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1 Introduction

The empirical discrepancy approach to inference developed by the late Steve Corcoran

(1998) provides a general unifying framework for analysing different nonparametric

likelihood-based test statistics such as the empirical likelihood ratio (Owen, 1988),

the Euclidean likelihood ratio (Owen, 1990), the Kullback-Liebler statistic (DiCiccio

and Romano, 1990), and others. Empirical discrepancy inference is based on esti-

mating among all the distributions supported on the sample and satisfying a given

restriction, the closest to the empirical distribution function. The intuition behind

this approach is that without restrictions the empirical distribution function is an

optimal estimator (i.e. it is the maximum nonparametric likelihood estimator) of

the unknown distribution of the data, but when restrictions are present this is not

necessarily true. The estimated probabilities appearing in the resulting constrained

estimator of the distribution of the data can then be used to make inference about

the restrictions using a χ2 calibration. Thus the empirical discrepancy inference dis-

penses with the need for intensive Monte Carlo simulation, as typically required by

bootstrap approaches, requiring instead a numerical optimisation.

Confidence regions constructed using empirical discrepancy statistics have cover-

age error typically of order O (n−1) which is the same as for confidence regions based

on parametric likelihoods. However, it has been reported (see, for example, Owen

(1988), Corcoran, Davison and Spady (1995) and Baggerly (1998)) that in samples

of small/moderate size empirical discrepancy regions are often too narrow when the

asymptotic χ2 calibration is used. One possible way to obtain improved confidence

regions is to use a bootstrap calibration. The latter was proposed originally by Owen

(1988) in the context of empirical likelihood, but can be easily adapted to any em-

pirical discrepancy statistic. It works well (at least for empirical likelihood), but is

computationally quite expensive. Another possibility is to use a Bartlett correction.

The latter was investigated by a number of authors for specific empirical discrepancy

statistics. DiCiccio, Hall and Romano (1991), Chen (1993), Zhang (1996), and others

showed that empirical likelihood ratio admits a Bartlett correction. On the other

hand, Brown and Chen (1998) and Bravo (1999) showed, respectively, that neither

the Euclidean likelihood, nor the Kullback-Liebler and Hellinger statistics admit a

Bartlett correction. Baggerly (1998) investigated the issue of Bartlett correctability
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for the class of empirical discrepancy statistics based on minimising the Cressie-Read

goodness-of-fit statistic (Read and Cressie, 1988, Ch. 1). This class is very large and

contains, apart from empirical likelihood and Kullback-Liebler, several commonly

used test statistics such as Neyman-modified χ2 and Pearson’s χ2. Baggerly (1998)

showed that empirical likelihood is the only member of the Cressie-Read goodness-of-

fit statistics to admit a Bartlett correction. More generally, Corcoran (1998) showed

that empirical discrepancy statistics admit a Bartlett correction provided that the

discrepancy function satisfies two “regularity conditions” defined in (5) below. These

conditions are satisfied by the empirical likelihood ratio, but not by any of the other

above-mentioned empirical discrepancy statistics. Thus a large number of commonly

used empirical discrepancy test statistics cannot be Bartlett-corrected, at least in the

traditional sense.

The “regularity conditions” (5) ensure that the third and fourth cumulant of the

signed square root of an empirical discrepancy test statistic are, respectively, of order

O
³
n−3/2

´
and O (n−2). This, combined with an Edgeworth expansion argument, is

sufficient to obtain corrected test statistics that are accurate up to the order O (n−2),

but by no means necessary. Indeed, as is well-known in parametric likelihood infer-

ence, it is still possible to improve to third-order (i.e. up to O (n−2)) the accuracy of

asymptotic χ2 tests by means of so-called Bartlett-type corrections. The latter con-

stitute an extension of the traditional Bartlett correction to statistics other than the

likelihood ratio, and have been proposed in different forms and context by Chandra

and Mukerjee (1991), Cordeiro and Ferrari (1991) and Taniguchi (1991). A detailed

review of Bartlett and Bartlett-type corrections can be found in Cribari-Neto and

Cordeiro (1996).

In this paper we investigate the possibility of using Bartlett-type corrections for

empirical discrepancy statistics. To be specific we derive two Bartlett-type correc-

tions that can be applied to any empirical discrepancy statistics. This result is

of theoretical importance because it shows that the same corrections developed for

fully parametric models can be used in nonparametric settings. It is worth pointing

out that although we use the same arguments of Chandra and Mukerjee (1991) and

Cordeiro and Ferrari (1991), the actual derivation of the results of this paper does

not benefit from these papers since the necesary stochastic expansions are different
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and involve moments rather than likelihood derivatives. The results of this paper are

also of practical importantce because they imply, at least in principle, the possibility

of obtaining test statistics with a desirable higher-order accuracy property without

resorting to computational intensive methods, such as the bootstrap.

In this paper we also use Monte Carlo simulations to evaluate and compare the

effectiveness of the proposed corrections in terms of finite sample accuracy and power.

Incidentally, we note here that, with the exception of Chen (1994) in the case of

empirical likelihood, most of the simulations studies on the higher-order properties

of empirical discrepancy statistics have been focused on their accuracy rather than

power properties. Thus, the results of this paper fills, at least partially, this gap

since they provide some Monte Carlo evidence on how Bartlett and Bartlett—type

corrections affect the power of empirical discrepancy statistics.

The remaining part of the paper is organised as follows: next section reviews

briefly the basic theory for empirical discrepancy statistics and recalls the necessary

asymptotic expansions. Section 3 derives two general Bartlett-type corrections for

empirical discrepancy statistics, whereas Section 4 derives explicitly the corrections

for the Cressie-Read goodness-of-fit statistic and reports the results of the Monte

Carlo study. Finally, Section 5 contains some concluding remarks and indications for

future research. An appendix contains the details of the calculations and proofs of

the main results

Notice that throughout the rest of the paper we follow tensor notation and indicate

arrays by their elements. Thus, for any index 1 ≤ j, k, ... ≤ q, aj is an <q-valued
vector, ajk is an <q×q-valued matrix, etc. We also follow the summation convention,
that is for any two repeated indices, their sum is understood.

2 Empirical discrepancy tests for moment based

models

Let Z1, ..., Zn be a sequence of independent <q-valued random vectors with common

unknown nonsingular distribution F0, and let θ ∈ Θ ⊆ <q be an unknown parame-
ter vector associated with F0. As in Qin and Lawless (1994), we assume that the
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information about F0 and θ is available in the form of the moment restriction

E [f (Z, θ0)] = 0, (1)

for some specified unique value θ0 of θ with f (Z, θ) : <q × Θ → <s (s ≥ p) valued
vector of known functionally independent functions. For simplicity, we shall consider

the class of just-determined moment based models, that is models where dim (Θ) =

dim {f (Z, θ)}, so that θ0 may be estimated by solving the sample analogue of (1).
Notice that this class of models is very large since it contains all M and most Z type

estimators.

For any a, b ∈ <, let h (a, b) be a function which satisfies the requirement that
h (a, a) = 0. Let pi = F {Zi} be a nonparametric likelihood supported on Zi and
let bpi = 1/n denote the nonparametric maximum likelihood estimator for pi. The

empirical discrepancy approach for testing the validity of the moment condition (1)

(i.e. H0 : θ = θ0) is based on the following constrained minimisation

ED (θ0) = inf
pi

(
kh

nX
i=1

h (pi, bpi) | nX
i=1

pi = 1,
nX
i=1

pif (Zi, θ0) = 0

)
(2)

where kh is a normalising constant which depends on h (·, ·) and is chosen so that the
test statistic is Op (1) as n → ∞. Thus empirical discrepancy effectively reweights
the data so that the moment condition (1) holds at θ0 and the discrepancy function

h (pi, bpi) is minimised.
Let W (θ0) denote the solution of (2) and let ∂rh := ∂rh (pi, bpi) /∂pri |pi=bpi. The

following conditions are assumed to hold with probability 1.

