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Abstract: This paper proposes a scheme that speeds up the convergence of Markov Chain
Monte Carlo (MCMCQC) algorithms in the context of limited-dependent variable models. The
algorithm reduces autocorrelations more than the recently proposed Parameter Expansion Data,
Augmentation (PX-DA) algorithm. In addition, the paper provides an algorithm to sample a
variance-covariance matrix with restrictions directly from the conditional posterior distribution.
Finally, it is shown that the PX-DA algorithm, as applied to the multivariate probit model, can
be seen as sampling from a different parameterization of the model. However, in some cases the
PX-DA algorithm is not invariant to reparameterizations, and a slightly different algorithm is
proposed.
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1 Introduction.

The rapid development of Markov Chain Monte Carlo (MCMC) techniques during the last decade has made
possible the Bayesian analysis of models with complex likelihoods. The pioneer works of Metropolis et
al. (1953) and Hastings (1970), were complemented with the ideas of data augmentation in Tanner and
Wong (1988). Data augmentation consists in regarding latent and missing data as parameters to estimate.
Although this introduces many more parameters, the conditional distributions became much easier to sample
from.

Although data augmentation makes it easy to design an algorithm, convergence is slow due to the high
correlation between model parameters and latent data. Hence, the chain moves slowly along the parameter
space. Slow movement is not only a problem of time, but more importantly, it makes it more difficult to
determine when the chain has reached convergence. Even when it seems plausible that a slow chain has
converged, it will need an extraordinary large number of iterations to recover the parameter space enough
times to get a representative sample from the posterior distribution. Hence the advise (e.g. Raftery and
Lewis 1992, Gilks and Roberts 1995) that when a chain is very slow an alternative algorithm must be
designed.

It is well known that in simple models, standard algorithms such as the Gibbs sampler work very well.
However, as Gilks and Roberts (1995) note, MCMC algorithms applied to more ambitious models may
perform poorly, and new strategies must be explored. The aim of this paper is to provide the practitioner
of MCMC with novel tools to reduce the autocorrelations of the chain. By reducing autocorrelations,
the convergence pattern of the chain can be detected more easily, hence enhancing the reliability of the
calculations.

To put things in context, this paper will focus on a multivariate probit, although the techniques can
be applied to a wide range of limited-dependent variable models. Let Y; be a vector of zeros and ones. In
the multivariate probit model, each component y;; of Y; is determined by a continuous unobserved latent
variable y}; generated according to the following process,

yh=Xubs+ew i=1,..,N t=1,.,T (1)

the vector e; = (e;1, ...,eiT)T is normally distributed with zero mean and covariance matrix ¥ = (o;3). The
binary variable y;: is equal to one if and only if y} > 0, and is equal to zero otherwise. X;; is a 1 x k; vector
of regressors and §; is a vector of parameters.

The posterior distribution of this model 7as (61, ..., 81, L|Y1, ..., Y) does not belong to any standard
family of distributions, and hence its characteristics such as mean and variance are not known analitically.
In the case of T < 3, mpr (B1, .-y B, 2|Y1, .., YN) can be evaluated numerically, and hence a Metropolis
algorithm to sample from the posterior is in theory possible. However, a Metropolis algorithm requires
finding a distribution that approximates well the posterior, and this is a difficult task when there are many
parameters in the model.

Another approach
is to analyse the posterior distribution in the augmented model, 7pa (81, ..., B, &, Yi*, ., YY1, ..., Y).
This is the approach followed by Chib and Greenberg (1998). Although this distribution has many more
variables, the conditional distributions belong to well known families and therefore it is possible to apply
a Gibbs sampling algorithm (Gelfand and Smith 1990). The Gibbs algorithm divides the parameters into
several groups and samples from a distribution by iteratively sampling from the conditional distribution of
the parameters in one group given the parameters in the rest of groups. However, the larger the number of
groups is, the slower the convergence (e.g. Gilks et al. 1995, page 12). And also, the more correlated the
parameters in one group are with the parameters in another group, the slower the algorithm will be (e.g.
Amit 1991, Roberts 1995, page52).

A recent strand of literature is concerned with the acceleration of data augmentation techniques (e.g.
Meng and van Diyk 1997, Liu and Wu 1998, Liu and Sabatti 1998, Liu and Sabatti 2000, van Diyk and
Meng 2001). They propose to introduce non-identified parameters into the model. The introduction of such
parameters proves useful to speed up convergence.



The algorithm proposed in section 4 of this paper combines both the Gibbs sampling and the Metropolis
algorithm. That is, data augmentation is used, but the parameters are also updated marginally on the latent
data. The parameters are updated using a re-parameterization of posterior mas(). As it is shown in section
3, the algorithm proposed by Liu and Wu (1998) can be seen as sampling from a re-parameterization of
TpA()- Simulations show that the proposed algorithm moves faster. This accords with the theory, since
mp(.) conditions on less parameters.

A common feature in limited-dependent variable models is that the scale of the latent variable is not
identified. As a normalization, restrictions are usually placed upon the variance-covariance matrix. When
just one of the elements in the variance-covariance matrix is restricted to be one, several algorithms to
sample it directly are available (Cowles 1996, McCulloch et al. 2000 and Nobile 2000). In the context of
the multivariate probit model, where all the diagonal elements of the covariance matrix are restricted, Lui
(2001) proposes an algorithm to sample the covariance matrix directly. However, the algorithm relies on
the specification of an improper prior for the covariance matrix. There are no results that ensure that the
posterior density would exist if an improper prior is specified, and hence the specification of a proper prior
seems to be necessary. By choosing an alternative normalization, section 2 proposes an algorithm to sample
Y directly from its conditional posterior distribution using a proper prior.

The plan of the paper is as follows. Section 2 explains how to sample X directly in a Gibbs sampling
algorithm. Section 3.1 shows that the Parameter-Expansion-Data-Augmentation (PX-DA) algorithm (Liu
and Wu 1999), as applied to the univariate probit, can be seen as sampling from a reparameterization of the
model. Section 3.2 adapts the PX-DA algorithm to the Multivariate Probit model with proper priors. Section
3.3 determines under which conditions the PX-DA algorithm can be seen in general as a reparameterization.
And it illustrates that the PX-DA algorithm is not invariant to reparameterizations.

Section 4 describes an algorithm that reduces autocorrelations further, and that updates the absolute
value of the parameters marginally on the latent data. Section 5 considers an algorithm that updates the
absolute value of parameters and latent data jointly. Section 6 presents a Metropolis algorithm to sample
from mpy( ), using an approximation of the posterior that works well with a moderate number of parameters.
Section 7 compares the proposed algorithms with other algorithms in the literature. Section 8 concludes.

2 Sampling a Variance-Covariance with Restrictions.

For simplicity in the exposition, the next sub-section concentrates on the case of T=2, known as the bivariate
probit model. Section 2.2 looks at the more general case and section 2.3 considers a different type of
normalization.

2.1 The Bivariate Probit Case.
2.1.1 Identification in the Bivariate Probit.
The likelihood contribution of an observation (0, 1) is,

Xiub+en <0 }

Priyn =0,y =1} = Pr{ Xiofa + e >0

Let A = (1) be the lower triangular Cholesky decomposition of ¥, so that ¥ = AAT.

Vo 0
A=
( 12//o11 \/‘722 - (‘712)2 Jon > 3)

Then the vector e; can be seen as a transformation of a random vector g; that follows a standard normal
distribution. That is, ¢; = Ag;, where ¢; follows a N(0,I). The probability in (2) can be rewritten as,

Xi b+ /ouien L0, }

Xiof2 + \(/T%Eil + \/022 — (012)? Jo11882 > 0

4)

Pr{yia =0,y =1} = Pr{



From expression (4), different values for (5,X) give the same value for the probability. In particular, for
two arbitrary positive constants (¢, d), the value of the parameters {c (81, 611),d (082, 621,822)} give the same
value for the probability as {81,011, 82,821,022 }. Hence, the model is not identified.

The most common normalization in the literature is to fix 611 = g22 = 1 (e.g. Chib and Greenberg 1998).
However, the following section shows that it is more convenient from the point of view of computational
tractability to choose o117 = 099 — (012)2 /o11 = 1. From expression (4), both normalizations make the model
identified without imposing any unnecessary restrictions upon the parameters.

2.1.2 Sampling the Variance-Covariance Matrix.

In the Bayesian approach, model specification is completed by providing a prior distribution for the
parameters. Let the prior for ¥ be an Inverted Wishart IW (2,dfy, Ko) distribution conditional to the

restriction that o117 = 099 — (012)2 /o11 = 1. That is, given a matrix ¥ that satisfies the restriction, the
kernel of the prior is:

|§]|_df°/2 exp (—1/2tr (£ Ko))
The expected value of the unrestricted prior is dfol——ﬁKO‘ The definition of inverted Wishart distribution
used here is the one described in Press (1986, pp. 117).
The conditional posterior of ¥ given parameters § and latent data {y} : ¢ =1, ...,T}Z.T:1 is an inverted
Wishart IW (2, df, K) with the restriction that 11 = g2 — (012)2 /o11 = 1. The parameters of this inverted
Wishart are df = dfp + N and K = Ky + Zfil e;el.

i
The following theorem, which can be found in Bauwens et al. (1999, pages 305-306), is useful to sample
¥, conditional on the normalization §;1 = de0 = 1.

Theorem 1 Let ¥ be distributed as an IW (d,df,G), and be partitioned as £ = (X;5), 4,j=1,2, being X11 a
q X q matriz. Define Yog.q = Yoo — 22121_11212, then

1) Xo04|X211 ~IW (d—gq,df — ¢q,G22.1)
2) Tu|(C221,T0) ~ MN (Z1(Gn) ™ Gia, B (Gu) ™' SaeaBu)
where M N refers to a matriz normal distribution.

Theorem 1 states that the conditional posterior of g2 given S and all latent data yj; is a normal
distribution and hence it can be sampled directly.

