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Abstract.  We use data on individual patients in general practices to examine whether

income related inequality in self reported health differs across general practices and

whether such differences are explained by characteristics of the practices. We allow

for the simultaneous determination of health and income by instrumenting income.

We also allow for item non response for the income question by a two stage selection

model. We find that item non response has little effect on the estimated relationship

between income and health but that allowing for simultaneity doubles the estimated

effect of income on health.  We show that there are significant differences in the

effect of income on health across practices and that these differences are related to the

number of patients per GP, a measure of practice prescribing quality, and the

provision of out of hours services. 
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1. Introduction

One of the aims of government policy in the British National Health Service is to

reduce differences between the health of rich and poor. The NHS is a publicly

provided system funded almost entirely from taxation so that, to the extent that the

NHS can affect health, reductions in inequality will require changes in the

organisation and delivery of services, rather than changes in methods of financing to

alter patient use.

Ninety per cent of patient contacts with the NHS are made via primary care. Patients

are registered with a general practice and their general practitioners (GPs) act as

gatekeepers, controlling non emergency access to the rest of the NHS.  Most GPs are

independent contractors, rather than employees. Even with recent attempts to

introduce greater regulation, GPs have considerable freedom in the services they

choose to provide to their patients and in the way they organise their practices to do

so. Hence it is of interest to examine whether practice policies and organisation have

any effect on inequalities in health between rich and poor. 

The extent of income related inequality in health depends both on the effect of income

on health and on the distribution of income [1,2]. In this paper we concentrate on the

effect of income on health and consider whether it varies across practices and if so

whether it is related to characteristics of practices, especially those which may be

amenable to policy. To our knowledge this is the first attempt to test whether general

practices have any effect on the relationship between income and health.

The basic approach is to estimate a regression of health on income, personal

characteristics such as age, gender, and ethnicity and on the characteristics of the

general practice to which the patient belongs.  A positive coefficient on income

indicates that there is income related inequality in health. To investigate if this differs

across practices we interact income with practice dummies and test whether

constraining all income coefficients to be equal leads to a significant reduction in the

performance of the regression. We then investigate whether differences in the effect

of income across practices are explained by characteristics of practices, such as the
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number of GPs or various indicators of practice quality. We do so in two ways. In the

first method we estimate an individual patient level regression of health which

includes practice dummy variables interacted with patient income, to obtain estimated

income-health slope coefficients for each practice. Then we regress the estimated

income slope coefficients for practices on practice characteristics.  The second

method is more direct: we regress individual health on individual characteristics,

income, and the interaction of income with practice characteristics. 

We also address two issues which do not appear to have been previously considered

in the literature on income related inequality in health [3]. The first is selective non

response which has two potential damaging consequences.  First, attempts to increase

the effective sample size by estimating income for non responders will yield biased

income estimates if non response is related to income. Second, even if analysis is

restricted to those who report income, the estimated effect of income on health will be

biased if non-response is related to health because the same unobserved factors

influence both the response to the income question and health. 

The second issue is simultaneity: income affects health and health affects income. The

standard procedure in analysis of income related inequality is to regress health on

income but this will yield biased estimates of the effect of income on health. The

estimate may be useful if one is only interested in measuring the overall correlation of

income and health. For policy it is useful to know how much of the correlation is due

to the effect of income on health and how much to the effect of health on income

since different types of policy are required to change the two relationships.  

2. Data

2.1 Patient and practice characteristics
The General Practice Assessment Survey (GPAS) (www.gpas.co.uk) asks patients

about their use of general practice, their views on its accessibility and quality of care.

We used an augmented version of GPAS, with additional questions on income,

employment status and various aspects of health. The sample was selected by

multistage stratification [4]. At the final stage approximately 200 adult patients were
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randomly selected from the lists of 60 practices. The sample was not self-weighting

because the probability of an individual being selected depended on the size of the

practice.  We have not used sampling weights which are less efficient and no more

unbiased in a regression model intending to determine the causal relationship between

income and health [5].  The practices are in six Health Authorities and we include

Health Authority dummy variables in the regressions as fixed effects to capture, inter

alia, any survey design effects. We also allow for the clustering of errors within

practices by using robust standard errors [6].

