ = 0 and the required (standardised)
moments are a® = 0 and o* = 9. For each combination of the sample size n and nom-
inal a-level Tables 1-3 report the observed size of the three test statistics with and
without the theoretical and estimated exponential Bartlett-type adjustments. The
latter type adjustments were calculated using (20). The results were obtained from

5000 samples generated by the S-PLUS functions rnorm and rchisq and rt.

Tables 1-3 approx. here

In the first bivariate case samples were drawn from a standard bivariate normal.

The null hypothesis was Hy : p? = 0, and the required theoretical moments were

/¥ = 0 and a#** = 1. For the second bivariate case we used the same design
considered by Chen (1994) and generated a bivariate random vector 2/ as
zi =20 +z}, ZP=x0+2? (21)

where ¥, z!, and z? were drawn independently from the exponential distribution
with unit mean. The null hypothesis was Hy : ¢/ = 2 and the required moments
were ofii = 2 (01 4 02)* 4+ 2 (63 + 03), ¥ = 2 (01 + 02)° + 20104 (01 + 02), aF37T =
24 (02 + 0109 + 02)%, adTRk = 12 (o) + 02)*, adI1k = 12 (01 + 03)* + 120104 (02 + 02),
where o1 = (1/2) (1 - 3’1/2), and o = (1/2) (—1 + 3’1/2). For each combination of
the sample size n and nominal a-level, Tables 4-5 report the observed size of the three
test statistics with and without the theoretical and estimated exponential Bartlett-
type adjustments. The latter were calculated using the theoretical and the estimated
moments as in (20). The results were obtained from 5000 samples generated by the

S-PLUS functions rmvnorm and rexp.

Tables 4-5 approx. here

Bearing in mind that the scale of the simulation study is small, the results of

Tables 1-5 indicate the following: Firstly, Bartlett and Bartlett-type corrections are

15



effective in bringing the observed size of the corrected test closer to the nominal
value. Secondly, while Bartlett-corrected empirical likelihood ratio statistics are still
(slightly) oversized, Bartlett-type corrected Euclidean likelihood and Kullback-Liebler
test statistics become (slightly) undersized, in particular with skewed distributions
and small sample sizes. This is perhaps not surprising given the nonlinear structure
of the Bartlett-type corrections and the curvature exhibited by Q-Q plots® of the
three test statistics considered. Such curvature, which indicates a somewhat poor
x? approximation at the higher quantiles, is the principle way in which empirical
discrepancy shows different behaviour from an ordinary parametric likelihood, and
implies that Bartlett and Bartlett-type corrected y? calibrations for nonparametric
likelihood-based inferences will typically be less effective than those used for para-
metric likelihood-based inferences. Thirdly, test statistics adjusted with estimated
Bartlett-type corrections are typically more accurate (i.e. their actual size is closer
to the nominal one) than those adjusted with their theoretical counterpart. This fact
can be explained by noting that the sample moments used in the estimated Bartlett
and Bartlett-type corrections have a typical (downward) finite sample bias which
effectively reduces the magnitude of the estimated corrections. Finally, the Kullback-
Liebler CR_; (6p) performs in general slightly better than the Euclidean likelihood
CR_2 (6y) statistic.

It should be mentioned that these corrections are not intended to increase the
power of test statistics and can lead to a loss in power. Using the conventional Pit-
man approach based on the comparison of local (asymptotic) power, Bravo (2003)
shows that no member of the Cressie-Read goodness-of-fit statistic is uniformly supe-
rior in terms of its second-order local power (i.e. up to the order o (n‘l/ 2) ). Using the
same approach, it is not difficult to show (see also Cox and Reid (1987)) that empiri-
cal discrepancy test statistics and their corrected versions have the same second-order
local power, that is they are second-order efficient. Efficiency, however, is an asymp-
totic property, and thus to assess (and compare) the finite sample power of empirical
discrepancy statistics and their corrected versions, we used simulations.