A1 The intersection of the null space of the matrix
∙
f (Z1, θ0) ... f (Zn, θ0)

¸
with the unit simplex is nonempty;

A2 E
³
kf (Z, θ0)kδ

´
<∞ for δ big enough;

A3 lim supktk→∞ |E exp (ıt0f (Z, θ0))| < 1, for ı = (−1)1/2, t ∈ <q;

A4 ∂rh = Op (n
r/ kh) for r = 1, ..., 4, and ∂2h 6= 0.

A1 ensures the uniqueness of W (θ0) (as implied in Lemma 2 of Owen (1990)). A2-

A3 are sufficient to ensure that the Edgeworth expansion of W (θ0) obtained from

the formal delta method is valid in the sense of Bhattacharya and Ghosh (1978).
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Note also that the Cramèr condition A3 implies that F0 cannot be a distribution

supported on lattices. Finally A4 is the same regularity condition on the derivatives

of h assumed by Corcoran (1998).

Let
P
0 = E

h
f (Zi, θ0) f (Zi, θ0)

0i and let gj (Zi, θ0) (j = 1, ..., q) denote the jth
component of g (Zi, θ0) :=

P−1/2
0 f (Zi, θ0). Furthermore let

αj1...jk = E
h
gj1 (Z, θ0) ...g

jk (Z, θ0)
i
, Aj1...jk =

X
i

h
gj1 (Zi, θ0) ...g

jk (Zi, θ0)− αj1...jk
i
/n,

denote the standardised moments of f (Zi, θ0) and the discrepancies between sample

and true moments, respectively. Note that αj = 0 and αjk = δjk, where δjk is the

Kronecker delta.

Corcoran (1998) showed that W (θ0) admits a stochastic expansion of the form

n−1W (θ0) = kh

(
b1
a21
AjAj +

(a21 − a2) (a21b1 − 5a2b1 + 3a1b2)
a61

AjAjAkAk−

b1
a21
AjkAjAk +

2a2b1 − a1b2
a41

αjklAjAkAl +
a1b3 − 2a3b1

a51
αjklmAjAkAlAm +

b1
a21
AjlAklAjAk +

a2 (5a2b1 − 3a1b2)
a61

αjklαjmnAkAlAmAn +

3 (a1b2 − 2a2b1)
a41

αjklAlmAjAkAm +

2a2b1 − a1b2
a41

AjklAjAkAl
)
+Op

³
n−5/2

´
, (3)

where

a1 =
n2

kh∂2h
, a2 = −

n3∂3h

2 ( kh)
2 (∂2h)3

, a3 =
n4
n
3 (∂3h)

2 − ∂2h∂4h
o

6 ( kh)
3 (∂2h)5

,

b1 =
a21 (∂

2h)

2n2
, b2 =

a1a2∂
2h

n2
+
a31∂

3h

6n3
,

b3 =
a22∂

2h

2n2
+
a1a3∂

2h

n2
+
a21a2∂

3h

2n3
+
a41∂

4h

24n4
. (4)

Let W j denote the signed square root of W (θ0), and let κj1...jk denote the kth

(multivariate) cumulant of W j. As shown in the Appendix using Wj and some addi-

tional calculations lead to the two regularity conditions derived by Corcoran (1998),

namely

∂3h+ 2n∂2h = 0, ∂4h+ 3n∂3h = 0, (5)

that imply κjkl3 = O
³
n−3/2

´
and κjklm4 = O (n−2).
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If one considers an Edgeworth expansion for the density fW (θ0) (χ
2) of any test

belonging to the class ED (θ0), it is shown in the Appendix that they are of the
form fW (θ0) (χ

2) ∝ e−χ2/2 (χ2)q/2−1 {1 + ψ (χ2) /n} + Rn, where the coefficient ψ (·)
is a polynomial in χ2 and the remainder Rn is O (n−2) by the even-odd property of

the polynomials appearing in the Edgeworth expansion for the signed square root of

W (θ0) (see Barndorff-Nielsen and Hall (1988)). If (5) is not satisfied, then ψ (·) is
nonlinear in χ2 and hence adjusting the statistic through multiplication or division

by a constant of the form 1 +B/n (i.e. the standard Bartlett correction) will not, in

general, eliminate the coefficient of order n−1 in the adjusted statistic. In the next

section we show that, whether ψ (·) is linear in χ2 or not, it is possible to improve the

approximation error of fW (θ0) (χ
2) to the order O (n−2) by deriving two Bartlett-type

adjustments.

3 Bartlett-type adjustments for empirical discrep-

ancy tests: Theory

In this section we derive two Bartlett-type adjustments that can be used to improve

the accuracy of empirical discrepancy test statistics for the null hypothesisH0 : θ = θ0

in (1). The first adjustment is the empirical discrepancy analogue of the one proposed

in parametric likelihood theory by Chandra and Mukerjee (1991), and is based on

an Edgeworth expansion argument for the signed square root of W (θ0). Specifically,

consider a perturbed version W j
CM of W j, where

W j
CM =W j + ( kh)

1/2 b
1/2
1

a1

³
CjklAkAl + CjkAk/n+ CjklmAkAlAm

´
, (6)

and the C arrays are constants free of n, chosen so that WCM (θ0) = W j
CMW

j
CM

satisfies

Pr {WCM (θ0) ≤ u} =
Z u

0
gq (v) dv +O

³
n−3/2

´
∀u ≥ 0, (7)

where gq (·) is the density of a chi squared random variate with q degrees of freedom.
We can prove the following theorem:

Theorem 1 For any test statistic belonging to ED (θ0), there exist constants Cjk, Cjkl, Cjklm

such that (7) holds, where
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Cjk =
b21 − a41
a21b1

(a21 − a2) (a21b1 − 5a2b1 + 3a1b2)
a61

δjk (2 + q)− αjkll

4
− αjllαkmm

72
+⎧⎨⎩ a414b21

Ã
2a2b1 − a1b2

a41

!2
+
5a21
2b1

Ã
2a2b1 − a1b2

a41

!
−

a21
b1

a2 (5a2b1 − 3a1b2)
a61

− 11
18

)
αjlmαklm +

(
a21
b1

a2 (5a2b1 − 3a1b2)
a61

−

a41
4b21

Ã
2a2b1 − a1b2

a41

!2
− 5a

2
1

2b1

Ã
2a2b1 − a1b2

a41

!
+
19

24

⎫⎬⎭αjklαlmm,

Cjkl =
a21
b1

(
b1
3a21
− 1
2

Ã
2a2b1 − a1b2

a41

!)
αjkl,

Cjklm = − a21
12b1

"
− b1
a21
+ 6

(Ã
2a2b1 − a1b2

a41

!
+

Ã
a1b3 − 2a3b1

a51

!)#
αjklm −

(a21 − a2) (a21b1 − 5a2b1 + 3a1b2)
6a61

b1
a21
[3] δjkδlm +⎧⎨⎩− a216b1 a2 (5a2b1 − 3a1b2)a61

+
a41
24b21

Ã
2a2b1 − a1b2

a41

!2
+

5a21
12b1

Ã
2a2b1 − a1b2

a41

!
− 7

54

)
[3]αjknαlmn. (8)

Proof. See the Appendix

One can now verify that the rth cumulant κr of WCM (θ0) is κr {WCM (θ0)} =
2r−1 (r − 1)!q+Rn, where the remainder Rn is of order O (n−2) using the same argu-
ments of Barndorff-Nielsen and Hall (1988).

