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Abstract

I develop an endogenous growth model in which sustained long-run growth is due to in-
vestment in public capital, the government provides lump-sum transfers, public consumption
and investment subsidies, and consumers have uncertain lifetimes. A flexible framework ca-
pable of analysing the growth effects of fiscal policy in both infinite and finite horizons cases
is provided. The Barro rule (Barro, 1990) for the optimal provision of public investment is
extended to the finite horizons case. In contrast with Mourmouras and Lee (1999), the growth
maximizing income tax rate is lower in the latter scenario and decreasing in the probability of
death parameter. The growth hampering effect of unproductive public spending is depicted in
the finite horizons as well as in the infinite horizons case. However, increases in either public
consumption or lump-sum transfers reduce long-run economic growth less in the former than
in latter case. Furthermore, the growth maximizing level of public investment is increasing in
other fiscal policy tools regardless the assumption of uncertain lifetime. Finally, an optimal rule
for investment subsidies provision is analytically derived.

Keywords: Fiscal Policy, Infrastructure, Growth
J.E.L. Classification: E62, H54, O41

1 Introduction

This paper focuses on an endogenous growth model in which sustained long-run growth is due
to investment in public capital, the government provides lump-sum transfers, public consumption
and investment subsidies, and consumers have uncertain lifetimes. The model is an extension of
the framework provided by Greiner (1999), departing from it by modelling consumers’ lifetime
according to the perpetual youth overlapping generation model (Blanchard, 1985). The aim is to
analyse the growth effects of varying fiscal policy parameters in infinite as well as finite horizons
scenarios, reducing some recent theoretical contributions on this branch of the literature to special
cases of a more general framework.

Barro (1990) predicts the existence of an optimal level of public investment financed by a
flat rate income tax1. Greiner (1999) provides an extension by dividing productive government
spending between investment in public capital and subsidies to private investment and including

∗Department of Economics and Related Studies, University of York, Y010 5DD, Heslington, York, UK.
1On the other hand, with lump-sum taxes, the long-run rate of growth is monotonically increasing in government

provision of infrastructure.
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in his theoretical framework lump-sum transfers to households and public consumption2. His main
findings are such that the growth maximizing income tax rate τmax is monotonically increasing
in the levels of public consumption, lump-sum transfers to households and subsidies to private
investment.

On the other hand, Mourmouras and Lee (1999) analyse the effects of productive government
expenditure on growth — abstracting from any other type of government expenditure — combining
Blanchard-type consumers with endogenous growth. However, their model is not solved analytically
and the finite and infinite horizons scenarios are compared using a numerical simulation. Long-run
growth is always lower under the assumption of finite lives compared to the infinite horizons case,
but the assumption of uncertain lifetime does not affect the Barro rule. Indeed, the Barro curve is
obtained for both the finite and the infinite horizons cases3, with the optimal level of government
investment on infrastructure equating the share of public services in the aggregate production
function in both cases.

In this paper, I develop a Ramsey-type model with endogenous growth due to government
spending in public capital. As Mourmouras and Lee (1999), I refer to Blanchard (1985) to model
consumers’ lifetime horizons. However, the optimal lifetime consumption plan is determined as in a
standard representative agent model, the only difference being a rate of time preference augmented
by a probability of death λ. Such a device makes it possible to build a general framework collapsing
to the infinite horizons scenario by simply setting to zero the parameter λ. Furthermore, this
allows to analytically derive the role of finite lives in affecting the optimal provision of government
spending whereas, in Mourmouras and Lee (1999), λ affects the long-run rate of growth but τmax

is independent of λ.
For a null λ, the model departs from Barro (1990) solely for the presence of fiscal policy pa-

rameters, others than government expenditure on infrastructure. Namely, lump-sum transfers to
households ϕ1, public consumption ϕ2 and investment subsidies θS .

For a positive λ, the model is populated by uncertain lifetime consumers à la Blanchard, de-
parting from Mourmouras and Lee (1999) for the fact that I explicitly take into account the effect
of a positive λ not only on the long-run rate of growth, but also on the optimal income tax rate.
Thus, the Barro rule is extended to the case of finite-lived consumers and it turns out to be depen-
dent on the horizon index. I will refer to such an extension as a modified Barro rule: for λ = 0,
the optimal provision of public investment equates the share of public capital in the aggregate
production function. However, if consumers live finite lives, such an optimal level will be lowered
by the consumption externality due to λ.

The assumption of uncertain lifetime consumers also affects the relationships relating other fiscal
policy parameters to long-run economic growth and, as a consequence, their respective impacts on
the optimal public investment provision rule.

As for the growth effects of other fiscal policy tools, the long-run rate of growth of the economy
γ is lowered by either higher lump-sum transfers to households or public consumption, regardless
the value of λ. However, increases in either ϕ1 or ϕ2 of the same amounts reduce γ less for λ > 0
than for λ = 0.

2This author, in contrast with Barro, also analyses the different effects of both variations in income and consump-
tion taxation under the alternative assumptions that labour is supplied either inelastically or elastically within an
economy populated by an infinitely-lived representative agent.

3In contrast with Barro, instead, they depict the existence of the Barro curve in the finite horizons case even in
the case of government expenditure financed by lump-sum taxes.
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On the other hand, the growth effect of rising investment subsidies is ambiguous for any value of
λ. The difference under the assumption of finite lives is that for a positive λ, the growth maximizing
level of θS is negatively related to λ: as the consumer life horizon increases, the optimal value of
θS is reached before.

As for the relationships linking τmax to other categories of public expenditure, for 0 ≤ λ ≤ 1,
τmax is increasing in ϕ1, ϕ2 and θS .

The remainder of the paper is organized as follows. The theoretical model will be built in section
2, introducing the behavioral assumptions imposed upon households, firms and the government.
The two differential equations describing the overall behavior of the economy will be derived,
depicting the role played by the uncertain lifetime hypothesis in decelerating long-term economic
growth on the BGP. Section 3 is devoted to the analysis of fiscal policy in the model. The growth
effects of fiscal policy tools are derived analytically, with particular attention paid to the definition
of the modified Barro rule and its relationships with other fiscal policy tools. The model is solved
numerically in section 4, with the aim of assessing the existence of the Barro curve in the finite
horizons case and providing more insight on the expected effects of fiscal policy on growth, as
analytically derived in the previous section. Some conclusions will be drawn in section 5. The
proofs of all propositions are reported in the Appendix.

2 The Model

The economy is composed of consumers who maximize their lifetime utilities, profit-maximizing
competitive firms and the government. Consumers supply labour inelastically and — for a positive
λ — can have their savings insured by an insurance company. The aggregate production function
shows diminishing returns to scale in private and public capital separately and constant returns
to scale in the two forms of capital taken together. The government runs a balanced budget
constraint, financing investment in infrastructure through a flat income tax rate, and providing
public consumption, investment subsidies to firms and lump-sum transfers to households.

2.1 Firms

The production side of the economy is described by a Cobb-Douglas production function in private
capital K and productive public services G. Following Barro (1990), the government purchases
a share of private output and uses these purchases to provide free public services to the private
sector. These services are assumed to be non rival and non excludable. Since the use of G by a firm
does not prevent other users from benefiting from them, it is the total amount of publicly provided
services that matters for the firms and enters the production function. This assumption is useful
to model a broad concept of public capital, which can be thought as the infrastructure network of
a country. Under the assumption that all the services belonging to G are publicly provided with
no user fees, G represents an unpaid input of production and, indeed, it plays the role of a positive
externality in enhancing the marginal product of private capital4. Given these assumptions, the
aggregate production function is:

Y = K1−αGα = K

(
G

K

)α

; 0 < α < 1 (2.1)

4This concept of external economy due to G dates back to Meade (1952).
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This production function5 shows diminishing returns to scale in G and K separately, and con-
stant returns to scale in K and G taken together:

YK > 0; YKK < 0 (2.2)

An increase in G leads to an increase in the marginal product of private capital, which implies
YKG > 0. Thus, productive public services cannot easily be provided by the private sector.

Assuming competitive markets, the first order condition for the firms’ profit maximization
problem requires the real interest rate to equalize the physical marginal product of private capital.
This condition is expressed by:

r = (1− α)
(

G

K

)α

(2.3)

From the definition of the production function (2.1) and the first order condition (2.3), the
following condition is derived:

rK = (1− α) Y < Y ; 0 < α < 1 (2.4)

Therefore, this model allows the output of the economy (Y ) to be larger than the payments to
the owners of private capital (rK). This circumstance is due to the additional income induced by
public spending through the positive effect on the marginal product of private capital.

