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Abstract

The stochastic discount factor model provides a general framework for pricing assets. By spec-
ifying the discount factor suitably it encompasses most of the theories currently in use, including
CAPM and consumption CAPM. The SDF model has been based on the use of single and multiple
factors, and on latent and observed factors. In most situations, and especially for the term struc-
ture, single factor models are inappropriate, whilst latent variables require the somewhat arbitrary
specification of generating processes and are difficult to interpret. In this paper we survey the prin-
cipal different implementations of the SDF model for FOREX, equity and bonds and we propose a
new approach. This is based on the use of multiple factors that are observable and modelling the
joint distribution of excess returns and the factors using a multi-variate GARCH-in-mean process.
We argue that in general single equation and VAR models, although widely used in empirical
finance, are inappropriate as they do not satisfy the no-arbitrage condition. Since risk premia
arise from conditional covariation between returns and the factors, both a multi-variate context
and having conditional covariances in the conditional mean process, is essential. We explain how
apparent exceptions, such as the CIR and Vasicek models, in fact meet this requirement - but at
a price. We explain our new approach, discuss how it might be implemented and present some
empirical evidence, mainly from our own researches. Partly, to enable comparisons to be made,

the survey also includes evidence from recent empirical work using more traditional approaches.
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1 Introduction

The stochastic discount factor (SDF) model is rapidly emerging as the most general and convenient
way to price assets. Most existing asset pricing methods can be shown to be particular versions
of the SDF model. This includes the capital asset pricing model (CAPM) of Sharpe (1964),
Lintuner (1965) and Black (1972), the general equilibrium consumption-based inter-temporal capital
asset pricing model (CCAPM) of Rubinstein (1976) and Lucas (1978) and even the Black-Scholes
theorem for pricing options. A detailed analysis of the SDF model may be found in the book by
Cochrane (2000) and in the surveys by Ferson (1995) and Campbell (1999).

Cochrane argues that there are two polar approaches to asset pricing: absolute and relative
asset pricing. Absolute pricing involves pricing each asset with reference to its exposure to fun-
damental sources of macroeoconomic risk. This provides a positive theory of asset prices and is
the typical academic approach. Relative asset pricing is less ambitious. It aims to price an asset
with reference to the prices of other assets. CAPM (i.e. the "beta” model) and the Black-Scholes
theorem are examples of this. And bonds are commonly priced off the short rate. The SDF model
can be used for both approaches. This survey focuses mainly on the absolute approach to asset
pricing.

Another way to classify asset pricing models is whether they involve the use of observable
or latent factors. Most of the research that has made explicit use of the SDF model have used
latent factors. Sometimes an attempt is then made to give an economic interpretation to the
estimated latent factors. Many studies that have implicitly used the SDF model such as CAPM
and CCAPM have used observable factors. In this survey we seek to promote the explicit use of
the SDF model with observable macroeconomic factors. The attraction of this approach is that it
identifies the sources of risk, enables an assessment of their significance and offers the possibility
of tilting portfolios to provide a hedge against these risks.

This approach is not without its problems. In the SDF model risk is measured by the con-
ditional covariance of returns with the factors. For risk premia to be time-varying the factors
must exhibit conditional heteroskedasticity. The drawback with using observable macroeconomic
factors is that they do not display much heteroskedasticity, especially when the data are quar-
terly, or of lower frequency. There is more evidence of heteroskedasticity at higher frequencies,
but there is not much data on macroeconomic variables at monthly or higher frequencies. Re-
lated problems are that the statistical models tend to be highly parameterised, and there is a
lack of heteroskedasticity in macroeconomic variables. Together they make it difficult to obtain
statistically well-determined models.

The SDF model is not the only factor model of asset pricing. The well-known arbitrage pricing



theory (APT) of Ross (1976, 1977) is an example of a factor pricing model. A key feature, not
possessed by other factor pricing models, is that in the SDF model the factors are linear functions
of the conditional covariances between the factors and the excess return on the risky asset. This
is not true, for example, of the APT.