2.2 Dimension larger than 2.

The proposed normalization in the bivariate probit is to set the variance of e; (o11) and the conditional
variance of e;z given ey (022 — (012)* /011) both equal to one. Or in other words, to fix the elements in
the diagonal of the cholesky decomposition equal to one. Similarly, in the case of T > 2 the proposed
normalization is

Var(ein) = Var (eplen) = Var (e3leiz,en) = ... = Var (eiT|ei(T_1), aneil) =1 (5)

This normalization can also be shown to be the same as fixing the elements in the diagonal of the Cholesky
decomposition equal to one. The following lemma gives an statistical interpretation to each of the elements
of the Cholesky decomposition. The proof of lemma, 1 is in appendix 4.

Lemma 1 Ife; follows a N (0,X), and A is the lower triangular cholesky decomposition, then

Vo1l 0 0 0 0
j(% V022.1 0 0 0
A= s Jees VOssa2 0 0
s Jems ek ouaes 0

T o211 g3T.12 4T 123 \/0.7
Vo1l Vo221 V733.12 VTaa.123 TT-123...(T-1)



where Ott.wz = Var (€itleiv, €iw, €iz) and Otp.ywz = Cov (e, €inleiv, €iw, €iz)-

Hence, restriction (5) is equivalent to fixing the diagonal elements of the Cholesky decomposition to one.
In addition, from (6) this restriction identifies the model, not imposing any unnecessary restrictions upon
the parameters.

Let ¥;; be the sub-matrix of ¥ containing the first j rows and the first j columns of ¥ and Kj; the
corresponding sub-matrix of K. Let X; be the vertical vector containing the first (j — 1) rows in the jth
column and let K; be the corresponding sub-matrix of K. Following theorem 1, if ¥ follows an unrestricted
IW (T,df, K), then

e Y7 conditional on X(p_1y(p_1) and opr.as.. (r—1) follows a normal distribution
® o7T.12..(T—1) i8 independent of ¥(p_1)(7_1) and follows an inverted Wishart distribution.

® Y (p_1)(r—1) follows an inverted Wishart distribution.

The third property holds because the marginal distribution of sub-matrices centered in the diagonal
is also an inverted Wishart distribution (Press 1986, pp. 118-119). Since opp.12..(r—1) is independent of
Y(r-1)(r-1), conditioning on opp.12.. (r—1) = 1 does not change the marginal distribution of X(p_1yr—_1).

Consider now that X follows an IW (T, df, K') with the restriction that 011 = 092.1 = ... = opra2.(7-1) =
1. By applying the above argument recursively, the marginal distribution of X5 given the restriction is a
normal distribution. In addition, the distribution of ¥, conditional on X,_1)(n—1) and opp.12...(n—1) is also
a normal distribution, for 2 < n < T. Appendix 1 gives full detail of the distributions involved in this
decomposition of the inverted Wishart density.

The following algorithm describes how ¥ can be sampled from its conditional posterior distribution:

Algorithm 1 Step 1: Sample 012 conditional on 011 and o221 from a
—1 2 -1
N (0’11K11 Kg, (0’11) Kll 0’22.1)

Step 2: Fix 099 = 1+ (0’12)2
Step 3: Sample X3 conditional on Yoo and 033.12 from a

N (222K55 K3, 03312522 K55 Tao)

Step 4: Fiz 033 = 1+ I35,
Step 2(n—1)-1: Sample X, conditional on X(,_1)(n—1) and Tpp.12...(n—1) from a

—1 —1
N (E(n—l)(n—l)K(n_l)(n_l)Kna Unn~12...(n—1)E(n—l)(n—l)K(n_l)(n_l)E(n—l)(n—l))

Step 2(n-1): Fix opy = 1+ EZE(_nl_n(n—l)E"‘

2.3 An alternative normalization.

This section describes how to transform the estimated values for (8,Y) if another normalization is chosen.
In particular, instead of normalization (5), one might be interested in choosing the more widely used
normalization:

011 =092 =..=0pp =1 (6)

A sample from the posterior of (8,Y) given normalization (7) can be obtained by simply transforming
the values sampled using algorithm 1. Let C; be the diagonal matrix of dimension T" with diagonal equal

to (1/,/011, 1/\/0221,1//T33.12, - l/m) and let C3 be the diagonal matrix of dimension T



with diagonal equal to (1/\/0'11,1/\/0'22,1/\/0'33,...,1/\/0'TT). The parameters that are identified with
normalization (5) are (1/,/01151,...,1/mm,01201). When normalization (7) is used, the

identified parameters are (1/1/01161, ..., 1//orTBr, C2XC3).

Let ([3’“,2’“)1 be the kth value in the chain when normalization (5) is used. And let ([3’“,2’“)2 be the
kth value in a chain in which normalization (7) is chosen. To obtain a sample from the posterior when
normalization (7) is used, transform ([3’“, Ek)l in the following way:

e Construct C¥ as the diagonal matrix with diagonal equal to

(1/ VN RN Y a%T)

o Fix ([3’“,2’“)2 = (1/\/af161,...,1/ aéﬁTﬂT,,C%“EkCé“)

3 Parameter Expansion Data Augmentation (PX-DA).

Parameter Expansion Data Augmentation (Liu and Wu 1998) as applied to the probit model, can be seen
as sampling from a reparameterization of the latent data. This is shown in section 3.1.2. Section 3.2
explains how the PX-DA algorithm can be applied to the multivariate probit model. Section 3.3 compares
the PX-DA algorithm with the proposed reparameterization in a general model. It is shown that in some
cases both approaches do not lead to the same algorithm and that PX-DA algorithm is not invariant to
reparameterizations.

3.1 The Univariate Probit Model.
3.1.1 Adding a Non-Identified Parameter to the Model (Liu and Wu 1998).

Liu and Wu (1998) describe their method as the introduction of a parameter « that is not identified in the
model. In the probit case, they suggest to introduce the parameter in the following way:

ayy; = Xmabu + Xasafie + Xasabis + ... + Xag, 0bir, + aea
€~ N (07 1)

Either a proper or improper prior might be placed on a. In the case of a proper density h («) the algorithm
is:

e Sample (a,aY?,...,aYy) conditional on (8). That is, sample a from k(o) and (aY7,...,aYRx) from
truncated N (Xiji1aB11 + XizaBis + ... + Xig, 0Bin, , 0%).

e Sample (a, f11,B12,-.., B1k, ) conditional on (aYy,...,aYR).

For any prior density of a that is independent of the prior of the slope parameters, the algorithm will
converge to the desired posterior distribution. Consider a proper prior that in the limit is an improper
prior. Because the algorithm converges to the same distribution for any prior, the limit of the kernel of the
algorithm, as the prior tends to an improper prior, would also have the posterior distribution as stationary
distribution. The prior 7 (@) o« 1/a is recommended because no proper prior would yield faster convergence.
Since this prior can be seen as the limiting case of a proper prior h (), then the transition kernel of the
previous algorithm converges to:



Algorithm 2 Step 1) Sample (Y*,...,YR) from truncated N (X;11611 + Xa2B12 + ... + Xiik, Bik,» 1).
Step 2) Sample (o, P11, B12, -, Bk, ) conditional on (Y7*,...,YR) using kernel

N

2a2 “
i=1

exp {—% (Br = Bo)" Vo L (B - 50)} exp {— ! (Y7 — X1iaﬂ1)2} (a)_(N+1)

where it has been assumed that $; follows a priori a N (8, Vo).

3.1.2 A Different Interpretation for PX-DA.

The above algorithm can also be derived by doing a re-parameterization of the model, without adding any
additional parameter to the model. Let

Y?,F,F,...,F = 1/'1*,1/2* Yv3* Yﬁ
2 3 N

The posterior of (81, Yy, Y5, Yy, ..., Y5) is
TDA (617 le*a Y_2*7 Yv_?,*a 7Y_]\=‘}|Yv17 ey YN) = TDA (617 le*, le*Y_2*7 le*Y_?:k7 ey le*Y_]vah R YN) |Yv1*|N_1
Consider the following algorithm:

Algorithm 3 Step 1) Sample (Y, Y5, Yy, ..., YR) conditional on Bi.

Step 2) Sample (Y, 51) conditional on (Y_Q*, Y, ,ﬁ) from kernel,

N

exp {—% (Br = Bo) Vgt (B — 50)} exp {—% ¥ = Xub)’ - % Z S Xi151)2} (N

i=2
Note that the stationary distribution of this chain is the posterior distribution Tp4.
This algorithm can be seen to be equal to algorithm (2). Let YV be the value of Y;* obtained in the
first step of the algorithm. In the second step, define Y;* = Y} (%) The following proposition gives the
1

conditional density of (Y7, 51).

Proposition 1 The conditional density of (Y1, 1) given (Y5',Ys,...,Yy) is proportional to,

N
(W - Xu¥78)" + Y (WY - XY 6)

=2

1
2 (%)’

€exp {—% (81— Bo)" Vo' (B — 50)} exp {—

} (7)Y

Proof. The posterior conditional density of (Y7*, 1) is proportional to:

N2 Ny 1\2
(1 - Xubh Y—l*) + Z (YZ* - X1ib1 Y—l*)

=2

exp {—% (81— Bo)" Vo' (B1 - 50)} exp {—% (¥7)°

} ki

Since the Jacobian of the transformation from Y;* to Y;* is ‘Yf’l / (Y_I*)Q‘ the conditional density of (Y7, 51)
is proportional to:

v\ 2 7 2 N _ T\ 2
exp { = (51 = 80" V5™ (51 - o) exp {—% (B) |(-xungs) «3 (7 -xungk)

=2

} (7))

which is equal to the kernel above. W



Hence, both algorithms are equivalent, since they have the same transition kernel. (Yy*,Yy, Y5, ...,Y %)
in step 1 of algorithm 3 can be sampled by sampling (¥7*,...,Yx) and then doing the transformation. Hence,
latent data is sampled equivalently in both algorithms. As proposition 1 shows, the slope parameters are
also sampled from the same distribution. Section 3.3 shows that, under some conditions, the more general
PX-DA algorithm can also be seen as sampling from a reparameterization.