We considered the three test statistics CR ) (6p) for (A = —2,—1,0) and their

modified versions Warp (8) Wena (6o), and used the five different distributions as

2The Q-Q plots are available upon request.
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in Tables 1-5, but since the results were fairly similar, and to save space, we report
only the results concerning the bivariate normal and exponential (see (21)) cases. In
both cases we calculated® the finite sample power of the three tests for Hy : pf = 1)
against H, : p/ = pd +77 at the 49 points of 77/ = [ 1 72 ] = (Z%k)l/Z 6% within the
grid G, = { —-0.3 0.3 } X { —-0.3 0.3 } using 1000 replications for each simulated
sample. The nominal level was set to 0.05 and the sample size n = 25. All of the
three original tests showed good power properties with power increasing along the
directions of the alternatives, and peaking at about 0.45 around the edges of G,. As
expected from Bravo (2003), none of the three test statistic was uniformly superior in
G, although empirical likelihood seemed slightly superior for values of the alternative
closer to the null hypothesis. In the case of the Bartlett and Bartlett-type corrections,
the simulations indicated that the modified statistics still have reasonable power on
G, but they are clearly less powerful than the original statistics. Figures 1 and 2

show the power difference between the original and their adjusted versions.
Figures 1-2 approx. here

Figures 1 and 2 show that the power differences range from -0.03 to -0.1 which
gives power losses between 6 and 20 per cent. Notice that the differences first seem to
increase (although not uniformly) according to the direction of the alternatives and
then stabilise towards the edge of G, -with the possible exception of 7/ approaching
{ -0.3 -0.3

exponential data (21), and smaller for the Bartlett corrected empirical likelihood ratio.

Notice also that the magnitude of the differences is bigger for the

These characteristics of the power difference were found also when considering the
other three (univariate) distributions and therefore suggest that, in general, Bartlett
and Bartlett-type adjustments affect negatively the power of empirical discrepancy
statistics. The magnitude of this negative effect depends on a number of factors
including the characteristics of the unknown distribution of the data, the direction of
the alternatives and the functional form of the correction itself. Thus, and perhaps

not surprisingly, the simulations suggest that the price to pay in order to obtain

3Notice that in the case of the original (oversized) test statistics (and of the Bartett-corrected
empirical likelihood ratio) the calculations were carried out using Monte Carlo adjusted critical
values, whereas in the case of the Bartlett-type corrected Euclidean and Kullback-Liebler statistic

we used tabulated critical values
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improved inferences is a general, albeit small, loss in power.

5 Conclusions

In this paper we have derived two Bartlett-type adjustments that can be used to
obtain improved inferences for the class of empirical discrepancy statistics recently
introduced by Corcoran (1998). The finite sample behaviour of the proposed Bartlett-
type adjustments has been investigated by means of simulations. The results of the
latter are encouraging and suggest that both corrections are effective in bringing
the observed size (coverage) of the original test statistics closer to the nominal one.
However, they show that the resulting corrected test statistics become in some cases
(slightly) undersized (i.e. the resulting coverage regions are larger). The latter point
is a simple consequence of relative poor quality of x? approximation to the distribu-
tion of the empirical discrepancy statistics, in particular at the higher quantiles (i.e.
curved Q-Q plots as mentioned in the previous section), and should not be taken as a
criticism of Bartlett-type corrections. As remarked by Corcoran et al. (1995) “[Em-
pirical discrepancy statistics] are a hybrid, where a discrete multinomial distribution
is placed on a sample assumed to be from a continuous underlying continuous distrib-
ution”, and therefore it is perhaps not surprising that although Bartlett and Bartlett-
type corrections apply to both parametric and nonparametric likelihoods, they are
typically less effective for the latter. Despite this shortcoming, the simulations results
show clearly that Bartlett-type corrections do produce improved confidence regions
that are accurate enough for many practical purposes, especially if one is willing to
accept some losses in terms of powers.