In the past much econometric work on asset pricing and tests of market efficiency made use of a
VAR model, see for example, Campbell and Shiller (1987, 1988) and Campbell, Lo and MacKinlay
(1997). If the excess return is one of the variables in the VAR, then implicitly the risk premium
is the right-hand side, the lag structure. Such a model can also be interpreted as a linear factor
model in which the lagged variables are the factors. Usually no attempt is made to restrict the
VAR to satisfy the no-arbitrage condition. It is not clear therefore what value this approach has
except to test the joint hypothesis of market efficiency and risk neutrality, i.e. the expectations
hypothesis. The null hypothesis for is that the right-hand side variables are jointly insignificant.
An exception to this, discussed later, occurs when certain affine factor models are used.

The paper is set out as follows. In section 2 we discuss the SDF asset pricing model in general
terms, setting out the theory and then relating this to specific implementations such as CCAPM,
CAPM, affine factor models and APT. We then explain the implications of this for empirical
finance. In section 3 we discuss the econometric methodology commonly used in estimating SDF
models. We include a discussion of VAR models, multivariate conditional heteroskedasticity mod-
els, simulation methods using the efficient method of moments and the generalised method of
moments. We then consider applications of the SDF approach to the term structure (section 4),
the foreign exchange market (section 5) and equity (section 6). We review the use of unobservable
and observable SDF models, and we suggest new ways to implement the observable SDF model

using the multivariate GARCH-in-mean specification. We report our conclusions in section 7.

2 The SDF asset pricing model

The SDF model is based on a very simple proposition. The price of an asset in period t, is the
expected discounted value of the asset’s pay-off in period ¢ + s based on information available in
period t:

Py = Ey[Myys Xt (1)

where P, = the price of the asset in period ¢, X+ = the pay-off of the asset in period ¢ + s,
M, s = the discount factor for period t + s (0 < My, < 1), and E; = the expectation taken
with respect to information available in period ¢. Thus P; is the current value of the period ¢t + s

income X;1s. In general this income will not be known in period ¢ and will be a random variable.



The discount factor is sometimes called the pricing kernel and will be a stochastic variable. For

convenience, unless explicitly changed, hereafter we will assume that s = 1.

Equation (1) can also be written in terms of the asset’s gross return Ry = X;,“ =1+rya:
_ X1, _
1= Et[Mt+1 P ] = Et [Mt-l—lRt-‘rl} (2)
t

Gross returns can be defined either in nominal or real terms; correspondingly, the discount factor
must then also be expressed in nominal or real terms.

Examples of assets that can be priced in this way together with their pay-offs are:

1. A stock that pays a dividend of D;y; and has a re-sale value of P, at t+ 1 has the pay-off
X1 = Pry1+ Diga

2. A T-bill that pays 1 unit one unit of the consumption good regardless of the state of nature

next period has X;11 = 1.

3. A bond that has a constant coupon payment of C' and can be sold for P;,;; next period has

Xiy1 =P +C.
4. A bank deposit that pays the risk-free rate of return r{ between t and t+1 has X411 = 1—|—rlfc .

5. A call option costing P; that gives the holder the right to purchase a stock at the exercise
price K at date T has X;; = max[St — K, 0].

As
Ei(Mp1Riy1) = Ey(Myy1)Er(Rey1) + Cove (M1, Riq1), (3)

the expected return on the asset is given by

1 —Covy(My11,Ri11) @)
Ey(Miy1) '

Ei(Rit1) =

The conditional covariance between M;; and R;;1 can be estimated as the covariance of the
error terms in the joint model of My, and R;11, and possibly other variables.

Equation (4) holds whether the asset is risky or risk free. If it is risk free, then its pay-off in
period ¢ + 1 is known with certainty. Without loss of generality, this can be assumed to be 1. As
a result, R;y; will be known in period ¢ and can be written as R;4; = 1+ r{, where r,{c is the

risk-free rate of return. Equation (2) can then be written as

1= E M1 (1+1]))] = (1+71])E(Myi1) (5)



Thus Ei(Miyq) = This carries the implication that the discount factor is the random

1
1+rtf :

—L+ ¢ 41 where the random variable §; ; has zero conditional mean, i.e.

variable M, = ,
t+1 1+7"tf

Ei&y 1 =0.
The excess return over the risk-free rate is obtained by substituting equation (5) into (4) and

using Ry+1 = 1+ riqq to give

Etrt—i-l — T{ = *(1 + ’I"tf)CO’Ut(MtJ,_l, Rt+1)

= —(1+ rf)Covt(MHl, Tt+1 — T{) (6)

This is the no-arbitrage condition that all correctly priced assets must satisfy. The term on the
right-hand side is the risk premium. It is the extra return over the risk-free rate that is required

to compensate investors for holding the risky asset.