There were 4462 completed questionnaires, giving an overall response rate of 37%.

There was a slight overrepresentation of females (59%) compared with practice

populations and those over the age of 65 (27% actual against an expected 19%).

Since the regression analysis conditions on observable characteristics of the sample

respondents, the representativeness of the sample with respect to observable

characteristics is not an important issue. 

Some 3477 respondents completed all items on the questionnaire and a further 2539

completed all items except the income question (an item non response rate of 31%).

After estimating income we therefore had a sample for analysis of the effects of

practice characteristics of 3477. The variables are summarised in Table 1 for the full

estimation sample. 

Data on the characteristics of practices were obtained from the QUASAR study of

practice quality [4] and from the Department of Health’s General Medical Statistics

database.

2.2 Health 
The health measure used in the analysis is based on the SF-6D questionnaire included

in GPAS. It covers six dimensions of health: physical functioning, role limitation,

social functioning, pain, mental health, and vitality. Each dimension has between two

and six levels.  Weights were applied to responses to construct a single health

measure [7] with 1 corresponding to the best possible health state and 0 to the worst. 
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3. Selection and simultaneity

3.1 Methods

We need to deal with two potential sources of bias in estimating the effect of income

on health: selection bias arising from non response to the income question and

simultaneous equation bias from the joint determination of health and income.  We

use a procedure suggested by Angrist [8] which is a combination of the Heckman two

step selection correction for selection bias in the equation used to estimate income

and two stage least squares estimation of the structural health equation to remove

simultaneity bias and provide consistent estimates of the marginal effect of income on

health. 

We first estimate a selection equation for income non response using a probit

regression using the sample of 3477 to obtain the inverse Mills ratio.  We then use the

sample of 2539 patients who completed all items to estimate income. Finally we

estimate the health equation for the sample of 3477 individuals using estimated

income and including the Mills ratio. To ensure the identification of the health

equation we exclude from it two variables correlated with income but not directly

correlated with health: the number of cars owned and the type of accommodation. To

ensure that the Mills ratio from the selection equation is identified we exclude from

the income and health equations some of the variables in the selection equation. The

excluded variables were the length of time the patient had been with the practice and

how convenient they found the location of the practice.

From Angrist [9] we know that when the instruments used in the income equation to

identify the health equation are also in the sample selection (response) rule, the

instruments may not be valid. The instruments will be independent of the error term in

the health equation for the selected sample of responders to the income question if

and only if selection status (i.e. report income or not) is independent of the errors in

the health regression. To overcome this problem, we follow Angrist and include the
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inverse Mills ratio in the health equation. Since the Mills ratio reflects the propensity

to report income its inclusion in the health equation will allow for any correlation of

the error term and non-response.

 

We perform a variety of tests to check that we have good instruments, correlated with

income but not affecting health directly, to identify the health equation.  The

instruments should not be correlated with the error term in the second stage health

regression [10].

3.2 Results

3.2.1 Implications of selection and simultaneity

To examine the implications of selection and simultaneity we estimate four health

equations (see Table 2): not allowing for selection or simultaneity, allowing for

selection, allowing for simultaneity, and allowing for both selection and simultaneity.

To separate out the effects of simultaneity and selection from those of sample size we

estimate the health equation in all four regressions using the sample of individuals

who responded to all questions. In the next section where we seek to examine the

variation in the effect of income across practices we allow for both simultaneity and

selection and so can increase the sample size by using predicted income thereby

including patients who did not respond to the income question.   

The explanatory variables include both individual characteristics (gender, age,

ethnicity, marital status, number of children, smoking behaviour, household income)

and characteristics of the practice to which the patient belongs, such as training status,

number of GPs, patients per GP. Since there was a reported practice disability score

for only 55 of the 60 practices the sample is the 2340 individuals who reported all

items and belonged to these practices. 

