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ACCURATE MEASURES OF VALUE AT RISK FITTING FAT TAILS*

1. INTRODUCTION

Value-at-Risk (hereafter, VaR) is a popular measure of market risk, employed in

the financial industry for both the internal control and regulatory reporting. For

example, since 1998, U.S. banks and bank holding companies with significant amounts

of trading activity are subject to market risk requirements. They have been required to

hold capital against their defined market risk exposures, and, the capital charges are a

function of banks' own VaR estimates. Hence, given the relevance of VaR estimates, the

evaluation of the accuracy of the models underlying them is very important.

VaR associates the maximum amount that can be lost during a period to a

determined statistic likelihood level. However, VaR does not quantify the losses beyond

VaR and is not a sub-additive risk measure; i.e., the risk of a portfolio can be larger than

the sum of the stand-alone risk of its components when measures by VaR (Acerbi et al.,

2001). Hence, some alternative risk measures have been proposed, as Conditonal Value

at Risk (CVaR). Szegö (2002) discusses the conditions under which the classical

measures of risk can be used as well as describes in detail the main recently proposed

risk measures. At a given confidence level, CVaR is defined as the expected loss given

that the loss is greater than or equal to the VaR. The fundamental properties of CVaR

are discussed in Acerbi and Tasche (2002) and Rockafellar and Uryasev (2002). The

calculus of both VaR and CVaR involves dealing with the confidence level, the time

horizon and the true underlying conditional distribution function of asset returns. The

critical point is that usually risk management systems suppose that asset returns are

normally distributed. This hypothesis has been widely tested in financial literature due

to the true underlying distribution of high frequency data is more peaked and has fatter

tails than the normal distribution (Mittnik et al., 2000). Some recent studies focused on

the treatment of fat tails and VaR estimation have concluded that estimates of VaR

based on normality assumption can underestimate the true value of VaR for big levels

of probability and overestimate for small confidence levels (Hull and White, 1998,
                                                          
* Financial support from DGES(PB98-0979) is gratefully acknowledged. We thank suggestions and
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Rockafellar and Uryasev, 2002). For these reasons, some alternative specifications have

been proposed for calculating VaR (Bauer, 2000; Lucas, 2000; Vlaar, 2000).

The main objective of this paper is to prove that using a specific distribution

function that fits well to the data of the low tail of the observed distribution of asset

returns assure to obtain accurate VaR estimates. It is proved evaluating VaR estimates

based on normality hypothesis as well as VaR estimates calculated once the low tail of

the observed distribution of asset returns is modelled. The evaluation methods we use in

this paper are the following (Lopez, 1999a, Lopez 2001): (i) Evaluation of VaR

estimates based on the binomial distribution; (ii) Evaluation of VaR interval forecasts;

(iii) Evaluation of VaR probability forecasts; (iv) Calibration tests of probability

forecasts.

In order to achieve our objective, previously to calculate VaR estimates, we

propose to carry out nonparametric goodness-of-fit tests based on the Cramér-von Mises

test statistic, using the standardized residuals of the model and allowing for the

distribution function postulated under the null hypothesis can depend on a vector of

unknown parameters to gain generality. We consider as possible null specifications the

Student's t distribution, the logistic distribution and the Edgeworth-Sargan distribution

(Sargan, 1976), characterized by capturing the thickness of the tails of high frequency

data better than the normal distribution. We compare the performance of these

specifications using bootstrap procedures to approximate the distribution of Cramér-von

Mises test statistic. Bootstrap methodology is required to implement this type of

goodness-of-fit tests because the tabulated critical values can not be used as they have

been deduced for the case in which the postulated null distribution is totally known and

the observations are independent and identically observable random variables (Shorack

and Wellner, 1986). However, the limiting distribution of Cramér-von Mises test

statistic when it is constructed with standardized residuals and with maximum

likelihood estimates of the unknown parameters depends on the postulated null

distribution and, in general, on the unknown parameters (Koul, 1991).

                                                                                                                                                                         
(Capri, Italy 2002), at "The 22nd International Symposium on Forecasting" (Dublin, Ireland 2002), and at
the “2nd International Conference of Finance” (Hammamet,Tunisia 2003).
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The daily series used to carry out our analysis are the following indices: SP500,

NYSE, NIKKEI, FOOTSIE, CAC40 and IGBM. The data cover the period from

January 1994 to December 2002. In accordance with the regulatory framework, the

accuracy of VaR estimates is assessed with respect to their one-step-ahead forecasts and

99% coverage levels.

The structure of the paper is as follows. Section 2 provides a review of VaR and

CVaR concepts as well as illustrates the importance of accurate measures. Moreover,

the bootstrap procedure designed to implement the goodness-of-fit tests is briefly

described in the last Subsection of Section 2. Section 3 shows the data set and gives

summary statistics. The empirical results obtained for the six stock-exchange indices are

presented in Section 4. Finally, conclusions are summarized in Section 5.