The following conditions are introduced and they will be used later in order to obtain the
dynamic expression describing the evolution in time of private capital:

w + (r + λ)K + π = K1−αGα (2.5)

Tp = ϕ1T = ϕ1τK1−αGα (2.6)

where w is labour income, π are profits, λ is the probability of death faced by households and the
term (r + λ) K is introduced in analogy with the Blanchard model6.

Condition (2.5) simply states that total income must equate total output of the economy, while
(2.6) comes from the definition of government lump-sum transfers to households Tp, as clarified
below in section 2.3.

2.2 Consumers

Households are assumed to have uncertain lifetimes according to the model by Blanchard (1985).
Hence, we shall assume that they face a constant instantaneous probability of death λ throughout
their life. Their expected remaining life is 1/λ and it is constant throughout their life. Agents are of
different ages and have different levels of wealth, but they all have the same propensity to consume.
This approach allows for flexibility: the expected life 1/λ is interpreted as an horizon index that
can be chosen anywhere between 1 and infinity to study the effects of the horizons of agents on
the behavior of the economy. The limiting case of infinite horizons will occur by letting λ go to
zero since this implies that 1/λ tends to infinity. It is assumed that there is no inter-generational

5Where the labour input L is normalized to 1.
6Under the assumptions of perfectly competitive markets, constant returns to scale and inelastically labour supply,

the terms w and π vanish.
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bequest motive which, together with the assumption of uncertain lifetime, implies — as we will see
later — a role for an insurance market.

Each consumer does not consider any choice regarding the allocation of her time endowment
between labour and leisure. In other words, labour is inelastically supplied and the consumer
supplies a constant amount of labour. The expected lifetime utility of the individual i born at time
s is given by:

U i =
∫ ∞

t
lnCie−(ρ+λ)tdt (2.7)

The instantaneous utility function is assumed to have a logarithmic form. The rate of time
preferences ρ is increased by the probability of death λ. The higher the probability of death,
the more heavily consumers discount the future7 and given the assumption that λ is constant
throughout consumers’ life, it is possible to assume a constant propensity to consume as well. This
way of modelling the case of finite horizons can be regarded as an application of Blanchard (1985)
to a standard Ramsey-type model with endogenous growth.

The Blanchard model has the merit of allowing for aggregation in OLGs models. On the
other hand, it suffers from the backward of abstracting from the life-cycle aspect of the individual
consumption behavior. This limitation can be overcome by combining the Blanchard-type consumer
with the standard representative agent model. Indeed, by doing so, no aggregation procedure is
needed and the relationship between finite horizons and the evolution in time of consumption can
be analytically determined by referring the analysis to the representative agent.

The inter-temporal budget constraint faced by the consumer must take into consideration the
role played in the economy by the government. For this reason, the consumer budget constraint
proposed by Greiner (1999) is modified in order to adapt it to our framework:

K̇ = {[w + (r + λ)K + π] (1− τ) + Tp − C}
(

1
1− θS

)
(2.8)

The rationale behind this budget constraint is that the insurance covers only asset wealth: the
consumer receives (pays) λK for every period of her life from (to) the insurance company and the
amount K is paid to (cancelled by) the insurance company when the consumer dies. By using the
conditions (2.5) e (2.6) and solving the budget constraint for K̇/K we obtain:

K̇

K
= K−αGα 1− τ (1− ϕ1)

1− θS
+

λ (1− τ)
1− θS

− C

K (1− θS)
(2.9)

This expression generalizes the dynamic equation of private capital in Greiner (1999), differing
from the latter for the term that includes the parameter λ. We could then apply this expression to
both cases of infinitely lived and uncertain lifetime consumers by simply imposing this parameter
either equal to zero or to some positive value.

The existence of a unique solution to the households’ optimization problem is subject to the
condition that K and G are bounded by the increasing function eγt, where 0 < γ < (ρ + λ).
Provided that such a condition holds, the Pontryagin’s maximum principle can be used to derive
an optimal solution to (2.7) subject to (2.8), to which is associated the following Hamiltonian:

H = lnCe−(λ+ρ)t + ψ
1

1− θS
{[w + (r + λ) K + π] (1− τ) + Tp − C} (2.10)

7Cass and Yaari (1967) provide a theoretical proof of the fact that the effect of the probability to death is to raise
the individual rate of time preference.
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The necessary optimality conditions are obtained by setting the partial derivative of H with
respect to the control variable C equal to zero, the partial derivative of H with respect to the state
variable K equal to minus the time derivative of the co-state variable ψ and the partial derivative
of H with respect to ψ equal to minus the time derivative of K:

∂H

∂C
= 0 ⇒ 1

C
e−(λ+ρ)t =

ψ

1− θS
(2.11)

∂H

∂K
= −ψ̇ ⇒ ψ

(r + λ) (1− τ)
(1− θS)

= −ψ̇ (2.12)

∂H

∂ψ
= K̇ ⇒ 1

1− θS
{[w + (r + λ)K + π] (1− τ) + Tp − C} = K̇ (2.13)

The first order conditions (2.11)-(2.13) are also sufficient if the following transversality condition
is satisfied:

lim
t→∞ e−(ρ+λ)tψ(K −K∗) ≥ 0 (2.14)

Substituting (2.11) into (2.12), we obtain:

(1− θS)
1
C

e−(λ+ρ)t (r + λ) (1− τ)
(1− θS)

= −ψ̇ (2.15)

where:

−ψ̇ =
{

(1− θS)
[
− 1

C2
Ċe−(λ+ρ)t − 1

C
(λ + ρ) e−(λ+ρ)t

]}
(2.16)

Substituting (2.16) into (2.15), the Euler equation is derived:

Ċ

C
=

r (1− τ)− λ (τ + θS)− ρ (1− θS)
(1− θS)

(2.17)

Imposing τ = θS = λ = 0, it is possible to obtain Ċ = (r − ρ) C, which gives the Euler equation
for the case of a CRRA instantaneous utility function with elasticity of substitution equal to 1,
when no government issues are considered and consumers live infinite lives.

We can now substitute the profit maximizing condition in the Euler equation in order to derive
the equation of motion for consumption:

Ċ

C
=

(1− τ)
1− θS

(1− α)
(

G

K

)α

− λ (τ + θS)
1− θS

− ρ (2.18)

where (2.18) states that consumption is decreasing over time in the subjective rate of discount as
well as in the probability of death parameter. A higher value of the discount factor ρ will reduce
consumption growth and this effect will be even stronger in the presence of a positive probability
of death. The role played by λ in decelerating consumption growth over time can also be seen
from the expression for the dynamics of private capital (2.9) where such a parameter enters with a
positive sign.
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2.3 Government

The government collects taxes T from total income produced in the economy and uses taxes to
finance public consumption Cp, lump-sum transfers to households Tp, investment in public capital
Ġ and investment subsidies to firms θSK̇. No public debt issues are considered in the model and
the government budget constraint is the same as in Greiner (1999).

Recalling the definition of the production function in (2.1) and assuming that the government
uses shares ϕ1 and ϕ2 of tax revenue for lump-sum transfers to households and public consumption
respectively (with ϕ1 and ϕ2 defined between 0 and 1; ϕ1+ϕ2 < 1), the budget constraint is written
as follows:

τK1−αGα = Ġ + (ϕ1 + ϕ2) τK1−αGα + θSK̇ (2.19)

Substituting K̇ from the consumer budget constraint, we derive the dynamic equation of public
capital:

Ġ

G
= K1−αGα−1

{
τ (1− ϕ1 − ϕ2)− θS

1− θS
[1− τ (1− ϕ1)]

}

− θS

1− θS

[
λK (1− τ)

G
− C

G

]
(2.20)

This equation differs from the one in Greiner (1999) for the term θS/(1 − θS) · λK(1 − τ)/G,
which is equal to zero for a null λ. Thus, as for the dynamic equations of consumption and private
capital, we have an expression capable of treating the infinite horizon scenario as a limiting case.