The conditional distribution of (a, 811, B12, .-, Bk, ) given (Y7, ..., Y3) is not of standard form, unless the
prior distribution of §; is an improper flat prior 7 (1) o« 1. Chen and Shao (1998) give general conditions
for the existence of the posterior distribution in a probit model if the improper prior 7 (81) o< 1 is used. As
Liu and Wu (1998) note, when this prior is used, algorithm (2), and hence algorithm (3), reduces to:

e Sample (Y}%,...,Y5) from truncated N (X161 + Xa2bi2 + ... + Xtk S1key 1)-

e Sample a® conditional on (aYy,...,aYy) from an inverted Wishart IW (N, 1, K), with N degrees of

freedom and
N

K=Y [(Yi* - Xﬂ,u)2]

i=1
-1
where p = (Zf\il XiTlXﬂ) Zfil X1V is the OLS estimator when Y;* is observed.

¢ Divide all elements in (Y7%,...,Yx) by a.

. . . . N
e Sample £; from a normal with mean gy and variance-covariance matrix (Zi:l XZ.T1 Xﬂ)

Note that a standard Gibbs sampling algorithm consists in steps 1 and 4. Algorithms (2) and (3) add
two steps, dividing all latent data by a random factor to make the algorithm moves faster. Algorithm (3)
achieves that by conditioning on the ratio of Y;* to Y;*. Hence, if Y}* changes by a factor « then the rest of
latent data has to vary by the same amount to keep the ratio constant.

3.2 PX-DA in the Multivariate Probit Model.
3.2.1 Improper Prior Case, Liu (2001)

Liu (2001) explains how the PX-DA algorithm can be applied to the Multivariate Probit Model using an
improper prior for ¥. The suggestion is to introduce T non-identified parameters (a1, ..., ar) into the model
in the following way:

Yy =  XiBt + e i=1,..,N t=1,..,T (7)
The random vector e; = (e;1, ...,eiT)T follows a N (0,%). In order to identify the model all elements in the
diagonal of ¥ are fixed to be one. It was assumed that the number of parameters in each equation is the
same, ki = ks =,...,k7 = k. A proper prior and an improper prior was specified for 8 = (87,57, ...,B%)T
and X, respectively.

(T+1)

() o« B
T(BIZ) o« Nrg (0,97'®X)
where A is a T' x T known diagonal matrix. From the results in Liu and Wu (1998), the recommended prior

—(T+1)/2
for a is 7 (@) x (Hthl oy .

The grouping strategy followed was:

o Generate (Y7, ...,Yy) conditional on (8,X).

e Generate S conditional on (Y*,..., Y3, X).



e Generate (a, X)) conditional on (Y, ..., Y5, 8).

By specifying the above improper prior on ¥, (@,Y¥) can be sampled directly from their posterior
distribution. It was argued that this algorithm not only avoids the need for a Metropolis Hastings algorithm,
but also speeds up convergence.

However, it has not been proved in the literature whether the improper prior for ¥ leads to a proper
posterior and hence to a valid Bayesian analysis. Some improper priors result in an improper posterior in
similar models. For instance, Natarajan and McCulloch (1995) show that in a probit model with random
effects, a prior 1/o,, for the variance of the individual effects implies that the posterior is improper. Hence,
it is important to specify a proper prior when the implications of an improper prior are not known.

If a proper prior, such as a restricted inverted Wishart, is specified on the restricted ¥ and the same
improper prior is specified on «, the conditional distribution of (a, ¥) does not have a standard form, and
a Metropolis step seems to be necessary. Next section and section 5 suggest possibilities for updating the
latent data marginally on some parameters.

3.2.2 Proper Prior Case

Consider the following reparameterization of the model:

* % ok = \ __ * y;t y;t y}k\ft f =1 T
(y1t7y2t7y3t7"'7y1\]t) - yltaTa_*a"'a_* ort= FRLES
Y1ir Y1t Y1t
As a normalization, assume that the diagonal elements of the cholesky decomposition of ¥ are restricted
to be one. Assume that ¥ and 8 are independent a priori, with a N (8, Vo) and a restricted IW (T, dfo, Ko)
as prior densities. One possibility to speed up convergence is given by the following algorithm:

e Algorithm 4 Step1) Generate {(yt,ys; 5 -VUng) it =1,...,T} conditional on (8,%) using
truncated normal distributions.

Step 2) Sample 8 conditional on { (yis, Y31 Vae> - Ye) 1t =1,..., T} and T from a normal distribution.

Step 8) Generate (yi1,Yia, .., Yi) conditional on 3 and {(y3;, y3s, - Yie) 1t =1,..., T} but not on
using a Metropolis algorithm.

Step 4) Sample & conditional on { (Y}, Y3y, Ysp - Unyg) 1t =1,..., T}, B using algorithm (1).

The reason why the algorithm is faster is because some characteristics of the latent data, (y3;,¥3a, - ¥i7)s
are sampled marginally on Y. Hence, the pernicious effect of large correlations between ¥ and latent data is
diminished. Another possibility, that is not explored in this paper, is to sample (y1y,¥ts, ..., Y1, 5) jointly
conditioning on Y. This alternative would be preferable if the correlation of the latent data with slope
parameters is larger than the correlation with X.

Appendix (2) gives full detail of the distributions that are used in step 3 and 4. Step 3 can be repeated
several times to increase the probability of accepting a new value. Note that in this algorithm new values
of ¥ are always generated, even if none of the candidate values for (yy;,y1s, ..., ¥;7) was accepted. This
makes the algorithm move faster, since each iteration generates different values for . Note that this is
not a standard Metropolis step to sample (y3;y1s, .-, U7, 5), but the stationary distribution of this chain
is still the joint posterior density of ({(y}s, Y3 Yo - Uny) 1t =1,...T}, X, ). It can also be checked that
the chain is Harris recurrent, since all distributions used to generate the parameters are strictly positive
and continuous over all the parameter space (Tierney 1994, Theorem 1). Hence, the algorithm converges
monotonically to the posterior distribution.

3.3 PX-DA in a General Model.

The intuitive idea underlying the PX-DA algorithm is that the latent data is transformed at each iteration.
The interpretation given in section 3.1.2 and 3.2.2 is that the magnitud of the latent data is sampled



conditioning on the relative size of the latent data, and marginally on some parameters. By not conditioning
on some parameters that are highly correlated with the latent data, the convergence is faster.

In the probit model, the latent data is transformed by dividing it by a random factor. However, different
transformations of the latent data might be more appropriate for other models. This section is concerned with
general transformations of the latent data. But it is thought in terms of sampling a feature of the latent data
conditioning on some characteristics of the latent data. And hence, it is interpreted as a reparameterization.

Suppose that latent data is used in some arbitrary model, and that we are interested in transforming the
latent data according to the function Y* = t, (¥;*). Y;* represents the latent data for observation i, and Y;*
the latent data after the transformation. In the previous section ¢, (Y;*) = Y;*/a, so that latent data was
transformed with a linear transformation. Let # contain the rest of parameters in the model.

Agsume that ¢, is a continuos function, with a differentiable inverse function. Also assume that for any
two values a; and aq there is a unique value for « such that a; = ¢4 (a2). Let o = h (a1, a2) be the function
that yields the unique value of a that makes a1 = #4 (a2). That is, h(a1,a2) is the function satisfying

a’l - th(a1,a2) (a’2)‘
Consider the following parameterization:

(VY5 Y50 YR) = (V5 (Y5, Y70) B (Y5, YY) s e B (YR, V)
and the following algorithm:
e Generate (Yl*,Y_Q*, T;,,Y_ﬁ) conditional on 8.
e Generate Y;* conditioning on (Y5, Y5, ..., Yy) but not on 6.
e Generate 6 conditional on (Y7*, Y5, Yy, ..., Y3).

The second step makes the algorithm faster, because it samples a characteristic of the latent data
marginally on 8. If we also conditioned on ¢ the convergence speed would be the same, but with a higher
computational cost. In addition, as the following proposition shows, the second step can be seen to be equal
to transform all latent data with the function ¢, (.).

Proposition 2 Let (Y, Y}, Yy, ..., YY) be the value of (Y{*, Y5, Y5, ..., YR) obtained in the first step of the
algorithm. And let (1”},1”;“,1”;“, ,17]5) be the implied value of (Y7*,Y5,Ys,...,YR) after the second step.
There exists a value oy, such that:

(V.55 T5) = (tan () st (V) st (5 e, (YR))

Proof. Let a,, be the value of a such that 1”? = tq, (¥7"). Since we condition on h (Y5, Y7*), it must be
that h (V¢ Yy") = h (Y5, 7). Let ap = h V¢, Y"). The following relations hold:

Yy = ta ")
Vi = tag (V) = tao (ban (V1)) =ty (Fag (V1)) = b, (¥5)

where the property that the composition of functions is commutative has been used (i.e. tqo, (ta, (¥7°)) =
tag (ta, (Y7¥))). Since Y5 = t,, (Y7), all latent data has been transformed with the function #,, (.), and

op=nh (171:“,1’1”) has been generated at random. W

Let mpa (Y%, Y5, Y5, .., Y5, 01Y1,Y5,Y5, ..., Y) be the posterior density of (Y7*,Y5, Yy, ...,Y%,8). The
posterior density in the transformed model is:

TDA (le*atﬁ (le*) 7tT; (le*) ’ 7tﬁ (le*) ,0|Y'1,Y'2,sz, 7YN)

ﬁ Otyx (Y1)
oY

i=2 i

10



Let Y}¥ be the value for Y;* obtained in the first step of the algorithm, and Y;* = h (Y;*,Y¥). In order to
compare the PX-DA algorithm with the reparameterization, the following proposition yields an expression
for the conditional posterior density of (Y*,6) given (Y5,Y5,...,Yy).

