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Summary

The maximal invariant forms the basis of a well established theory on hypothesis

testing on the covariance structure in linear regression, see Lehman (1997). This pa-

per examines the geometry of the maximal invariant. In particular it derives explicit

expressions for both Fisher information and statistical curvature, see Efron (1975).

The results apply for any sample size, for any sufficiently differentiable covariance

structure and across a variety of sample densities. The results are illustrated for re-

gressions involving autoregressive and moving average errors. Specifically, the effects

of different specifications of the mean and of non-stationarity and non-invertibility

may be quantified.

Some key words: Differential geometry, Efron curvature, Fisher Information, Max-

imal invariant.

1 Introduction

Inference upon covariance structures forms a large part of the statistical analysis

of linear models. Particular cases, such as tests for serial correlation, Durbin and

Watson (1950, 1951), tests for heteroskedasticity, Glejser (1969) and tests for unit

roots, Sargan and Bhargava (1983) and Dufour and King (1991), have each generated

sizeable literatures of their own. This paper examines the geometric properties of

linear models having such covariance structures.

Geometric methods have provided many key insights into the problems of para-

metric inference. Rao (1945) introduced a Riemannian metric based upon Fisher

information, used to assess the efficiency of maximum likelihood estimation. De-

velopment of this idea has lead to the construction of a comprehensive differential

geometric framework, for example, the expected geometry of Amari (1990), see also

Critchley, Marriott and Salmon (1994). Closely related is the concept of statistical

curvature, which plays a crucial role in predicting the efficacy of linear methods such
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as linear asymptotic approximations (Efron (1975)) or locally most powerful testing

procedures (Kallenberg (1981)).

Here we suppose that the data, y = (y1, ..., yN)0 is modelled according to

E[y] = Xβ ; Cov[y] = E[(y −Xβ)(y −Xβ)0] = σ2Σ(ρ),

where X is a N×k matrix of covariates, β a k×1 vector of slopes, σ2 a scalar variance
and Σ(ρ) an N×N positive definite covariance matrix depending upon a d×1 vector
of parameters, ρ. Any hypothesis such that Σ(ρ) is completely specified is invariant

with respect to location-scale changes in the data. Consequently a desirable property

for any test of such hypotheses, such as in the cases mentioned above, is invariance.

That is the distribution of the test should not depend upon either β or σ2 when the

hypothesis is true. All invariant tests are functions of the data only through the

maximal invariant, see Lehmann (1997, Chapter 6) and Lemma 1 below.

This paper derives some important differential geometric results for the maximal

invariant. Under the conditions of Kariya (1980) we derive a recursive formula for ob-

taining the expectations of derivatives of the log-likelihood for the maximal invariant.

The recursion is applied to obtain expressions for Fisher information and statistical

curvature, Efron (1975). The expressions apply for any specification of the mean of

the data, any sufficiently differentiable covariance structure, any sample size and over

a family of sample distribution functions.

For illustrative purposes we will examine regressions involving either a linear or

cyclic trend and covariances determined either by a first-order autoregression or mov-

ing average. These illustrations of the main results generalise previous results due to

Ravishanker, Melnick and Tsai (1990) and van-Garderen (1999), as well as similar

examples contained in Efron (1975) and Amari (1990). Specifically we may analyse

the impact of the mean of the data on the geometry and crucially the impact of

non-stationarity and non-invertibility, which in previous studies were assumed away.

The main results of this paper, the recursive formula and expressions for the infor-

mation and curvature and some discussion of their key properties are presented in the
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next section. Section 3 illustrates the results in the combination of models mentioned

above, specifically models with a cyclic or linear trend and with autoregressive or

moving average covariance structure. For the purposes of clarity a graphical analysis

is used, with the graphs provided in Appendix B.

2 Information and Curvature

Let y be a N × 1 random vector and consider the following hypotheses:

H0 : V ar[y] = σ2I (1)

H1 : V ar[y] = σ2Σ(ρ),

where ρ is a scalar parameter and Σ(ρ) an N ×N positive definite symmetric matrix

such that Σ(0) = IN , we will assume the following.