2.4 The economy

The economy is described by the following system of differential equations:

Ċ

C
=

(1− τ)
1− θS

(1− α)
(

G

K

)α

− λ (τ + θS)
1− θS

− ρ (2.21)

K̇

K
= K−αGα 1− τ (1− ϕ1)

1− θS
+

λ (1− τ)
1− θS

− C

K (1− θS)
(2.22)

Ġ

G
= K1−αGα−1

{
τ (1− ϕ1 − ϕ2)− θS

1− θS
[1− τ (1− ϕ1)]

}

− θS

1− θS

[
λK (1− τ)

G
− C

G

]
(2.23)

The system (2.21)-(2.23) does not have a rest point and the usual procedure to determine the
steady state and to analyse its properties fails to provide a unique solution for it. Therefore,
the variables C and G are normalized by K by defining the ratios x = G/K and c = C/K,
which respectively express public capital and private consumption in terms of private capital. The
definition of the two new variables x and c implies:

ẋ

x
=

Ġ

G
− K̇

K
;

ċ

c
=

Ċ

C
− K̇

K
(2.24)
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By doing so, the system (2.21)-(2.23) is reduced to:

ẋ = xα

{
τ (1− ϕ1 − ϕ2)− θS

1− θS
[1− τ (1− ϕ1)]

}
− xα+1 1− τ (1− ϕ1)

1− θS

+ (x + θS)
[

c

1− θS
− λ (1− τ)

1− θS

]
(2.25)

ċ = c

[
xα (1− τ)

1− θS
(1− α)− λ (1 + θS)

1− θS
− ρ

]
− cxα 1− τ (1− ϕ1)

1− θS

+
c2

1− θS
(2.26)

Proposition 1 There exists a BGP with endogenous growth for the economy described by (2.25)-
(2.26) and such a BGP is unique.

The system (2.25)-(2.26) will have a steady state solution which will correspond to the balanced
growth path (BGP) of the original system (2.21)-(2.23). In such a steady state the variables in the
model will grow at the same rate and the long-run growth rate of the economy will be given by:

γ =
Ċ

C
=

(1− τ)
1− θS

(1− α)
(

G

K

)α

− λ (τ + θS)
1− θS

− ρ (2.27)

Hence, the long-run rate of growth is decreasing both in the rate of time preferences ρ and
in the probability of death parameter λ. Thus, we are able to capture the decelerating effect on
economic growth caused by λ. From (2.27) it is clear that:

Ċ

C

∣∣∣∣∣
(λ=0)

>
Ċ

C

∣∣∣∣∣
(λ>0)

(2.28)

Consumers with infinite lives are willing to postpone consumption in the future and to increase
current saving. This behavior leads to a higher long-run growth rate. An increase in λ, ceteris
paribus, is always associated with a lower long-run rate of growth of the economy (and with higher
steady state values for both x and c).

The system (2.25)-(2.26) is similar to the one in Greiner (1999), who in turn refers to the model
by Futagami et al. (1993). The system that we have produced departs from Greiner (1999) due to
the inclusion of the probability of death and then it can be easily reduced to that form in order to
make our results comparable with his conclusions. Moreover, our system collapses to that used by
Futagami et al. (1993) when θS = ϕ1 = ϕ2 = 0 and λ = 0.

The economy in Futagami et al. (1993) is characterized by saddle-path stability but it is assumed
that tax revenues are used for public investment only. On the other hand, Greiner (1999) proves
that the model is both locally and globally determinate, arguing that: “With inelastic labour supply
there exists at most one BGP with endogenous growth and the Jacobian matrix of the system has
one positive and one negative real root, i. e., the rest point of the system is the saddle path”. This
implies that there exists a unique value for the initial level of consumption, which can be chosen
freely by the household, such that the economy converges to the stable BGP in the long-run.
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Proposition 2 The Jacobian matrix of the system (2.25)-(2.26) has one positive and one negative
real root, which implies that the unique BGP is stable.

Departing from the literature cited above for the assumption of uncertain lifetime consumers,
the model needs to be analysed in detail about its mathematical properties. In the light of this,
sections B and C in the Appendix (pages 33-36) report the proofs of propositions 1 and 2.

3 Fiscal Policy

Given the theoretical framework provided above, it is possible to analyse the growth effects of
changes in fiscal parameters, depicting the role played by the uncertain lifetime hypothesis. The
following subsections 3.1-3.3 deal with the relationships between fiscal policy tools and long-term
economic growth. In particular, the growth hampering effect of a rise in either public consumption
or lump-sum transfers is described in 3.1. In subsection 3.2, it is shown the growth maximizing
income tax rate and how its value is influenced by the presence of public consumption and transfers
to households. Finally, subsection 3.3 focuses on the ambiguous effect of investment subsidies on
growth and their relationship with the growth maximizing income tax rate. All the analytical
results shown below are derived in detail in the Appendix (see section D, pages 36-39).

3.1 Public consumption and lump-sum transfers

The share of government expenditure devoted to public consumption has been modelled with the
parameter ϕ2. Starting with the infinite horizons case, an increase in public consumption implies
that more resources will be devoted to unproductive purposes as opposed to public investment and
private investment subsidies. As a direct consequence, productive public expenditure will decrease,
which in turn will negatively affect growth. The expected effect of an increase in the parameter ϕ2

is hence a decline in the balanced growth rate γ. Such a decelerating effect on long-term economic
growth will be reflected by a smaller steady state value of x = G/K, as shown in equation (2.27).

Given a positive probability of death, let us consider the consequences of increasing public
consumption. The key feature to be taken into account is that, compared to the infinite horizons
scenario and other things being equal — as shown in equation (2.27) — the economy will always
grow at a lower rate in the long-run. An increase in ϕ2, is still expected to impact negatively
long-term economic growth, but will such an impact be more or less effective than in the infinite
horizons scenario?

Proposition 3 The long-run rate of growth of the economy γ is decreasing in public consumption
ϕ2. Increases in ϕ2 of the same amount reduce γ less for λ > 0 than for λ = 0:

∂γ

∂ϕ2
< 0 (3.1)

∂γ

∂ϕ2

∣∣∣∣
(λ>0)

<
∂γ

∂ϕ2

∣∣∣∣
(λ=0)

(3.2)

According to proposition 3, the decrease in the long-run rate of growth caused by an increase
in ϕ2 will be lower when λ > 0. As formally proved in the Appendix — see subsection D.1 — this
is due to a smaller negative impact of the increase in ϕ2 on the steady state value of x.
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Increasing transfers to households (a higher value for the parameter ϕ1) will lead to two opposite
effects. On one side, a smaller share of total government expenditure will be devoted to productive
uses, implying a reduction in the balanced growth rate. On the other hand, an income effect will
take place, making consumers richer than before. However, provided that transfers are lump-sum,
these will not affect decisions concerning the allocation of private resources between consumption
and savings. Thus, the only expected effect will be the first one and a lower long-run growth rate is
predictable. This is also true in the presence of a positive λ, but once again the question of interest
is whether or not an increase in households transfers will affect economic growth in the same way.

Proposition 4 The long-run rate of growth of the economy γ is decreasing in lump-sum transfers
ϕ1. Increases in ϕ1 of the same amount reduce γ less for λ > 0 than for λ = 0:

∂γ

∂ϕ1
< 0 (3.3)

∂γ

∂ϕ1

∣∣∣∣
(λ>0)

<
∂γ

∂ϕ1

∣∣∣∣
(λ=0)

(3.4)

As for the case of higher public consumption, when the government decides to increase transfers
to households, under the hypothesis of uncertain lifetime consumers, the decline in the long-run
rate of growth of the economy will be lower compared to the infinite horizons scenario.

3.2 Public investment

Rising the income tax rate τ yields two effects operating in opposite directions. In the infinite
horizons case, given an increase in τ , the first effect to be taken into consideration is the higher
taxation on returns on capital, which implies a disincentive to save and, as a consequence, a
reduction in private investment with the effect of lowering long-term economic growth. However,
an opposite effect will take place: for a given level of income, a higher income tax rate implies
higher tax revenues which in turn leads to higher investment in public capital and accelerates
economic growth. Thus, the net effect of an increase in τ might be either positive or negative,
depending on whether the second effect offsets the first one. The well-known Barro rule states that
the optimal provision of public investment implies that a unit increase in government spending
implies a unit increase in output. With a Cobb-Douglas production function, this means that the
optimal government spending is equal to its share in the production function.