The second type of adjustment is based on the approach developed by Cordeiro

and Ferrari (1991). Using (22), proceeding as in the proof of Theorem 1, it follows

after some lengthy algebra that the density of W (θ0) is

fW (θ0) (x) = gq (x) +
3X
r=0

drgq+2r (x)

n
+O

³
n−3/2

´
, (9)

where

Define now the modified statistic

WCF (θ0) =W (θ0)

"
1−

(
3X
r=1

cr {W (θ0)}r−1

nq (q + 2) ... (q + 2 (r − 1))

)#
(10)
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where the O (1) terms cr are chosen so that they satisfy:

Pr {WCF (θ0) ≤ u} =
Z u

0
gq (v) dv +O

³
n−3/2

´
∀u ≥ 0. (11)

We can prove the following theorem:

Theorem 2 For any test belonging to ED (θ0), there exist unique constants c1, c2, c3
such that (11) holds, where

c1 =
(a21 − a2) (a21b1 − 5a2b1 + 3a1b2)

a61

Ã
1− 3kh

b1
a21

!
khq (2 + q) +"

kh
2

b21
a41
+ 3

(Ã
2a2b1 − a1b2

a41

!
+

Ã
a1b3 − 2a3b1

a51

!)Ã
1− kh

b1
a21

!#
khα

jjkk +"(
b1
a21
+
2a2 (5a2b1 − 3a1b2)

a61
+
5 (a1b2 − 2a2b1)

a41

)
kh−⎧⎨⎩12 b21a41 + 9

Ã
2a2b1 − a1b2

a41

!2
+ 12

b1
a21

a2 (5a2b1 − 3a1b2)
a61

−

42
b1
a21

Ã
2a2b1 − a1b2

a41

!)
k2h
6
+
b1
a21

(
−2b1
a21
+ 3

Ã
2a2b1 − a1b2

a41

!)2
k3h
6

⎤⎦αjklαjkl +⎡⎢⎣
⎧⎨⎩
Ã
2a2b1 − a1b2

a41

!
a1

b
1/2
1

− b
1/2
1

a1

⎫⎬⎭
2
kh
4
+

(
a2 (5a2b1 − 3a1b2)

a61
+

3b1
4a21
− a21
4b1

Ã
2a2b1 − a1b2

a41

!2
− 5

Ã
2a2b1 − a1b2

2a41

!⎫⎬⎭ kh −(
−2b1
a21
+ 3

Ã
2a2b1 − a1b2

a41

!)(Ã
2a2b1 − a1b2

a41

!
− b1
a21

)
k2h
12
−⎧⎨⎩12 b21a41 + 9

Ã
2a2b1 − a1b2

a41

!2
+ 12

b1
a21

a2 (5a2b1 − 3a1b2)
a61

−

42
b1
a21

Ã
2a2b1 − a1b2

a41

!)
k2h
12
+
b1
a21

(
−2b1
a21
+ 3

Ã
2a2b1 − a1b2

a41

!)2
k3h
4

⎤⎦αjjkαkll,
c2 =

b1
a21

"
− b1
2a21

+ 3

(Ã
2a2b1 − a1b2

a41

!
+

Ã
a1b3 − 2a3b1

a51

!)#
k2hα

jjkk +

(a21 − a2) (a21b1 − 5a2b1 + 3a1b2)
a61

b1
a21
3k2hq (2 + q) +⎡⎣⎧⎨⎩12 b21a41 + 9

Ã
2a2b1 − a1b2

a41

!2
+ 12

b1
a21

a2 (5a2b1 − 3a1b2)
a61

−

42
b1
a21

Ã
2a2b1 − a1b2

a41

!)
k2h
6
− b1
a21

(
−2b1
a21
+ 3

Ã
2a2b1 − a1b2

a41

!)2
k3h
3

⎤⎦αjklαjkl +
9



"(
−2b1
a21
+ 3

Ã
2a2b1 − a1b2

a41

!)(Ã
2a2b1 − a1b2

a41

!
− b1
a21

)
k2h
12
+⎧⎨⎩12 b21a41 + 9

Ã
2a2b1 − a1b2

a41

!2
+ 12

b1
a21

a2 (5a2b1 − 3a1b2)
a61

−

42
b1
a21

Ã
2a2b1 − a1b2

a41

!)
k2h
12
− b1
a21

(
−2b1
a21
+ 3

Ã
2a2b1 − a1b2

a41

!)2
k3h
2

⎤⎦αjjkαkll
c3 =

k3h
36

b1
a21

(
−2b1
a21
+ 3

Ã
2a2b1 − a1b2

a41

!)2 ³
9αjjkαkll + 6αjklαjkl

´
. (12)

Proof. See the Appendix

As for the perturbed statistic WCM (θ0), one can verify that the rth cumulant κr

ofWCF (θ0) is κr {WCF (θ0)} = 2r−1 (r − 1)!q+Rn where the remainder Rn is of order
O (n−2) by the same arguments of Barndorff-Nielsen and Hall (1988).

Remark 1. Both Bartlett-type adjustments (8) and (12) depend on the deriva-

tives of the discrepancy function and on the third and fourth (multivariate) standard-

ised moments of the moment vector E [f (Z, θ0)] = 0 under investigation. In the case

of a vector mean, i.e. E (Z) = θ0, and for a given discrepancy function (or family of),

it is possible to give a qualitative characterisation of both adjustments in terms of

(multivariate) skewness and kurtosis of the underlying unknown distribution of the

data. See next section for an example. For general moment functions, however, a

similar characterisation is typically not possible.

Remark 2. Cribari-Neto and Cordeiro (1996) noted that there are alternative

definitions of the Bartlett-type correction of Cordeiro and Ferrari (1991) that are

all equivalent up to O (n−1). Let Bn denote the O (n−1) term appearing in the

modified statistic (10), and let T (Bn) denote any transformation of Bn such that

T (Bn) = 1−Bn +O (n−2). It then follows that

WCFT (θ0) :=W (θ0)T (Bn) =WCF (θ0) +O
³
n−2

´
.

Examples of WCFT (θ0) include the scale 1/ (1 +Bn) and exponential exp (−Bn)
transformations which produce, respectively, the scale and exponential Bartlett-type

10



correction, namely

WCFS (θ0) =W (θ0) / (1 +Bn) , and WCFE (θ0) =W (θ0) exp (−Bn) . (13)

Using simulations Cribari-Neto and Cordeiro (1996) showed that in a number of

situations of practical relevance both Bartlett-type corrections in (13) are superior to

the original one in terms of finite sample properties. Interestingly, the same conclusion

seems to hold in the case of empirical discrepancy statistics; see next section for more

details.

Remark 3. As in the case of Bartlett-type corrections for fully parametric mod-

els, the Bartlett-type corrections derived in this paper may produce modified statistics

that are not necessarily monotonic transformations of the original statistic. Thus it

might happen that large values of the original statistic produce small values of the

modified statistics, and this can negatively affect the power of the modified statistic.

One possible solution to this potential problem is to consider monotonic adjustments

of the original statistic, like, for example, those suggested by Kakizawa (1996), and

Cordeiro, Ferrari and Cysneiros (1998). Note, however, that even with monotonic ad-

justments the modified statistic might still be less powerful than the original one. For

example, the Bartlett correction for empirical likelihood is a monotonic adjustment,

yet as illustrated in Figures 1 and 2 below the Bartlett corrected empirical likelihood

ratio is less powerful than the original one.