Proposition 3 The conditional posterior density of (Yy*,0) given (Y5 ,Ys,...,Y%) is proportional to:

Oty= (Y1) ﬁ Oty= (V")
ovF oYy

=2

TDA (tﬁ(yvlv) 7tﬁ(1/2v) 7tY71* (Yv3v) ’ 7tﬁ (Yf\}) 70|Yv17Yv27Yv37 7YN)

Proof. The posterior density of (Y, Y5, Yy, ..., Y%, 6) is proportional to:

TDA (tﬁ(ylv) ,tT; (tﬁ (Ylv)) 7tY73* (tyT* (Ylv)) 3y tﬁ (t?f (Ylv)) 70|Y1’Y2’ Ys, o YN) BYl*
=2

Since the composition of functions is commutative, this last expression can be written as:

Otyz (V) I Oty (ty (V1))

Btyx (Y1) N Oty (tﬁ (Yf’))

DA (tﬁ (Y1), by (tﬁ (Ylv)) N ed (ty—; (Yf’)) s by (tﬁ (Ylv)) ,0|Y1,Ys,Ys, ., YN) el
=2

If we condition on (Y5, ..., Y%) so that these values remain constant, then ty= () =Y, fori=2,..,N.

Hence, the posterior density of (Y;,8) given (Y5,Ys, ..., Y%, ) is proportional to:

Bty (V) I Oty (ty= (V1))
oYy - av;

=2

TDA (tﬁ (lev) 7tﬁ(1/2v) 7tTf (Yv3v) ’ 7tﬁ (Yf\}) 70|Yv17Yv27Yv37 7YN)

Using the chain rule for derivatives of composed functions the following equality holds:

Oty (b7 () Bty (b3 (V1)) Bty (V) Bty (V1) Bty (¥7)

Y T Oty () D oYy D

2 2 2

Since Oty (Y1?) /8Y; does not depend on Y, the posterior density of (Y*,8) given (Y5,Ys,....Y5%,) is
proportional to:

Oy (05) 1 O O7)
oYy aY?

=2 ?

TDA (tﬁ(yvlv) 7tﬁ(1/2v) 7tY71* (szv) ’ 7tﬁ (Yf\}) 70|Yv17Yv27Yv37 7YN)

|
The PX-DA algorithm (Liu and Wu 1999, page 1269) is:

e Sample (Y7*,Y5,Ys,...,Yy) conditional on @ from its conditional posterior density, which is
proportional to mpa (Y7*, Yo, Yy, .., Y5, 0|Y1,Ya, Ys, ..., Yiv).

e Sample (a,8) given (Y7*,Y5, Y5, ..., Y3) = (V¥ Y2, Yy, ..., YR), from its conditional density:

o1 Ota (V)

TDA (ta (lev) 7ta (1/21)) 7ta (szv) y "'7ta (Yf\}) 70|Yv17Yv27Yv37 7YN) H (a) aT
i

=1

where H (a) is the Haar prior for a. The Haar prior is a function such as for any value (a, b, d)

b ta(b)
/ H (o) da :/ H (o) da
a ta(a)
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Hence, both approaches lead to the same algorithm if and only if the Haar prior H («) is proportional

to:
Ota (V) (Ota (V*)\ ™
Oa oYy

9)

Liu and Wu (1999) show that the PX-DA algorithm can be written as:

e Sample (Y7*,Y5,Ys,...,YRX) conditional on € from its conditional posterior density, which is
proportional to mpa (Y7*, Yo, Yy, .., Y5, 0|Y1,Ya, Ys, ..., Yiv).

e Sample (a) from the marginal distribution of « implied by kernel (9).

e Transform all latent data with the function ¢, (). That is, fix (¥7*,Y5,Y5, ..., YR) =
(ta (V1) s ta (Y5) s e (¥5') st (YRY))-

e Sample @ from its conditional density given (Y*, Y5, Y5", ..., YX).

From proposition 1, the algorithm that results from the re-parameterization also transforms the latent
data with the function tg= (YY), where Y* = h (Y*,Y?"). Hence, both algorithms are the same if both «

and Y;* are sampled from the same density.

If t, (Y?") = Y{¥/a, as in the previous section, the Haar prior is H (a) = 1/a, and both approaches lead
to the same algorithm. If ¢, (YV) = aY}?, the Haar prior continues to be the same, and also in this case both
interpretations are equivalent. Hence, for linear transformations of the latent data, ¢, (Y}") = aY;® +a, where
a is a known constant, both interpretations yield the same algorithm. However, for some transformations
both methods do not coincide. The following example illustrates that the PX-DA algorithm is not invariant
to reparameterizations.

Example 2 Rewrite the univariate probit model as:

g1 = exp(y;1) = exp(Xi1 b11) exp(Xi2612) exp(Xinzfis)... exp( Xk, Bir, ) expleir)

yn = 1 if g > 1
yp = 0 iﬁqzlfl

Following the motivation of Parameter Expansion Data Augmentation, let o be a non-identified parameter
that enters in the model in the following way:

(g5)" = exp(X;11 811)* exp(Xi12812)* exp(Xi13813)% .. exp(Xitk, Bi, ) explei)*

By taking logarithms, this model can be seen to be equal to model (8). Using the PX-DA algorithm, (51, )
are drawn from expression (9), with t, (¢f) = (q;“l)l/ “. By taking logarithms at both sides of (E“I = (q;“l)l/ o
this transformation can be seen to be equal to y~;“ = 1/a(y}). Hence, this transformation is equivalent to
dividing the original latent data y} by a. For both algorithms to give the same result, the haar prior H ()

should be proportional to:

2

1
x =
a

L (Lae)

a?

where g7 is the value of ¢ obtained in the first step of the algorithm.
However, it can be verified that 1/« is not the Haar prior since for o general value of (a,b,d) the value

of the integral
b1
/ —da
o @
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is not proportional to the integral:

bd
1
/ —da
ad
The reparameterization that corresponds to this transformation of the latent data is:

In(¢}) In(¢f) In (qi‘)) _ (ﬂ viooour
In(gf) In(g3)’ " In(ax) v vy YN
Hence, if the data is transformed using a reparameterization, the algorithm is still the same as when

the transformation y; = 1/a(y;) is considered. However, the PX-DA algorithm changes when the
parameterization changes.

(@B TG = ( _ ) T T

The previous example shows a non-linear transformation of the latent data for which both algorithms
are not the same. However, this transformation can be seen as a linear transformation on the logs of the
latent data. In contrast with the reparameterization, the PX-DA algorithm to transform the latent data
non-linearly is not equivalent to the PX-DA algorithm to transform the log of latent data linearly, even
though both transformations are the same in the example above.

4 Data Augmentation in the Multivariate Probit Model.

For simplicity in the exposition, we first focus in the case of the probit model, that is T' = 1. Section 4.2
considers the multivariate case.

4.1 The Univariate Probit.

The intuitive idea for the algorithm is similar to the one in the previous section. But instead of multiplying
the latent data by a random factor, the slope parameters will be multiplied marginally on the latent data.
By not conditioning on the latent data, the algorithm is able to make larger moves.

Let 81 = (611, ..., 81k, ), and consider the following reparameterization of the model,

= B2 B3 B e —
61 = (61176_1?76_117---7 6111 = (611,612,...,61]91)
yh = Xa1Bu + Xa2Bi2Bu + XisBishii + - + Xitk, Birs B11 + €i1

The posterior distribution of §; is given by the theorem of the change of variables,
W(ﬂlla%a ---a51k1|Y1a---aYN) =TM (511,%511, ey Biy Bra | Y1, ---,YN) |/311|kl_1

where ‘Bﬁ_l is the Jacobian of the transformation.
The proposed algorithm is,

e Sample ([311,%,...,[31;“) conditional on (Y7,...,Y¥)
e Sample B1; conditional on (B2, ..., Bix, )
e Sample (Y7, ..., Y%) conditional on (811, Bi2, .., Bik, )

Note that the stationary distribution of the chain is the posterior density of parameters and latent data.
The conditional distribution of (Y*, ..., Yy ) is the same as in the algorithm proposed by Chib and Greenberg
(1998). (B11, P12, -, Bik,) can be sampled by generating (811, Bi2, ..., Bk, ) conditional on (Yy,...,Y3) and

then transforming the variables (611 s %, caey 61]91) = (611, 612/611, caey 61]91 /611).

The conditional distribution of 817 given (%,...,Blkl) does not have a standard form. Hence, a
metropolis step can be used to generate $1;. The proposal density for the Metropolis step could be a
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normal with mean and variance equal to the Maximum Likelihood estimation of 811. Alternatively, 511 can
be generated as in a random walk. Assume that the prior distribution of (811, 812, .., 81k, ) 18 & N (8o, Vo)-
Let (7 denote the nth value of $1; in the chain. If a random walk is used, the algorithm to generate the
(n+1)th value of (B11, B2, .., Bir, ) is:

Algorithm 5 Step 1. Sample (f11, 512, .+, Bik.) from a N (pip, Vp), where p, = Vp (Zfil XIvyx + Vo_lﬂo),

-1
and V, = (DX, XEXa +V5")

Step 2. Fix (%, . Blkl) = (B12/B11, s P1ky [ P11). Generate o random scalar v from a distribution with
density function f (v). Fiz S5 = vBYy with probability

s L(Ylvﬂ?lavﬂl%---7U61k1)77(Uﬂ?lavﬂl%"'avﬂlh) f(]./’U) k1 }
V_mln{ L(Y|B?176127-"761k1)77(6?176127-"761’91) f(’U) |U | ,1

and fiz BN = B with probability (1 — ), where L (Y|B11, Bi2, s Bk, ) 48 the likelihood function:

N
Lv18) =] (2 (- X160 " (1 - 3 (-X0:6:))")

=1

and 7 (11, B12, -, Bk, ) 18 the prior density. L
Step 3. Sample Y;* from a truncated N (Xm[i'u + X12612611 + -« + Xk, b1k, b1, 1) foralli=1,..,N.