Assumption 1 Let the density of y be f(y; β,σ2, ρ) = f(y) ∈ F(Σ) with

F(Σ) =
n
f : f(y; β,σ2, ρ) =

¯̄
σ2Σ(ρ)

¯̄−1/2
q
£
(y −Xβ)0(σ2Σ(ρ))−1(y −Xβ)

¤o
,

where X is a N × k matrix of covariates and β is a k × 1 vector of parame-
ters. Furthermore, we assume q is a nonincreasing convex function on [0,∞),
so that F(Σ) includes, for example, contaminated Normal distributions, the
multivariate t-distribution, including the multivariate Cauchy.

Under Assumption 1, defining the N ×N − k matrix C by

CC 0 =MX = I −X(X 0X)−1X 0 ; C 0C = IN−k,

the (N − k)× 1 vector w = C 0y, and the group G with action

y → ay +Xg , β → aβ + g and σ2 → a2σ2,

then, summarising the results of Kariya (1980) we have the following Lemma:
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Lemma 1 (i)The maximal invariant, under G, for testing H0 in (1) is

v = w/|w| = C 0y/(y0MXy)
1/2

and all invariant tests of H0 are functions of y only through v.

(ii) Under H0 v is uniformly distributed on the surface of the unit sphere in RN−k,

say v ∼ U(SN−k), while under H1 the density of v on SN−k is

pdf(v|ρ) = cN detA−1/2
¡
v0A−1v

¢−(N−k)/2
, (2)

where A = C 0Σ(ρ)C and cN = Γ(N−k
2
)/2π(N−k)/2.

Amari’s (1990) expected geometry, Fisher information and the statistical curva-

ture of Efron (1975) are derived from derivatives of the expectations of functions of

derivatives of the log-likelihood. In this case we require the expectations of deriva-

tives of the log of (2). Before proceeding, let U = (u1, u2, .., uN−k) be a N − k square
orthogonal matrix such that U 0A−1U = Λ = diag {λi} , where the λi are the (ordered)
eigenvalues of A−1 and satisfying

A−1ui = λi, u0iui = 1, u0iuj = 0 ∀i 6= j.

As a consequence, the logarithm of (2) may be written as

Lv(ρ) = c
∗
N +

1

2
ln detΛ− N − k

2
ln v0Λv. (3)

The eigenvalues λi and eigenvectors ui are functions of ρ through A. According to

Theorem 7 of Magnus & Neudecker (1999, p. 158) both are infinitely differentiable

functions on a neighbourhood N(A−10 ) ⊂ R(N−k)×(N−k) in which,

λi(A
−1
0 ) = λi & ui(A

−1
0 ) = ui.

The first two derivatives of each λi are given by

d1ρλi = u0i
¡
dρA

−1¢ui,
d2ρλi = 2u0i

¡
dρA

−1¢ ¡λiIN−k − A−1¢+ ¡dρA−1¢ui
4



where dρA−1 is the derivative of A−1 and Ξ+ denotes the Moore-Penrose inverse of

the matrix Ξ. It is clear that expectations of derivatives of (3) will involve calculation

of expectations of the form

ETS = Ev

"Y
si

µ
v0Λ(si)v
v0Λv

¶ti#
, (4)

Λ(si) denotes the si-th derivative of Λ, S and T are indices denoting, respectively,

which derivatives of Λ are involved and to what integer power (ti) each quadratic

form around Λ(si) should be taken. To illustrate the notation;

E
(3,2,1)
(1,2,5) = Ev

"µ
v0Λ(1)v
v0Λv

¶3µv0Λ(2)v
v0Λv

¶2µv0Λ(5)v
v0Λv

¶#
,

and so on. Defining a sequence of ratios of quadratic forms {rl} , l = 1, 2, ..., n =

|T | =P ti, so that each of the v0Λ(si)v/ (v
0Λv) appears with multiplicity ti, then ETS

can be evaluated via the following Lemma, proved in Appendix A.