In all models the log of household income has a highly significant positive effect on

self-reported health status.  Comparing model 2 with model 1 we see that allowing for

selective response to the income question has only a trivial effect on the coefficients
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and the inverse Mills ratio is not significant. Estimates using the propensity score

(predicted values of the latent propensity to respond) and powers of the propensity

produce virtually identical results. 

Model 3 allows for potential endogeneity in the relationship between health and

income by estimating the health equation using 2SLS, instrumenting income with the

variables for the number of cars available to the responder and the type of

accommodation, in terms of ownership, which they occupy. The augmented Hausman

test shows that allowing for endogeneity leads to a significant increase in the

magnitude of the effect of income on health. The estimated effect of log income

doubles. 

The final model allows for both endogeneity and selection bias in the health equation

and the effect of income on health is the largest of the four models. The elasticity of

health with respect to income is 0.0889.  The increase in the income coefficient when

selection is allowed for in addition to simultaneity (compare models 4 and 3) is much

larger than the increase when only selection is allowed for (compare models 2 and 1),

suggesting that the effects of simultaneity and selection are multiplicative.  Moreover

the inverse Mills ratio is now significant at the 5% level suggesting that allowing only

for simultaneity will lead to biased estimates of the effect of income in the presence of

income non response.

The estimated coefficients on the other variables appear plausible and reasonably

stable across the different model specifications, though the magnitude of the effects of

gender and smoking behaviour are altered by allowing for simultaneity and selection.

The effect of gender is negative and significant, with a large effect in the final model.

Women report 4% worse health than men. There is a nonlinear relationship between

self-assessed health and age. Health deteriorates with age, but at a decreasing rate up

until age 65, when the rate of decline increases. No significant effect of race was

found.  

The coefficients on marital status and the number of children capture not only any

direct effect of family composition on health but also the effect via the implied
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change in equivalised income. Thus the fact that compared to the reference married

state being single, divorced or widowed appear to increase health may be due either to

their direct effect on health or to the fact that they may yield higher equivalised

income.  The positive coefficients on children seems to suggest that having children

has a direct beneficial effect on health, since having more children reduces

equivalised income. However, the family composition effects are not our main

interest and they are generally not significant. 

Not having smoked for more than a year is associated with better self-assessed health.

The magnitude of the coefficient declines as we allow for endogeneity and selection

bias. In the final model it is significant only at the at the 10% level. 

The coefficients on practice characteristics suggest some association between patient

health and practice organisation.  Practices with better disability access scores and the

proportion of GPs in the practice who have accredited training status were both found

to be positively correlated with health.  There was a non-linear relationship between

the number of WTE GPs in the practice and health which is significant at the 10%

level.  

3.2.2 Validity of the instruments

We performed a number of tests to check that the variables (cars in the household,

accommodation types) used to identify the effect of income in the health regression

were reliable instruments in that they were correlated with income and uncorrelated

with health. Both were statistically significant at the 1% level in a regression of

income on all exogenous variables and the instruments. We tested whether the

instruments had a direct effect on health by including one instrument at a time as an

explanatory variable in the health regression while identifying income with the

remaining instrumental variable.  The results show that neither the number of cars

(F( 2, 54) =    0.15, Prob > F = 0.863) nor accommodation type (F(3, 54) =  1.17, Prob

> F = 0.3312) had a significant direct effect on health status when instrumented

income is included. The estimated coefficients on income was 0.081 when the number

of cars was the instrument and 0.068 when accommodation type was the instrument).  
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Finally, in order to obtain consistent IV estimates of the income effect, we also

require the instruments to be uncorrelated with the error term in the health equation.