The results of this paper can be used to obtain improved inferences for parameters
defined by the class of just-determined moment based models (1) . It would be of some
interest to consider the more general case of over-determined moment based models
like those considered by Qin and Lawless (1994), since these models are typically
characterised by large finite sample size distortions and are often difficult to bootstrap.
It would also be of interest to generalise the results of the paper to the so-called
smooth functions of means model considered by DiCiccio et al. (1991). We hope to

consider these topics in future communications.
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Appendix

The signed squared root decomposotion of W (6)
The signed squared root W7 of W () is a g-dimensional vector such that W (6y) =
nWIWJ Neglecting terms of order O, (n_?’/ 2) it follows from (3) that W7 has com-

ponents

Wi = (k)"

iﬂAj_’_A_k {(2&251 —a1b2> ay ok Al iﬂAﬂk} +
1

a 2 aj by/? a

Al AR

2b}/? af
a9 (5&261 - 3&162)

af

aq Ak { ((1% — a2) (afbl — 5&2[)1 -+ 3(11(72)

3 (a1b2 - 2(12[)1)

ai

2
3by 0L pdl AR 2a2b1 — arby AR AL a_f 2a901 Z 10y adkngfmn gL gm |
40/1 al 4b]_ a/l

<2a261 —4a152> OzklmAijl + a1bs _52a3b1 OéjlclmAlAm}l )

ajknalmnAlAm + OdjkmAlmAl +

2a] a3

Lengthy calculations show that
( kh)1/2 m{/nlﬂ +0 (n’3/2) R = Ry {53‘&61/@% + /fj”/n} +0 (nfz) :
( kh)3/2 Klénl/nlﬂ +0 (n’S/Q) : pedlm ( k )2 ]Hlm/n +0 ( )
Wi = 0 forr 5, (22)

K7

Hj7n7l

where
val' _ 1 2a2b1 —aiby\ a1 . b1/2 L
2 at bl/2 ay ’
, a? by — bagby + 3a1b 2asb; — a1b
K%k:(l 0116G21+G12)6 (2+q)+3{a214(112
ay ay
a1bs —52(1351 } QM {b_; " 2az (5a2516— 3a1b2)+
ay ay aj
5 (a1b2 —4 2&2[)1) } O(jlma/klm + {CLQ (5@2[)1 6— 3@1[)2) +
ay aj
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3 af (2ab—aibe)® (200 = aibo | g
4a?  4by aj 2a} ’
1/2
l{gkl _ by / {_2_521 +3 <2a2b1 Za1b2> } ajkl)
aq ai aj
» 2b b 2a2b1 — aqb bs — 2asb ,
Kiklm _ _21{__;_'_6(@2146112 @103 5a31>}agklm+
aj ay aj aj
(al — ag) (albl — 5a261 + 3a1b2) b1 ik lm
4 p pv BTN
b% 2a2b1 - albz 2 bl as (5@2[)1 3@1[)2)
4 3 — | T 4_ 6 -
ai aj a3 aj
1401 (202b1 — b2 Ly gin pjnn,
ai aj

The last line of (22) follows from the general formulae developed by James and Mayne

(1962). Substituting (4) in (22) shows that

K= — (Qnth + 83/1) o/ (n3/282h) +0 (n_3/2> ,
Hm {—3 (0°h)" /6% + &' — 2n (20°h + na2h)} oI | (n0%h) +

64{1/4+ 3/ (8n0°h) } {~0°h/8 + (8°h +nd’h) 4} (3] 66" ) (n*0°h) +
{4 +4(0h)"/ (3n0%h)” + 140°h/ (:ma%)} 3]l fn + O (n?)
from which one gets (5) .