2. METHODOLOGY

2.1. VaR and CVaR definitions

Value-at-Risk measures the level of loss that a single financial asset or a

portfolio of financial assets could lose, with a given probability α , over a given time

horizon t∆ . Analytically, it can be formulated as follows:

α=≤∆ ∆ )Pr( VaRP t , [1]

where, tP∆∆  is a change in the market value of portfolio P over the time horizon t∆

with probability α . Equation (1) states that the probability of losing more than VaR is

α . Alternatively, VaR can be written in terms of the conditional distribution function of

the asset returns, denoted )(.,
1

θ
−Ωt

F , where 1−Ω t  is the information set and θ  is the

vector of parameters appearing in F. Then, VaR is the solution to:

αθ
α

=∫
∆

∞− Ω∆+ −
dxxf

tVaR

tt t
),(

),(

, 1
, [2]

where, )(.,
1

θ
−Ωt

f  denotes the conditional density function. Equivalently, if )(.,1
1

θ−
Ω −t

F

denotes the inverse transformation of the conditional distribution function, VaR can be

expressed as:

).,1(),( 1
1

θαα −=∆ −
Ω −t

FtVaR [3]
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At a given confidence level, CVaR is the expected loss given that the loss is

greater than or equal to the VaR. CVaR can be defined as the mean of the α -tail

distribution. That is,

∫
∆

∞− Ω∆+
−

−
=∆

),(

,
1 ),(),(

1

α
θαα

tVaR

tt dxxxftCVaR
t

. [4]

Equations above show that the calculus of both VaR and CVaR involves dealing

with the confidence level, the time horizon and the true underlying conditional

distribution function of the asset returns. In the practise, the confidence level )1( α−  is

typically chosen to be at least 95% (and very often, as high as 99%) and, the time

horizon varies with the use made of VaR by management and asset liquidity. It must be

noted that both confidence level and time horizon depend on the risk aversion of the

manager. Once the distribution function in the model is defined, VaR may be calculated

using the Variance-Covariance method as:

ttctVaR ∆+×=∆ σα ˆ),( , [5]

where, c is the )1( α− quantile of the defined distribution function and tt ∆+σ̂  is the

estimated standard deviation for time tt ∆+ .

2.2. Evaluation of VaR estimates

VaR is a popular measure of market risk, employed in the financial industry for

both the internal control and regulatory reporting. For example, since 1998, U.S. banks

and bank holding companies with significant amounts of trading activity are subject to

market risk requirements. These requirements (“Market Risk Amendment”, MRA) are

based on the 1988 Basle Accord adopted by the Basle Committee on Banking

Supervision. In particular, the U.S. standards apply to banks and bank holding

companies with trading account positions exceeding $ 1 billion or 10% of total assets.

They have been required to hold capital against their defined market risk exposures,

and, the capital charges are a function of banks’ own VaR estimates. The capital charge

is calculated using the so-called “internal models” approach. Under this approach,

capital charges are based on VaR estimates generated by banks’ internal, risk

management models using the standardizing parameters of a ten-day holding period and

99 percent coverage. In other words, a bank’s market risk capital charge is based on its

own estimate of the potential maximum loss that would not be exceeded with one-
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percent probability over the subsequent two-week period. For further discussion of this

point, see Hendricks and Hirtle (1997), and, Lopez and Saidenberg (2000).

Hence, given the relevance of VaR estimates (to bank and to their regulators),

the evaluation of the accuracy of the models underlying them is very important. Firstly,

the proportion of failures (times that VaR estimates are exceeded by losses) can be

calculated )ˆ(α and compared with the significance level )(α . In the practise, VaR

estimates can be evaluated using different methods. In this paper, we focus on: (i)

Evaluation of VaR estimates based on the binomial distribution (currently embodied in

the MRA); (ii) Evaluation of VaR interval forecasts; (iii) Evaluation of VaR probability

forecasts; (iv) Calibration tests of probability forecasts. Methods (i) and (ii) use

hypothesis tests to determine whether the VaR estimates exhibit a specified property

that is a characteristic of accurate VaR estimates. However, as Diebold and Lopez

(1996) noted, it is unlikely that forecasts from a model will exhibit all the properties of

accurate forecasts. Also, methods (i) and (ii) can misclassify forecasts from inaccurate

models as acceptably accurate given the low power exhibited by their corresponding

hypothesis tests. Method (iii) is based on determining how well VaR estimates

minimize a proposed regulatory loss function. Thus, by directly incorporating

regulatory loss functions into the forecast evaluations, this method provides useful

information on the performance of VaR models with respect to regulatory criteria as

opposed to the purely statistical criteria implied by methods (i) and (ii). Finally, method

(iv) is based on the degree of equivalence between the observed frequencies of the event

“losses lie under VaR estimate” and the predicted frequencies of occurrence. Next,

methods (i)-(iv) are briefly described:

(i) Evaluation of VaR estimates based on the binomial distribution ( PFLR ): This

method is based on the assumption that the VaR estimates are accurate, so the

observations of the events “losses lie under VaR” and “losses do not lie under VaR” can

be modeled as draws from an independent binomial random variable with a probability

of occurrence equal to a specified α percent. The null hypothesis “the empirical size of

the test (α̂ ) is equal to the nominal size (α)” is tested versus the alternative “ αα ≠ˆ ”,

using the following likelihood ratio test statistic based on the binomial distribution:
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{ } { }[ ],)1(ln)ˆ1(ˆln2 zTzzTz
PFLR −− −−−= αααα , [6]

where, z denotes the number of times the loss lies under the estimated VaR. Under the

null hypothesis, PFLR  is asymptotically distributed as )1(2χ  (Kupiec, 1995). As Kupiec

(1995) and Lopez (1999b) noted, when small only sample size is available, the finite

sample distribution may be quite different from )1(2χ  distribution and the asymptotic

critical values may be inappropriate.