4 Bartlett-type adjustments for empirical discrep-

ancy tests: Applications

In this section we illustrate Theorems 1 and 2 by deriving the Bartlett-type adjust-

ments for the empirical discrepancy statistic based on the Cressie-Read goodness-

of-fit statistic recently introduced by Baggerly (1998). Let kh = −2/ (λ+ 1) and
h (pi, bpi) = λ−1

n
1− (pi/bpi)−λo where −∞ < λ < ∞ is a user-specified parameter.

For this choice of the discrepancy function h (pi, bpi) , the constrained minimisation
defined in (2) becomes

CRλ (θ0) = inf
pi

(
− 2

λ (λ+ 1)

nX
i=1

n
1− (pi/bpi)−λo | nX

i=1

pi = 1,
nX
i=1

pif (Zi, θ0) = 0

)
.

11



Let W CRλ (θ0) denote the solution of CRλ (θ0); Baggerly (1998) showed that unless

λ = 0 (i.e. empirical likelihood) the Cressie-Read goodness of fit statistic W CR0 (θ0)

does not admit a traditional Bartlett correction. In fact, it can be verified that, unless

λ = 0, W CRλ (θ0) does not satisfy (5) . Thus the Cressie-Read goodness-of-fit statistic

provides a natural example of empirical discrepancy statistic where the Bartlett-type

corrections are necessary to obtain improved inferences.

Calculations show that the three arrays of constants Cjk, Cjkl, Cjklm (8) of Theo-

rem 1 are

Cjk =
λ2

16

³
−3 + 2λ+ λ2

´
δjk (2 + q)− αjkll

4
+

³
3− λ− 4λ2

´
18

αjlmαklm +

λ (1 + 4λ)

18
αjklαlmm, Cjkl = −λ

6
αjkl,

Cjklm =
λ (3 + 2λ)

24
αjklm +

λ2 (1 + λ)2

96
[3] δjkδlm − λ (1 + 4λ)

108
[3]αjknαlmn. (14)

Thus, using (14) it follows after some further algebra that the modified test statistic

WCM (θ0) (7) is

W CRλ
CM (θ0) = W (θ0) + n

"
−λ

3
αjklAjAkW l +

(
λ2

8

³
−3 + 2λ+ λ2

´
δjk (2 + q)− αjkll

2
+³

3− λ− 4λ2
´

9
αjlmαklm +

λ (1 + 4λ)

9
αjklαlmm

⎫⎬⎭AjAk/n+(
λ (3 + 2λ)

12
αjklm +

λ2 (1 + λ)2

48
[3] δjkδlm − λ (1 + 4λ)

54
[3]αjknαlmn+

λ2

36
αjkoαlmo

)
AjAkAlAm

#
. (15)

Turning to the second adjustment, calculations show that the three constants (12)

of Theorem 2 are

c1 =
1

36

n
18αjjkk + 5λ (λ− 1)αjjkαkll − 12αjklαjkl − 18λ2q (q + 2)

o
,

c2 =
λ

36

n
−9 (3 + 2λ)αjjkk + 5 (1− λ)αjjkαkll + 12 (1 + λ)αjklαjkl + 27λq (q + 2)

o
,

c3 =
λ2

12

³
3αjjkαkll + 2αjklαjkl

´
, (16)

As for the modified test statistic W CRλ
CM (θ0), using (16) gives the second modified

empirical discrepancy test statistic W CRλ
CF (θ0), namely

W CRλ
CF (θ0) = W (θ0)−

W (θ0)

n

"
1

q

(
αjjkk

2
− αjklαjkl

3
+
5λ (λ− 1)

36
αjjkαkll−

12



λ2

2
q (q + 2)

)
+

1

q (q + 2)

(
−λ (3 + 2λ)

4
αjjkk+

λ (1 + λ)

3
αjklαjkl +

5λ (1− λ)αjjkαkll

36
+
3λ2

4
q (2 + q)

)
W (θ0) +

λ2

12q (q + 2) (q + 4)

³
3αjjkαkll + 2αjklαjkl

´
W (θ0)

2

#
. (17)

As mentioned in Remark 1 of the previous section, if the parameter of interest is

a vector of means it is possible to characterise the magnitude of the Bartlett-type

corrections in terms of skewness and kurtosis κ := αjjkk − q (q + 2). In particular, in
the case of the Cressie-Read statistic considered here the following can be said about

the modified statistics (15) and (17) (or equivalently (13)). Symmetric distributions

with heavy tails, that is if αjkl = αjjk = 0 and κ > 0 for all j, k, l, produce typically

larger Bartlett-type corrections. Note however that for λ < −2/3 or λ > 0 the

magnitude of the corrections will be reduced. On the other hand, skewed distributions

reduce the corrections by αjklαjkl/3, but at the same time because of the nonlinear

dependency of the two skewness coefficients on the parameter λ, and of the nonlinear

structure of the adjustments themselves it is not possible to assess the overall effect

of nonzero skewness on the magnitude of the adjustments.

It is important to note that although both (15) and (17) are asymptotically χ2q with

an approximation error of order O (n−2), the computation of the two modified test

statistics is rather different. The modification proposed by Chandra and Mukerjee

(1991) involves computation of quantities such as αjklAjAkW l and αjklmAjAkAlAm;

these take, respectively, O (nq3) and O (nq4) time to compute. On the other hand,

the modification proposed by Cordeiro and Ferrari (1991) requires the computation of

most three-fold summations like for example αjjkαkll. To further illustrate this point,

consider the case of empirical likelihood (λ = 0). By (15) the resulting modified test

statistic is

W CR0
CM (θ0) =W (θ0)−

Ã
αjkll

2
− αjlmαklm

3

!
AjAk, (18)

whereas by (17) the resulting modified test statistic is

W CR0
CF (θ0) =W (θ0)−

1

qn

Ã
αjjkk

2
− αjklαjkl

3

!
W (θ0) , (19)

and coincides with the (original) Bartlett-corrected version of DiCiccio et al. (1991).

In the case of univariate problems the two adjustments (18) and (19) coincide since

13



AjAk = W (θ0) /n. Indeed, in general, the computational difference between (15)

and (17) disappears in the case of univariate problems, since both adjustments are

functions of the test statistic itself and the unknown moments of the data. This

suggests that, unless one is considering univariate problems, the Cordeiro and Ferrari

(1991) adjustment (10) and (17) seems preferrable on the grounds of computational

simplicity, especially when q is large.

It should also be noted that both (15) and (17) depend on the population moments

αj1...jk of f (Z, θ0) which are usually unknown. In practice, these moments can be

replaced by the n1/2 consistent estimates

bα jkl =
nX
i=1

³bΣ−1/2
´jm ³bΣ−1/2

´kn ³bΣ−1/2
´lo
fm

³
Zi, bθ´ fn ³Zi, bθ´ f o ³Zi, bθ´ /n,

bα jklm =
nX
i=1

³bΣ−1/2
´jn
...
³bΣ−1/2

´mq
fn
³
Zi, bθ´ ...f q ³Zi, bθ´ /n (20)

where bΣ jk =
nX
i=1

f j
³
Zi, bθ´ fk ³Zi, bθ´ /n, bθ = θ0 +Op

³
n−1/2

´
,

without affecting the order of the coverage error of the resulting approximation.