2.1 Risk

Since risk-averse investors require compensation for taking on risk, the risk premium must be
non-negative. This implies that Covi(Miy1, Re+1) < 0. The source of the risk is that when the
discount factor is in a high state, the return on the asset is in a low state. A risk-neutral investor
is indifferent to such considerations and does not require a risk premium

Another way to write (6), the no-arbitrage equation, is
{Eelreqy + (14 1)) Covr(Myyr, Ripa)l} —rf =0

The first term (in braces) is the expected return on a risky asset after adjusting for risk. It is
also known as the expected return on the risky asset where expectations are taken with respect
to the risk-neutral distribution, i.e. using EtN instead of E;. In effect, to obtain the risk-neutral
distribution, the true distribution is shifted to the left by subtracting the risk premium from 7.

The risk-neutral distribution is used in pricing derivative assets such as options. Thus
EN(rip1) = Eilreen + (L4 1{)Covy(Myy1, Resr)] = rf

Consequently, a self-financing portfolio consisting of borrowing at the risk-free rate and investing
the proceeds in the risky asset will have zero expected return when the expected return on the
risky asset is evaluated using its risk-neutral distribution.

The price and quantity of risk are concepts sometimes used in relation to the risk premium.
They are analagous to the notion of total expenditure being equal to price multiplied by quantity.

Thus



risk premium = price of risk x quantity of risk
= —(L+r)cove(Myy1,m141 — 1)

= 5t>\t

M T
B, = price of risk = —(1 + T{)Covt( ARIAAAD - i)
SDt(Tt+1 — ’I"t )

A+ = quantity of risk = SDy(rs11 — th)

where S'D; means the conditional standard deviation. The price of risk can also be written as

Mt+1 Tt+1 — 7"{ ]

B, = cov ) ’
t t[Et(Mt+1) SDt(’I”tJrl - th)
M1

This is also the conditional correlation coefficient, and the regression coefficient of VAGTAY)

on

Tt41 77‘{
SDy(rep1—r])

unit-free) of a unit change in the standardised excess return (also scale free), etc. The quantity of

(or vice-versa). It measures the effect on the stochastic discount factor (scaled to be

risk is just due to variability in the excess return.

We have not yet discussed how to specify the discount factor or, when it is unkown, what
properties we expect it to possess. We can, however, derive bounds for both the risk premium and
the discount factor. As they are free from any additional behavioural assumptions, these bounds
might be useful when looking for suitable proxy variables for My, .

If p,(Miy1,7:41) is denoted as the correlation coefficient of the joint conditional distribution

of Myyq and r411, and Vi (M) and Vi(R;y1) are their conditional variances, then

Covy(Myy1,me41)° = pp(Myg1,7e41)Ve(Mieg1)Vi(resr)

Vi(Miy1)Vi(reg),

IN

as —1 < p,(Myy1,7me41 < 1, this provides upper and lower bounds for the risk premium. As the

risk premium must be non-negative, these are
0 S Et(Tt+1 — T{) S (]. + T{)SDt(Mt+1)SDt(Tt+1).

This provides a lower bound for V;(M;41) that can be calculated from just knowledge of the

returns and the conditioning information:

Tt 1*7{ 2
Vi(Mygy) > (2 —ri)p 1 (7)

A widely used assumption, due partly to its convenience and because it is a reasonably good

approximation, is that the stochastic discount factor and the gross return are jointly distributed



as lognormal. If Inx is N(u,0?) then E(x) = exp(u+ ‘772) and hence In E(z) = p+ "72 If

M1 = In Myyq and ey = In Ryqq are jointly normally distributed then
1 = Ey[Mi11Ri1] = exp{ E¢[In(My 11 Ry 1)) + Villn(Myy1 Ret1]/2}-
Taking the logarithms yields