To test this assumption we followed Blundell and Smith [11] and regressed the

residuals from the augmented Hausman regression on all the exogenous and

instrumental variables in the model. A Chi squared statistic was calculated as the

product of the R-squared from the regression and the number of observations.  The

statistic was compared with the critical value from the chi-squared distribution with

degrees of freedom equal to the number of instruments. We were unable to reject the

null hypothesis of no significant correlation between the instruments and the residual

from the augmented Hausmann regression at the 5% significance level (n*R-squared

= 4.68 < Chi2(5, 0.95) = 11.07).  This conclusion is supported by a failure to reject

the null hypothesis that the coefficients on the outside instruments are jointly equal to

zero (F(  5,    54) =    0.71, P-value = 0.6221).

4 Practice differences in inequality

4.1  Does the effect of income on health vary across practices?

We first investigate whether the level of health and the relationship between health

and income differs across practices by including practice dummy variables in the

regressions for individual health (Table 3).  We allow for simultaneity and selection

by the method described in section 3.  Consequently we use predicted income in the

health equation and our sample size is 3477: all individuals who replied to all

questions or all but the income questions. 

The first, baseline, model is reported in Table 3 and has no practice effects. Model 2

has practice dummies as intercepts and model 3 has both practice dummies as

intercepts and interacted with income to allow for the effect of income on individual

health to vary across practices. The effects of the individual characteristics other than

income are similar across the three models and similar to those in Table 2 which has a

smaller sample size and incorporates practice characteristics rather than practice

dummies. 

The practice fixed effects and income interactions make a significant contribution to
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explanatory power of the model.  The addition of practice main effects (model 2)

increases the adjusted R-squared by 7% from 0.138 to 0.148 and including

interactions (model 3) increases the proportion of explained variation in health by a

further 1% from 0.148 to 0.15.  A Wald test rejects the null hypothesis that practice

dummies and interactions in model 3 have no significant effect compared with the

restricted baseline model 1 (F(113,  3342) =    1.36,  Prob > F =    0.0080).  Moreover

we also reject the null that model 3 is not significantly different from model 2

(practice main effects only) at the 10% significance level (F( 59,  3342) =  1.25,  Prob

> F =    0.0971). 

Figure 1 shows the distribution of the effects of income on health across the 60

practices. Most practices have positive income effects. The coefficient of variation for

the income slopes is 0.518 and ratio of 90th to 10th percentiles of 3.38. The regressions

in Table 3 thus provide some evidence that the effect of income on health varies

across practices.  However, they do not explain why there are differences in the

income-health relationship across practices, and they may understate the effect of

practices on the relationship if it is affected by a variety of practice characteristics. 

4.2 Practice characteristics and income related inequality

Two step procedure

We pursue two different approaches to estimating the association between practice

characteristics and the effect of income on practices. First we regress the practice

income coefficients from model 3 in Table 3 on practice characteristics. Second we

interact practice characteristics with income in a regression for individual health. 

Table 4 reports the results from the first procedure in which the estimated coefficients

of within practice income effects were regressed on the set of practice characteristics

from the QUASAR, GPPAS and GMS statistics.  Column 1 is an unweighted

regression while column 2 weights the regression by the number of observations in

the practice.  

Practice characteristics dropped from the regressions after they were found to have no

significant association or not to contribute to explaining the variation in income
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slopes included training status, proportion of GPs performing maternity clinics, the

rate of antibiotic prescribing, the score for the treatment of asthma and facilities for

the disabled access score and the health authority of the practice.  

Some practice characteristics are clearly associated with the income slopes, though

the explained variation is not high (23% for the unweighted regression and 13% for

the weighted regression).  In practices with a higher proportion of female GPs and a

lower patient to GP ratio income has a smaller effect on health. The elasticity of the

income slope with respect to female GPs is quite small (-9%) whereas the elasticity

with respect to the list size per GP is 56%. 

Practices with a larger proportion of patients classified as highly deprived had

significantly lower income effects, though the elasticity is small (-1%).  The

characteristic with the largest elasticity (-96%) is the proportion of GPs with out of

hours commitments.  