To investigate the finite sample effectiveness of the two modified statistics (15)

and (17) we have used simulations. As mentioned in the previous section, there are

a number of alternative versions of the modified statistic W CRλ
CF (θ0) . In the simula-

tions we considered the original as well as the scale and exponential versions defined

in (13). While all three corrections reduced the size distortion of the original test

statistics (with the scale correction being the most effective) the exponential one was

found to be superior in terms of power, and thus we decided to report only the result

of the latter1.We considered three different test statistics all belonging to the Cressie-

Read goodness-of-fit statistic CRλ (θ0), namely the Euclidean likelihood CR−2 (θ0)
(λ = −2), the Kullback-Liebler CR−1 (θ0) (λ = −1), and the empirical likelihood ra-
tio CR0 (θ0) (λ = 0), and their modified versions W

CRλ
CM (θ0) and W

CRλ
CFE (θ0). Note,

however, that in the case of empirical likelihood we used the original modified version

W CR0
CF (θ0) as given in (19). We were interested to test a null hypothesis about the

population mean θ = µ = E (Z) and considered three univariate and two bivariate

cases. In the first univariate case samples were drawn from the standard normal dis-

tribution; the null hypothesis is H0 : µ = 0 and the required standardised moments
1The full set of simulations’ results is available upon request.
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are α3 = 0 and α4 = 3. For the second univariate case, samples were drawn from

a χ24 (chi-squared distribution with four degrees of freedom); the null hypothesis is

H0 : µ = 4 and the required (standardised) moments are α3 = 21/2 and α4 = 6.

For the third univariate case, samples were drawn for a t5 ( t-distribution with five

degrees of freedom); the null hypothesis is H0 : µ = 0 and the required (standardised)

moments are α3 = 0 and α4 = 9. For each combination of the sample size n and nom-

inal α-level Tables 1-3 report the observed size of the three test statistics with and

without the theoretical and estimated exponential Bartlett-type adjustments. The

latter type adjustments were calculated using (20). The results were obtained from

5000 samples generated by the S-PLUS functions rnorm and rchisq and rt.

Tables 1-3 approx. here

In the first bivariate case samples were drawn from a standard bivariate normal.

The null hypothesis was H0 : µj = 0, and the required theoretical moments were

αjkl = 0 and αjjkk = 1. For the second bivariate case we used the same design

considered by Chen (1994) and generated a bivariate random vector zji as

z1i = x
0
i + x

1
i , z2i = x

0
i + x

2
i (21)

where x0i , x
1
i , and x

2
i were drawn independently from the exponential distribution

with unit mean. The null hypothesis was H0 : µj = 2 and the required moments

were αjjj = 2 (σ1 + σ2)
3 + 2 (σ31 + σ32), α

jkk = 2 (σ1 + σ2)
3 + 2σ1σ2 (σ1 + σ2), αjjjj =

24 (σ21 + σ1σ2 + σ22)
2, αjjkk = 12 (σ1 + σ2)

4, αjjjk = 12 (σ1 + σ2)
4 + 12σ1σ2 (σ

2
1 + σ22),

where σ1 = (1/2)
³
1 + 3−1/2

´
, and σ2 = (1/2)

³
−1 + 3−1/2

´
. For each combination of

the sample size n and nominal α-level, Tables 4-5 report the observed size of the three

test statistics with and without the theoretical and estimated exponential Bartlett-

type adjustments. The latter were calculated using the theoretical and the estimated

moments as in (20). The results were obtained from 5000 samples generated by the

S-PLUS functions rmvnorm and rexp.

Tables 4-5 approx. here

Bearing in mind that the scale of the simulation study is small, the results of

Tables 1-5 indicate the following: Firstly, Bartlett and Bartlett-type corrections are

15



effective in bringing the observed size of the corrected test closer to the nominal

value. Secondly, while Bartlett-corrected empirical likelihood ratio statistics are still

(slightly) oversized, Bartlett-type corrected Euclidean likelihood and Kullback-Liebler

test statistics become (slightly) undersized, in particular with skewed distributions

and small sample sizes. This is perhaps not surprising given the nonlinear structure

of the Bartlett-type corrections and the curvature exhibited by Q-Q plots2 of the

three test statistics considered. Such curvature, which indicates a somewhat poor

χ2 approximation at the higher quantiles, is the principle way in which empirical

discrepancy shows different behaviour from an ordinary parametric likelihood, and

implies that Bartlett and Bartlett-type corrected χ2 calibrations for nonparametric

likelihood-based inferences will typically be less effective than those used for para-

metric likelihood-based inferences. Thirdly, test statistics adjusted with estimated

Bartlett-type corrections are typically more accurate (i.e. their actual size is closer

to the nominal one) than those adjusted with their theoretical counterpart. This fact

can be explained by noting that the sample moments used in the estimated Bartlett

and Bartlett-type corrections have a typical (downward) finite sample bias which

effectively reduces the magnitude of the estimated corrections. Finally, the Kullback-

Liebler CR−1 (θ0) performs in general slightly better than the Euclidean likelihood
CR−2 (θ0) statistic.
It should be mentioned that these corrections are not intended to increase the

power of test statistics and can lead to a loss in power. Using the conventional Pit-

man approach based on the comparison of local (asymptotic) power, Bravo (2003)

shows that no member of the Cressie-Read goodness-of-fit statistic is uniformly supe-

rior in terms of its second-order local power (i.e. up to the order o
³
n−1/2

´
). Using the

same approach, it is not difficult to show (see also Cox and Reid (1987)) that empiri-

cal discrepancy test statistics and their corrected versions have the same second-order

local power, that is they are second-order efficient. Efficiency, however, is an asymp-

totic property, and thus to assess (and compare) the finite sample power of empirical

discrepancy statistics and their corrected versions, we used simulations.

We considered the three test statistics CRλ (θ0) for (λ = −2,−1, 0) and their
modified versions W CRλ

CM (θ0) W
CRλ
CFE (θ0), and used the five different distributions as

2The Q-Q plots are available upon request.
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in Tables 1-5, but since the results were fairly similar, and to save space, we report

only the results concerning the bivariate normal and exponential (see (21)) cases. In

both cases we calculated3 the finite sample power of the three tests for H0 : µj = µ
j
0

againstHn : µj = µ
j
0+τ

j at the 49 points of τ j =
∙
τ 1 τ 2

¸
:=

³
Σjk0

´1/2
δk within the

grid Gτ =
∙
−0.3 0.3

¸
×
∙
−0.3 0.3

¸
using 1000 replications for each simulated

sample. The nominal level was set to 0.05 and the sample size n = 25. All of the

three original tests showed good power properties with power increasing along the

directions of the alternatives, and peaking at about 0.45 around the edges of Gτ . As

expected from Bravo (2003), none of the three test statistic was uniformly superior in

Gτ , although empirical likelihood seemed slightly superior for values of the alternative

closer to the null hypothesis. In the case of the Bartlett and Bartlett-type corrections,

the simulations indicated that the modified statistics still have reasonable power on

Gτ , but they are clearly less powerful than the original statistics. Figures 1 and 2

show the power difference between the original and their adjusted versions.

Figures 1-2 approx. here

Figures 1 and 2 show that the power differences range from -0.03 to -0.1 which

gives power losses between 6 and 20 per cent. Notice that the differences first seem to

increase (although not uniformly) according to the direction of the alternatives and

then stabilise towards the edge of Gτ -with the possible exception of τ j approaching∙
-0.3 -0.3

¸
. Notice also that the magnitude of the differences is bigger for the

exponential data (21), and smaller for the Bartlett corrected empirical likelihood ratio.

These characteristics of the power difference were found also when considering the

other three (univariate) distributions and therefore suggest that, in general, Bartlett

and Bartlett-type adjustments affect negatively the power of empirical discrepancy

statistics. The magnitude of this negative effect depends on a number of factors

including the characteristics of the unknown distribution of the data, the direction of

the alternatives and the functional form of the correction itself. Thus, and perhaps

not surprisingly, the simulations suggest that the price to pay in order to obtain
3Notice that in the case of the original (oversized) test statistics (and of the Bartett-corrected

empirical likelihood ratio) the calculations were carried out using Monte Carlo adjusted critical

values, whereas in the case of the Bartlett-type corrected Euclidean and Kullback-Liebler statistic

we used tabulated critical values
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improved inferences is a general, albeit small, loss in power.