Greiner (1999) concludes that higher levels of unproductive public spending and/or generous
investment subsidies, will force the government to increase productive investment in order to com-
pensate for the negative effect on the long-run rate of growth.

The model presented in the previous section assumes the same fiscal policy tools proposed
by Greiner (1999), generalizing his framework to include the case of finite horizons. Hence, the
question of how the optimal level of τ might be affected by the uncertain lifetime hypothesis arises.
Mourmouras and Lee (1999) find τmax to be independent of the probability of death parameter. In
other words, the optimal level of public investment provision does not depend on the consumption
externality due to the uncertain lifetime hypothesis. They find the Barro rule to be satisfied both
in finite and infinite lives scenarios, pointing out that this rule is only determined by the production
side of the economy, which they model as in Barro (1990). On the other hand, we expect that the
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new growth maximizing level of τ will be affected by the different effect on the disincentive to
save caused by the higher taxation on returns on capital. Indeed, once the probability of death is
introduced in the model, the growth-maximizing income tax rate becomes:

τmax|(λ>0) =
αxα (α− 1) (x + θS)

xα+1 (α− 1)− λx + λα (x + θS)
(3.5)

Proposition 5 There exists a growth maximizing income tax rate τmax both in the infinite and the
finite horizons scenarios, the first one being higher than the latter one:

τmax|(λ>0) < τmax|(λ=0) (3.6)

Hence, the growth maximizing level of the income tax will be reached before if consumers have
uncertain lifetime than in the infinite horizons case. In contrast with Mourmouras and Lee (1999),
optimal public investment turns out to be dependent on the horizon index. Such a relationship is
depicted in (3.5), but it can be easily seen by directly compare our set up with the model provided
by Barro (1990). This can be done by simply deleting θS in (3.5). By doing so, a modified Barro
rule is obtained:

τmax|(λ>0,θS=0) =
xα

x + λ
(3.7)

For λ = 0, (3.7) is equivalent to the Barro rule: the optimal provision of public investment is
given by the share of public capital in the aggregate production function. However, if consumers
live finite lives, such an optimal level will be lowered by the consumption externality due to λ.

Under the hypothesis of uncertain lifetime consumers, the relationships linking such an optimal
rule for public investment to other fiscal policy tools will be also affected. As for unproductive
public expenditure our results are summarized in proposition 6.

Proposition 6 For 0 ≤ λ ≤ 1, the growth maximizing income tax rate τmax is increasing in both
public consumption ϕ2 and lump-sum transfers to households ϕ1.

∂τmax

∂ϕi

∣∣∣∣
(0≤λ≤1)

> 0, i = 1, 2 (3.8)

Hence, regardless the value of λ, in the presence of higher unproductive public expenditures,
the need for a higher provision of public investment turns out to be always necessary8.

3.3 Investment subsidies

The last fiscal policy tool to be considered are investment subsidies, represented by the parameter
θS . As for the two categories of unproductive public spending, let us consider the growth effect of
varying θS and the relationship linking this parameter to τmax.

It is evident from the F.O.C. (2.11) that a change in θS affects consumers’ marginal utility:
higher investment subsidies lead to a reduction in the marginal utility for each given level of

8For the proofs of propositions 5 and 6, see subsection D.2 in the Appendix.
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consumption. Moreover, from the consumer budget constraint it turns out that an increase in the
parameter θS causes private investment to be cheaper. These two effects combined together will
shift resources from consumption to investment in the private sector by increasing the opportunity
cost of consumption. Thus, one will expect that the rate of growth of the economy will increase
after the government’s decision to provide the private sector with higher investment subsidies.

On the public side of the economy, however, devoting more resources to investment subsidies
implies a depletion of resources from investment in public capital and thus a lower long-run rate of
growth. As a consequence, the net effect resulting from the combination of the two effects in the
private and in the public sectors is ambiguous. However, Greiner (1999) claims that there exists
a growth-maximizing value for investment subsidies and that if it is in the interior (0, 1) it will be
determined by the elasticity of x with respect to θS on the balanced growth rate. The analysis
provided by Greiner (1999) refers to the infinitely lived representative consumer case; what if we
impose a positive probability of death? After the decision of the government to increase θS , the two
opposite effects described above will occur again. On the public side of the economy, the decline
in the share of public spending devoted to productive use will be the same as in the infinite lives
scenario. On the other hand, we expect that the growth enhancing effect due to the decline in the
marginal utility for each level of consumption will be larger than in the former case because of the
presence of the probability of death. Hence, the growth maximizing level of θS will have a smaller
value: it should be reached earlier than in the infinite horizons case.

Proposition 7 There exists a growth maximizing value for investment subsidies, and such a value
is decreasing in the probability of death parameter λ:

∂γ

∂θS
|(λ=0) > (≤)0 when

∂x

∂θS

θS

x
> (≤)− θS

α (1− θS)
(3.9)

∂γ

∂θS

∣∣∣∣
(λ>0)

> (≤)0 when
∂x

∂θS

θS

x
> (≤)− θS

α (1− θS)
+

λ (1 + τ)
(1− θS)2

(3.10)

As for the impact of higher investment subsidies on the growth maximizing income tax rate, in
analogy with public consumption and lump-sum transfers to households, our result is summarized
in proposition 89.

Proposition 8 For 0 ≤ λ ≤ 1, the growth maximizing income tax rate τmax is increasing in
investment subsidies.

∂τmax

∂θS

∣∣∣∣
(0≤λ≤1)

> 0 (3.11)

4 Simulation

The model has been solved numerically with two main objectives. The first aim is the comparison
of the steady state solution of the system (2.25)-(2.26) across alternative life horizons scenarios.
This aim is pursued in subsection 4.1 by evaluating the steady state values of x and c and the

9For the proofs of proposition 7 and 8, see subsection D.3 in the Appendix.
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corresponding long-run rate of growth γ, for alternative values of the probability of death parameter
λ.

The second objective is related to the analysis of fiscal policy under the assumption of uncertain
lifetime consumers and its comparison with the infinite lives scenario. Subsections 4.2-4.4 report
the results of a number of simulations of the model aimed at evaluating the growth impacts of
varying fiscal policy parameters under alternative values of λ.

The numerical values of all the parameters involved in this analysis have been chosen to make
the results as much as possible comparable with the ones obtained in previous studies. The initial
values used for ϕ1 and ϕ2 are 0.35 and 0.40 respectively. The value of the public capital share
α usually used in the literature is around 0.30. Greiner (1999) uses 0.30 and so we choose to
adopt this value. On the other hand, Barro (1990) uses 0.25 in his simulation, which implies a
higher private capital share. With regard to the rate of time preferences ρ, the range of the values
commonly used is between 0.01 and 0.04, which implies that the consumer is assumed to use an
annual discount rate varying between 1% and 4%. Following Greiner (1999) and recalling that the
model is concerned with the behavior of the economy in the long-run, we assume that one time
period includes a spell of five years and we set the annual discount rate at 0.04, which will imply
imposing ρ = 0.2. Finally, the income tax rate and the investment subsidies parameters are initially
set at 0.15 and 0.10 respectively.

The complete set of results is reported in Tables 1-12 (see Appendix A, pages 22-32). Alternative
horizons scenarios are compared letting λ assuming the values 0, 0.03 and 0.06.

4.1 The impact of the horizon index

The system used in the numerical simulation for solving the model is given by:

ẋ

x
= xα−1

{
τ (1− ϕ1 − ϕ2)− θS

1− θS
[1− τ (1− ϕ1)]

}

− xα 1− τ (1− ϕ1)
1− θS

+
(

1 +
θS

x

)[
c

1− θS
− λ (1− τ)

1− θS

]
(4.1)

ċ

c
=

[
xα (1− τ)

1− θS
(1− α)− λ (1 + θS)

1− θS
− ρ

]
− xα 1− τ (1− ϕ1)

1− θS
+

c

1− θS
(4.2)

which is equivalent to (2.25)-(2.26). By imposing ċ/c = ẋ/x = 0, and solving for x and c, we find the
steady state solutions of the two variables. When the analysis is carried out in the finite horizons
case, one would expect the steady state solutions to change. This is due to the fact that the steady
state values for x and c are affected by the probability of death: the higher the probability of death,
the higher they will be. Since for a higher probability of death, households have a disincentive to
postpone consumption in the future, the steady state level of consumption to private capital ratio
is increasing in λ. The steady state solution for x provides the value of the ratio G/K at which
consumption is constant over time. As the probability of death increases, x will increase, since
a larger amount of government spending is required in order to promote economic growth, thus
compensating for the negative effect on growth caused by the higher level of current consumption.