(ii) Evaluation of VaR interval forecasts ( CCLR ): VaR estimates can be viewed

as interval forecasts of the lower 1% tail of the one-step-ahead return distribution and,

these forecasts can be evaluated conditionally or unconditionally. Given the presence of

variance dynamics when high-frequency data are modelled, testing for conditional

accuracy is important. CCLR  was proposed by Christoffersen (1998) as a test of the

conditional coverage level in contrast to PFLR , that ignores the presence of the time-

dependence. The CCLR  test is a joint test of both correct unconditional coverage and

serial independence. The test statistic is defined as:

indPFCC LRLRLR += , [7]

and, under the null hypothesis of correct conditional coverage level, is asymptotically

distributed as )2(2χ . The indLR  statistic is a likelihood ratio statistic of the null

hypothesis of serial independence against the alternative of first-order Markov

dependence. The likelihood function under this alternative hypothesis is
111000100

11110101 )1()1( TTTT
AL ππππ −−= , where the ijT  notation denotes the number of

observations in state j after having been in state i the period before, )/( 01000101 TTT +=π

and )/( 11101111 TTT +=π . Under the null hypothesis of independence, πππ == 1101  and

the likelihood function is 11011000)1(0
TTTTL ++−= ππ , where TTT /)( 1101 +=π . Hence,

[ ]0loglog2 LLLR Aind −= , which is asymptotically distributed as )1(2χ . Hence, CCLR

is used to test the null hypothesis “ αα =ˆ ” versus the alternative “ αα ≠ˆ ”, taking into

account the presence of time-dependence, often found in financial time series. However,

the finite distribution, for a specific α and sample size T, may differ from a )2(2χ

distribution.
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(iii) Evaluation of VaR probability forecasts (QPS): The accuracy of VaR

estimates is gauged by how well they minimize a loss function that represents the

evaluator’s concerns. It was proposed by Lopez (1999a), who examined the statistical

power for this evaluation model with simulation experiments and concluded that the

degree of model misclassification generally mirrors that of models (i) and (ii). Different

loss functions can be consider, as for example, the quadratic probability score (QPS),

developed by Brier (1950), that assign a quadratic numerical score when a VaR estimate

is exceeded by its corresponding loss. In this case and given a sample of size T, QPS is

defined as:

( )
2

1
121 ∑

=
+−=

T

t
tt QP

T
QPS , [8]

where ∫
∞−

+=
)ˆ,(

1 )(
FCV

tt dxxfP
α

, F̂  is the fitted distribution function, )(ˆ)ˆ,( 1 αα −= FFCV  is

the unconditional quantile of interest and, 1+tQ  is an indicator variable that equals to one

if the VaR estimate is exceeded by its corresponding asset or portfolio loss and, zero

otherwise. It must be highlight that QPS∈ [0,2] and smaller values of QPS indicate more

accurate forecasts. That is, if the QPS for a model A is closer to zero than the QPS for a

model B, then the forecasts from model A are more accurate than those for model B.

However, one could be interested in determining if the difference between the QPS for

model A and the QPS for model B is statistically significant. In doing this, a

generalization to probability forecasts of a test proposed by Diebold and Mariano

(1995) can be used since QPS can be viewed as the analog of mean square error for

probability forecasts. Diebold and Mariano (1995) proposed a test for determining,

under a general loss function, whether the expected losses induced by two sets of point

forecasts are statistically different. In particular, when the assumed loss function is a

quadratic loss function (QPS), denoting

( ) ( )2
1

2
1 22 ++ −−−= tBttAtt QPQPd , Tt ,...,1= [9]

the Diebold and Mariano (1995) test statistic is expressed as:

T
dS

d /σ̂
= , [10]



8

where d is the sample mean of d, dσ̂  represents the standard deviation of d. Under the

null hypothesis that "the expected losses under the model A and model B are equal

(QPSA=QPSB)", the test statistic S is asymptotic distributed as N(0,1).

(iv) Calibration tests of probability forecasts (Seillier-Moiseiwitsch and Dawid,

1993): It is based on the degree of equivalence between the observed frequencies of the

event “VaR estimate is exceeded by its corresponding loss” and the predicted

frequencies of occurrence; then, if those frequencies are similar, the forecasts are well

calibrated. To analyze if a model is well calibrated, a forecaster does the following: for

the event “VaR estimate is exceeded by its corresponding loss” and given a

corresponding sequence of forecast probabilities, the forecaster creates J mutually

exclusive subsets of these forecast probabilities. The forecaster denotes the midpoint of

each range jπ  and the number of observed losses belonging to the set j jQ , j=1,...,J. If

the model is well calibrated, for every set j, jQ is similar to jjj Te π= , where jT  is the

number of forecast probabilities in set j. Hence, for each set j, the test statistic is defined

as:

{ } 2/1)1( jj

jj
j e

eQ
Z

π−

−
= , [11]

The overall calibration test statistic is expressed as

∑
=

=
J

j
jZZ

1
0 . [12]

Under the null hypothesis " the observed frequencies and the predicted

frequencies are equal", the test statistic 0Z  is asymptotically distributed as N(0,1).

2.3 Bootstrap procedure for fitting fat tails

As it was said in Subsection 2.1, the calculus of both VaR and CVaR involves

also dealing with the true underlying conditional distribution function of the asset

returns. The critical point is that usually risk management systems suppose that asset

returns are normally distributed. Some recent studies focused on the treatment of fat

tails and VaR estimation have concluded that normality assumption is not reasonable

(Hull and White, 1998, Rockafellar and Uryasev, 2002). Hence, some alternative
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specifications have been proposed for calculating VaR (Bauer, 2000; Lucas, 2000;

Vlaar, 2000). As it does not seem a convenient hypothesis to assume normality, we

consider relevant to analyze the behaviour of the distribution of the asset returns

previously to calculate VaR and CVaR estimates. It is expected that choosing a

distribution function that fits well to the data of the low tail of the observed distribution

of assets allows obtaining obtain accurate risk measures.