In Ey[My1 Reqa] = Ee[In(Myy1 Rey1)] + Ve[In(Myg1 Req)] /2
= Ei(mey1) + Er(reen) + Vi(meg) /2 + Vi(rega) /2

+CO’Ut(mt+1, T't+1) =0. (8)
When ry 1 = th , the risk-free rate, equation (8), becomes
g1
By(mes1) + 1 + 5Vi(me1) =0 (9)

as Ey(r]) = v/ and Vi(+]) = 0. Subtracting (9) from (8) produces the key no-arbitrage condition

under log-normality:
1
Ey(req —rf) + §W(Tt+1) = —Covi(mey1,e41). (10)

Comparing equations (10) and (6), apart from the switch to logarithms, (10) involves an
additional term on the left-hand side, namely, half the conditional variance of returns. This is
called the Jensen effect. It arises because expectations are being taken of a non-linear function,

and E[f(x)] # f[E(x)] unless f(x) is linear. The right-hand side of (10) is the risk premium.

2.2 How to choose M, ;7

The various asset pricing models differ primarily due to their choice of discount factor. This can
be either an implicit or an explicit choice. Further, we can either use observable or unobservable
(latent variable) factors. First we consider the two leading examples of implicit observable factor
models, the consumption-based inter-temporal capital assset pricing model (CCAPM) and the

capital asset pricing model (CAPM).

2.2.1 CCAPM

This is a general equilibrium model. All investments are evaluated in terms of the investor’s
expected present value of current and future utility U(C}), where Cy is real consumption of goods
and services. The investor’s problem in period ¢ is to choose consumption C;, s, and the real stock

of financial assets Wy 541, for all s > 0, subject to the investor’s budget constraint. Assuming



time-separable utility, the problem can be solved using stochastic dynamic programming. It can
be written:

max{ly = U(Ct) + BE(Ur+1)} (11)

subject to the budget constraint
Ct + Wt+1 - }/;f + Wth (12)

where Y; is real income, R; is the real gross return on equity and 0 < 8 = 1—_}_9 <1 is the rate of
time-discount of preferences. The solution is the Euler equation

BU' (Cry1)

Ey U (Cy)

Rt+1] =1. (13)

Comparing this with equation (2), we can see that CCAPM has implicitly defined the SDF
(or pricing kernel) as

~B(1 -0 AlnCiyq) (14)

c Ul . . o . . o
—=p7~ > 0is the coefficient of relative risk aversion. Hence, the no-arbitrage condition
t

where o; =

for the real rate of return on a risky asset is
Et(Tt+1 — ’I"{) = 6(1 —+ T[)O'tCO’Ut (A hl Ct+1, Tt+1) (15)

If we assume that Aln Cyyq and 447 are jointly lognormal then, using my 1 ~ —(0+0:Aln Ciyq),

we obtain the no-arbitrage condition
1
Et(T't_A,_l — T{) =+ 5%(7}4.1) = O'tCO’Ut(A 1nCt+17Tt+1)- (16)

Equations (15) and (16) both imply that the greater the correlation between consumption growth
and the risky return, the higher the risk premium, i.e. lower future returns are associated with
lower future consumption growth, a common feature of the business cycle.

For the special case of the widely-used power utility function

c7 -1
U=2t__~ 17
T (17)
which has constant coefficient of relative risk aversion o,
G\’
Mt+1 —6 C ’:ﬁ(l-o’Ah’lCt+1) (18)
t

In applications to equity pricing it was found that CCAPM produced a risk premium that is
too low. This result is known as the equity premium puzzle, see Mehra and Prescott (1985). The

failure of CCAPM has been attributed to a lack of sufficient volatility in the stochastic discount



factor to match that of equity returns. Inspection of equation (16) shows that this failure could
be due either to too low a consumption growth rate, or to a too low a coefficient of relative risk
aversion, oy, or to both. As shown by Mehra and Prescott, implausibly large values of o; are
required to eliminate the equity premium puzzle. This led to a search for utility functions that
produce a larger risk premium. Attention focused on the assumption of the time separability of
utility.