5 Conclusions

In this paper we have derived two Bartlett-type adjustments that can be used to

obtain improved inferences for the class of empirical discrepancy statistics recently

introduced by Corcoran (1998). The finite sample behaviour of the proposed Bartlett-

type adjustments has been investigated by means of simulations. The results of the

latter are encouraging and suggest that both corrections are effective in bringing

the observed size (coverage) of the original test statistics closer to the nominal one.

However, they show that the resulting corrected test statistics become in some cases

(slightly) undersized (i.e. the resulting coverage regions are larger). The latter point

is a simple consequence of relative poor quality of χ2 approximation to the distribu-

tion of the empirical discrepancy statistics, in particular at the higher quantiles (i.e.

curved Q-Q plots as mentioned in the previous section), and should not be taken as a

criticism of Bartlett-type corrections. As remarked by Corcoran et al. (1995) “[Em-

pirical discrepancy statistics] are a hybrid, where a discrete multinomial distribution

is placed on a sample assumed to be from a continuous underlying continuous distrib-

ution”, and therefore it is perhaps not surprising that although Bartlett and Bartlett-

type corrections apply to both parametric and nonparametric likelihoods, they are

typically less effective for the latter. Despite this shortcoming, the simulations results

show clearly that Bartlett-type corrections do produce improved confidence regions

that are accurate enough for many practical purposes, especially if one is willing to

accept some losses in terms of powers.

The results of this paper can be used to obtain improved inferences for parameters

defined by the class of just-determined moment based models (1) . It would be of some

interest to consider the more general case of over-determined moment based models

like those considered by Qin and Lawless (1994), since these models are typically

characterised by large finite sample size distortions and are often difficult to bootstrap.

It would also be of interest to generalise the results of the paper to the so-called

smooth functions of means model considered by DiCiccio et al. (1991). We hope to

consider these topics in future communications.
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Appendix

The signed squared root decomposotion of W (θ0)

The signed squared rootW j ofW (θ0) is a q-dimensional vector such thatW (θ0) =

nW jW j.Neglecting terms of order Op
³
n−3/2

´
it follows from (3) that W j has com-

ponents

W j = ( kh)
1/2

⎡⎣b1/21
a1
Aj +

Ak

2

⎧⎨⎩
Ã
2a2b1 − a1b2

a41

!
a1

b
1/2
1

αjklAl − b
1/2
1

a1
Ajk

⎫⎬⎭ +
a1

2b
1/2
1

Ak
(
(a21 − a2) (a21b1 − 5a2b1 + 3a1b2)

a61
AjAk+

a2 (5a2b1 − 3a1b2)
a61

αjknαlmnAlAm +
3 (a1b2 − 2a2b1)

a41
αjkmAlmAl +

3b1
4a21
AjlAkl +

2a2b1 − a1b2
a41

AjklAl − a21
4b1

Ã
2a2b1 − a1b2

a41

!2
αjknαlmnAlAm +Ã

2a2b1 − a1b2
2a41

!
αklmAjmAl +

a1b3 − 2a3b1
a51

αjklmAlAm
)#
.

Lengthy calculations show that

κj = ( kh)
1/2 κj1/n

1/2 +O
³
n−3/2

´
, κj,κ = kh

n
δjκb1/a

2
1 + κjκ2 /n

o
+O

³
n−2

´
,

κj,κ,l = ( kh)
3/2 κjκl3 /n

1/2 +O
³
n−3/2

´
, κj,κ,l,m = ( kh)

2 κjκlm4 /n+O
³
n−2

´
,

κj,...,jr = O
³
n1−r/2

´
for r ≥ 5, (22)

where

κj1 =
1

2

⎧⎨⎩
Ã
2a2b1 − a1b2

a41

!
a1

b
1/2
1

− b
1/2
1

a1

⎫⎬⎭αjkk,

κjk2 =
(a21 − a2) (a21b1 − 5a2b1 + 3a1b2)

a61
δjk (2 + q) + 3

(
2a2b1 − a1b2

a41
+

a1b3 − 2a3b1
a51

)
αjkll +

(
b1
a21
+
2a2 (5a2b1 − 3a1b2)

a61
+

5 (a1b2 − 2a2b1)
a41

)
αjlmαklm +

(
a2 (5a2b1 − 3a1b2)

a61
+
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3b1
4a21
− a21
4b1

Ã
2a2b1 − a1b2

a41

!2
− 5

Ã
2a2b1 − a1b2

2a41

!⎫⎬⎭αjklαlmm,

κjkl3 =
b
1/2
1

a1

(
−2b1
a21
+ 3

Ã
2a2b1 − a1b2

a41

!)
αjkl,

κjklm4 =
2b1
a21

(
− b1
a21
+ 6

Ã
2a2b1 − a1b2

a41
+
a1b3 − 2a3b1

a51

!)
αjklm +

4
(a21 − a2) (a21b1 − 5a2b1 + 3a1b2)

a61

b1
a21
[3] δjkδlm +⎧⎨⎩4 b21a41 + 3

Ã
2a2b1 − a1b2

a41

!2
+ 4

b1
a21

a2 (5a2b1 − 3a1b2)
a61

−

14
b1
a21

Ã
2a2b1 − a1b2

a41

!)
[3]αjknαlmn.

The last line of (22) follows from the general formulae developed by James and Mayne

(1962). Substituting (4) in (22) shows that

κjkl3 = −
³
2n∂2h+ ∂3h

´
αjkl/

³
n3/2∂2h

´
+O

³
n−3/2

´
,

κjklm4 =
½
−3

³
∂3h

´2
/∂2h+ ∂4h− 2n

³
2∂3h+ n∂2h

´¾
αjklm/

³
n3∂2h

´
+

64
n
1/4 + ∂3h/

³
8n∂2h

´o n
−∂3h/8 +

³
∂3h+ n∂2h

´
/4
o
[3] δjkδlm/

³
n2∂2h

´
+½

4 + 4
³
∂3h

´2
/
³
3n∂2h

´2
+ 14∂3h/

³
3n∂2h

´¾
[3]αjknαlmn/n+O

³
n−2

´
from which one gets (5) .

Proof of Theorem 1

Using (22), calculations reveal that the cumulants for the perturbed statistic

n1/2W j
CM defined in (6) are

κjCM = ( kh)
1/2

⎛⎝κj1 + Cjkk b1/21a1
⎞⎠ /n1/2 +O ³n−3/2´ ,

κj,κCM = kh

"
δjκ
b1
a21
+

(
κjκ2 +

b1
a21

³
2Cjk + 6Cjkll + 2CjlmCklm

´
+

2

Ã
2a2b1 − a1b2

a41

!
αjlmCklm

)
/n

#
+O

³
n−2

´
,

κj,κ,lCM = ( kh)
3/2

⎛⎝κjκl3 + 6
b
3/2
1

a31
Cjkl

⎞⎠ /n1/2 +O ³n−3/2´ ,
κj,κ,l,mCM = ( kh)

2

"
κjκlm4 + 24

b21
a41

n
Cjklm + 2CjknC lmn − 2αjknC lmn+

2

Ã
2a2b1 − a1b2

a41

!
a21
b1
αjknC lmn

)#
/n+O

³
n−2

´
,
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κj,...,jrCM = O
³
n1−r/2

´
for r ≥ 5. (23)

Exponentiation of the approximate cumulant generating function implied by (23) and

a Taylor expansion of the resulting exponential about ξ = 0 yields the approximate

moment generating function ψW j
CM
(ξ) of the perturbed statistic W j

CM

ψW j
CM
(ξ) = e

ξjξj

2

"
1 +

Ã
κjCMξj +

κj,k,lCMξjξkξl

6

!
/n1/2 +

n³
κj,kCM + κjCMκkCM

´
ξjξk/2+

³
[4]κjCMκk,l,mCM + κj,k,l,mCM

´ ξjξkξlξm
24

+
κj,k,lCMκm,n,oCM ξjξkξlξmξnξo

72

)
/n

#
,

from which, by formal inversion and successive integration of the resulting Edgeworth

density over the <q-valued sphere of radius u1/2, it is easy to see that (7) will hold iff
³
κj,kCM + κjCMκkCM

´
= 0,

³
[4]κjCMκk,l,mCM + κj,k,l,mCM

´
= 0, κj,k,lCMκm,n,oCM = 0, (24)

by the symmetry of the normal distribution. Solving (24) for Cjk, Cjkl, Cjklm gives

(8).