In order to select a distribution function that captures well the low tail of the

observed distribution of asset returns, we carry out nonparametric goodness-of-fit tests

based on the Cramer-von Mises test statistic, constructed with the standardized residuals

and substituting the unknown vector of parameters appearing in the postulated null

distribution )(.,θF  by an estimate. The standardized residuals of the model are defined

as tttt Re σµ ˆ/)ˆ( −= , where Rt is the asset returns at time t and, tµ̂  and tσ̂  are the

maximum likelihood estimates of tµ  and tσ , respectively. In this case, the expression

of the Cramer-von Mises test statistic is:

{ } ,)ˆ,()(ˆˆ
1

22 ∑
=

−=
T

i
iiTT eFeFW θ [13]

where, we define:

,)(1)(ˆ
1

∑
=

≤=
T

i
iT xeI

T
xF [14]

for ℜ∈x , θ̂  is the maximum likelihood estimate of the vector of unknown parameters

appearing in )(.,θF  and I(.) is the indicator function.

As we are interesting in fitting the data of the low tail of the observed

distribution, we construct the test statistic 2ˆ
TW  using only the standardized residuals of

the first quartile of the distribution. We use parametric bootstrap to implement the test

(Gine and Zinn, 1990). The stages of the bootstrap procedures are:

Stage 1: Let { } T
ttR  be a sequence of returns of an asset, following the equation

tttt uR σµ += , where ut are independent and identically distributed errors from a

particular )(.,θF , with mean zero, unitary variance and depending on a vector of
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unknown parameters sℜ∈θ . Select the model that better describes the conditional

behaviour of the asset returns.

Stage 2: Considering the distribution postulated under the null hypothesis, estimate

by maximum likelihood tµ , 2
tσ  and θ . In this way, the standardized residuals

tttt Re σµ ˆ/)ˆ( −=  and the estimate of the null distribution )ˆ(.,θF  are obtained. Draw

the empirical distribution of the standardized residuals and use the data of the first

quartile to evaluate 2ˆ
TW .

Stage 3: Repeat B=500 times the following:

- Generate a sample of random variables from )ˆ(.,θF , **
2

*
1 ,...,, Tuuu . Using tµ̂ , tσ̂

and *
tu , ** ˆˆ tttt uR σµ +=  is obtained, t=1,...,T. Calculate new maximum likelihood

estimates **2* ˆ,ˆ,ˆ θσ ttu  and construct **** ˆ/)ˆ( tttt Rv σµ−= .

- Evaluate the test statistic using *
)25.0(

*
1 ... Tvv ⋅≤≤  and )ˆ(., *θF . It is denoted *2ˆ

TW .

Stage 4: In this way, a sample of B independent (conditionally on the original

sample) observations of 2ˆ
TW , say *2*2 ˆ,...,ˆ

1 BTT WW , is obtained.

Stage 5: Let *2
)1(

ˆ
BTW

α−
 the (1-α)B-th order statistic of the sample *2*2 ˆ,...,ˆ

1 BTT WW , given a

significance level α. Reject the null hypothesis at the significance level α if
*22

)1(
ˆˆ

BTT WW
α−

> .

Stage 6: Compute the bootstrap p-value as .,...,1,/)ˆˆ( 2*2 BbBWWcardp TTB b
=≥=

Given a significance level α, we compute the exact critical value c of the chosen

)ˆ(.,θF  as its (1-α) quantile. Therefore, an asset VaR is just the product of this critical

value and the estimated conditional deviation for such model. That is,

ttctVaR ∆+⋅=∆ σα ˆ),( .

In our analysis, we select various functional forms as possible null distributions,

all of them characterized by capturing the thickness of the tails of high frequency

financial data better than the normal distribution. When more than one of these possible

distribution functions can be accepted, we select that whose bootstrap p-value is the

biggest. The functional forms considered are: Student’s t distribution, logistic
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distribution and Edgeworth-Sargan (E-S) distribution. If tµ  and 2
tσ  represent the mean

and the variance of the asset returns at time t respectively, then the corresponding

density functions are summarized in Table 1.

Table 1. Conditional density functions
Distribution Conditional density functions

Student's t
2

)1(

2

2

2

2

)2(
)(1

)2(
2
1

2

2
1

),,;(
1

+
−

Ω








−
−+

−




Γ





Γ






 +Γ

==
−

g

t

tt

t

ttt g
R

gg

g

gRf
t σ

µ

σ
θσµ

Logistic










 −






















 −+

=
−Ω 22

2

2
2

3
)(exp

3
)(exp1

1
3

),;(
1

t

tt

t

tt
t

ttt
R

R
Rf

t σ
µπ

σ
µπσ

πσµ

Edgeworth-
Sargan

36

3

1

,),,(

,1

2
)(

exp
2

1),,;(

24

4

3

3

2

2

432

443322

2

2

2

2
1

+




 −
−




 −
=




 −






 −
−




 −
=




 −

−




 −
=




 −

′=













 −
+




 −
+




 −
+⋅

⋅






 −
−=

−Ω

t

tt

t

tt

t

tt

t

tt

t

tt

t

tt

t

tt

t

tt

t

tt

t

tt

t

tt

t

tt

t
ttt

RRR
H

RRRH

RRH

ddd

R
Hd

R
Hd

R
Hd

R
Rf

t

σ
µ

σ
µ

σ
µ

σ
µ

σ
µ

σ
µ

σ
µ

σ
µ

θ
σ

µ
σ

µ
σ

µ

σ
µ

πσ
θσµ

Note: This reparametrization of Student's t avoids the influence of g in the variance, g denotes the degrees
of freedom and 642 ,, ddd  are parameters appearing in the Edgeworth-Sargan distribution.