Step 2 of the algorithm can be repeated a number of times to increase the likelihood of acceptance of a
new value. Note that algorithm (5) is the same as a Gibbs algorithm, with an additional step 2. Hence, it
is just a Gibbs sampling algorithm, in which at each iteration all slope parameters might be multiplied by a
random factor. Whenever a new candidate is accepted in step (2), all parameters move in the same direction.
Step (2) accelerates the algorithm because it proposes a change of all parameters that is unconditional on
the latent data. Conditioning on latent data makes the parameter move substantially slower.

The function f (v) might be centered at 1, so that new candidates are drawn from a distribution centered
at the old value. In addition, it might be desirable to restrict f (v) to positive values, hence forcing new
candidates to have the same sign as the previous value. An inverted gamma would play this role and it
would be equivalent to drawing S11 conditioning not only on (12, ..., Bik, ) but also on the sign of (811). In
any case, the posterior density continues to be the stationary distribution of the chain, and it can be verified
that the chain is Harris recurrent, using the conditions of Theorem 1 in Tierney (1994).

If on (x; 51\1, s/d\l) is the density function of a N (51\1, s/d\l), then step (2) can be implemented as:
e Step 2'. Fix (%, s Biky ) = (Br2/B11, s Biky /B11). Generate a random scalar v from a distribution
with density function ¢n (v; 51\1,3/&\1) Fix g5t = v with probability

~' = min

L (¥]v, vBi2, . 0Biy) 7 (v, Bz, ooy wBigy) O (85 Br1, 51 ‘( v )kl—l )

L (V18T Bzs s B ) 7 (B, Brzs s Brtn) gy (v: By, dl) | NPl

and fix 85 = B, with probability (1 — +').

4.2 The Multivariate Case.

The intuitive idea underlying the generalization to the multivariate probit model continues to be the same. At
each iteration of the Gibbs sampler, the slope parameters of each equation are updated by a random factor.
However, two distinctive features of the multivariate case should be noted. Firstly, the slope parameters
in one equation have usually low correlation with the slope parameters in the rest of equations. Hence, it
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does not seem a good idea to multiply the slope parameters in two different equations by the same factor.
Such a movement would work best when parameters are highly correlated. Secondly, the likelihood of the
multivariate probit cannot be easily calculated for T' > 3. Hence, it is necessary to condition on some latent
data to be able to carry out a metropolis step.

Consider the following re-parameterization of the model:

E - (6117%7%7“'7%::) = (6117%7%7"‘761’91)

% - (52_2—%) = (821, B2z, Bz Bomy)

5 (m%% 55;;) = (Br1,Br2, Bra-.. Brr)

vn = Xa1Bu + Xi2B12611 + XitsBrsBir + .. + Xitky Bir B11 + €i1

Yo = Xi210o1 + Xioaf22001 + Xiosfasfor + ... + Xiopy Pow, B21 + €42

y:‘T = XiTlBTl + XiTQ%BTl + Xi23,B—T3,BT1 + + XiTkTBTkT /BTI + €T

The grouping strategy in the algorithm is as follows:
e Sample (E, Ba, ,B_T) conditional on (Y7%, ..., Y%, ).
e Sample ¥ conditional on (E, Bay oy B, Y7, ...,Y]@)

e Fort=1,...,T do:

— Generate (41 conditional on {yf, : k # ¢}~ N {Bw 1 k £1}, {B; : j £}, =
— Sample {y5}*="" conditional on (B1, B2, .., Br,X) and {yf, : k # Y=t

It can be checked that if the initial value of (Y{*,...,Yx,X) is drawn from the marginal posterior
distribution, then the value of (81, B2, ..., Br, Y7, ..., Y3, X) after one iteration is also drawn from the posterior
distribution. That is, the stationary distribution is the posterior density.

In the first part of the third step, §;1 is generated using a Metropolis step. This metropolis step can be
repeated a number of times to increase the probability of accepting a new value. Thus, at each iteration of
the gibbs algorithm, the slope parameters of each equation are updated not conditioning on the latent data
of that equation. The first step and the second part of step 3 can be carried out as described in Chib and
Greenberg (1998). The second step can be done following the algorithm described in section 2.

For some datasets, it might be worthwhile to save in computation time, at the cost of convergence speed.
If this is the case, it might be better to update only the slope parameters of one equation in the first part of
step 3. The equation whose parameters are updated can be chosen at random. That is, the third step can
be substituted for the following scheme:

e Sample ¢ using a uniform distribution defined in the set {1,2,...,T}.
o Generate (1 conditional on {y¥ : k # ¢} """ {8 : k£ 1}, {B; : j # 1}, =
e Sample (Y7, ..., Y}) conditional on (B, B2, ..., Br, )

This modification of the algorithm does not alter the stationary distribution, since it is a mixture of
T kernels, each of them having the desired stationary distribution. As before, the Metropolis step can be
repeated a number of times to increase the likelihood of acceptance.

If all parameters from all equations are updated in step 3, the algorithm is:
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Algorithm 6 Step 1. Sample (81,82, ..., 08r) from a N (um, Vi), where iy, = Vi, (Zf;l XIyx + Vo_lﬂo),

-1
and V,, = (Zfil XIX; + Vo_l)
Step 2. Sample ¥ using algorithm (1).
Step 8. Fort =1...T do:

o Fiz (Bio, ..., Ben,) = (Be2/Bt1, s Bth, [ Br1). Generate a random scalar v from a distribution with density
function f; (v). Fiz B3 = vB} with probability

Lt (Ylvﬂfp ’UﬂtQa “eey ’Uﬂtkn {y:k 1k 7é t}i:Lm’N ’ {6_] : .7 7é t} 72) ™ ’Uﬂtlavﬂt% 7’U6tk1) ft (1/’U

v = min

Lt (Ylﬂﬁaﬂt% "'7675]91 {y:k 1k 7é t}i:Lm’N ) {6_] : .7 7é t} 72) ™ 6751767527 "'76”91) ft (

and fix BN = B with probability (1 — 7).
e Sample {y;f‘t}izl""’N conditional on (E, B2, ..., BT, E) and {y}, 1 k # t}izl""’N from truncated normals.

The function L; (Y].) is the likelihood that results when the latent data from all equations except for
equation ¢t are observed. New candidates for §;; can also be generated Wlth a proposal density centered
on an approximation of the mode of the posterior distribution of 8. Let Btl,sdtl denote the maximum
likelihood estimate and standard deviation of 8y obtained by running a simple univariate probit model for
equation t. Step 3 can be substituted by:

Step 3’. For t =1...T do:

e Fix (Bs2, ..., Btr,) = (Be2/Bt1, - Bk, /Be1). Generate a random scalar v from a N (,/attﬂtl, ,/attsdlt),
with density function ¢n (v; ,/attgt\l, ,/attﬁt) Let [3”+1 = v with probability.
Lo (Y|v,0B12,-,vBiay Ayhit#k} =" N {557t} 2 ) w(v,0B12 .08, )

Lo (Y1875 83 Bra o873 By ) itk } =N {8554 },8 ) m (B3 853 Brz.eoos B3 By )
¢N(ﬁlt,—\/o'ttﬁtl,—\/o'ttsdlt) ‘( v )kt—l
B

v = min

?

N (v,\/o'tt,@tl,\/msdlt)

and fix Bt = B with probability (1 — 7).

e Sample {y3}*="" conditional on (B1, B2, Br, %) and {y};, : k # £}=1N from truncated normals.

5 Updating Latent Data and Slope Parameters Jointly.

As noted above, data augmentation significantly increases the number of parameters in a model. However,
this would not be a problem if sampling from the posterior joint distribution of parameters and latent data
was possible. This is most often not possible, and instead, latent data are generated conditionally on the
parameters and viceversa. High autocorrelations in the chain appear because, parameters which are highly
correlated, such as latent data and slope parameters, are sampled as if they were independent.

In the context of the univariate probit, the marginal distribution of (Y7, ..., Y%) unconditional on £ is
multivariate normal of dimension N, with each component restricted to be positive or negative depending
on the observed outcome Y;. Philippe et al (2001) propose an algorithm to sample from such a distribution
when N is small. Unfortunately, for large values of N the algorithm is computationally infeasible.

Updating all latent data and parameters at the same time, by multiplying them by a random factor,
reduces the problem of sampling in different groups variables that are highly correlated. Consider the
following re-parameterization of the multivariate probit model:
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5 = (5%,5—?,5—13,---,3tfl)=(%,%,---,M) b=1,..,T
Y1:r Yie Yi: Y1t
Y_1* = (11, Y12 Y1)
Yruh = XinyiBu + XioylBee + XitsyiiBis + o + Xith ¥ Bik, +ea i=2,.,N t=1,..,T
yi: = XinBuyrs + XiuaBryts + XiusBesyls + - + Xitkr Beno Uiy + €ir t=1,..,T

A possible algorithm to sample from this re-parameterization is:

Algorithm 7 Step 1) Sample (Y_l*, ,Y_]G) conditional on (E, B2, ...,B_T,E) from truncated normals.
Step 2) Sample (B, B2, ..., Br) conditional on (Y., Y3, X) from a normal distribution.

Step 8) Generate (yi1,Yls, .. Y7) conditional on {(y3,, Y3y - ¥hy) 1t =1,...,T}, {E}t:L'"’T with a
Metropolis step. S
Step 4) Sample ¥ conditional on (B, B2, ..., Br, Y7, ..., Yyy) using algorithm (1).

The last step of the algorithm can be repeated several times to increase the likelihood of acceptance.
The proposal density to generate new candidates for , (yi1,9%s, ..., ¥5r) could be either a random walk or
a density centered in maximum likelihood estimation of univariate probit models. Appendix 3 gives the
density of (y31,¥ls,-- ¥i) in step 3.

When T = 1, (y{;)” conditional on {(y3;,¥3, .- ¥k1) }» B1 follows a gamma distribution and can be
sampled directly. This is a consequence of proposition 7, in appendix 3.