One step procedure

Table 5 reports regressions of individual health on individual characteristics, income

and the interaction of income with practice characteristics (both centred around their

means). Again we have allowed for selection and simultaneity.  We also estimated a

model with fixed practice effects, individual characteristics, income and interactions

of income and practice characteristics to see if the interactions of practice

characteristics with income were confounded by unobserved practice effects. The

estimated coefficients were very similar.

The results in Table 5 are similar to those in Table 4: income has a greater effect on

health in practices with higher rates of antibiotic prescribing and practices with larger

list size per GP.  The effect of income is smaller in practices who had a greater

proportion of GPs providing out of hours care and practices with a greater proportion

of patients classified as highly deprived. 
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5. Discussion

5.1 Simultaneity bias and the measurement of income related
inequality

We found that allowing for the simultaneous determination of income and health

leads to a doubling of the estimated effect of income on health.  This is in line with

Ettner who also found that using instrumented income in the health equation led to

large increases in the estimated effect of income [12].   Although the simultaneous

nature of the income health relationship is well known [13] its implications for the

measurement of income related inequality do not appear to have been addressed in the

literature.  The usual summary measure of income related inequality is the

concentration index of health against income [3] which is the product of the Gini

coefficient for income and the elasticity of health with respect to income:

hy
hy yy

b y
C C

h
= (1)

where bhy is the coefficient from the bivariate regression of health on income and Cyy

is the Gini coefficient for the income distribution (the concentration index of income

on income).  It is conventional, and of more immediate relevance to policy to

decompose the health concentration index to show the direct contribution of income

to income related inequality and its indirect contribution via its correlation with other

factors affecting health.  After estimating a multiple regression of health on income

(or a transform of income) and other variables affecting health, the concentration

index can be written

Cov( , ( )2i

i

hx ihy
hy yy x y

i

b xb y e F yC C C
h h h

⋅⋅= + +∑ (2)

where 
ihxb ⋅  is the coefficient on  xi from the multiple regression of h on income and

other explanatory variables, and 
ix yC  is the concentration index of xi against income

[14]. (The last term is the generalised concentration index of the regression residual

against income and which has a probability limit of zero [1].)   

The decomposition provides useful information for policy since it shows how overall

inequality would be affected by policies to alter the direct effects of income and the

other variables on health, by policies to change the overall distribution of income, and
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by policies to change the relationship between the other variables such as age or

ethnicity and income.  However, the multiple regression underlying (2) is typically

estimated without allowing for simultaneity between income and health.  Our results

show that allowing for simultaneity made relatively little difference to the estimated

effects of the non-income variables but the income coefficient doubled. Hence the

relative importance of the direct effect of income on health is seriously understated if

no account is taken of simultaneity, and policy initiatives may be misdirected as a

result.  Our results suggest that future attempts to decompose income related

inequality in health need to take account of simultaneity.

5.2 Practice characteristics and income related inequality

We found that there were significant differences across practices in the effect of

income on health and that some practice characteristics had a significant impact on

the size of the effect of income on health. It is possible to provide an intuitively

appealing story about how some of practice characteristic could affect the relationship

between health and income. For example, the rate of antibiotic prescribing can be

interpreted as a negative index of prescribing quality [15] and hence of the quality of

the practice. The fact that in practices with higher rates of antibiotic prescribing the

effect of income on health is greater could therefore be an indication that better

quality practices are better able to provide services so that lower income patients are

better able to take advantage of them and hence to have better health. We also find

that in practices with higher list sizes per GP the effect of income on health is greater.

This may be because GPs with lower lists have more time and are thereby able to

provider better services which benefit their poorer patients disproportionately.  The

proportion of GPs who took responsibility for the out of hours care of their patients

was also negatively associated with the effect of income on health. This may be

because greater continuity of care has a greater effect on the health of the poor than

the rich.  We also find that a higher proportion of female GPs reduces the effect of

income on health, though the coefficient is only significant in the regression of

practice income slopes on practice characteristics.  Again the effect may be because a

higher proportion of female GPs leads to better provision of services to female

patients who tend to be poorer than male patients.
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It is possible that the practice characteristics are picking up unobserved characteristics

of the practice population which influence the effect of income on health.  The fact

that our results were very similar when we included practice fixed effects, which

would pick up such unobserved practice population characteristics, and that we also

included a measure of the overall deprivation level of practice patients, may suggest

that the practice characteristics are having a genuine, rather than a spurious effect. 