Lemma 2 Let x ∼ N(0, IN−k), Λ̄(l) = Λ−1/2Λ(l)Λ−1/2 and µn be the nth raw moment

of a χ2(N−k) random variable and define

Ql = x
0Λ̄(l)x,

then a recurrence relation for ETS is given by

ETS =
1

µn

"
E(Q1)E

Ã
nY
l=2

Ql

!
+ E (Wn)

#
,

where n =
P
ti,

Wn = 2
nX
l=2

Ã
E [x0Vlx]

nY
m=l+1

Qm

!
and Vl = Λ−1/2Λ(1)Λ−1/2xx0....x0Λ−1/2Λ(j)Λ−1/2.

Of primary focus in this paper are expressions for Fisher information and Efron

curvature, although in principle much of Amari’s (1990) expected geometry may be

calculated from Lemma 2. To see this write

2(v0Λv)
dLv (ρ)

dρ
+ (N − k)(v0Λ(1)v) = (v0Λv)Tr[Λ(1)Λ−1]
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and apply Leibnitz’s formula to both sides, giving

2
nX
r=0

nCr(v
0Λ(n−r)v)

dr+1Lv (ρ)

dρr+1
+ (N − k)(v0Λ(n+1)v)

=
nX
r=0

nCr(v
0Λ(n−r)v)Tr[

rX
s=0

rCsΛ(r−s+1)(−1)ss!(Λ−1Λ(1))sΛ(s+1)], (5)

where nCr is the Binomial coefficient. Inversion of (5) then yields a recursion for the

derivatives of the log-likelihood involving of products of ratios having expectations

given in Lemma 2. The expected geometry then follows from the expectations of

products of these derivatives and from derivatives of those expectations.

Efron (1975) defines statistical curvature via the covariance between the first and

second derivatives of the log-likelihood. Specifically, for Sv (ρ) = dLv (ρ) /dρ and

Hv (ρ) = d
2Lv (ρ) /dρ

2 let

Mρ = Cov[Sv (ρ) , Hv (ρ)] =

 Ev
£
Sv (ρ)

2¤ Ev [Sv (ρ)Hv (ρ)]

Ev [Hv (ρ)Sv (ρ)] V ar [Hv (ρ)]

 ,
and Fisher information Iv (ρ) and Efron curvature γv (ρ) are then defined by

Iv (ρ) = Ev
£
Sv (ρ)

2¤ = −Ev [Hv (ρ)]
γv (ρ) =

µ
det[Mρ]

Iv (ρ)
3

¶1/2
=

Ã
V ar [Hv (ρ)]

Iv (ρ)
2 − Ev [Sv (ρ)Hv (ρ)]

2

Iv (ρ)
3

!1/2
. (6)

The following Theorem, again proved in Appendix A, provides first a computation-

ally convenient form for the information and second the relevant quantities involved

in calculation of the curvature, in terms of the recursions for ETS .

Theorem 1 (i) Let Iv(ρ) be the (Fisher) information in v about ρ, then

Iv(ρ) =
N − k

2 (N − k + 2)Tr
h¡
A−1Ā

¢2i− 1

2(N − k + 2)
£
Tr(A−1Ā)

¤2
, (7)

where A is defined in Lemma 1, Ā = C 0dρΣ(ρ)C, and dρΣ(ρ) is the derivative of the

covariance matrix.
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(ii) In terms of the expectations ETS the covariance between Sv (ρ) and Hv (ρ) and the

Variance of Hv (ρ) are given by

Ev [Hv (ρ)Sv (ρ)] =
(N − k)2

4

£
E1,11,2 + E

1
1E

2
1 −E11E12 − E31

¤
V ar [Hv (ρ)] =

(N − k)2
4

h
E22 + E

4
1 + 2E

1
2E

2
1 −

¡
E12
¢2 − ¡E21¢2 − 2E2,11,2i .

In order to obtain explicit representations for the curvature, Appendix A provides

expressions for ETS with those particular values of S and T required. Before proceed-

ing, though, it is worth highlighting some key properties of the expressions for the

information and curvature.