Proof of Theorem 1

Using (22), calculations reveal that the cumulants for the perturbed statistic

n'/?W,, defined in (6) are
A ‘ A b1/2
Koy = (kn)'? (KJ{ + C’Jkk;—) /nt? +0 (n_3/2) :
1
K =k [yﬁﬁ - { % (2C9* 4 6CIM! -+ 207Mm M)
1
261,2[)1 — albg im m _
2 (T) O[Jl Ckl }/n} +O (n 2) y
. . S
gL = kh)3/2 (Hénl + 6%0”“) /nt?+0 (n’?’/z) ,
b2 , , ‘
ngwlm _ ( kh>2 [ JKlm +24 1 {C]klm+20]knolmn _ 2a]kn0lmn+

2&2[)1 — a1b2 al ]knclmn

by

H /0 (n?),

()

ai
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HJ(;;MJ'T = O (nlﬂ"ﬂ) for r > 5. (23)

Exponentiation of the approximate cumulant generating function implied by (23) and
a Taylor expansion of the resulting exponential about & = 0 yields the approximate

moment generating function ¢WjM (€) of the perturbed statistic W,
C

Ged ) ) 7.kl
Vs ) = = l1+ (ffjc L+ mcMé’Jé’ ¢ ) /nV/? 1 { (ﬂ'oM +FU.CM,£CM) ek /ot
(14 byl + ]klm)ssss i 2“&"5%’“5’5%”50} /n]

KoMK 24 72

from which, by formal inversion and successive integration of the resulting Edgeworth

density over the R9-valued sphere of radius u'/2, it is easy to see that (7) will hold iff

i,k j k,l,m klm k,l m,n,o
("JJCM + "%M’%M) =0, ([4] ReMRENT + R ) =0, rewrrea’ =0, (24)

by the symmetry of the normal distribution. Solving (24) for C* CI* Cik™ gives

(8).
Density of W (y)
Lengthy calculations show that the approximate density of W (6y) is given by

3
fwoy) () = gq () + o (2) 4 g (),

r=0 n

where

3l<:h— —1 > kng (24 q) +
1

b 2asb; — a1b b; — 2azb b
oo (222) < (2524)) (o - -
1 1 ai

aJikk B Hﬁ n 2a5 (bagzby — 3a1bs) n 5 (a1by — 2azby) } @—l—

d - l( bl > ( — ag) (a%bl — 5a2b1 + 3a1b2)
0o =

h

2 a% a? a411 9
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2
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aj bt a 8 a$
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Proof ot Theorem 2
Using the recurrence relation g,.9, () = "¢, () /q (¢ + 2) ... (¢ + 2r), the density

of fw (s, (x) as given in the asymptotic expansion (9) can be written as

3 '
fwio) (2) = g4 (2) {1 Ly &2 } +0(n?),

—o N

where d, = d,/(q),. As in Cordeiro and Ferrari (1991), we can define the modified

statistic

Wer (69) = W (6) {1 _ Z e AW (00)}~ } Lo (n_3/2> 7

r=1 n

and note that the moment generating function ¥y, (g,) (§) of Wer (6o) can be ex-

pressed as
_ —q/2
wWCF(GO) (5) = ¢X§ (f) + J (’ff;q(/il—‘ (ng) + 0 (7173/2)
where
0o 3 d’, _ .
J () = /0 exp {—y/2} y*! {Z_: %yﬂ + d{)} dy.

Solving for ¢y, ¢, c3 the equation J (§) = 0 gives (12) after some algebra.
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Tables and figures

Table 1. Observed size of a nominal a% -level Euclidean likelihood CR_,,Kullback-
Liebler CR_; and empirical likelihood CR test with theoretical and estimated

Bartlett-type adjustments for N (0, 1) data.

n  Statistic 10 5 Statistic 10 5 Statistic 10 5
15 CR_, 1390 841 CR_, 1371 739 CR, 1383 7.3
we,, 1112 623 W&, 992 573 W&, 1212 6.22
Wb, 1129 654 Wb, 1044 597 WY, 1236 7.01

o o 898 3.97 o - 889 4.03 o, 1212 6.62
Wblppy 905 401 Wb, 897 412 Wb, 1236 7.01

25 CR_, 1344 743 CR_, 1303 7.02 CRy 1312 7.05
we,, 1237 597 W&, 1191 553 W&, 1201 6.32
Wb, 1244 609 WY, 1210 5.69° WY, 1233 6.51
oo 10.69° 4.12 o o 9745 ATTC o, 1201 6.32
Wb,y 1078 435° Wb, 983 483 Wb, 1233 651