3. DATA ANALYSIS

The daily series used in the empirical analysis are six stock-exchange indices

from different countries: SP500 and NYSE, from American Market; NIKKEI, from

Japan; FOOTSIE, from UK; CAC40, from France; and, IGBM, from Spain. The daily

return index is computed as )/log(100 1−⋅= ttt SSR , where St is the closing price at day t.
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 The data cover the period from January 1994 to December 2002. To implement the

procedure described in the previous Section, we divide this time period into two smaller

periods: the first, from January 1994 to May 2001; the second, from June 2001 to

December 2002. Period 1 is used to estimate the model, choose the functional form that

fits to the data of the low tail of the observed distribution and compare "in-sample"

predictive power of VaR. Period 2 is used to compare "out-sample" predictive power of

VaR.

Table 2 gives summary statistics and two normality tests: Jarque-Bera normality

test and Kolmogorov-Smirnov normality test with Lilliefors correction (Lilliefors,

1967).

Table 2. Descriptive measures (3/1/1994-31/5/2001)
Index Skewness Kurtosis Jarque-

Bera
KS

Lilliefors
Q(5) Q(20) Q*(5) Q*(20)

SP500 -0.2755 7.7207 1750.6 0.068 11.754 29.862 216.64 436.01
(0.000) (0.000) (0.038) (0.072) (0.000) (0.000)

NYSE -0.3860 9.6101 3412.2 0.072 14.763 38.643 194.93 332.00
(0.000) (0.000) (0.011) (0.007) (0.000) (0.000)

NIKKEI 0.1760 6.1886 783.42 0.060 13.114 41.232 113.53 226.68
(0.000) (0.000) (0.022) (0.003) (0.000) (0.000)

FOOTSIE -0.0963 4.5809 194.14 0.044 19.128 31.602 234.18 644.16
(0.000) (0.000) (0.002) (0.048) (0.000) (0.000)

CAC40 -0.0929 4.4608 162.55 0.033 5.726 17.713 106.69 359.42
(0.000) (0.000) (0.334) (0.606) (0.000) (0.000)

IGBM -0.5053 6.3187 922.76 0.047 24.322 57.724 193.49 723.34
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

Note: In this table, we compute the descriptive measures: skewness, kurtosis and the test of normality
Bera-Jarque test statistic and Kolmogorov-Smirnov test with Lilliefors correction. Q(5) and Q(20) are
Box-Ljung statistic for the serie with 5 and 20 sample autocorrelations; Q*(5) and Q*(20) are Box-Ljung
statistic for the squared serie with 5 and 20 sample autocorrelations. Between parentheses is the p-value
of the test.

It can be observed that leptokurtosis is apparent in all cases. Moreover, all the series fail

to pass both Jarque-Bera normality test and Kolmogorov-Smirnov normality test with

Lilliefors correction. To check if the data present dynamic structure in the mean and in

the variance, we compute Box-Ljung statistic for the serie, Q(5) and Q(20), and for the

squared serie, Q*(5) and Q*(20), constructed with 5 and 20 sample autocorrelations.

The results with the series show smooth dynamic in the mean while, as expected,

squared series show strong evidence of autocorrelation. Therefore, we have to examine

the performance of alternative models for conditional heteroskedastic time series with
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the observations Rt, described above. The models analyzed consist of two equations:

one of them specifies a decomposition of Rt to capture the mean dependence of the serie

and, the other one is the volatility equation. In order to capture the dynamic structure in

the mean, we have fitted various autorregresive moving-average (ARMA) models1. We

have selected different GARCH specifications2 to analyze the behaviour of the

conditional variance. We have estimated all models using the maximum likelihood

procedure, with constant term and without constant term. All the estimated models are

compared with the Schwarz Information Criterion (SIC); therefore, the preferred model

is the model with highest SIC.

Table 3 summarizes the equations for the model used as well as reports the Box-

Ljung test statistics for the series of standardized maximum likelihood residuals, Qr(5)

and Qr(20), and for the series of standardized squared serie, Qr
*(5) and Qr

*(20).

Table 3. Selected models and diagnosis
Index Selected model Qr(5) Qr(20) Qr*(5) Qr*(20)

7.166 27.499 8.972 19.239
SP500
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(0.209) (0.122) (0.110) (0.506)

7.702 25.079 5.688 11.321
NYSE
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0.737 18.234 2.066 14.951
NIKKEI
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CAC40
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6.723 19.956 3.213 13.298
IGBM
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Note: [ ] [ ] ;12,0 i.i.d;  2/1 ==≡ tEtEttthtwhere ηηηηε  Qr(5) and Qr(20) are Box-Ljung statistic for the
serie of standardized residuals; Qr

*(5) and Qr
*(20) are Box-Ljung statistic for the squared serie of

standardized residuals. Between parentheses is the p-value of the test.