1) Invariance: The maximal invariant has, by construction, distribution inde-

pendent of the nuisance parameters β and σ2. In fact, the quantities given in Lemma

1 and Theorem 1 obey far wider invariance principles. First, the expressions apply

for any member of the family specified in Assumption 1, indeed this is exploited

to compute the expectations required via expectations of Gaussian quadratic forms.

Second, as noted by Efron (1975), the curvature is invariant to reparameterisations

of the form ρ→ ξ(ρ). On the other hand the information obeys a form of invariance

related to the parameterisation of the null hypothesis in (1).

Specifically, v is invariant to transformations of the data, as in y → y0 = Ty

for non-singular T, and f(y0) ⊂ F(TΣT 0). Since v = C 0y/||C 0y||, then y → y0

implies a transformation on SN−k, {S(v) : v → v0 = C
0
0y0/|C 00y0|} , where C0 is the

decomposition of the symmetric idempotent formed from TX. According to Lemma

4.1 of Kullback (1997, Section 1.4) the information is invariant with respect to S(v),

that is

Iv(ρ) =

Z
v0v=1

d2 ln pdf(v)

dρ2
(dv) =

Z
v00v0=1

d2 ln pdf(v0)

dρ2
(dv0) = Iv0(ρ).

As an immediate consequence, as far as the information in v is concerned, it is

irrelevant whether we are considering hypotheses parameterised by

H0 : Σ(ρ = 0) = IN or H0 : T
0
ρ0
Σ(ρ = ρ0)Tρ0 = IN ,
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that is the information in v under the alternative is independent of the null.

2) Decomposition of information (and information loss): Construction

of the maximal invariant implies a transformation and decomposition of the data

according to

y →


v = C 0y/||C 0y||
β̂ = (X 0X)−1X 0y

s2 = y0MXy

 ,
which implies a factorisation of the joint sample density and hence decomposition of

the information, viz

Iy
¡
β, σ2, ρ

¢
= Iv (ρ) + Is2|v

¡
ρ, σ2

¢
+ Iβ̂|(v,s2)

¡
ρ, σ2, β

¢
.

Within families satisfying Assumption 1, for the sample itself, and the statistic w =

C 0y ∼ F(A), where A = C 0Σ(ρ)C, the information is found to be

Iy
¡
β, σ2, ρ

¢
=


X 0Σ−1X/σ2 0 0

0 Tr [(Σ−1dρΣ)2] /2 Tr [Σ−1dρΣ] /2σ2

0 Tr [(Σ−1dρΣ)] /2σ2 N/2σ4

 , (8)

Iw
¡
σ2, ρ

¢
=


0 0 0

0 Tr
£
(A−1Ā)2

¤
/2 −Tr £(A−1Ā)¤ /2σ2

0 −Tr £(A−1Ā)¤ /2σ2 (N − k)/2σ4

 (9)

where Σ = Σ(ρ). The information loss in constructing the maximal invariant, i.e.

Is2|v (ρ,σ2) + Iβ̂|(v,s2) (ρ, σ
2, β) can be calculated from

Is2|v
¡
ρ, σ2

¢
= Iw

¡
σ2, ρ

¢− Iv (ρ) and Iβ̂|(v,s2)
¡
ρ,σ2, β

¢
= Iy

¡
β, σ2, ρ

¢− Iw ¡σ2, ρ¢ .
Finally, noting (8), Iy (β, σ2, ρ) is seen to be block-diagonal. Moreover, the (ρ, σ2)-

block does not depend upon X. Basing a geometry upon the metric Iy (β, σ2, ρ) might

therefore lead to the misleading conclusion that the properties of statistical hypothe-

ses on the covariance do not depend upon the mean of the data.
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3) Extensions to multivariable covariances: Let ρ = (ρ1, .., ρd), Λ(i) denote

the derivative of Λ with respect to ρi, and Λ(i,j) be the second derivative with respect

to ρi and ρj , then the score vector and Hessian derived from the density (2) are

Sv(ρ) =

½
Tr[Λ−1Λ(i)]

2
− (N − k)

2

v0Λ(i)v
v0Λv

¾
,

Hv (ρ) =

½
Tr[Λ−1(Λ(i)Λ−1Λ(j) + Λ(i,j))]

2
− (N − k)

2

·
v0Λ(i,j)v
v0Λv

− v
0Λ(i)v
v0Λv

v0Λ(j)v
v0Λv

¸¾
,

for i, j = 1, 2, ..., d.