An example of the alternative of time non-separable utility is the habit persistence model where

Uy = U(Cy, X¢) and X, is the habitual level of consumption. Constantinides (1990) proposed the

form
(Cr = AX) 77 =1
Ut =
1-0
The stochastic discount factor implied by this is M1 = 6 (%) . By a suitable choice

of A and X, it is possible to produce a discount factor that displays greater volatility and hence
a larger risk premium. Later, we shall consider habit persistence models in more detail together
with other versions of the habit persistence model, and also their implementation.

A second example of time non-separable utility has been proposed by Kreps-Porteus (1978).
Their general formulation is

Uy =U[Cy, Er(Upy)]

Epstein-Zin (1989, 1990, 1991) have implemented a special case of this based on the constant
elasticity of substitution (CES) function. This is

1
1-L7 71
=

1 -5

U =|1-8)C, 7 +B(EUT)™

where 3 = the discount factor, o = the coefficient of relative risk aversion and « = the elasticity of
inter-temporal substitution. Thus, whereas the additively separable inter-temporal utility function
restricts the coefficient of relative risk aversion and the elasticity of inter-temporal substitution to
be identical, the time non-separable model allows them to be different. Epstein and Zin show that
maximising U, subject to the slightly different budget constraint Wy, = Ry} (W, — Cy), where
r{t, = R{1 — 1 is the return on the portfolio, gives the following asset pricing equation for any

individual asset:

l—0o

o e 1-i=s
B 5 () ] (R R g =1, (19

Thus the stochastic discount factor is




Compared with time separable utility, this has two additional degrees of freedom which can boost
the size of the risk premium. First, the power index is no longer the coefficient of relative risk
aversion, and is therefore free to take on large values. Second, M;;1 now varies with the return
on the portfolio. Assuming log-normality, Campbell, Lo and MacKinlay (1997) have rewritten the
no-arbitrage condition equation (19) as

l1-0 1

— 0
1 — ’yCOUt(A hl Ct+1, Tt+1) + (1 — l_—l)COUt(Tm_l, Tt+1) (21)
Y

1
Ey(resn —r) + §Vt(7“t+1) =

Thus, this more general class of inter-temporal utility functions is also an SDF model with observ-
able factors. Equation (21) has two factors, consumption growth and the portfolio (or market)
return. The last term in equation (21) is a potential additional source of risk. We examine

evidence on the Epstein-Zin model below.!
2.2.2 CAPM

Static CAPM relates the expected excess return on the risky asset over the risk-free rate to the
excess return of the market portfolio, ri"t ; which is given by (1+r}},) = th,—tl, where W; is wealth.

The key results are:

Ei(rig1 — 7”{) = BiE(rii — Tf)a (22)
5 Cove (1711, 74 41)
¢ Vi(rity)
Erity —r]) = oVi(rihy).

Thus the risk premium depends in part on the market return. But we can also write equation
(22) as

AWy
Et(Tt+1 - T{) = O'tCOUt(Tﬂl,Tt+1) = O'tCO’Ut(TH,T',H,l)..
t

This shows that the risk premium arises from the conditional covariance of the asset’s return

with the market return or, equivalently, the rate of growth of wealth. We conclude therefore

that, in effect, CAPM is an SDF model in which the discount factor is o¢(1+r}},) or oy AVVI‘?“ .In

t

implementing CAPM there is some disagreement about which assets should be included in wealth.

In principle all assets should be included, but in practice it is common to use only financial wealth.

! The complexity of the derivation of the Euler equation has led subsequent authors to simply quote the original

L
result. A simpler derivation is possible for the two period case where Uy = [(1 —BU(Cy)*+ 8 (Et(U(Ct+1)a)9] o

OU+ _

and the budget constraint is at+1 + ¢t = (1 + r¢)at. It can be shown that 50,

0 implies the Euler equation

u(c “~lyc . . .
B@[EtU(CtJrl)a}G_lEt[( [(J(gtr)l)) U(,(gtr)l) (1 4+ r¢41)] = 1 Subtracting the corresponding equation for the

U(Ces) \* 7 U (Corn) ;
risk-free rate away from this gives the no-arbitrage condition Et[( U(g:) ) U’((tjt) (re41 — 7)) = 0. For
1—

cl-o c a(l—o)—1
power utility U(Ct) = 5t— this becomes Et[(é—thl) (re41 — r{)} =0.