50 CR_, 11.82 631 CR_, 1166 583 CR, 11.54 5.71°
we,, 11.06° 571 W&,  9.72¢° 553 W&, 11.03° 5.35°
Wb, 11.15° 579  Wbl,, 989 565° Wb, 11.26° 5.56°
Wepp 1081° 415  We.p  9.65° 481 W&,  11.03° 5.35°
Wb, 1089 425 Wb, 9.92¢ 492 Wb, 11.26° 5.56°

a Adjusted test with the theoretical Bartlett-type correction, b Adjusted test with estimated Bartlett-type correction
c Difference between observed and nominal size is not statistically significant at 0.01 level.
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Table 2. Observed size of a nominal a% -level Euclidean likelihood CR _5, Kullback-
Liebler CR_; and empirical likelihood C'Ry test with theoretical and estimated

Bartlett-type adjustments for t5 data

n  Statistic 10 5 Statistic 10 5 Statistic 10 5

15 CR_, 347 786 CR_; 1333 723 CR, 1380 821
We, 869 403 W&, 9.03 410 W&, 899 417
Wb, 897 411 WY, 927 412 WY,  9.08 4.04
Weop 815 394 W4, 889 4.05 o, 899 417
Wbty 850 415 Wb, 853 410 Wbk, 908 4.04

25 CR_, 1253 671 CR_; 1291 685 CR, 1261 7.24
We, 879 408 W&, 9.27¢ 415 W&,  9.69° 4.26°
Wby, 905 415 Wb, 9.54° 421° Wb,  9.44° 4.35°
Weeop 894 405 W4, 901 408 o 9.69° 4.26°
Wblpp 9.14° 412 Wb, 915° 418  Wbh,  9.44° 4.35°

50 CR_, 1215 642 CR_; 1226 671  CRy 1205 6.95
We,,  9.38 431° W&, 9.51° 444  Wg,, 10.35° 5.57°
Wb, 951° 446° WY, 9.69° 463 Wb, 1057 5.38¢
Wepp  9.11° 4.25¢° W, 9.31° 4.39¢ W&,  10.35° 5.57°
Wby 9260 451 Wb, 942 451° Wb, 1057° 5.38

a Adjusted test with the theoretical Bartlett-type correction, b Adjusted test with estimated Bartlett-type correction
¢ Difference between observed and nominal size is not statistically significant at 0.01 level.
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Table 3. Observed size of a nominal a% -level Euclidean likelihood CR_5, Kullback-
Liebler CR_; and empirical likelihood C'Ry test with theoretical and estimated

Bartlett-type adjustments for x5 data

n  Statistic 10 5 Statistic 10 5 Statistic 10 5

15 CR_, 1525 1005 CR_, 1455 893  CR, 1484 9.35
We,, 1235 852 W&, 1241 743 W&, 1204 7.55
Wb, 1264 881 Wb, 1278 759 WY, 1238 7.89
Wy 842 378 W4, 825 3.59 a 1204 7.55
Wbty 878 402 Wb, 819 377 Wb, 1238 7.89

25 CR_, 13.08 7.74 CR_; 1264 721  CRy 1258 7.52
we,, 1231 698 W&, 1195 657 W&, 1169 6.41
Wb, 1204 720 Wb, 1221 674 Wb, 1190 6.74
Weopw 869 395 W%, 890 4.00 o 1169 6.41
Wbt,., 883 409 Wb, 906 4.16° Wb, 11.90 6.74

50 CR_, 1134 649 CR_; 1127 632 CRy 11.07 6.05
We,, 1093 612 W&, 10.74° 597 W&,  9.95° 5.89
Wb, 1109 632 Wb, 10.89° 6.16 WY, 9.73¢ 5.99
Wepp  9.03°  4.06 W&, 9.42° 409 W&  9.95° 5.89
Wblpp 919° 427¢ Wb, 927° 434° Wb, 973 599

a Adjusted test with the theoretical Bartlett-type correction, b Adjusted test with estimated Bartlett-type correction
¢ Difference between observed and nominal size is not statistically significant at 0.01 level.
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Table 4. Observed size of a nominal a% -level Euclidean likelihood CR _5, Kullback-
Liebler CR_;, and empirical likelihood CRy test with theoretical and estimated