6 Sampling Marginally on the Latent Data: A Metropolis Step.

6.1 The Univariate Case.

As argued above, conditioning on the latent data significantly increases the number of variables and therefore
slows down the algorithm. If the number of parameters in §; is small, a Metropolis step could be used. The
Metropolis step works as follows. Let r (81|87) be the proposal density, that is, a density that generates
candidates for 8; conditional on the previous value for 8. These candidates will be accepted or rejected as
a value for §; in the chain according to the following procedure:

Algorithm 8 Step 1. Generate a candidate value 31 from r (51|57).
Step 2. Fiz 87" = B with probability

(LB (8) r(BTI
= {L(Ywm BD) r(ﬂilﬂ?)’l}

and fix BT = BT with probability 1 — var.

However, as the number of parameters in 8; increases, the performance of the Metropolis algorithm
worsens. The reason is that it is more difficult to find a proposal density that approximates the posterior
well enough. A convenient way of generating new candidates is as in a random walk, that is, [31 =pP 4+,
with v drawn from a symmetric distribution. If this scheme is chosen, the probability v will not depend
upon the function r (.), but only on the ratio of the posterior evaluated at two different points. However,
the larger the dimension of §; is, the more likely that new candidates fall into a region of small posterior
probability, and hence get rejected. Hence, it is important to propose new values in a direction of high
posterior probability.
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Suppose that maximum likelihood estimates of 5; are available. A normal or student-t proposal density

7 (81) with mean BM’ and covariance matrix AML equal to the maximum likelihood estimates, does not
work well for relatively large dimensions. Alternatively, new candidates can be generated with a random walk
[31 = 81" 4+ v, with v having a variace-covariance matrix proportional to the maximum likelihood estimate.
However, the algorithm could move faster by taking into account the information about the mode of the
distribution.

The following Metropolis step, uses a random walk proposal density but it still uses the mode and
estimated variance-covariance matrix of the distribution.

Algorithm 9 Step 1. Generate a random vector v from a N ([3{‘“,31‘“).

Step 2. Let 7 = ﬁ” glh |E21 g“)l, where v1 and By are the first elements in the vectors v and 57,
—F1 1=F11

respectively.

Step 8. Let 81 = 87 + c? where ¢ is drawn from a N (0,0.)
Step 4. Fix [3"“ 01 with probability

o [ L0 ()
= {L(Ylﬂ?)W(ﬂ?)’l}

and fiz B = BT with probability 1 — vu.

The algorithm is similar to the shoot-and-run algorithm (Chen and Schmeiser, 1993), and randomly
chooses a unitary norm vector that determines the direction of movement for the new candidate. This
unitary norm vector, d, is chosen using a distribution centered in the maximum likelihood estimates. The
length recovered along this direction is determined by ¢, and therefore by o.. The smaller ., the nearer the
new candidate will be from the old candidate and hence the more likely that it will be accepted. However,
for the algorithm to move fast it is crucial that o, has a reasonably large value.

The next lemma, proves that the proposal density is symmetric, and hence it cancels out in the probability

YM -

Lemma 2 In algorithm (9), the density function of new candidates is symmetric, that is,
r(81187) =r (8718

Proof. The unitary norm vector 7 represents a direction in R** and depends on (k; — 1) components,
since it can be written as:

1
d = (L,dy,day ey dy—1)"
‘\/1 +(dy)? + (@) + o + (dk1_1)2‘

Let d contain the random components of 7, that is, d = (dy,ds, ..., dg, _1)T. It is first proved that the density
of (d, ¢) given B, r (d, ¢|B8), is the same as the density of (d, —c) given [31, r (d, —c|[31), when 8] = 87 +67.
Since d and ¢ are drawn independently, r(d,c|87) = r(d|f)r(c|f}), and r (d, —c|[31) =

r (d|[3;) r (—c|[31). Since ¢ is drawn from a standard normal distribution and independently of (B{L, [3;),
then

r(ddfl) = r (dlﬂl)
r (d,—c|[31) = r (d )
Hence, r (d,c|87) =r (d, —c|[31) if and only if r (|8} ) =7 (d|[31), for 8y = 67 + cd.

18



Let d* be the value of d that makes 8] = 87 + cd. Let B (d*|8; ) be the distribution function of d given
[3; evaluated at d*. Then

*| " V2 — 6;2 Vs — 6:3 Uk — 6:’91 * % *
R(d =Pr = ey = < ,ds, ., dy _
( WI) { (Ul - 611 v — 611 v — 611 ( 1 = 1)

This probability is equal to:

Vo d? 6?2 T
n v d* n sk
r(@g)=ped | ™ || B fuse| M- B |m
Uky 21—1 B{Lkl Z1 -1

Similarly, the distribution function of d given 8, evaluated at d* is:

V2 di 5}2 1
' * * ’
R(@g)=ree | P fs | B fua] Ao |- R g,
Uk, d21_1 61]4:1 d21—1

From g = 87 + c?, it turns out that

O | =

(6i-sr)- =14

Hence,

’ ' ’

512 _5?2 513 _5?3 /Blkl _B{Lkl _ (d* d* * )
— \G1y lgy ey Op, g

Bl —BY Bl —BhTT B — AR b

and therefore:

Bia & B, &
S I AR R B B
Bk dky -1 B, dky -1
Hence, R(d*|[3;) =R (d*|[3;) and taking derivatives r(d*|[3f) =7 (d*|[31), for all d* such that

Bi = By +cd.
Since 1 = B¢ + c?, the density of 8, given 87 is obtained from the density of (d, ¢|37) by the theorem
of change of variables. Similarly, since " = [31 + (—c) d, the density of 87 given [31 is obtained from the

density of (d, (~c)|81). Since r (d,c|7) = r (d, (=) |8;) then r (81]87) = r (B716;). m

6.2 The Multivariate Case.

In the case of the multivariate probit model of dimension T, an approximation of the slope parameters

e —

—~ML
might be obtained by estimating by maximum likelihood 7' univariate probit models. Let ML, A;"  be the
maximum likelihood estimates from running a simple probit for the ith equation of the multivariate probit

e —

~ML
model. If there is substantial prior information for the slope parameters, ML, A, would better be the
mode and hessian of the log-posterior density for a univariate probit, which can also be obtained with a
simple optimization routine. The grouping strategy in the algorithm is as follows:

e Sample ¥ conditioning on (Yy*,...,Y%) and {B: :t=1,..,T}
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e Fort=1,...,T do:
— Generate 3 conditional on {y, : k # t}izl""’N,{Bk 1k #£1t}, L.
— Sample {y3}*="""" conditional on (B1, B2y, B, X) and {y};, : k # Y=t

The latent data is sampled from truncated normals, in the same way as in the above algorithms. ¥ can
be sampled using the algorithm in section 2. §8; can be generated adapting the algorithm above as follows:

Algorithm 10 Step 1. Generate a random vector f from a N (ﬁ[i/tﬁ,D&MLDT), where D is a
diagonal matriz with all diagonal elements being equal to /oy .

Step 2. Let 81 = B + clﬁﬁ:g::fl , where ¢ is drawn from a N (0,0;)

Step 3. Fiz 80" = B with probability

Le (Y181 48k b # 8} {uje - k # Y=V 2) m (8)
Lo (Y188, 4Bk b # t} Ay + b # 60N 2) m(8p)

Yy = min

and fiz B = 87 with 1 — .

L, (.) is the likelihood of the model when we condition on the latent data for the other equations, excluding
the kth equation.

7 Comparing the Performance of the Algorithms.

This section estimates a probit model and multivariate probit model in order to illustrate the distinctive
characteristics of each algorithm. The next sub-section will focus on the probit model, and the multivariate
case will be considered in section 7.2.

7.1 Univariate Probit Model.

Four algorithms will be compared: the standard Gibbs sampling algorithm, algorithm 2 (PX-DA), algorithm
5 and algorithm 7. Algorithm 5 is implemented with step 2’ repeated 4 times. 8400 observations for seven
explanatory variables were generated independently from a standard normal distribution. Slope coefficients
are:

Bi1 =1,b12 = 2,413 = 0.5, 614 = —0.2, 815 = —1, B16 = 0.8, 17 = 0.8

Auto-correlations in the chain are calculated using 29000 iterations after discarding the first 1000 iterations.
Parameters had an initial value equal to zero. Auto-correlations in algorithm 5 are the lowest, being less
than half the correlations in algorithms 2 and 7. Auto-correlations in algorithm 2 are similar to those in
algorithm 7, being both of them less than half of the auto-correlations in the Gibbs sampling algorithm.
Table 1 shows the value of the highest correlation for lags 5, 10 and 20. In the Gibbs sampling algorithm,
80 lags are necessary for the autocorrelations of all parameters to be below 0.1. In algorithms 2 and 7 the
same is achieved with 20 lags. Algorithm 5 needs the lowest amount of lags, 10, for all correlations to be
below 0.1.

Lag5 Lag1l0 Lag20
Gibbs Algorithm 0.79 0.66 0.50

Algorithm 2 0.41 0.17 0.04
Algorithm 5 0.23  0.06 0.05
Algorithm 7 0.40 0.15 0.02

Table 1. Maximum Autocorrelation of the Parameters.
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The highest correlation for all algorithms, except for algorithm 5, correspond to 813. As noted by Liu
and Wu (1999), autocorrelations in the probit model increase with the absolute value of the coefficients. In
constrast, the autocorrelation of 812 in algorithm 5 is the lowest, and the highest correspond to parameter
Bia.

Large auto-correlations make it more difficult to determine whether the chain has converged. With 29000
Gibbs sampling iterations, after discarding the first 1000 iterations, the Geweke test (1992) rejects the null
hypothesis of convergence for 3 out of 7 parameters. With the same number of iterations, the test accepts
the null hypothesis of convergence of all the parameters in the other three algorithms.