Comparing CCAPM - and in particular equation (15) - with CAPM, we observe that CCAPM
uses the covariance of consumption growth with the risky asset to measure risk while CAPM uses
the covariance of the growth rate of wealth with the risky asset. If consumption is proportional
to wealth, then the determination of the risk premia in CAPM and CCAPM are identical. Apart
from CAPM and CCAPM the problem of how to implement the stochastic discount factor model
remains. How might we model the discount factor (or pricing kernel) M;,; without making either

of these assumptions?

2.3 Multi-factor models

CAPM and CCAPM under time separability are examples of single-factor models. CAPM assumes
that the stochastic discount factor is My = o¢(1 + {7} ,), time-separable CCAPM assumes that

. Ul .
it is M1 = 8=+ ~ B[1 — 04AInCyy4] . In each case, for 0, = 0, a constant, and we can write

’
t
M1 =a+bx
or, assuming log-normality,
In Mt+1 =Mt41 = Q + bzt+1

where z;11 is 7} or AlnCyy 1. Multi-factor generalisations are:

M1 =a+ E bizi 441,
i

In Mt+1 = Mt41 = a+ E bizi7t+1.

(2

Because these are linear models, they are also called affine factor models (meaning linear).

The implication for asset pricing is that

Et(Tt+1 *7’{) = *(1 +Tf)CO’Ut(Mt+1,Tt+1)
= —(1+7) > biCovy(zigs1,rei1) = Y Bi firs (23)
i i
or, assuming log-normality,
¥ 1
By(resr — i) + 5Ve(ren) = —Cove(mesr, 7e41)
= - Z biCovt(2it41,Tt41) = Zﬂi fit, (24)
i i

where the f;; are known as common factors. Time non-separable CCAPM is an example of a
two-factor SDF model where the factors are AlnCyy; and 7} ,. If returns are nominal and not

real then CCAPM has two factors: AlnCyyq and 7441, the inflation rate.

10



2.4 Latent variable affine factor models

We now consider explicit but unobservable factor models. The most widely-used are the latent
variable affine factor models of Vasicek (1977) and Cox, Ingersoll and Ross (1985). Both assume
that the logarithm of the stochastic discount factor m;41 can be expressed as a linear function
of one or more random variables each of which follows a mean-reverting first-order autoregressive
process. Moreover, instead of m11 being an exact linear function of the factors as above, allowance

is made for an additional random error. We illustrate these models using the single factor z;41.
2.4.1 Vasicek model
In the Vasicek model it is assumed that

Mep1 = a+ Bzip1 + Aoe (25)

zeg1 — b = 0(z — p) + oepqq, 0<10 <1
where e;41 ~ 7id(0,1). These assumptions imply that m;; is the ARMA(1,1):
mer1 = (@4 Bu)(1—0) + 0my + (A + B)oerr1 — OAoe,.
Using the log-normal version of the asset pricing model, the no-arbitrage equation becomes

1
Et(rt+1*7’tf)+§‘4(7’t+1) = —Covi(mis1,7e11)

= *()\ + ,B)O'COUt(Et+1,Tt+1).
2.4.2 Cox, Ingersoll and Ross (CIR) model

In this model it is assumed that

Mmip1 = o+ Bzip1 + Aoy/zerq
Zt+1 — M = 9(2’t - [IJ) + O'\/th—i-l-

The attraction of the CIR model is that the return on the asset is bounded at, or above,
zero. In the Vasicek model it can become negative. In the CIR model Vi(z:41) = 022, hence
lim,, o Vi(2z:41) = 0, i.e. as the factor approaches zero, its variance also converges to zero. The

no-arbitrage equation is

1
Ey(ris — i) + FVilrer1) = —(A+ BloyzCov(errt, resr).
The CIR model can be generalised to,

me41 = o+ 62}4.1 + /\(Zt)5t+1

Aziyr = p(ze) +o(2t)er

11



A common version of this is to choose o(2z) = v/¢ + wz: and A(z:) = Ao(z:), see Dai and Singleton

(2000). Later we show how this can be implemented for the term structure.