Bartlett-type adjustments for bivariate N (0,1) data

n  Statistic 10 5 Statistic 10 5 Statistic 10 5

15 CR_, 1425 976 CR_; 1655 1025 CR, 1648 11.97
we,, 841 388 W&, 834 394 W&, 1232 859
Wb, 856 395 Wb, 815 401 Wb, 1275 891
We,., 832 342 W4, 824 3.63 o 1224 846
Wb, 845 351 Wbh,. 805 372 Wb, 1253 865

25 CR_, 1249 715 CR_, 1233 684 CR, 1376 &.11
we,, 862 396 W&, 844 395 W&, 1073 6.5
Wb, 873 404 WY, 852 407 Wb, 1058 6.89
W, 835 379 W%, 856 3.89 o 10.86 6.49
Wb, 844 387 Wb, 864 396 Wb, 1072 6.37

50 CR_, 1174 642 CR_; 1201 590 CRy 1254 6.12
We,,  9.09° 4.06 W&, 9.29° 410° W&, 10.93° 5.31°
Wby 923 415° Wb, 945° 4.21¢ Wb, 11.05° 5.42°
W, 855 399 Wo,. 911 4.05 o 10.88° 5.22°
Wb, 872 408 Wby, 927 4166 Wb, 10.97¢ 5.31°

a Adjusted test with the theoretical Bartlett-type correction, b Adjusted test with estimated Bartlett-type correction
¢ Difference between observed and nominal size is not statistically significant at 0.01 level.
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Table 5. Observed size of a nominal a% -level Euclidean likelihood CR_5, Kullback-
Liebler CR_; and empirical likelihood C'Ry test with theoretical and estimated

Bartlett-type adjustments for 2, z7 data as in (21).

19 ™1

n  Statistic 10 5 Statistic 10 5 Statistic 10 5
15 CR_, 1718 1148 CR_;  20.24 1318 CR, 21.98 15.18
we,, 1148 325  Wg,, 799 321 We, 1523 991
Wb, 1221 351 Wb, 876 353 Wb, 1643 11.06
a 851 3.16 a 705 311 a. 1555 10.09
Wb, 839 337 Wb, 784 399 Wb, 1621 10.89
25 CR_, 1354 804 CR_; 1594 9.08 CRy 16.52 10.56
We, 899 362 W&, 819 371  Wg, 1233 877
Wb, 917 379  Wt,, 896 38 Wb,  13.62 9.53
a. 894 349 a. 905 357 o 1273 851
Wb, 882 363 Wb, 893 368 Wb, 13.84 832
50 CR_, 1145 624 CR_; 1123 617 CR 12.68 7.84
Wey  9.52¢ 385 W&,  9.15° 3.99° Wg, 1118 6.15
Wb, 948 397 Wb,  9.34° 411° Wb, 1148 6.42
a . 905 3.81 . 9.09 387 o 1129 6.06
Wb, 923 393 Wb, 913 401 Wb, 1149 6.37

a Adjusted test with the theoretical Bartlett-type correction, b Adjusted test with estimated Bartlett-type correction
¢ Difference between observed and nominal size is not statistically significant at 0.01 level.
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Figure 1: Observed power difference between the original Euclidean likelihood CR _
(a-b), Kullback-Liebler CR_; (c-d), and empirical likelihood CRy (e-f) and their

corrected versions Wy (left column) and Wep (right column) for N (0, I) data.
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Figure 2: Observed power difference between the original Euclidean likelihood CR _»
(a-b), Kullback-Liebler CR_; (c-d), and empirical likelihood CRy (e-f) and their

corrected versions Weys (left column) and Wer (right column) for 2} and z? data as
in (21).
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