The Gibbs algorithm, algorithm 2 and algorithm 7 have similar computation time. However, algorithm
5 needs approximately double computing time, with this implementation. Hence, there is almost no benefit
of using it compared to using algorithms 2 and 7, since similar value for correlations can be obtained with
approximately the same computing time. However, as the following example shows, when slope parameters
have a larger value the gains in autocorrelation clearly outweight the losses in computation time.

A similar excercise is carried out, with the same number of observations, but letting the value of the
parameters be:

Bin=3,812=3,813=3,814 = -3,615 = 3,816 = =3,81r =3

Table 2 shows the maximum correlation of the parameters. Algorithm 2 needs at least 50 lags for
correlations to be below 0.1. Algorithm 7 performs slightly better and needs 40 lags. Algorithm 5 have all
correlations below 0.1 with just 5 lags. Hence, the substantial gains in smaller correlations in algorithm 5
more than compensate for the additional computation time per iteration.

Lag5 Lagl0 Lag30 Lag40 Lagb’0
Algorithm 2 0.76 0.57 0.23 0.15 0.07
Algorithm 5 0.09 0.04 0.02 0.05 0.01
Algorithm 7 0.76 0.58 0.14 0.06 0.01
Table 2. Auto-correlations when parameters have a large value.

7.2 Multivariate Probit Model.

This section compares the performance of four algorithms: a Gibbs algorithm, Algorithm 4, Algorithm 6,
and Algorithm 7. The data was generated according to the following random-effects type process:

U = 1%21;+2%29; +0.5% 23, — 0.2% 245 — L5, + 0.8 % 26; + 0.8 % 27; +u; + €51 i=1,..,1200 t=1,...,7

where e;; follows a N (0, I), u; follows a N (0, 1), and it is independent of e;;. The regressors are invariant with
t and are generated indepedently from a standard normal distribution. The prior for the slope parameters is a
normal distribution with zero mean and covariance matrix equal to 100001. The prior for the free parameters
in ¥ is a restricted inverted Wishart with Ko = I and dfy = 2T + 1 = 15.

Hence, in this specification, 49 slope parameters plus 21 covariance parameters are estimated. For
simplicity, only the 7 slope parameters in the first equation and 7 covariance parameters are analysed.
Auto-correlations are calculated with 9000 iterations after discarding the first 1000.

Correlations for slope paremeters dissapear earliest in algorithm 6, at 40 lags. In algorithm 7, 50 lags are
needed to make correlations dissapear. More than 50 lags are needed in Algorithm 4 and Gibbs algorithm
for the correlations to be smaller than 0.1.

However, Table 4 shows that none of the algorithms considered succeeds in reducing Gibbs correlations
for the covariance parameters. All algorithms considered have at least one parameter with a correlation as
high as 0.13 after 100 lags. Since large autocorrelations make it more difficult to detect the convergence of
the chain, Heidelberg et al (1983) test rejected the hypothesis of convergence in all algorithms with 9000
iterations after a burn-in period of 1000.

Hence, it seems necessary to consider an alternative algorithm that reduces the correlations and enhances
the reliability of the estimations. For this purpose, consider the following parameterization of the multivariate
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probit model.

5 - ( g, o B ﬂtkl) — (81, Bim s B t=1,..T
i1 B Bu

v = XinBu + XiaBeBn + XusBsBut + ... + Xtk Ber B + € t=1,..,T

Yo = (o12/ (Bu1Bar), 013/ (BuiBs1),...,o1r/ (BuBr1)) = (12,013, ..., 517)

Y 023/ (B21B31) , 024/ (B21841) 5 ...y 027/ (B21811) = (023,024, .., 02T )

Xr = ow-nr/ (BriBar-11) =0T

With this parameterization, the covariance matrix of (e;) is equal to:

o1 g12B11Pa1 ... GirPuibri
v 012811821 022 . O27Pnb11
U1T5115T1 U2T5215T1 aTrT

where (011,092, ..., 0p7) are determined by normalization (5) (e.g. 622 = 1 + (0_12[311[321)2). Note that
normalization (5) ensures that matrix ¥ is positive definite, and hence the covariance parameters are not
subject to any restriction. One possibility to reduce correlations for covariance parameters is to draw some
of their characteristics marginally on the latent data, as in the following algorithm:

Algorithm 11 Step 1) Sample (81, B2, ..., Br) conditional on (Y7, ..., Y%, X).
Step 2) Sample ¥ conditional on (B, B2, ..., b1, Y, .., Y3)
Step 8)For t =1,...,T do:

o Generate (41 conditional on {yf, : k # Y= (B bk #1}, {B; 1§ £At}, {Zp:t=2,..,T}.
e Sample {y;“t}izl""’N conditional on ([3_1, E,...,B_T,E) and {y}, : k # t}izl""’N

The first part of step 3) updates the slope parameters and covariance terms jointly and marginally on
the latent data. The other parts of the algorithm are carried out in the same way as in algorithm 6.

Two versions of this algorithm are implemented: in one the first part of step 3 is carried out 3 times
(algorithm 11a), and in the other is carried out just once (algorithm 11b). As table 4 shows, the maximum
correlation for covariance parameters vanishes before 30 and 40 lags in algorithms 11a and 11b. By contrast,
the Gibbs algorithm needed 120 lags for the maximum correlation to be below 0.1. Correlations for slope
parameters also diminish with respect to other algorithms, and show a similar pattern to the correlation for
covariance parameters.

The computing time per iteration in Algorithm 11a and 11b is 2.6 and 1.9 times larger than in the Gibbs
algorithm, respectively. The gains in lower correlations more than compensate for the extra computing time,
since the number of iterations needed for the Gibbs correlations to be below 0.1 is about 4 and 3 times the
number of iterations needed in algorithm 11a and 11b, respectively. In addition, the chains produced by
algorithm 11a and 11b passed the Heidelberg test for all parameters, hence further increasing the reliability

of the calculations.
Lag5 Lagl0 Lag30 Lag40 Lag5’0

Gibbs Algorithm (.72 0.57 0.28 0.20 0.13

Algorithm 4 0.68 0.51 0.17 0.11 0.12
Algorithm 6 0.67 0.51 0.14 0.06 0.02
Algorithm 7 0.68 0.51 0.17 0.12 0.04

Table 3. Auto-correlations for slope parameters.
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Lag20 Lag30 Lag40 Lagb50 Lag 100
Gibbs Algorithm 0.40 0.34 0.29 0.23 0.13

Algorithm 4 0.44 0.39 0.33 0.27 0.13
Algorithm 6 0.44 0.38 0.32 0.26 0.14
Algorithm 7 0.41 0.32 0.25 0.21 0.13

Table 4. Auto-correlations for covariance parameters.

Lag 10 Lag20 Lag30 Lag40 Lag?’0
Gibbs Algorithm (.54 0.40 0.34 0.29 0.23
Algorithm 11a 0.29 0.13 0.08 0.04 0.04
Algorithm 11b 0.44 0.23 0.12 0.08 0.06
Table 5. Auto-correlations for covariance parameters.

Lag 10 Lag20 Lag30 Lag40 Lag?’0
Gibbs Algorithm 0.57 0.37 0.28 0.20 0.13
Algorithm 11a 0.33 0.17 0.09 0.06 0.04
Algorithm 11b 0.43 0.24 0.15 0.09 0.04
Table 6. Auto-correlations for slope parameters.

8 Discussion.

The motivation underlying the algorithms proposed in this paper is that a pure Gibbs algorithm moves slowly
due to sampling separately variables that are highly correlated. The PX-DA algorithm was re-interpreted
as a re-parameterization, in which some characteristics of the latent data are sampled marginally on slope
parameters.

This new interpretation has several advantages. Firstly, it avoids the need of finding the Haar prior for
the non-identified parameter. Secondly, it simplifies the understanding of the algorithm by identifying it with
a class of algorithms that already existed (i.e. Gibbs and Metropolis algorithms). In particular, it avoids the
interpretation of the algorithm as the limit of the kernel of a Gibbs sampling algorithm (Liu and Wu 1999).
This, for instance, simplifies the justification to use a Metropolis step. Thirdly, this interpretation suggest
re-parameterizations that yield faster algorithms. In particular, as the previous section shows, sampling some
characteristics of the slope parameters marginally on the latent data (algorithm 4) proves to be a better
parameterization in the probit model. In the multivariate probit model, it seems necessary to sample not
only characteristics of the slope parameters but also of the covariance parameters marginally on the latent
data (algorithm 11).

Section 5 of this paper presented an algorithm in which some characteristics of latent data and slope
parameters were updated jointly. For the univariate probit, it has the advantage with respect to the PX-
DA algorithm that conditional distributions can be sampled directly even if a proper prior for the slope
parameters is used. In addition, the previous section showed that the performance of this algorithm can be
slightly better than the PX-DA algorithm, for the same computation time. These two algorithms outperform
the Gibbs sampling algorithm since they achieve lower correlations with virtually the same computation time.
Section 7 showed that the extra time per iteration required in algorithm 4 is sometimes small compared to
the gains in lower correlations, specially in probit models with large posterior standard deviations.

Section 2 proposes an alternative normalization that allows direct sampling of the covariance matrix.
Sampling directly speeds up convergence compared to a Metropolis algorithm, which only asymptotically
obtains a draw from the conditional distribution. In addition, it requires less computation time, and it avoids
finding a proposal density, which often do not work well when there are many covariance parameters.

By choosing an alternative normalization, the conditional density of the free parameters in ¥ is known
(appendix 1). This substantially simplifies the calculation of the predictive density, needed for model
selection, and allows the application of Chib (1995) method. Notwithstanding, the parameters in the chain
can be transformed to obtain results according to a different normalization (section 2.3).
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When the number of parameters is large, a Metropolis step rarely works well. If a pure random walk is
used, new candidates are very likely to fall in a region of low probability and hence get rejected. On the other
hand, a proposal density that is an approximation of the conditional posterior is usually not good enough,
especially in the tails of the distribution, which makes new candidates often rejected. Section 7 presented a
random walk proposal density which moves in directions of high probability. Since it is a random walk, the
proposal density cancels out in the acceptance probability, and hence the approximation problem is avoided.
This Metropolis algorithm might be useful when some information about the mode and dispersion of the
posterior distribution is obtained, for instance, from a preliminary highly correlated Markov Chain.