Figures 8-10 in the Appendix show the curves ċ/c = 0 and ẋ/x = 0 for λ = 0, λ = 0.03 and
λ = 0.06 respectively. In each of these three cases, the interception of the two curves gives steady
state values for x and c. Both x and c steady state values increase with the probability of death.
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The solution of the model for λ = 0 is (x = 0.0711, c = 0.3191). When the probability of death is
set at 0.03 the new steady state solution is given by x = 0.0758 and c = 0.3549; when λ = 0.06, we
find x = 0.0808 and c = 0.3906.

The balanced growth rate is γ = 0.01983 in the infinite horizons case, γ = 0.01934 for λ = 0.03,
and γ = 0.01883 when λ = 0.06. Thus, the balanced growth rate is lower under the uncertain
lifetime assumption and is decreasing in the probability of death parameter. The role played

�

�

Figure 1: The Relationship between γ and λ

by λ is to increase the propensity to consume: the higher the probability of death, the higher
the willingness of consuming today, and this circumstance negatively affects the long-run rate of
growth. In the general case 0 ≤ λ ≤ 1, γ is linked to λ by the linear relationship shown in Figure
1.

4.2 The impact of public consumption and lump-sum transfers

Let us consider the impact of increasing public consumption. After increasing ϕ2 from 0.40 to 0.45,
the balanced growth rate is lowered as expected in the three scenarios considered (λ = 0, λ = 0.03
and λ = 0.06, see Table 1, Appendix A, page 22). A higher share devoted to public consumption
causes a decline in the share of government expenditure devoted to productive purposes and, as a
consequence, economic growth is negatively affected. The peculiar property of the finite horizons
case is the following: given the same increase in ϕ2, the negative effect on growth is smaller than
in the infinite horizons case. The percentage decline in γ is denoted with γ1 in Table 1. Starting
from the initial steady state, after an increase in public consumption the growth rate decreases less
in the finite horizon case than in the infinite one.

Table 2 in the Appendix refers to a fiscal policy experiment similar to the one described above,
the only difference being the increase in ϕ1 instead of ϕ2. Thus, the objective of the analysis is to
describe the impact of increasing lump-sum transfers to households on long-term economic growth,
other things being equal. Letting ϕ1 varying from 0.35 to 0.40, the long-run rate of growth is
lowered both when λ = 0 and for a positive probability of death, the latter case being characterized
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by a smaller reduction in γ (see γ1 in Table 2).
Hence, increases in lump-transfers and public consumption are both less effective in lowering

the long-run rate of growth of the economy under the assumption of uncertain lifetime than in the
infinite horizon scenario. We note that the only distinguishing feature is that when the government
switches resources from public consumption to lump-sum transfers, the steady state value of c
becomes higher.

�

�
2

�
=0.4

�
=0.06

�
=0.03

�
=0

Figure 2: The relationship between γ and ϕ2

�

�
1

�
=0.4

�
=0.06

�
=0.03

�
=0

Figure 3: The relationship between γ and ϕ1
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Figures 2 and 3 illustrate the relationship between γ and ϕi (i = 1, 2), in a more general case.
Indeed, the two pictures are obtained by letting vary ϕ2 (Figure 2) and ϕ1 (Figure 3) between
0 and 0.60, holding fixed the share devoted to the other category of unproductive government
expenditure. In both cases, the three top curves (starting with the highest one) refer to values for
λ of 0, 0.03, and 0.06 respectively. The lowest and flattest curve represents the limiting case of
λ = 0.410. As pointed out in propositions 3 and 4, an increase in either ϕ1 or ϕ2 leads to smaller
and smaller reductions in the balanced growth rate, as the probability of death parameter is set to
a higher value.

4.3 The impact of public investment

In order to simulate an increase in public investment in infrastructure services, we let vary the
income tax rate parameter τ between 0.15 and 0.50. The main interest of this experiment is to
analyse the differences that emerge by assuming different values for λ. Namely, we want to test
the existence of the Barro curve. This result is non trivial for two main reasons. First, the model
includes additional categories of expenditures with respect to Mourmouras and Lee (1999). Second
and more importantly, the consumption externality due to the finite lives assumption is likely to
affect the determination of τmax. Holding fixed the values of all other parameters at their respective
starting levels, the model is solved for values of τ varying from 0.15 to 0.50. The results of this
simulation are shown in Tables 3-5 in the Appendix (pages 23-25).

Starting from the infinitely lived consumers case (Table 3), it can be seen that γ increases for
higher values of τ up to a point, after which it starts falling. The balanced growth rate reaches
its maximum value for τ = 0.383. Thus, this is the optimal value of the income tax rate. A
similar behavior can be depicted under the uncertain lifetime hypothesis in Tables 4 and 5. For
increasing values of the income tax rate, the balanced growth rate increases up to a point and then
it goes down: the relationship between γ and τ takes the form of a hump-shaped curve in the finite
horizons case.

In Figure 4, the values of γ are plotted against the values taken by τ when λ = 0, λ = 0.03
and λ = 0.06. The highest curve refers to the infinite horizon case, the lowest one to a probability
of death equal to 0.06. As argued above, the finite horizon case is always characterized by a lower
balanced growth rate and this implies a Barro curve closer to the x-axis. For each given value of
τ , γ is decreasing in λ for the role played by the probability of death in reducing economic growth.
Hence, the higher λ, the lower the Barro curve. This result is in contrast with Mourmouras and
Lee (1999), who find the optimal role for public investment provision to be independent of λ, due
to the fact that the Barro rule only arises from the production side of the economy. The present
framework, instead, captures the consumption externality effect of λ, explicitly accounting for its
impact on optimal fiscal policy.

Indeed, as shown in Tables 4 and 5, when the probability of death is fixed at 0.03 the growth
maximizing income tax rate is lower with respect to the case of λ = 0 and it is even lower for
λ = 0.06. In the first case, the maximum value of γ (0.02830) is achieved when τmax = 0.359, while
the growth maximizing income tax rate becomes 0.335 when λ is set at 0.06 (with γ = 0.02614).

This is coherent with the result summarized in proposition 5. The negative relationship between
λ and τmax is shown in Figure 5 for the more general case 0 ≤ λ ≤ 1.

10Both maximum values of ϕi and λ, have been chosen to satisfy the condition 0 < γ < (ρ + λ).
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Figure 4: Barro Curve, Finite and Infinite Horizons
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Figure 5: The relationship between τmax and λ

4.3.1 The impact of public investment with higher public consumption and higher
lump-sum transfers

As argued in proposition 6, when the government provides the economy with higher shares of either
transfers to households or public consumption, it will also need to increase public investment in
order to offset the negative effect on economic growth caused by the higher unproductive use of its
resources. In order to consider this fact, we solve the model assuming that the government devotes
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a share ϕ2 = 0.45 to public consumption, comparing the outcome with the original scenario in
which ϕ2 was set at 0.40 (Tables 3-5). The expected outcome will be a higher optimal income tax
rate and the results of this experiment are shown in Tables 6-8 (pages 26-28) in the Appendix. In
the infinite horizons case τmax is 0.394 (Table 6), which confirms our expectation. For values of the
probability of death equal to 0.03 and 0.06, the same behavior is observed: τmax increases to 0.368
(Table 7) and 0.342 (Table 8) respectively.

As shown in section 4.2, an increase of the same amount either in ϕ2 or in ϕ1 will have an
identical impact on the balanced growth rate. As a consequence, after an increase of either ϕ2 or
ϕ1, τmax will be affected in the same way. For this reason, the results of an increase in ϕ1 are not
shown in the Appendix.

Figure 6 shows the increasing relationship between unproductive uses of government resources
and the optimal income tax rate.