It is worth noting that the dynamic structure in the mean is modelled with AR(1)

in NIKKEI and IGBM cases, AR(2) in FOOTSIE case while in SP500, NYSE and
                                                          
1 We have considered AR(1), AR(2), MA(1), MA(2), ARMA(1,1), ARMA(1,2), ARMA(2,1) models.
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CAC40 cases a model is not needed. The GARCH(1,1) model is the preferred model to

capture the dynamic structure in the variance. As it can be seen in Table 3, the

corresponding values of Qr(5), Qr(20) and Qr
*(5) and Qr

*(20) show that both dynamics

are well-captured.

4. EMPIRICAL RESULTS

In this section, we present the results for the six indices introduced before. Given

the regulatory framework, all the VaR estimates are calculated one-step-ahead and using

99% coverage level. Firstly, following the classical approach, we assume that asset

returns are normally distributed and we calculate VaR estimate for each index.

Secondly, as normality is not a reasonable hypothesis, we consider that the true

underlying distribution function of each index can be different from normal distribution.

In particular, we propose the following alternative specifications: Student’s t

distribution, logistic distribution and Edgeworth-Sargan distribution. Hence, assuming

each of these specific distribution functions, the maximum likelihood estimation of

AR(p)-GARCH(p,q) models is carried out again and new VaR estimates are calculated.

Results of 1% VaR estimates assuming normality and the proposed alternative

specifications of each index are evaluated using the methods described in Subsection

2.2. Table 4 reports the "in-sample" evaluation results.

                                                                                                                                                                         
2 We have considered ARCH(1), ARCH(2), ARCH(3), ARCH(4), GARCH(1,1), GARCH(1,2),
GARCH(2,1) models.
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Table 4. Accuracy of VaR from different distributions forms (3/1/1994-31/5/2001)

Panel (1): percentage of the exceedings )ˆ(α
Index Normal Student t Logistic E-S
SP500 0.0172 0.0118 0.0145 0.0134
NYSE 0.0189 0.0129 0.0140 0.0135

NIKKEI 0.0142 0.00986 0.0115 0.0126
FOOTSIE 0.0179 0.0136 0.0109 0.0141

CAC40 0.0150 0.0116 0.0100 0.0127
IGBM 0.0152 0.0125 0.0119 0.0125

Panel (2): Evaluation of VaR estimates based on the binomial distribution (LRPF)

Index Normal Student t Logistic E-S
SP500 8.0371 (0.0045) 0.5967 (0.4398) 3.3719 (0.0663) 2.0149 (0.1558)
NYSE 11.815 (0.0005) 1.5221 (0.2173) 2.7441 (0.0976) 2.0926 (0.1480)

NIKKEI 2.9377 (0.0865) 0.0034 (0.9535) 0.3991 (0.5276) 1.1536 (0.2829)
FOOTSIE 9.5686 (0.0019) 2.1940 (0.1389) 0.1474 (0.701) 2.8609 (0.0908)

CAC40 3.9609 (0.0465) 0.4861 (0.4857) 0.0000 (0.9962) 1.3009 (0.2542)
IGBM 4.3836 (0.0381) 1.0863 (0.2986) 0.6774 (0.4106) 1.0863 (0.2973)

Panel (3): Evaluation of VaR interval forecasts (LRCC)

Index Normal Student t Logistic E-S
SP500 9.1581 (0.0102) 1.1237 (0.5703) 4.1678 (0.1244) 2.6965 (0.2597)
NYSE 13.167 (0.0013) 2.1537 (0.3407) 3.4862 (0.1755) 3.4862 (0.1755)

NIKKEI 3.6962 (0.1575) 1.8932 (0.3880) 1.7794 (0.4107) 2.2552 (0.3238)
FOOTSIE 10.778 (0.0045) 2.8850 (0.2363) 0.5884 (0.7451) 3.6088 (0.1652)

CAC40 4.6043 (0.1000) 0.9825 (0.6120) 0.3640 (0.8336) 2.3808 (0.3042)
IGBM 5.2500 (0.0724) 1.6693 (0.4340) 1.2105 (0.5459) 1.6693 (0.4340)

Panel (4): Evaluation of VaR probability forecasts (QPS)

Index Normal Student t Logistic E-S
SP500 0.0397 0.0264 0.0307 0.0300
NYSE 0.0390 0.0266 0.0289 0.0277

NIKKEI 0.0287 0.0198 0.0231 0.0254
FOOTSIE 0.0220 0.0220 0.0220 0.0265

CAC40 0.0299 0.0233 0.0200 0.0254
IGBM 0.0306 0.0251 0.0240 0.0251

Panel (5): Comparisons of accuracy of probability forecasts. Z0

Index Normal Student t Logistic E-S
SP500 - -3.590 (0.0003) -2.985 (0.0028) -3.020 (0.0025)
NYSE - -3.483 (0.0004) -3.136 (0.0017) -3.325 (0.0008)

NIKKEI - -2.891 (0.0038) -2.306 (0.0211) -1.351 (0.1766)
FOOTSIE - -0.343 (0.7315) 1.025 (0.3053) -1.268 (0.2047)

CAC40 - -2.474 (0.0133) -3.022 (0.0025) -2.049 (0.0404)
IGBM - -2.260 (0.0238) -2.477 (0.0132) -2.258 (0.0239)

Panel (6): Calibration tests of probability forecasts (Seillier-Moiseiwitsch and Dawid, 1993)