The work we report here is the first to explore whether practices can alter the extent

of income related inequality by altering the effect of income on health. There do

appear to be differences in the relationship between income and health across

practices but further studies are required to determine the extent to which practice

characteristics are responsible. 
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Figure 1. Variation in effect of income on health across practices
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Table 1.  Variable definitions and descriptive statistics

 Variable Mean Std. Dev. Min Max Definition
Individual characterisitcs (n = 3477)
Health  0.807 0.111 0.351 1  SF-6D health state valuation
Income 
(n = 2340)

22457 15119 999 50000 Household income (midpoint of
interval scale)

Female  0.605 0.489 0 1 Female
Age 49.93 16.70 18 99 Age in years
Non_white 0.064 0.246 0 1 Race other than White European
Single 0.123 0.329 0 1 Single  
Separate 0.074 0.263 0 1 Separated
Widowed 0.075 0.264 0 1 Widowed
Married (ref) Married or living together
Non Smoker 0.493 0.500 0 1 Never smoked for more than a year
Children_0
(ref)

No person under 18 in the household

Children_1 0.127 0.333 0 1 One person under 18 in household
Children_2 0.134 0.340 0 1 Two people under 18 in household
Children_3 0.052 0.222 0 1 Three people under 18 in household
Children_4 0.012 0.107 0 1 Four people under 18 in household
Children_5 0.005 0.068 0 1 Five or more people under 18

Practice characteristics (n = 60)
Training 0.120 0.209 0 1 Proportion of GPs accredited as an

approved trainer.
FemaleGP 0.298 0.288 0 1 Proportion of female GPs
Out_hours 0.972 0.135 0 1 Proportion of GPs with out of hours

responsibilities
Deprivation 0.014 0.088 0 0.679 Proportion of highly deprived patients 

WTEGP 2.820 1.868 1 8 Number of WTE GPs
List_WTEG 2.152 0.525 0.991 3.524 Patients per WTE GP (000s)
Maternity 0.954 0.164 0 1 Proportion of GPs providing

maternity medical services
Antibiotic 0.070 0.020 0.041 0.145 Rate of antibiotic prescribing

(Items/weighted population)
Disable_score 
(n = 55)

83.436 16.545 33.33 100 QUASAR disability access index
(proportion of 9 access criteria met
by practice)

Invmills  0.490 0.190 0.079 1.104 Inverse Mills ratio
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Table 2. Allowing for selection bias in income response and for endogeneity 
(1) (2) (3) (4)

Simple model Selection bias Endogeneity Endogeneity and
selection

Health Health Health Health
Log of Income 0.0295889 0.0298534 0.0636589 0.0720717

(8.770)** (9.012)** (6.528)** (7.040)**
Female -0.0152469 -0.0186341 -0.0109911 -0.0295062

(4.340)** (2.507)* (3.134)** (3.858)**
Age -0.0139739 -0.0122307 -0.0206181 -0.0119916

(3.919)** (2.504)* (4.824)** (2.310)*
Age squared 0.0002746 0.0002398 0.0004037 0.0002308

(3.841)** (2.452)* (4.736)** (2.215)*
Age cubed -0.0000018 -0.0000016 -0.0000025 -0.0000015

(4.054)** (2.742)** (4.810)** (2.432)*
Non_white -0.0029278 -0.0037724 0.007886 0.0052443

(0.294) (0.366) (0.808) (0.509)
Single -0.0069756 -0.0062714 0.0099249 0.0173757

(0.897) (0.816) (1.132) (1.945)
Separated -0.0224749 -0.0191956 -0.0017572 0.0211982