�
=0.06

�
=0.03

�
=0

�
max

�
i

Figure 6: The relationship between τmax and ϕi

4.3.2 The impact of public investment with higher investment subsidies

According to Proposition 8, the growth maximizing income tax rate is increasing not only in
unproductive government expenditure, but also in the investment subsidies parameter θS . Tables
9-11 report the results of an increase in θS from its starting value of 0.10 to 0.12, when λ is set to 0,
0.03 and 0.06 respectively. As stated before, increasing investment subsidies leads to the need for
a higher optimal provision of investment in infrastructure. Such an impact on τmax is evident by
comparing the results in Tables 9-11 with the ones reported in Tables 3-5: in the infinite horizons
scenario, τmax increases from 0.383 to 0.399 (Table 9); for λ = 0.03, τmax increases from 0.367 to
0.374 (Table 10); when λ = 0.06, τmax increases from 0.335 to 0.35 (Table 11). In the more general
case of θS ranging from 0 to 0.15, such an increasing relationship between τmax and θS is shown in
Figure 7.
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Figure 7: The relationship between τmax and θS

4.4 The impact of investment subsidies

The last experiment assesses the existence of a growth maximizing value for investment subsidies
as stated in proposition 7. For this simulation, the income tax rate is set at 0.42511 and the results
are reported in Table 12 in the Appendix. The optimal value of θS in the infinite horizon case is
found to be 0.113. For this value of θS , γ reaches it maximum value (0.03041). A slightly lower
θmax (0.012) is obtained by re-running the experiment for a value of λ equal to 0.03. This provides
a confirmation of the intuitive explanation provided to justify a smaller value for θmax in the finite
horizons case. By setting a probability of death at 0.06, θmax becomes 0.104.

5 Conclusions

This paper was aimed at studying the growth effects of fiscal policy in a Barro-type endogenous
growth model with finite horizons. The model provides a flexible framework capable of studying the
growth effects of fiscal policy both in infinite and finite horizons scenarios and reducing to limiting
cases some recent Barro-type models. The optimal lifetime consumption plan has been determined
within a standard representative agent model, the only difference being a rate of time preference
augmented by a positive probability of death parameter. The government was assumed to run
a balanced budget constraint, equating total expenditures to total revenues collected by levying
a flat-rate income tax. I have distinguished between productive and unproductive categories of
government expenditures. Productive public spending includes investment in public capital and
private investment subsidies. On the other hand, public consumption and lump-sum transfers to
households were assumed to be unproductive.

Comparing the two alternative scenarios of finite and infinite horizons, I have obtained results
11The same value used by Greiner (1999) has been chosen for comparability purposes.
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on (i) the growth effects of each category of government expenditures on long-run economic growth,
and (ii) the relationships relating the Barro rule to the other categories of government expenditure.

Regarding the first set of conclusions, both categories of unproductive government spending
are shown to have a decelerating effect on long-run growth. This result is in line with the existing
literature and verified regardless the assumption of uncertain lifetime. However, a rise of either
lump-sum transfers to households or public consumption reduces the long-run rate of growth less
in the finite than in the infinite horizon scenario. On the other hand, the growth effects of the
two categories of productive expenditures are ambiguous, and for both I have derived a growth
maximizing value. As for public investment, the Barro rule still holds in the infinite horizon
scenario but, in contrast with the existing literature, is negatively linked to the probability of death
parameter. This implies that the growth maximizing level of public investment is lower under
the assumption of uncertain lifetime. Similarly, the growth maximizing level of private investment
subsidies is reached earlier in the finite than in the infinite horizons scenario.

Relative to the second set of conclusions, the effects of public consumption, lump-sum transfers
to households and investment subsidies on the optimal provision of public investment are similar.
Indeed, it is shown that the growth maximizing level of public investment tends to increase in the
presence of higher levels of other categories of expenditures. This result takes place regardless the
assumption on uncertain lifetime.

The model is based on some restrictive hypothesis and, as a consequence, can be extended along
a number of directions. For instance, the assumption of no labour-leisure choice could be relaxed in
favor of the assumption of endogenous labour supply, providing an extension on the consumption
side. A further extension to the model could interest the government side, where it is assumed the
absence of public debt and it is solely considered the case of proportional income taxation. Hence, a
further extension of the model could cover the analysis of alternative mixes of different categories of
expenditures and different structures of taxation — distortionary and non-distortionary — and/or
alternative sources of financing — deficit or taxation. Finally, it would be worthwhile to use this
theoretical framework in order to account for welfare considerations.
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Appendix

A Fiscal Policy Experiment

Figure 8: Steady State solution (λ = 0)

Figure 9: Steady State solution (λ = 0.03)
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Figure 10: Steady State solution (λ = 0.06)

λ = 0 λ = 0.03 λ = 0.06
ϕ2 = 0.40 ϕ2 = 0.45 ϕ2 = 0.40 ϕ2 = 0.45 ϕ2 = 0.40 ϕ2 = 0.45

x 0.0711339 0.057632 0.075898 0.062004 0.080825 0.066544
c 0.319145 0.310630 0.358338 0.346528 0.394106 0.382389
γ 0.019831 0.016170 0.019340 0.015749 0.018835 0.015312
γ1 -0.00366 -0.00359 -0.00352

ϕ1 = 0.35, α = 0.3, ρ = 0.2, τ = 0.15, θ = 0.1

Table 1: An increase in public consumption

λ = 0 λ = 0.03 λ = 0.06
ϕ1 = 0.35 ϕ1 = 0.40 ϕ1 = 0.35 ϕ1 = 0.40 ϕ1 = 0.35 ϕ1 = 0.40

x 0.071134 0.057632 0.075898 0.062004 0.080825 0.066544
c 0.319145 0.313816 0.35488 0.349785 0.390580 0.385715
γ 0.019831 0.016170 0.019340 0.015749 0.018835 0.015312
γ1 -0.00366 -0.00359 -0.00352

ϕ2 = 0.40, α = 0.3, ρ = 0.2, τ = 0.15, θ = 0.1

Table 2: An increase in lump-sum transfers
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θ x c γ

(λ = 0) 0.07 0.4995 0.4469 0.03029
0.08 0.483 0.442 0.03034
0.09 0.4665 0.4375 0.03037
0.10 0.4502 0.4328 0.03040
0.113 0.4339 0.4281 0.03041
0.12 0.4179 0.4233 0.03040
0.13 0.4019 0.4184 0.03039
0.14 0.3861 0.4135 0.03036
0.15 0.3705 0.4085 0.03031

(λ = 0.03) 0.07 0.5115 0.4808 0.02759
0.08 0.4965 0.4768 0.02762
0.09 0.4815 0.4727 0.02765
0.10 0.4667 0.4686 0.02766
0.112 0.4520 0.4644 0.02767
0.12 0.4374 0.4603 0.02766
0.13 0.4230 0.4561 0.02765
0.14 0.4086 0.4518 0.02762
0.15 0.3944 0.4475 0.02752

(λ = 0.06) 0.07 0.5236 0.5148 0.024901
0.08 0.5103 0.5113 0.024920
0.09 0.4970 0.5079 0.024933
0.104 0.4838 0.5044 0.024940
0.11 0.4708 0.5009 0.024939
0.12 0.4578 0.4973 0.024932
0.13 0.4450 0.4938 0.024918
0.14 0.4322 0.4902 0.024896
0.15 0.4196 0.4866 0.024867

ϕ1 = 0.35, ϕ2 = 0.40, α = 0.3, τ = 0.425

Table 12: Growth maximizing level of investment subsidies
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B Uniqueness

Proof of proposition 1 There exists a BGP with endogenous growth for the economy described
by (2.25)-(2.26) and such a BGP is unique.