Index Normal Student t Logistic E-S
SP500 2.8030 (0.0051) 0.1066 (0.9155) 1.8812 (0.0599) -0.5414 (0.5882)
NYSE 3.5459 (0.0003) 0.2314 (0.8173) 0.9072 (0.3643) 0.0812 (0.9352)

NIKKEI 3.6208 (0.0002) 0.1906 (0.8493) 1.3055 (0.1917) 0.9221 (0.3564)
FOOTSIE 2.2740 (0.0229) 1.2257 (0.2224) 0.5953 (0.5516) 0.3520 (0.7248)

CAC40 6.3930 (0.0000) 1.6716 (0.0949) 0.0896 (0.9290) 1.7678 (0.0771)
IGBM 4.3034 (0.0000) 1.8993 (0.0587) 1.1301 (0.2584) 1.3412 (0.1798)

Note: The accuracy of VaR estimates is assessed with respect to their one-step-ahead forecasts and 99%
coverage level. Between parentheses is the p-value of the test.
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Panel 1 shows the percentage of the exceedings )ˆ(α  for the normal, Student’s t,

logistic and Edgeworth-Sargan cases. It can be observed that differences between α̂  and

α under normality are higher than under the other specifications for the six indices.

Panel 2 and 3 report the evaluation of VaR estimates based on LRPF and LRCC test

statistics. Given a 5% significance level, results for LRPF show that the null hypothesis

of equality between the proportion of  the exceedings and the significance level is

rejected in almost all cases when normality is assuming. The null hypothesis is only

accepted for NIKKEI. In contrast to these results, the null hypothesis is accepted when

one of the alternative specifications is assumed. Similar results can be observed using

LRCC test statistic. However, due to fact that both the finite sample size and the power

characteristics of these tests have been discussed (Diebold and Lopez, 1996), we

evaluated VaR estimates using two additional evaluation methods, the method based on

determining how well VaR estimates minimize a quadratic loss function (QPS) and the

method based on comparing the forecasted probabilities to observed relative frequencies

(Calibration test). Panel 4 shows the value of QPS under each distributional assumption.

It can be observed that the maximum QPS value for each index is the associated to the

normality assumption. The results of testing if the differences of QPS under normality

and QPS under Student’s t, logistic and Edgeworth-Sargan distribution are statististical

significant are reported in Panel 5. In this panel, it can be observed that such differences

(normality=model A in equation [9] and Student’s t, logistic or Edgeworth-

Sargan=model B in equation [9]) are statistically different from zero, exceed by

FOOTSIE. Finally, calibration tests are carried out, since a straightforward matter to

evaluate probability forecasts is to compare the forecasted probabilities to observed

relative frequencies. The results are shown in Panel 6: given a significance level equals

to 5%, the model is well calibrated under each of the specific alternative specifications

while it is not well calibrated when normality is assumed.

The results reported in Table 4 permit to conclude that VaR estimates calculated

under Student's t, logistic and the Edgeworth-Sargan distributions are accurate in

contrast to VaR estimates computed under the normality assumption for the six indices

analyzed. This conclusion is relevant, specially if we observe Table 5 simultaneously. In

this table, results of the nonparametric goodness-of-fit tests are reported, using the

bootstrap procedure described in Subsection 2.3. As we are dealing with calculating
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accurate VaR estimates, our main aim is to fit the low tail of the observed distribution of

each index returns. Panel 1 shows the p-values of these goodness-of-fit tests. It must be

highlighted that, given a significance level equals to 5%, Student's t distribution, logistic

distribution and Edgeworth-Sargan distribution are accepted to model the low tail of the

observed distribution of each index in opposite to the normal distribution. Note that the

three distribution functions considered are able to capture the thickness of the tails of

high frequency data better than the normal distribution. FOOTSIE case is the only case

in which the normality assumption can be accepted. This case is also the case in which

the differences in QPS (Panel 5, Table 4) are not statistically different from zero and the

model is well calibrated under normality assumption for a 1% significance level unlike

other indices (Panel 6, Table 4). In Panel 2 of Table 5 we have reported the p-values of

the goodness-of-fit tests when overall observed distribution is considered. Note that the

p-values when the logistic distribution is tested are smaller than the 5% and 10%

significance level for FOOTSIE and CAC40 respectively. That is, this specification is

able to capture the fat tails of the observed distribution of FOOTSIE and CAC40 but not

their overall shape.

Table 5. Results of goodness-of-fit tests

Panel (1): p-value (low tail)
Index Normal Student t Logistic E-S

SP500 0.000 0.280 0.310 0.695
NYSE 0.000 0.395 0.345 0.745
NIKKEI 0.065 0.650 0.810 0.980
FOOTSIE 0.165 0.295 0.505 0.550
CAC40 0.000 0.130 0.570 0.220
IGBM 0.035 0.465 0.140 0.515

Panel (2): p-value (overall distribution)
Index Normal Student t Logistic E-S

SP500 0.000 0.370 0.375 0.255
NYSE 0.000 0.260 0.300 0.060
NIKKEI 0.005 0.265 0.320 0.130
FOOTSIE 0.095 0.440 0.035 0.465
CAC40 0.025 0.115 0.075 0.340
IGBM 0.000 0.440 0.310 0.770
Note: This table summarizes the results of the goodness-of-fit tests carried out using the Cramér-von
Mises test statistic 2ˆnW  to select the distribution functions that capture well or the low tail of the observed
distribution of asset returns or the overall distribution.. Panel 1 reports the p-values obtained for testing
the null hypothesis "F(.,θ) captures well the low tail". Panel 2 reports the p-values obtained for testing the
null hypothesis "F(.,θ) captures well the overall observed distribution".