(2.674)** (1.88) (0.174) (1.543)
Widowed 0.008029 0.0094687 0.0261465 0.0380514

(0.742) (0.854) (1.957) (2.598)*
Non_smoker 0.0173634 0.0173662 0.0103724 0.0089728

(3.624)** (3.620)** (1.943) (1.685)
Children_1 0.0114183 0.0130958 0.0118067 0.0214813

(1.685) (1.713) (1.758) (2.631)*
Children_2 0.0021064 0.0028859 0.0058549 0.0110735

(0.253) (0.339) (0.692) (1.249)
Children_3 0.0209605 0.021394 0.0242968 0.0274525

(2.429)* (2.493)* (2.556)* (2.842)**
Children_4 -0.0030759 -0.0004101 0.0060152 0.0231067

(0.14) (0.019) (0.271) (1.046)
Children_5 -0.1052266 -0.106628 -0.0941978 -0.0999814

(3.247)** (3.269)** (2.610)* (2.697)**
Training 0.0180768 0.0197716 0.018694 0.0285145

(2.788)** (2.975)** (2.294)* (3.287)**
WTEGP -0.0066562 -0.006319 -0.0094626 -0.0081015

(2.835)** (2.563)* (3.193)** (2.554)*
WTEGP2 0.0007681 0.0007319 0.0008808 0.0006963

(3.045)** (2.720)** (2.655)* -1.931
Deprivation 0.0384453 0.038866 0.0466958 0.0507729

(1.874) (1.891) (2.030)* (2.118)*
Maternity -0.0387142 -0.0386092 -0.0315194 -0.0294614

(3.782)** (3.764)** (3.568)** (3.390)**
Antibiotic -0.3521755 -0.3585348 -0.2524479 -0.2686321

(2.668)* (2.695)** (1.543) (1.58)
Disability_score 0.0002472 0.0002604 0.0002874 0.000371

(1.846) (1.874) (2.104)* (2.629)*
Invmills 0.0200147 0.1144969

(0.505) (2.625)*
Constant 0.8426313 0.83212 0.8350523 0.7733864

(36.990)** (25.610)** (35.391)** (22.594)**
Observations 2340 2340 2340 2340
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Adjusted R-squared 0.152 0.151 0.104 0.081
Robust t statistics in parentheses
* significant at 5%; ** significant at 1%
Health authority effects fixed effects included in regression were significant at 5% level.

Estimates of the elasticity of health with respect to income (centred on variable means)
Simple model Selection bias Endogeneity Endogeneity and

selection
Income elasticity 0.0365 0.0368 0.0785 0.0889
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Table 3.  Testing for differences in income related inequality across practices
(1) (2) (3)

No Practice Effects Main Effects Main Effects and Interactions
Health Health Health

Log_Income 0.0739133 0.0708925 .068884¶

[8.547]** [7.917]**
Female -0.0318614 -0.0261385 -0.0246434

[4.417]** [3.663]** [3.343]**
Age -0.0145916 -0.0169654 -0.0169120

[3.728]** [4.765]** [4.740]**
Age squared 0.0002819 0.0003273 0.0003237

[3.561]** [4.563]** [4.503]**
Age cubed -0.0000018 -0.0000021 -0.0000020

[3.801]** [4.792]** [4.707]**
Non_white -0.0015228 0.0109018 0.0128218

[0.132] [1.155] [1.363]
Single 0.0182426 0.0134115 0.0124706

[2.262]* [1.756] [1.600]
Separated 0.0227783 0.0168557 0.0155474

[1.954] [1.432] [1.303]
Widowed 0.0325407 0.0284301 0.0250712

[2.892]** [2.860]** [2.477]*
Non_smoker 0.0087357 0.0111775 0.0111939

[1.985] [2.985]** [2.944]**
Children_1 0.0181072 0.0127828 0.0111830

[2.756]** [2.020]* [1.744]
Children_2 0.0205358 0.0162091 0.0151285

[3.030]** [2.568]* [2.394]*
Children_3 0.0276268 0.0275980 0.0284421

[3.740]** [3.552]** [3.619]**
Children_4 0.0230220 0.0208574 0.0212125

[1.243] [1.096] [1.094]
Children_5 -0.1274130 -0.0747751 -0.0612368

[3.149]** [1.987]* [1.604]
invmills 0.1025445 0.0704358 0.0657841

[2.905]** [1.999]* [1.783]
Practice main effects 

[F( 59,  3401) =1.25,
Prob > F =    0.0925]