Neither Efron curvature, nor the curvature of Amari (1982) applies directly outside

the exponential family, in the multivariable case. Although in some cases the density

of the data y will be curved exponential, in general the density of the maximal

invariant will not. However, a simple scalar curvature measure may be obtained

directly from the recursive expectations of Lemma 1. Specifically, let gij = {Iv(ρ)}i,j
and gij be its inverse, then the metric connection is defined by

Γmij =
1

2
gkm (∂igjk + ∂jgik − ∂kgij) ,

where ∂i = ∂(.)/∂ρi and the summation convention is assumed. Since we can write,

gij =
(N − k)Tr [(A−1∂iA) (A−1∂jA)]− Tr(A−1∂iA)Tr(A−1∂jA)

2 (N − k + 2) ,

then the connection is obtained via straightforward differentiation. Covariant differ-

entiation of the connection yields the Riemann-Christoffel tensor, viz

Rmijk = ∂jΓ
m
ik − ∂kΓ

m
ij − ΓrikΓ

m
rj − ΓrijΓ

m
rk,

and finally the Ricci curvature κ is calculated via contraction of the Reimann-Christoffel

tensor, i.e.

κ = guvRmumv. (10)

It should be borne in mind, however, that (10) is an entirely geometric measure.

Without specifying the distribution of y more precisely, specifically the covariance

structure itself, an embedding curvature measure such as that of Efron (1975) would

prove difficult to justify, other than on a case by case basis.
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In the following Section, we refer back to the idea of testing that Σ(ρ) has a partic-

ular structure and explore the related concepts of information, distance and curvature

in testing hypotheses such as (1). First, we explore the geometry of autoregressive and

moving average covariances. Second, we will focus on the interplay between unit roots

and linear trends, in particular upon their impact upon the available information to

test the unit root hypothesis.

3 Illustration and Analysis

3.1 The Geometry of Autoregressions & Moving Averages

For the purposes of illustration we will consider two very simple regression models,

viz

M1 : yi = β1 + β2 sin (2πi/N) + υi ; M2 : yi = β1 + β2(i/N) + υi, (11)

and two possible models of serial correlation,

a1 : υ
(1)
i = ρυ

(1)
i−1 + εi ; a2 : υ

(2)
i = ρεi−1 + εi, (12)

where i = 1, 2, ..,N, the εi ∼ i.i.d(0,σ2) are such that y = (y1, ..., yN ) satisfies As-

sumption 1, so that we consider two different covariance structures, i.e. autoregressive

(a1) and moving average dependence (a2). We will fix N = 25 for all the illustrations,

and will assume ε0 = 0, so that all cases, including non-stationary/non-invertible

processes, may be considered.

The precise quantities under consideration will be;

i)
p
Iv (ρ) ii) rv (ρ) =

Iv(ρ)
(Iy(β,σ2,ρ))ρ,ρ

iii) γv(ρ)
2 .

The first is the differential of the ‘information distance’
R ρ

ρ0

p
Iv (θ)dθ, as detailed in

Kass (1989), which provides a relatively simple distance measure from some null value

ρ0 and any alternative, ρ. The second measures ‘information loss’ and is the ratio of

the information in the maximal invariant to the information in the sample y about
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ρ, as given by the relevant element in (8). The third is the square of Efron curvature

and is used for comparison with values reported in Efron (1975) and van-Garderen

(1999).