In order to prove proposition 1, we first set ċ = 0,

cxα (1− τ) (1− α)
(1− θS)

− c
λ (1 + θS)
(1− θS)

− cρ− cxα [1− τ (1− ϕ1)]
(1− θS)

+
c2

(1− θS)
= 0 (B.1)

Solving (B.1) for c and substituting the result in (2.25) yields

F (x, ·) = xα

{
τ (1− ϕ1 − ϕ2)− θS (1− τ) (1− α)

(1− θS)

}

− xα+1 (1− τ) (1− α)
(1− θS)

+ (x + θS)
[
ρ +

λ (τ + θS)
(1− θS)

]
(B.2)

A solution to F (x, ·) = 0 gives a BGP for the economy. For x = 0 we have F (0, ·) > 0

F (0, ·) = θS

[
λ (τ + θS)
(1− θS)

+ ρ

]
> 0 (B.3)

We now calculate the sign of ∂F (x, ·) /∂x:

∂F (x, ·)
∂x

= αxα−1

{
τ (1− ϕ1 − ϕ2)− θS (1− τ) (1− α)

(1− θS)

}

− (α + 1)xα (1− τ) (1− α)
(1− θS)

+
λ (τ + θS)
(1− θ)

+ ρ (B.4)

where

γ =
Ċ

C
= xα (1− α) (1− τ)

(1− θS)
− λ (τ + θS)

(1− θS)
− ρ

Thus, by substituting this result into (B.4):

∂F (x, ·)
∂x

= αxα−1

{
τ (1− ϕ1 − ϕ2)− θS (1− τ) (1− α)

(1− θS)

}

− αxα (1− τ) (1− α)
(1− θS)

− γ (B.5)

From

γ =
Ġ

G
= xα−1

{
τ (1− ϕ1 − ϕ2)− θS [1− τ (1− ϕ1)]

(1− θS)

}
− λθS (1− τ)

x (1− θS)
+

cθS

x (1− θS)

It follows that

αxα−1τ (1− ϕ1 − ϕ2) = α

{
γ + xα−1 θ [1− τ (1− ϕ1)]

(1− θS)
+

λθS (1− τ)
x (1− θS)

− cθS

x (1− θS)

}
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Thus, by substituting this expression in (B.5), we obtain

∂F (x, ·)
∂x

= (α− 1) γ + αxα−1 θS [1− τ (1− ϕ1)]
(1− θS)

− αxα (1− τ) (1− α)
(1− θS)

+
αλθS (1− τ)
x (1− θS)

− αcθS

x (1− θS)
− αxα−1 θS (1− τ) (1− α)

(1− θS)
(B.6)

From (B.1), it follows that

αcθS

x (1− θS)
=

αθSλ (1 + θS)
x (1− θS)

+
αρθS

x
− αxα−1 θS

(1− θS)
{(1− τ) (1− α)− [1− τ (1− ϕ1)]} (B.7)

Inserting this result in (B.6) yields

∂F (x, ·)
∂x

= (α− 1) γ − αxα (1− τ) (1− α)
(1− θS)

+
αθSλ (1− τ)
x (1− θS)

− αθSλ (1 + θS)
x (1− θS)

− αρθS

x
(B.8)

Using again the definition of γ = (Ċ/C) leads to

∂F (x, ·)
∂x

= −γ −
[
αρ +

αλ (τ + θS)
(1− θS)

](
1 +

θS

x

)
(B.9)

From (B.9) it follows that ∂F (x, ·) /∂x < 0 always holds on the BGP and, as a consequence, F (x, ·)
cannot cross the horizontal axis from below. Since F (0, ·) > 0 and F (x, ·) is a continuous function
the BGP is unique.

C Stability

Proof of proposition 2 The Jacobian matrix of the system (2.25)-(2.26) has one positive and
one negative real root, which implies that the unique BGP is saddle path.

In order to prove proposition 2 we need to evaluate the partial derivatives of (2.25)-(2.26) at
the steady state.

∂ẋ

∂x
= αxα−1

{
τ (1− ϕ1 − ϕ2)− θS [1− τ (1− ϕ1)]

(1− θS)

}

− (α + 1)xα [1− τ (1− ϕ1)]
(1− θS)

+
c

(1− θS)
− λ (1− τ)

(1− θS)
(C.1)

Setting ẋ = 0 implies that

c

(1− θS)
= −xα−1

{
τ (1− ϕ1 − ϕ2)− θS [1− τ (1− ϕ1)]

(1− θS)

}

+ xα [1− τ (1− ϕ1)]
(1− θS)

− cθS

x (1− θS)

+
λ (1− τ) (1 + θS)

(1− θS)
(C.2)
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By substituting this result in (C.1), we obtain

∂ẋ

∂x
= (α− 1)xα−1

{
τ (1− ϕ1 − ϕ2)− θS [1− τ (1− ϕ1)]

(1− θS)

}

− αxα [1− τ (1− ϕ1)]
(1− θS)

− cθS

x (1− θS)
+

λθS (1− τ)
x (1− θS)

(C.3)

∂ẋ

∂c
=

x + θS

1− θS
(C.4)

∂ċ

∂x
= cαxα−1

{
(1− τ) (1− α)

(1− θS)
− [1− (1− ϕ1)]

(1− θS)

}
(C.5)

∂ċ

∂c
= xα (1− τ) (1− α)

(1− θS)
− λ (1 + θS)

(1− θS)
− ρ− xα [1− (1− ϕ1)]

(1− θS)
+

2c

(1− θS)
(C.6)

Setting ċ = 0 implies that

c

(1− θS)
=

λ (1 + θS)
(1− θS)

+ ρ− xα

{
(1− τ) (1− α)

(1− θS)
− [1− (1− ϕ1)]

(1− θS)

}

By substituting this result in (C.6), we obtain

∂ċ

∂c
=

c

(1− θS)
(C.7)

Thus, the Jacobian matrix of the system (2.25)-(2.26) is given by

J =

[
(α− 1) xα−1φ1 − αxαφ2 − cθS

x(1−θS) + λθS(1−τ)
x(1−θS)

x+θS
1−θS

cαxα−1φ3
c

(1−θS)

]
(C.8)

where

φ1 =
{

τ (1− ϕ1 − ϕ2)− θS [1− τ (1− ϕ1)]
(1− θS)

}
(C.9)

φ2 =
[1− τ (1− ϕ1)]

(1− θS)
(C.10)

φ3 =
{

(1− τ) (1− α)
(1− θS)

− [1− (1− ϕ1)]
(1− θS)

}
(C.11)

The determinant of the Jacobian matrix is:

Det J =
cx

(1− θS)

{
(α− 1) xα−2τ (1− ϕ1 − ϕ2)− cθS

x2 (1− θS)

}

+ xα−1c
θS [1− τ (1− ϕ1)]

(1− θS)2
− (x + θS) cαxα−1 (1− τ) (1− α)

(1− θS)2

+
cλθS (1− τ)
x (1− θS)

(C.12)
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From the definition of γ = (Ġ/G) it follows that

cxα−1 θS [1− τ (1− ϕ1)]
(1− θS)2

= − cγ

(1− θS)
+ cxα−1 τ (1− ϕ1 − ϕ2)

(1− θS)

− cλθS (1− τ)
x (1− θS)2

+
c2θS

x (1− θS)2
(C.13)

Substituting this result into (C.12)

Det J =
cα

(1− θS)
xα−1

{
τ (1− ϕ1 − ϕ2)− θS (1− τ) (1− α)

(1− θS)2

}

− cγ

(1− θS)
− cαxα (1− τ) (1− α)

(1− θS)2
(C.14)

From (B.4), it follows that

cα

(1− θS)
xα−1

{
τ (1− ϕ1 − ϕ2)− θS (1− τ) (1− α)

(1− θS)2

}
=

cαxα (1− τ) (1− α)
(1− θS)2

− cα

x (1− θS)
(x + θS)

[
ρ +

(τ + θS)
(1− θS)

]
(C.15)

Substituting this result in (C.14)

Det J = −c

{
γ

(1− θS)
+

α (x + θS)
x (1− θS)

[
ρ + λ

(τ + θS)
(1− θS)

]}
(C.16)

Since Det J< 0, proposition 2 is proved.

D Fiscal Policy

D.1 Public consumption and lump-sum transfers

Proof of propositions 3 and 4 The long-run rate of growth of the economy γ is decreasing in
public consumption ϕ2 and lump-sum transfers ϕ1. Increases in ϕi ( i = 1, 2) of the same amount
reduce γ less for λ > 0 than for λ = 0.

The impact of public consumption and lump-sum transfers to households is derived by differ-
entiating the long-run rate of growth γ with respect to ϕi, i = 1, 2

∂γ

∂ϕi
=

∂γ

∂x

∂x

∂ϕi
= α

(1− τ)
1− θS

(1− α) xα−1 ∂x

∂ϕi
, i = 1, 2 (D.1)

where
∂x

∂ϕi
= −∂F (x, ·) /∂ϕi

∂F (x, ·) /∂x
=

τxα

∂F (x, ·) /∂x
< 0, i = 1, 2 (D.2)

From the proof of proposition 1, we know that ∂F (x, ·) /∂x < 0. Hence, ∂x/∂ϕi < 0 and

∂γ

∂ϕi
< 0, i = 1, 2 (D.3)
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Moreover — from (B.9) — |∂F (x, ·) /∂x|(λ>0) > |∂F (x, ·) /∂x|(λ=0). Thus |∂x/∂ϕi|(λ>0) > |∂x/∂ϕi|(λ=0)

and
∂γ

∂ϕi

∣∣∣∣
(λ>0)

<
∂γ

∂ϕi

∣∣∣∣
(λ=0)

, i = 1, 2 (D.4)

Hence, propositions 3 and 4 are proved.