Density of W (0)

Lengthy calculations show that the approximate density of W (θ0) is given by

fW (θ0) (x) = gq (x) +
3X
r=0

drgq+2r (x)

n
+O

³
n−3/2

´
,

where

d0 =

"Ã
3kh

b1
a21
− 1

!
(a21 − a2) (a21b1 − 5a2b1 + 3a1b2)

2a61
khq (2 + q)+"

−kh
b21
2a41

+ 3

(Ã
2a2b1 − a1b2

a41

!
+

Ã
a1b3 − 2a3b1

a51

!)Ã
kh
b1
a21
− 1

!#
×

kh
αjjkk

2
−
"(
b1
a21
+
2a2 (5a2b1 − 3a1b2)

a61
+
5 (a1b2 − 2a2b1)

a41

)
kh
2
+⎧⎨⎩12 b21a41 + 9

Ã
2a2b1 − a1b2

a41

!2
+ 12

b1
a21

a2 (5a2b1 − 3a1b2)
a61

−

42
b1
a21

Ã
2a2b1 − a1b2

a41

!)
k2h
12
− b1
a21

(
−2b1
a21
+ 3

Ã
2a2b1 − a1b2

a41

!)2
k3h
12

⎤⎦×
αjklαjkl +

⎡⎢⎣−
⎧⎨⎩
Ã
2a2b1 − a1b2

a41

!
a1

b
1/2
1

− b
1/2
1

a1

⎫⎬⎭
2
kh
8
−
(
a2 (5a2b1 − 3a1b2)

a61
+

21



3b1
4a21
− a21
4b1

Ã
2a2b1 − a1b2

a41

!2
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Proof ot Theorem 2

Using the recurrence relation gq+2r (x) = xrgq (x) /q (q + 2) ... (q + 2r), the density

of fW (θ0) (x) as given in the asymptotic expansion (9) can be written as

fW (θ0) (x) = gq (x)

(
1 +

3X
r=0

d0rx
r

n

)
+O

³
n−3/2

´
,

where d0r = dr/ (q)r. As in Cordeiro and Ferrari (1991), we can define the modified

statistic

WCF (θ0) =W (θ0)

(
1−

3X
r=1

cr {W (θ0)}r−1

n

)
+O

³
n−3/2

´
,

and note that the moment generating function ψWCF (θ0)
(ξ) of WCF (θ0) can be ex-

pressed as

ψWCF (θ0)
(ξ) = ψχ2q

(ξ) +
J (ξ) (1− 2ξ)−q/2

n2q/2Γ (q/2)
+O

³
n−3/2

´
where

J (ξ) =
Z ∞
0
exp {−y/2} yq/2−1

⎧⎨⎩
3X
j=1

³
d0j − c3ξ

´
(1− 2ξ)j

yj + d00

⎫⎬⎭ dy.
Solving for c1, c2, c3 the equation J (ξ) = 0 gives (12) after some algebra.
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Tables and figures

Table 1. Observed size of a nominal α% -level Euclidean likelihood CR−2,Kullback-

Liebler CR−1 and empirical likelihood CR0 test with theoretical and estimated

Bartlett-type adjustments for N (0, 1) data.

n Statistic 10 5

15 CR−2 13.90 8.41

W a
CM 11.12 6.23cW b
CM 11.29 6.54

W a
CFE 8.98 3.97cW b
CFE 9.05 4.01

25 CR−2 13.44 7.43

W a
CM 12.37 5.97cW b
CM 12.44 6.09

W a
CFE 10.69c 4.12cW b
CFE 10.78c 4.35c

50 CR−2 11.82 6.31

W a
CM 11.06c 5.71ccW b
CM 11.15c 5.79c

W a
CFE 10.81c 4.15cW b
CFE 10.89c 4.25c

Statistic 10 5

CR−1 13.71 7.39

W a
CM 9.92 5.73ccW b
CM 10.44c 5.97

W a
CFE 8.89 4.03cW b
CFE 8.97 4.12

CR−1 13.03 7.02

W a
CM 11.91 5.53ccW b
CM 12.10 5.69c

W a
CFE 9.74c 4.77ccW b
CFE 9.83c 4.88c

CR−1 1166 5.83c

W a
CM 9.72c 5.53ccW b
CM 9.89c 5.65c

W a
CFE 9.65c 4.81ccW b
CFE 9.92c 4.92c

Statistic 10 5

CR0 13.83 7.53

W a
CM 12.12 6.22cW b
CM 12.36 7.01

W a
CF 12.12 6.62cW b
CF 12.36 7.01

CR0 13.12 7.05

W a
CM 12.01 6.32cW b
CM 12.33 6.51

W a
CF 12.01 6.32cW b
CF 12.33 6.51

CR0 11.54 5.71c

W a
CM 11.03c 5.35ccW b
CM 11.26c 5.56c

W a
CF 11.03c 5.35ccW b
CF 11.26c 5.56c

a Adjusted test with the theoretical Bartlett-type correction, b Adjusted test with estimated Bartlett-type correction
c Difference between observed and nominal size is not statistically significant at 0.01 level.
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Table 2. Observed size of a nominal α% -level Euclidean likelihood CR−2, Kullback-

Liebler CR−1 and empirical likelihood CR0 test with theoretical and estimated

Bartlett-type adjustments for t5 data

n Statistic 10 5

15 CR−2 3.47 7.86

W a
CM 8.69 4.03cW b
CM 8.97 4.11

W a
CFE 8.15 3.94cW b
CFE 8.50 4.15

25 CR−2 12.53 6.71

W a
CM 8.79 4.08cW b
CM 9.05 4.15

W a
CFE 8.94 4.05cW b
CFE 9.14c 4.12

50 CR−2 12.15 6.42

W a
CM 9.38c 4.31ccW b
CM 9.51c 4.46c

W a
CFE 9.11c 4.25ccW b
CFE 9.26c 4.51c

Statistic 10 5

CR−1 13.33 7.23

W a
CM 9.03c 4.10cW b
CM 9.27c 4.12

W a
CFE 8.89 4.05cW b
CFE 8.53 4.10

CR−1 12.91 6.85

W a
CM 9.27c 4.15cW b
CM 9.54c 4.21c

W a
CFE 9.01 4.08cW b
CFE 9.15c 4.18c

CR−1 12.26 6.71

W a
CM 9.51c 4.44ccW b
CM 9.69c 4.63c

W a
CFE 9.31c 4.39ccW b
CFE 9.42c 4.51c

Statistic 10 5

CR0 13.80 8.21

W a
CM 8.99 4.17cW b
CM 9.08 4.04

W a
CF 8.99 4.17cW b
CF 9.08 4.04

CR0 12.61 7.24

W a
CM 9.69c 4.26ccW b
CM 9.44c 4.35c

W a
CF 9.69c 4.26ccW b
CF 9.44c 4.35c

CR0 12.05 6.95

W a
CM 10.35c 5.57ccW b
CM 10.57c 5.38c

W a
CF 10.35c 5.57ccW b
CF 10.57c 5.38c

a Adjusted test with the theoretical Bartlett-type correction, b Adjusted test with estimated Bartlett-type correction
c Difference between observed and nominal size is not statistically significant at 0.01 level.
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Table 3. Observed size of a nominal α% -level Euclidean likelihood CR−2, Kullback-