2.5 Multi-asset multi-factor models

The pricing equations derived so far refer to a single asset. The form of the pricing equation for
every asset will be the same. If the return on the jth asset is r; ;41 then its no-arbitrage equation
is

Ey(rjupr —r{) = = +1) > bijCovy(zir41,75011) (26)

K3

The equivalent equation under log-normality is
1
Ey(rjupa — 1)+ SVilrjer1) = = > biiCovy(zip41,75141) (27)
In matrix terms, equations (26) and (27) can be written
E —rlt)=—-1+r])C
t(rep —ril) = —(1+73)C

1
Ei(rsy1 — T{f) + §Vt =—(1+ rif)ct

where ryy1 is vector of returns, C; is a column vector formed from the diagonal elements of BV,
where B = {b;;} and V= {Cov(2 +11,7j¢+1)}, V¢ is column vector formed from the diagonal

elements of V; and £ is a vector of ones

2.6 Other types of factor models

Some asset pricing models involve the use of factors but are not examples of SDF models - even
implicitly. The best known example is APT. This satisfies the condition of no-arbitrage. Another
widely used model in empirical finance, especially for testing market efficiency, is a VAR model in
which the excess return on the risky assets is one of the variables. In general a VAR is neither an
SDF model, nor does it satisfy the no-arbitrage condition. This calls into question such uses of a

VAR in finance.
2.6.1 Arbitrage Pricing Theorem (APT)

This is one of the best-known multi-factor models of asset pricing. For a survey of APT see
Connors and Korajczyk (1995). The basic idea underlying the APT is to avoid the formality of
CAPM or CCAPM and simply model the return on any asset j as the sum of & common factors
plus an idiosyncratic component that is uncorrelated with the common factors. These factors are
sometimes assumed to be obtainable from the principal components of the returns on a vector of

assets.
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The return on the j** asset is
rj :ajJerijfiquj, j:l,...,n, (28)
i

where E(e;) = 0,and E(g;, fi) = 0. In this expression, f; are some variables useful for forecasting
rj, e.g., f; are returns on other assets. Equation (28) therefore has the same form as (23). The
difference lies primarily in the choice of factors, f; and whether a risk-free asset exists.

The aim is to “diversify away” the risk in asset j arising from the idiosyncratic component ¢;

by forming no-arbitrage portfolios. A portfolio r? = Z w;r; is a no-arbitrage portfolio if r? = 0,

Jj=1
n—1
with some w; < 0. Hence, 0 =17 =3, w]a]—&—z (305 wibij) fi+>2; wjej where wy, = 1— 3 wj.
Jj=1

In general therefore, each of the terms ), wja;, S  wibi; and 7, wje; will be zero. If one of the
assets the n'" (say) is risk-free, then f, = r, = rf. The return on the no-arbitrage portfolio can

then be written as

—1
rp:iwjrj 1—211}7 f—Zw7 Nyrl =0

Hence, for any single asset, the excess return is

n—1 - k—1
R Wi iy _ ot
T, —T Zw( Z o, a]—l—Zb”fZ—i—bk]r +ei]—r'}
i#] i#]
> Bifi+ 87!

Thus the APT has factors f; and rf. Since f; need not be a conditional covariance, the APT is

not in general an SDF model.

2.7 The implications of the SDF model for empirical finance

So far the main broad conclusions to emerge for empirical finance are that, unless it is explictly
assumed that investors are risk neutral, a risk premium should be included in the model. The
SDF approach shows that this is a (possibly linear) function of the conditional covariance between
the factors and the excess return. This implies that in general in empirical finance the model
must be multivariate, not univariate, as the joint distribution of the excess return and the factors
is required to model the risk premium. Further, it is not sufficient simply to specify the model
with a time-varying conditional covariance matrix. The model must also have the conditional
covariances in the conditional mean of the excess return equation in order for this equation to
satisfy the no-arbitrage condition. Very few of the models that have been used in empirical finance

(to study, for example, equity, bonds or foreign exchange) satisfy these requirements.
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Two qualifications may be made to these strictures, both of which are examined in more
detail later. First, there is a special case where it is not necessary to explictly include conditional
covariances in the mean of an SDF model in order to satisfy the condition of no arbitrage, as
the conditional covariances are included implictly. In this case not all of the strictures above
apply. This happens where, due to the assumed structure for the stochastic discount factor, the
conditional covariances are functions of the variables themselves. An example is the CIR latent
variable model of the term structure. It can be shown that, in the case of a single-factor model,
the conditional covariance between the factor and the excess return on a long bond (and hence its
risk premium) is a linear function of the short rate and hence, in effect, is an observable factor. If
there is more than one factor, then the risk premium is a linear function of short and long rates.
In these cases it would be possible to model the term structure using a VAR. We examine this
idea further below. The no-arbitrage condition would imply restrictions on the coefficients of the
VAR.