Improper priors are sometimes computationally more convenient, allowing direct sampling from the
conditional distributions (proposition 7 in appendix 3, and section 3.2.1). However, more research is needed
to know whether the posterior distribution is proper when these priors are used.

The type of re-parameterizations considered in this paper make it possible to update large numbers of
parameters jointly and marginally on the latent data. This is potentially applicable to many models with
complex likelihooods, where conventional MCMC algorithms fail to yield reliable calculations in reasonable
time.

Acknowledgement: I thank Karim Abadir, Giovanni Forchini, Andrew Jones and Nigel Rice for useful
comments and suggestions.
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Appendix 1.

Let fn (z; 4, ®) denote the density function of a N (u,®), evaluated at z. And let frw (z;p,df, K)
denote the density function of an inverted Wishart of dimension p, degrees of freedom df, and expected

1
value Km

Proposition 4 If ¥ follows an unrestricted inverted Wishart IW (T,df,K), then the density function of
(011,022.1,012,033.12, B3, e O77.12...(T—1), 5T Can be expressed as:

frw (o113 1,df — 2T 4+ 2,k11) %

frw (Go2.1;1,df — 2T + 3, koo ) X

In (012;011 (ku)_l Ks,011 (kn)_l 011) X
frw (033.12; 1,df — 2T + 4, k33.12) X

I~ (23; Yoo (K22)_1 K3, Yoo (K22)_1 E22) X
. X
. X

frw (erras...r-1y; L,df — 2T + (T + 1) ,kpras. (r—1)) X
In (ET; Yr_1y(r-1) (K(T—l)(T—l))_l Kr,%r_1)(r-1) (K(T—l)(T—l))_l E(T—l)(T—l))
Proof. This decomposition results from applying recursively Theorem 1. W

Appendix 2.
Let Y* be a T x T diagonal matrix, with diagonal equal to (y{i,¥{s,-»¥i7). The following

theorem gives the conditional density of E|Y*,B,{(@,@,...,Wj) 1j= 1,...,T} and the density of
V18, { (¥ 955+ ¥i;) 15 =L, T},

Proposition 5 The conditional posterior density of ¥ given (Y*,B, { (@, @, ,E) tj=1, ...,T}) is
proportional to:

frw (E;T,df,f{)

withdf =dfo+ N, K=Ko+ K, and K = Zfil (€€]), and

Y _X1;151 yik1@—Xz£51
& = Y12 — Xi2B2 and & = Yi2¥in — Xia B2
yir — XipBr yikT@ - XirBr

The conditional posterior of Y* given ([3, { (@, i) ,m) tj=1, ...,T}) is proportional to:

~ |—(df—T-1)/2
|Y*|N—1 ‘K‘

frw (1; 1,df — 2T + 2,1&) X frw (1; 1,df — 2T+3,k£2v.1) (10)
X frw (1;1,df—2T+4,23§.§) X frw (1;1,df—2T+4,E3Z§) X ...

X frw (1; Ldf —2T'+(T+1), kTT~12...(T—1))

Proof. The conditional posterior density of (Y*,%) given ([3,{(@, @,,@) 1j= 1,...,T}) is
proportional to:

_ _ 1 _
Y*IN 7 frw (35T, dfo, Ko) |2 N/2exp{—§tr (2—1K)} (11)
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where frw (; T, dfo, Ko) is the prior density for X.
This expression is proportional to:

~ ((df —T—-1)/2

]

«N=1 | | 5 —(N+dfo)/2 _1 oy
[Y ‘IN{‘(df_T_Q/Q %] exp{ 2t7’ (E K)}

This last expression is proportional to:

[y v ‘f{‘(df%wflw (E;T, df, —ff) (12)

Decomposing frw (E;T, df, I~() into the product given by proposition (4), and integrating the free
elements in ¥ gives the result. W
It follows from this proposition that X|Y*, 8, { (@, Ys;» ,%) 1j=1, ...,T} can be sampled directly

using algorithm (1). Y™* could be generated using a Metropolis step, with a random walk as proposal density.

Appendix 3.
Let Y* be a T x T diagonal matrix, with diagonal equal to (yi,yTs,-..,¥7r). The following theorem

gives the conditional density of L|Y*, i, Ba, ..., B, {(@, @,,R) 1= 1,...,T} and the density of
Y*(B1, Bas s B { (V55 U0 oUR; ) 15 = Lo T Let k= by + ka + o+ .

Proposition 6 The conditional posterior of (Yt1,Yias o YiT) given
(E, Bs, ..., Br, {(@, Yaj0 ,%) 1j=1, ...,T}) is proportional to:

|y * VR ‘f{‘_(df_T_w frw (1; 1,df — 2T + 2, 15;) X fiw (1; 1,df — 2T + 3, k;/l) (13)
X frw (1;1,df—2T+4,E3§.1/2) X frw (1;1,df—2T+4,k/3;.;) X ...

X frw (1; Ldf —2T'+(T+1), kTT~12...(T—1))

where — _ o
1-X736 yh — Xab
_ XT3, v — XTg,
€ = 1-Xpfs and ;= | Y2 Xiabs fori=2,..,N
1—X{pBr Yir — Xirbr

and K =Y*KY* + Ko, K = Y | (&¢]).

Proof. The conditional posterior of (Y*,X) is proportional to:

N
1 _ _ 1 N N
exp {—§tr (E—IKO)} ||~ (N o) /2 |y NHE—T oy {—5 Y (e = (Y*ei)} (14)

=1

Operating, this expression is equal to:

exp {—%tr (E_IKO)} |Y*|N+k—1 |E|_(N+df0)/2 exp {—%tr (Y*E_IY*K)} (15)
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with K = Zf\il (&)" (&) + Ko. This expression is equal to:

K
~ [(df—-T-1)/2
]

‘ ‘(df—T—l)/2
|E|_(N+df0)/2 |Y*|N+k—1 exp {_%tr (E_l (Y*Ky* + KO))} (16)

et W%l)ﬂflw (37,41, %) an)

Decomposing frw (E;T, df, I~() into the product given by proposition (4), and integrating the free
elements in ¥ gives the result. W

The next proposition shows that if the improper prior 7 (X) o 1 is used for the free elements in ¥, then
(Y*, %) can be sampled directly.

Proposition 7 Let the prior for ¥ be w (X) «x 1. The conditional posterior of ((yi“l)_2 W) 72 (yTT)_2)
given (E, Ba, ..., Br, { (@, @,,@) 1= 1,...,T}) is proportional to:

fow (@F) "L df = T+ k+3,k0) x frw () i L,df = T+ b+ 4, k22 ) (18)

xfrw ((07) 7L df =T+ k+5,ks12) x frw (@) 7 51,df = T+ k+6, kg x .

— -2
xfiw ((Wir) sL,df —T+k+ (T +2), kTT~12...(T—1))
where _ _ _
1~ X{B) vi - XA
€= 1= X1 and&; = | Y2~ Xiah fori=2,..,N
1 - X{rBr yir — XirBr

K=Y (&), and df = N.

Proof. Proposition can be applied to this case, noting that K=Y*KY*. Since K = Y*KY*, expresion
(14) can be writen as:

5 fr (i) 75 1df =20 k) x frw (1) 75 1df =27+ 1,k (19)
X frw ((yfs)_2 ;1,df —2T + 2,k33-12) x frw ((yﬁ)_2 i1,df — 2T + 4, k33.12) X ...
xfow (W) ™51, df = 2T + (T = 1) krraa.roy)
Adjusting the degrees of freedom, this expression becomes:
Fiw (i) 5 Ldf =T+ kot ) % frw ((072) 3 Ldf =T+ b+ 1k ) (20)
xfrw (W) Ldf =T+ k+ 2kagan) X frw (03073 1,df =T+ & + 3, kggz) X ..

X frw ((yTT)_2 s Ldf —T+k+(T-1), kTT~12...(T—1))
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The density of ((yi“l)_2 N OO0 B (yfT)_2) is obtained multiplying by the Jacobian and is equal to:

fiw (@) 7L df =T+ 4+ 3,k ) % frw (01) 7L, df = T+ k+4,kzaa ) (21)
xfIW ((yTS)_2 ; 1,df -T+k+ 5, k33.12) X fIW ((yr4)_2 ; 1,df -T+k+ 6, k33.12) X ...

xfrw (i) 2L df = T+ k+ (T +2), krras..ro)

Appendix 4.
Proof of lemma 1.
Proof. If ¢; follows a N (0, ), then the linear combination Ag; also follows a normal N (0,X). Hence,

e; can be expressed as e; = Ag;, that is:

el = 01141

ejo = 02165 + 022€42

ei3 = 031641 + 032842 + 03383 (22)
€i4 = 041851 + 042842 + 043843 + S44€i4

eir = 071€i1 + O72€50 + 07333 + O74€04 + .. + STTET
Using these equations, X can be related to A:

Var (eﬂ) =011 = Var (51161'1) = ((511)2

Cov (€i1,€i2) =012 =Cov (5116i1, 021841 + 5226i2) = 011021

Var (€i2|€i1) =031 = Var (5216i1 + 5226i2|5116i1) = (522)2

Cov (ei3,€i1) = 031011, Cov (€3, einlen) = 32022 , Var (esslein, ei) = (d33)°

Cov (ei,ei1) = 01011, Cov (€i, einlenn) = d42daz , Cov (eia, ei3len, ein) = 043033, Var (eilein, ein, €i3) = (14)”
Cov (eir|ein) = 611611, Cov (eiT, eizlen) = dradas , Cov (ei, €i3l€i1, €:2) = 613033,...,

Var (eiT|ei1, €i2, €43y «ey ei(T_l)) = (5TT)2
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