In Appendix B, Figures 1 (autoregression) and 2 (moving average) plot
p
Iv (ρ)

for both M1 and M2 over the range of values ρ ∈ (−1.1, 1.1). Notice that the area
under the graphs, and between any two points, in Figures 1 and 2 is the ‘information

distance’ between those points. Figures 3 (autoregression) and 4 (moving average)

plot rv (ρ) for bothM1 andM2 and additionally for X = 0 (which is equivalent to our

knowing the value of β), over the range of values ρ ∈ (−1.25, 1.25). Finally, Figure 5
(autoregression) and plots γv(ρ)2 for both M1 and M2 and additionally for the case

that X = 0 over ρ ∈ (−1.1, 1.1), while Figure 6 (moving average) plots the same but
over the range ρ ∈ (−0.65, 0.65).
From the graphs, generally, moving averages would seem to be much less sensitive

to the different specifications of the mean. Autoregression is more sensitive, particu-

larly so for values of ρ close to the non-stationary boundary, ρ = 1, but not ρ = −1.
Most interesting is that with a linear trend (M1) the information in an autoregression

vanishes at ρ = 1. Figure 3 reveals that when there is a linear trend essentially none

of the information in the sample is contained in the maximal invariant near ρ = 1,

while with a cyclical trend more than 80% is available. Perhaps this provides some

useful evidence as to why there are difficulties in testing for the presence of unit roots

in the presence of trending regressors, see for example Bhargava (1996). At the origin

the information is the same for both covariances, as one would expect.

More fundamental is the lack of symmetry in these geometric measures, which

has not been revealed in the related examples of Efron (1975) and van Garderen

(1999). Monte Carlo evidence due to King and Giles (1977) has pointed toward

this, though. As expected, given the values for the information near ρ = 1, the

curvature of autoregression becomes enormous near this point, Figure 5 is truncated,

for that reason. Efron (1975) pointed to a value of γv (ρ)
2 of around 1/8, such that

11



linear approximations become poorer for curvature larger than this value, see also

Kallenberg (1981). For autoregression and since γv (ρ)→ 0 as N →∞, then for the
cases here a sample size of N = 100 turns out to be sufficient for curvature to fall

below this value, except at ρ = 1. The curvature for the moving average, Figure 6,

is explained very simply by the following argument: Efron (1975) defines curvature

to be zero for a linear exponential model. Autoregressions are curved exponential

models, and moving averages may be approximated via

υi = ρεi−1 + εi ∼ υi =
X
(−ρ)jυi−j + εi,

with the sum converging only if |ρ| < 1. The larger |ρ| is the more terms are required
for the approximation and hence the more ‘curved’ that approximating autoregression

is.
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APPENDIX A (Proofs)

1) Proof of Lemma 2

Let

rtisi(v) =

µ
v0Λ(si)v
v0Λv

¶ti
,

so that ETS (ρ) = E
£Q

si
rtisi(v)

¤
and z ∼ N(0,Λ) so that if we define z/|z| = v∗, then

pdf(v∗; ρ) = cN detΛ1/2 ((v∗)0Λv∗)
(N−k)/2

,

and so

E

"Y
si

rtisi(v
∗)

#
= E

"Y
si

rtisi(v)

#
= E

"Y
si

rtisi(z)

#
,
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where

rtisi(z) =

µ
z0Λ(si)z
z0Λz

¶ti
.

Since both Λ(si) and Λ are diagonal then for x = Λ−1/2z ∼ N(0, IN−k) and

rtisi(x) =

µ
x0Λ−1/2Λ(si)Λ

−1/2x
x0x

¶ti
,

we have

E

"Y
si

#
= E

"Y
si

rtisi(x)

#
= E

"Q
si
x0Λ−1/2Λ(si)Λ

−1/2x

(x0x)n

#
,

where n =
P
ti. Furthermore since rtisi(x) is independent of the length of x, |x|,(see

Jones (1987)) then

E

"
|x|2n

Y
si

rtisi(x)

#
= E[|x|2n]E

"Y
si

rtisi(x)

#
,

and so

E

"Y
si

rtisi(x)

#
= E

"Y
si

x0Λ−1/2Λ(si)Λ
−1/2x

#
/E[(x0x)n]

=
1

µn
E

"Y
si

x0Λ−1/2Λ(si)Λ
−1/2x

#
.

Finally, write
Q
si
x0Λ−1/2Λ(si)Λ

−1/2x =
Qn
l=1Ql, with the Ql defined in the statement

of the lemma, so that

E

"Y
si

rtisi(x)

#
=
1

µn
E

"
nY
l=1

Ql

#
,

and the recurrence relation itself follows from Theorem 1 of Ghazal (1996).