[F( 59,  3342) =    1.20
Prob > F =    0.1419]

Practice and income
interactions

[F( 59,  3342) =  1.25,  Prob >
F =    0.0971)]

All practice effects [F(113,  3342) =    1.36,  Prob
> F =    0.0080)**]

Observations 3477 3477 3477
Adjusted R-squared 0.138 0.148 0.15
Robust t statistics in brackets. * significant at 5%; ** significant at 1%.
 ¶Mean effect across 60 practices
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Table 4. Explaining differences in income related inequality

(1) (2)
Income
slope

Elasticity Income
slope1

Elasticity

FemaleGP -0.0368 -0.15925 -0.02274 -0.09538
[2.288]* [2.089]*

Out_hours -0.0857 -1.20918 -0.068067 -0.96381
[4.333]** [2.015]*

Deprivation -0.1009 -0.02098 -0.108091 -0.00990
[7.665]** [5.217]**

WTEGP 0.011906 0.487399 0.010999 0.46667
[1.541] [1.801]

WTEGP2 -0.00123 -0.20281 -0.001186 -0.20809
[1.420] [1.685]

List_WTEG 0.017922 0.559965 0.015026 0.45920
[2.544]* [2.557]*

Antibiotic 0.2815479 0.27281
[1.602]

Constant 0.068884 0.0700203
[17.016]** [20.533]**

Observations 60 60
Adjusted R-squared 0.229 0.133
Robust t statistics in brackets
* significant at 5%; ** significant at 1%

                                                          
1 Estimates using weights proportional to the number of observations within each practice 
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Table 5. Regression of individual  health on individual characteristics, level of
practice characteristics, and  interaction of practice characteristics  with income.

Clustering within
practices

Log_Income 0.0723717
[8.343]**

Female -0.0293167
[4.000]**

Age -0.0147978
[3.950]**

Age squared 0.0002851
[3.759]**

Age cubed -0.0000018
[3.999]**

Non_white 0.0020474
[0.172]

Single 0.0169789
[2.131]*

Separated 0.0220592
[1.899]

Widowed 0.0305418
[2.641]*

Non_smoker 0.0093924
[2.228]*

Children_1 0.015954
[2.458]*

Children_2 0.0192911
[2.894]**

Children_3 0.0269051
[3.733]**

Children_4 0.0229908
[1.253]

Children_5 -0.1261178
[3.044]**

Training 0.0277354
[4.322]**

WTEGP -0.0061709
[2.035]*

WTEGP2 0.0005734
[1.676]

List_WTEG 0.0000006
[0.144]

Deprivation 0.0325705
[1.683]

Out_hours -0.0206748
[1.367]

FemaleGP -0.0124626
[1.605]

Maternity -0.015918
[1.036]

Antibiotic -0.3946417
[3.155]**

Inc_Training 0.0168768
[1.609]
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Inc_WTEGP 0.0089332
[1.764]

Inc_WTEGP2 -0.0008932
[1.557]

Inc_List_WTEG 0.0105978
[2.132]*

Inc_Deprivation -0.0867176
[4.933]**

Inc_Out_hours -0.0670579
[2.122]*

Inc_FemaleGP -0.0072745
[0.776]

Inc_Maternity -0.0097406
[0.622]

Inc_Antibiotic 0.3484279
[2.688]**

Invmills 0.091246
[2.566]*

Constant 0.7566318
[46.191]**

Observations 3477
Adjusted R-squared 0.144
Robust t statistics in brackets
* significant at 5%; ** significant at 1%
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