D.2 The growth maximizing income tax rate

Proof of proposition 5 There exists a growth maximizing income tax rate τmax both in the infinite
and the finite horizons scenarios, the first one being higher than the latter one.

In order to calculate the growth maximizing level of income taxation in the finite horizons case,
the derivative of (2.27) with respect to τ is evaluated as follows

∂γ

∂τ
= xα (1− α)

(1− θS)

[
−1 +

α (1− τ)
τ

∂x

∂τ

τ

x

]
− λ

(1− θS)
(D.5)

where

∂x

∂τ

∣∣∣∣
F (x,·)=0

= −∂F (x, ·) /∂τ

∂F (x, ·) /∂x
=
−xα

[
(1− ϕ1 − ϕ2) + (θS+x)(1−α)

(1−θS)

]
− λ(θS+x)

(1−θS)

−γ −
[
αρ + αλ(θS+τ)

(1−θS)

] (
1 + θS

x

) (D.6)

Solving F (x, ·) for ρ yields

ρ = xα

[
(1− α) (1− τ)

(1− θS)
− τ (1− ϕ1 − ϕ2)

(θS + x)

]
− λ (θS + τ)

(1− θS)
(D.7)

Let us now substitute (D.7) into (D.6) and the resulting expression for ∂x/∂τ back into (D.5). By
doing so, it is possible to solve ∂γ/∂τ = 0 for τ and to obtain the growth maximizing level of
income taxation in the presence of a positive λ:

τmax|(λ>0) =
αxα (α− 1) (x + θS)

xα+1 (α− 1)− λx + λα (x + θS)
(D.8)

which for λ = 0 simplifies to

τmax|(λ=0) = α

(
1 +

θS

x

)
(D.9)

where12

α

(
1 +

θS

x

)
>

αxα (α− 1) (x + θS)
xα+1 (α− 1)− λx + λα (x + θS)

(D.10)

Hence
τmax|(λ>0) < τmax|(λ=0) (D.11)

And proposition 5 is proved.
Proof of proposition 6 For 0 ≤ λ ≤ 1, the growth maximizing income tax rate τmax is

increasing in both public consumption ϕ2 and lump-sum transfers to households ϕ1.
For λ = 0, τmax is given by (D.9).

12This inequality has been evaluated using Maple 7.0 for the following values of the parameters: x > 0, 0 ≤ α ≤
1, 0 ≤ θS ≤ 1 and 0 ≤ λ ≤ 1.
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Let us define the implicit function Γ:

Γ (x (τ, θS , ϕi) , τ, θS , ϕi) ≡ τmax − α

(
1 +

θS

x

)
≡ τmax − Γ̄ = 0 (D.12)

Totally differentiating (D.9) with respect to ϕi, i = 1, 2 and applying the implicit function
theorem to (D.12):

∂τmax

∂ϕi

∣∣∣∣
(λ=0)

= −∂Γ/∂ϕi

∂Γ/∂τ
= −

∂Γ̄
∂x

∂x
∂ϕi

1− ∂Γ̄
∂x

∂x
∂τ

= −
αθS
x2

∂x
∂ϕi

1 + αθS
x2

∂x
∂τ

=

= −
αθS
x2

∂x
∂ϕi

αθS
x2

(
x2

αθS
+ ∂x

∂τ

) = −
∂x
∂ϕi

−
(

∂Γ̄
∂x

)−1
+ ∂x

∂τ

, i = 1, 2

(D.13)

where from (D.2) ∂x/∂ϕi < 0 and from (D.6), ∂x/∂τ > 0. Hence, we obtain:

∂τmax

∂ϕi

∣∣∣∣
(λ=0)

= − ∂x/∂ϕi

x2/αθS + ∂x/∂τ
> 0, i = 1, 2 (D.14)

For 0 < λ ≤ 1, τmax is defined by (D.8).
Let us define the implicit function Γ2:

Γ2 (x (τ, θS , ϕi) , τ, θS , ϕi) ≡ τmax − αxα (α− 1) (x + θS)
xα+1 (α− 1)− λx + λα (x + θS)

≡
≡ τmax − Γ̄2 ≡
≡ τmax − A

B
= 0 (D.15)

Totally differentiating (D.8) with respect to ϕi, i = 1, 2 and applying the implicit function
theorem to (D.15):

∂τmax

∂ϕi

∣∣∣∣
(0<λ≤1)

= −∂Γ2/∂ϕi

∂Γ2/∂τ
= −

∂Γ̄2
∂x

∂x
∂ϕi

1− ∂Γ̄2
∂x

∂x
∂τ

= −
∂x
∂ϕi

−
(

∂Γ̄2
∂x

)−1
+ ∂x

∂τ

, i = 1, 2

where ∂x/∂ϕi < 0, ∂x/∂τ > 0, and — for x > 0, 0 ≤ α ≤ 1, 0 ≤ θS ≤ 1 and 0 ≤ λ ≤ 1 — the sign

of the term
(

∂Γ̄2
∂x

)−1
is negative13:

(
∂Γ̄2

∂x

)−1

=
{[

α (α− 1) (α + 1)xα + α2θS (α− 1) xα−1
]
B−1

}

− {B−2 [(α− 1) (α + 1)xα − λ (α + 1)]A} < 0 (D.16)

Therefore, for all the values of the parameters coherent with our theoretical model:

∂τmax

∂ϕi

∣∣∣∣
(0<λ≤1)

= − ∂x/∂ϕi

−
(

∂Γ̄2
∂x

)−1
+ ∂x/∂τ

> 0, i = 1, 2 (D.17)

13This inequality has been evaluated using Maple 7.0 for the following values of the parameters: x > 0, 0 ≤ α ≤
1, 0 ≤ θS ≤ 1 and 0 ≤ λ ≤ 1.
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D.3 Investment subsidies

Proof of proposition 7 There exists a growth maximizing value for investment subsidies, and
such a value is decreasing in the probability of death parameter λ.

Differentiating γ with respect to θS leads to

∂γ

∂θS
=

(1− α) (1− τ)
(1− θS)2

xα

[
1 +

α (1− θS)
θS

∂x

∂θS

θS

x

]
− λ (1 + τ)

(1− θS)2
(D.18)

Since from (D.22) ∂x/∂θS < 0, for λ = 0

∂γ

∂θS

∣∣∣∣
(λ=0)

> (≤)0 if
∂x

∂θS

θS

x
> (≤)− θS

α (1− θS)
(D.19)

However, for a positive λ we obtain

∂γ

∂θS

∣∣∣∣
(λ>0)

> (≤)0 if
∂x

∂θS

θS

x
> (≤)− θS

α (1− θS)
+

λ (1 + τ)
(1− θS)2

(D.20)

Proof of proposition 8 For 0 ≤ λ ≤ 1, the growth maximizing income tax rate τmax is
increasing in investment subsidies.

Differentiating (D.8) with respect to θS

∂τmax

∂θS
= −

∂Γ̄2
∂x

∂x
∂θS

1− ∂Γ̄2
∂x

∂x
∂τ

= −
∂x
∂θS

−
(

∂Γ̄2
∂x

)−1
+ ∂x

∂τ

> 0 (D.21)

where
(

∂Γ̄2
∂x

)−1
< 0 is defined in (D.16) and ∂x/∂θS is derived by totally differentiating F (x, ·) = 0

and using γ = Ċ/C:

∂x

∂θS
= −∂F/∂θS

∂F/∂x
= −

−γ − xα (1−τ)(1−α)

(1−θS)2
(x + θS) + λτ(1+θS)

(1−θS)2

−γ −
[
αρ + αλ(τ+θS)

(1−θS)

] (
1 + θS

x

) < 0 (D.22)

Hence, for 0 ≤ λ ≤ 1, ∂τmax/∂θS > 0.
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