2) Proof of Theorem 1

(i) The Score and the Hessian are immediately available from (3), yielding

Sv (ρ) =
dLv(ρ)

dρ
=
Tr[Λ(1)Λ

−1]
2

− (N − k)
2

v0Λ(1)v
v0Λv

, (13)

Hv (ρ) =
d2Lv(ρ)

dρ2

=
Tr[Λ(2)Λ

−1 − ¡Λ(1)Λ−1¢2]
2

− (N − k)
2

"
v0Λ(2)v
v0Λv

−
µ
v0Λ(1)v
v0Λv

¶2#
. (14)
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Before proceeding note that since pdf(v|ρ) is a density the first Bartlett identity
applies, i.e. E [Sv (ρ)] = 0, and hence rearranging (13) and taking expectations, we

have

E11 = Ev

·
v0Λ(1)v
v0Λv

¸
=
Tr[Λ(1)Λ

−1]
N − k . (15)

The information is given by

Iv(ρ) =
1

2
Tr[Λ(2)Λ

−1 − ¡Λ(1)Λ−1¢2]− N − k
2

¡
E12(ρ)− E21(ρ)

¢
, (16)

and substitution of the expressions for E12 and E
2
1 from the Appendix, yields

Iv (ρ) =
N − k

2 (N − k + 2)Tr
h¡
Λ−1Λ(1)

¢2i− 1

2(N − k + 2)
£
Tr[Λ−1Λ(1)]

¤2
.

In terms of the eigenvalues of A−1 and their derivatives, we have

Iv(ρ) =
N − k
2

N−kX
i=1

µ
d1ρλi

λi

¶2
− 1
2

"
N−kX
i=1

µ
d1ρλi

λi

¶#2
. (17)

The derivative of A−1 is given by

dρA
−1 = −A−1C 0dρΣ(ρ)CA−1 = −A−1ĀA−1,

and noting A−1ui = λiui so that (17) may be rewritten as

Iv(ρ) =
1

2

N−kX
i=1

¡
u0iA

−1Āui
¢2 − 1

2(N − k)

"
N−kX
i=1

u0iA
−1Āui

#2
. (18)

We may write

N−kX
i=1

u0iA
−1Āui = Tr

"
N−kX
i=1

u0iA
−1Āui

#
= Tr

"
A−1Ā

N−kX
i=1

Ui

#
,

where the Ui = uiu0i are symmetric idempotent matrices satisfying
PN−k

i=1 Ui = IN−k,

thus "
N−kX
i=1

u0iA
−1Āui

#2
=
£
Tr
¡
A−1Ā

¢¤2
. (19)

Similarly,

N−kX
i=1

¡
u0iA

−1Āui
¢2

=
N−kX
i=1

Tr
¡
u0iA

−1Āuiu0iA
−1Āui

¢
= Tr

"
N−kX
i=1

¡
A−1ĀUi

¢2#

= Tr

"
N−kX
i=1

¡
A−1Ā

¢2
Ui

#
,

14



since Ui is idempotent and noting again that
PN−k

i=1 Ui = IN−k we have

N−kX
i=1

¡
u0iA

−1Āui
¢2
=
h
Tr
¡
A−1Ā

¢2i
. (20)

Finally substitution of (19) and (20) into (18) proves the theorem.