18

Overall, given Table 4 and Table 5 (Panel 1), it can be concluded that fitting the

conditional behaviour of the low tail of the observed distribution of asset returns gives

to assure to obtain accurate VaR estimates.

Table 6. Out-sample accuracy of VaR for SP500 (1/6/2001-31/12/2002)
Panel 1
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Summary of evaluation method results
Evaluation Method Normal Logistic E-S

α̂ 0.0226 0.0175 0.0125
LRPF 4.7112 (0.0411) 1.8880 (0.1694) 0.02442 (0.6211)
LRCC 5.1276 (0.0770) 2.1386 (0.3432) 0.3714 (0.8305)
QPS 0.0455 0.0353 0.0256
Z0 - -1.4397 (0.1499) -1.9934 (0.0462)

S-M&D(1993) 4.2482 (0.0000) 2.7518 (0.0059) 0.3119 (0.7551)
Note: For SP500, the accuracy of VaR estimates is assessed with respect to their one-step-ahead forecasts
and 99% coverage level using the normal distribution, the logistic distribution (selected functional form to
capture the overall observed distribution of SP500) and the Edgeworth-Sargan distribution, E-S (the
selected distribution to fit the low tail of SP500). α̂ : percentage of the exceedings, LRPF : evaluation of
VaR estimates based on the binomial distribution, LRCC : evaluation of VaR interval forecasts, QPS:
evaluation of VaR probability forecasts, Z0: comparison of accuracy of probability forecasts; S-
M&D(1993): calibration test of probability forecasts. Between parentheses is the p-value of the test.
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The empirical analysis concludes with a comparison of “out-sample” predictive

power of VaR, using the data from June 2001 to December 2002. Table 6 summarizes

the results obtained for SP5003. This table reports the results of using the evaluation

methods when normality is assumed as well as when the conditional behaviour of this

index is captured. Given the bootstrap p-values of the nonparametric goodness-of fit

tests reported in Table 5, the logistic distribution is the selected functional form to

capture the overall observed distribution of SP500 and the Edgeworth-Sargan

distribution is the specification that better fits to the data of the low tail.

It can be observed that the worst results are those associated to the normality

assumption: the biggest percentage of exceedings, rejection of the null hypothesis

αα =ˆ  using LRPF and LRCC at 5% significance level, the biggest QPS and reject that the

model is well calibrated. Quite good results are obtained when the logistic distribution

is assumed, not even it is concluded that the model is not well calibrated at 5%

significance level. As it was expected, the best results are those obtained when the

Edgeworth-Sargan distribution is assumed because fits well to the data of the low tail of

the observed distribution of SP500. Assuming Edgeworth-Sargan distribution, the

percentage of exceedings is very similar to 1% significance level, the null hypothesis

αα =ˆ  is accepted using both LRPF and LRCC, the value of QPS is the smallest and, it is

accepted that the differences between QPS under normality and QPS assuming the

Edgeworth-Sargan distribution are statistically significant and that the model is well

calibrated. Panel 1 and Panel 2 in Table 6 show graphical comparisons of “out-sample”

predictive power of VaR estimates, when the normal, logistic and Edgeworth-Sargan

distributions are used. In Panel 1, VaR estimates under the normal and the logistic

distributions is compared and it can be observed that VaR estimates using the logistic

distribution are slightly better than when normality is considered. However, as Panel 2

reveals, the improvement in VaR estimates is higher when the Edgeworth-Sargan

distribution is assumed. This graphical comparison is analytically supported by the

evaluation method results summarized in Table 6.

                                                          
3 Similar results have been obtained for NYSE, NIKKEI, FOOTSIE, CAC40 and IGBM.
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5. CONCLUSIONS

In this paper, it has been showed that risk measures, as VaR and CVaR, can be

estimated accurately if the conditional behavior of the low tail of the observed

distribution is fitted previously using the bootstrap procedure designed. Three

alternative specifications to the normal distribution have been considered since they

have fatter tails than the normal: Student's t, logistic and Edgeworth-Sargan

distributions. VaR estimates have been calculated assuming each of these specifications

and their accuracy has been compared using different evaluating methods: the

percentage of exceedings, evaluation of VaR estimates based on the binomial

distribution, evaluation of VaR interval forecasts, evaluation of VaR probability

forecasts and calibration tests of probability forecasts. Bootstrap implementation was

required to carry out the nonparametric goodness-of-fit tests based on Cramér-von

Mises test statistic in order to compare the performance of the different proposed

specifications for fitting to the data of the low tail of the observed distribution of the

asset returns. It is worth noting that we have allowed for the postulated null distribution

could depend on some unknown parameters (θ) in order to gain generality. We have

provided empirical evidence using data from six stock-exchange indices: SP500, NYSE,

NIKKEI, FOOTSIE, CAC40 and IGBM We have found that the specifications that fit

well to the data of the low tail of the observed distribution are those distributions under

which VaR estimates are accurate. In our analysis, both “in-sample” and “out-sample”

predictive power comparisons of VaR estimates have been included. Overall, we

consider relevant to include in the regulatory framework the necessity of carrying out

goodness-of-fit tests for fitting the conditional behavior of the low tail of the observed

distribution of asset returns previously to calculate VaR estimates. The accuracy of VaR

is also important to calculate CVaR since it is the expected loss given that the loss is

greater than or equal to the VaR.
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