Liebler CR−1 and empirical likelihood CR0 test with theoretical and estimated

Bartlett-type adjustments for χ24 data

n Statistic 10 5

15 CR−2 15.25 10.05

W a
CM 12.35 8.52cW b
CM 12.64 8.81

W a
CFE 8.42 3.78cW b
CFE 8.78 4.02

25 CR−2 13.08 7.74

W a
CM 12.31 6.98cW b
CM 12.04 7.20

W a
CFE 8.69 3.95cW b
CFE 8.83 4.09

50 CR−2 11.34 6.49

W a
CM 10.93c 6.12cW b
CM 11.09c 6.32

W a
CFE 9.03c 4.06cW b
CFE 9.19c 4.27c

Statistic 10 5

CR−1 14.55 8.93

W a
CM 12.41 7.43cW b
CM 12.78 7.59

W a
CFE 8.25 3.59cW b
CFE 8.19 3.77

CR−1 12.64 7.21

W a
CM 11.95 6.57cW b
CM 12.21 6.74

W a
CFE 8.90 4.00cW b
CFE 9.06a 4.16c

CR−1 11.27 6.32

W a
CM 10.74c 5.97cW b
CM 10.89c 6.16

W a
CFE 9.42c 4.09cW b
CFE 9.27c 4.34c

Statistic 10 5

CR0 14.84 9.35

W a
CM 12.04 7.55cW b
CM 12.38 7.89

W a
CF 12.04 7.55cW b
CF 12.38 7.89

CR0 12.58 7.52

W a
CM 11.69 6.41cW b
CM 11.90 6.74

W a
CF 11.69 6.41cW b
CF 11.90 6.74

CR0 11.07 6.05

W a
CM 9.95c 5.89cW b
CM 9.73c 5.99

W a
CF 9.95c 5.89cW b
CF 9.73c 5.99

a Adjusted test with the theoretical Bartlett-type correction, b Adjusted test with estimated Bartlett-type correction
c Difference between observed and nominal size is not statistically significant at 0.01 level.
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Table 4. Observed size of a nominal α% -level Euclidean likelihood CR−2, Kullback-

Liebler CR−1, and empirical likelihood CR0 test with theoretical and estimated

Bartlett-type adjustments for bivariate N (0, I) data

n Statistic 10 5

15 CR−2 14.25 9.76

W a
CM 8.41 3.88cW b
CM 8.56 3.95

W a
CFE 8.32 3.42cW b
CFE 8.45 3.51

25 CR−2 12.49 7.15

W a
CM 8.62 3.96cW b
CM 8.73 4.04

W a
CFE 8.35 3.79cW b
CFE 8.44 3.87

50 CR−2 11.74 6.42

W a
CM 9.09c 4.06cW b
CM 9.23c 4.15c

W a
CFE 8.55 3.99cW b
CFE 8.72 4.08

Statistic 10 5

CR−1 16.55 10.25

W a
CM 8.34 3.94cW b
CM 8.15 4.01

W a
CFE 8.24 3.63cW b
CFE 8.05 3.72

CR−1 12.33 6.84

W a
CM 8.44 3.95cW b
CM 8.52 4.07

W a
CFE 8.56 3.89cW b
CFE 8.64 3.96

CR−1 12.01 5.90

W a
CM 9.29c 4.10ccW b
CM 9.45c 4.21c

W a
CFE 9.11c 4.05cW b
CFE 9.27c 4.16c

Statistic 10 5

CR0 16.48 11.97

W a
CM 12.32 8.59cW b
CM 12.75 8.91

W a
CF 12.24 8.46cW b
CF 12.53 8.65

CR0 13.76 8.11

W a
CM 10.73 6.55cW b
CM 10.58 6.89

W a
CF 10.86 6.49cW b
CF 10.72 6.37

CR0 12.54 6.12

W a
CM 10.93c 5.31ccW b
CM 11.05c 5.42c

W a
CF 10.88c 5.22ccW b
CF 10.97c 5.31c

a Adjusted test with the theoretical Bartlett-type correction, b Adjusted test with estimated Bartlett-type correction
c Difference between observed and nominal size is not statistically significant at 0.01 level.
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Table 5. Observed size of a nominal α% -level Euclidean likelihood CR−2, Kullback-

Liebler CR−1 and empirical likelihood CR0 test with theoretical and estimated

Bartlett-type adjustments for z1i , z
2
i data as in (21) .

n Statistic 10 5

15 CR−2 17.18 11.48

W a
CM 11.48 3.25cW b
CM 12.21 3.51

W a
CF 8.51 3.16cW b
CF 8.39 3.37

25 CR−2 13.54 8.04

W a
CM 8.99 3.62cW b
CM 9.17 3.79

W a
CF 8.94 3.49cW b
CF 8.82 3.63

50 CR−2 11.45 6.24

W a
CM 9.52c 3.85cW b
CM 9.48c 3.97

W a
CF 9.05 3.81cW b
CF 9.23c 3.93

Statistic 10 5

CR−1 20.24 13.18

W a
CM 7.99 3.21cW b
CM 8.76 3.53

W a
CF 7.05 3.11cW b
CF 7.84 3.99

CR−1 15.94 9.08

W a
CM 8.19 3.71cW b
CM 8.96 3.84

W a
CF 9.05 3.57cW b
CF 8.93 3.68

CR−1 11.23 6.17

W a
CM 9.15c 3.99ccW b
CM 9.34c 4.11c

W a
CF 9.09 3.87cW b
CF 9.13c 4.01

Statistic 10 5

CR0 21.98 15.18

W a
CM 15.23 9.91cW b
CM 16.43 11.06

W a
CF 15.55 10.09cW b
CF 16.21 10.89

CR0 16.52 10.56

W a
CM 12.33 8.77cW b
CM 13.62 9.53

W a
CF 12.73 8.51cW b
CF 13.84 8.32

CR0 12.68 7.84

W a
CM 11.18 6.15cW b
CM 11.48 6.42

W a
CF 11.29 6.06cW b
CF 11.49 6.37

a Adjusted test with the theoretical Bartlett-type correction, b Adjusted test with estimated Bartlett-type correction
c Difference between observed and nominal size is not statistically significant at 0.01 level.
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(a) CR 2 - W CM (b) CR -2 - W CF

(c) CR -1 - W CM (d) CR -1 - W CF

(e) CR 0 - W CM (f) CR 0 - W CF

Figure 1: Observed power difference between the original Euclidean likelihood CR−2
(a-b), Kullback-Liebler CR−1 (c-d), and empirical likelihood CR0 (e-f) and their

corrected versions WCM (left column) and WCF (right column) for N (0, I) data.
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(a) CR -2 - W CM (b) CR -2 - W CF 

(c) CR -1 - W CM (d) CR -1 - W CF

(e) CR 0 - W CM
(f) CR 0 - W CF

Figure 2: Observed power difference between the original Euclidean likelihood CR−2
(a-b), Kullback-Liebler CR−1 (c-d), and empirical likelihood CR0 (e-f) and their

corrected versions WCM (left column) and WCF (right column) for z1i and z
2
i data as

in (21).
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