(ii) If we note the first Bartlett identity (15) which implies

Tr
£
Λ(1)Λ

−1¤ = (N − k)E11 ,
and also since Ev[Sv (ρ)] = 0, then

Ev[Sv (ρ)Hv (ρ)] =
(N − k)2

4
Ev

µE11 − v1Λ(1)vv0Λv

¶v0Λ(2)v
v0Λv

−
Ã
v
0
Λ(1)v

v0Λv

!2
=

(N − k)2
4

E11
Ev

v0Λ(2)v
v0Λv

−
Ã
v
0
Λ(1)v

v0Λv

!2
−Ev

v1Λ(1)v
v0Λv

v0Λ(2)v
v0Λv

−
Ã
v
0
Λ(1)v

v0Λv

!2
=

(N − k)2
4

£
E11
¡
E12 − E21

¢− ¡E1,11,2 −E31¢¤ ,
which upon rearranging gives the result.

For the variance of the Hessian, note that

V ar[Hv (ρ)] = V ar

N − k
2

v0Λ(2)v
v0Λv

−
Ã
v
0
Λ(1)v

v0Λv

!2
=

(N − k)2
4

Ev
v0Λ(2)v

v0Λv
−
Ã
v
0
Λ(1)v

v0Λv

!22
−Ev

v0Λ(2)v
v0Λv

−
Ã
v
0
Λ(1)v

v0Λv

!22
=

(N − k)2
4

¡
E22 − 2E2,11,2 + E41 −E12 − E21

¢
,

which again immediately yields the result.
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3) Resolved Recursions

Lemma 1 gives a recurrence relation for the expectation of powers ratios of

quadratic forms in v. In order to derive the information and Efron curvature we re-

quire only the following few expressions, let µn = (N−k)(N−k+2)..(N−k+(2n−1)),
then for i = 1, 2,

E1i = Tr[Λ(i)Λ
−1]/µ1

E2i =
¡
Tr[Λ(i)Λ

−1]2 + 2Tr[(Λ(i)Λ−1)2]
¢
/µ2,

E3i =
¡
Tr[Λ(i)Λ

−1]3 + 6Tr[(Λ(i)Λ−1)2]Tr[Λ(i)Λ−1] + 8Tr[(Λ(i)Λ−1)3]
¢
/µ3

E4i =
¡
Tr[Λ(i)Λ

−1]4 + 32Tr[(Λ(i)Λ−1)3]Tr[Λ(i)Λ−1] + 12Tr[Λ(i)Λ−1]2Tr[(Λ(i)Λ−1)2]

+12Tr[(Λ(i)Λ
−1)2]2 + 48Tr[(Λ(i)Λ−1)4]

¢
/µ4.

while for the cross product terms required we have

E
(1,1)
(1,2) =

¡
Tr[Λ(1)Λ

−1]Tr[Λ(2)Λ−1] + 2Tr[(Λ(1)Λ−1)(Λ(2)Λ−1)]
¢
/µ2,

E
(2,1)
(1,2) =

¡
Tr[Λ(1)Λ

−1]2Tr[Λ(2)Λ−1] + 4Tr[(Λ(1)Λ−1)]Tr[(Λ(1)Λ−1)(Λ(2)Λ−1)]

+2Tr[(Λ(1)Λ
−1)2]Tr[Λ(2)Λ−1] + 8Tr[(Λ(1)Λ−1)2(Λ(2)Λ−1)]

¢
/µ3 .
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APPENDIX B (Figures)

Figure 1:
p
Iv (ρ) plotted for M1- dashed and M2- dotted

for υt ∼ AR(1)
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Figure 2:
p
Iv (ρ) plotted for M1- dashed and M2- dotted

for υt ∼MA(1)
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Figure 3: rv (ρ) plotted for M1- dashed, M2- dotted and X = 0- solid

for υt ∼ AR(1)
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Figure 4: rv (ρ) plotted for M1- dashed, M2- dotted and X = 0- solid

for υt ∼MA(1)
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Figure 5: γv (ρ)
2 plotted for M1- dashed, M2- dotted and X = 0- solid

for υt ∼ AR(1)
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Figure 6: γv (ρ)
2 plotted for M1- dashed, M2- dotted and X = 0- solid

for υt ∼MA(1)
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