Second, it is often possible to estimate the parameters and to carry out statistical tests using
the Euler equation itself. Solving the Euler equation to obtain an expression for the risky return
would not then be necessary. An example of this approach is direct GMM estimation of the Euler
equation. The GMM estimator exploits the lack of correlation between the discounted pay-off and

the information set used in conditioning. The null hypothesis is that
E[(My1(0)(Russ — 1)I] =0 (29)

or as

E[(Mye1(0)(res — )] =0

where I; is the information set and 6 is the set of parameters to be estimated. The implication
is that I, contains no information about M;y1(0)(res1 — i), the discounted excess return in
period t + 1. Nevertheless, the results above suggest that unless the information set has time-
varying volatility, it will be unlikely to prove suitable. Surprisingly perhaps, in practice, this has
not usually been a consideration. We now turn to a more detailed consideration of econometric
methods. If an estimate of the risk premium is required, GMM estimation of the Euler equation

would not be appropriate.

3 Econometric Methods

To a large extent the choice of econometric methodology will be dictated by the SDF model
being used. We discuss three different methods: the use of a VAR, multivariate conditional

heteroskedasticity models, the efficient method of moments (a simulation estimator), and GMM.
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This is a large subject in its own right. To make it manageable, we focus on their application
to observed factor models. Another estimation method commonly used for latent variable affine

factor pricing models is the Kalman filter as this does not require data on the factors.

3.1 VAR models

There is a vast literature on the use of VAR models in empirical finance, see for example the
surveys of Campbell, Lo and MacKinlay (1997) and Cuthbertson (1996). The VAR is typically
specified in terms of the excess return and other variables appropriate to the underlying theory,
or in terms of the returns themselves together with any other variables. When a vector of returns
is used the coefficient matrix of the VAR is restricted to satisy the no-arbitrage condition.

Despite its popularity it is our contention that, in general, using a VAR is not a valid way
to estimate asset pricing models, or to test market efficiency. This is because for risk averse
investors the no-arbitrage condition of asset pricing will require a risk premium and this involves
conditional covariance terms. As a VAR does not include conditional covariances, in general, it is
not an appropriate model to use.

There are two main exceptions to this for which a VAR may be appropriate. One is where
risk neutrality is assumed, and so on the null hypothesis there is no risk premium. This is the
assumption underlying the expectations or unbiasedness hypothesis. For a survey, see Bekaert and
Hodrick (2001). Under the null hypothesis of unbiasedness none of the lags of the VAR should be
non-zero in the equation for the excess return. When a vector of returns is used the unbiasedness
hypothesis implies that the coefficient matrix of the VAR is restricted. The aim is then to test
these restrictions.

It is not clear what can be inferred from a failure to reject the null hypothesis. It does
not necessarily imply a lack of market efficiency, since if investors are risk averse, the model
should have included a well-specified risk premium, or a suitable proxy for the risk premium.
For an example of this, see Tzavalis and Wickens (1997) who show that rejection of the rational
expectations hypothesis of the term structure (REHTS) is probably due to omitting the term
premium. When the term premium is appropriately proxied in the VAR the REHTS is no longer
rejected. The power of a test is likely to depend on whether a model is well specified on the
alternative hypothesis. The absence of conditional covariance terms in these tests implies that the
model is well not specified against the alternative hypothesis of risk aversion, and so may have
low power.

Implictly, the lagged variables in the VAR are acting as proxies for the risk premium. The

second exception we mention, therefore, is where the right-hand side of the VAR is a suitable proxy
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for the risk premium. Without a careful consideration of how good a proxy the VAR provides,
it should be assumed that it is not appropriate. Tzavalis and Wickens (1997) illustrate how this
might be achieved in tests of the REHTS. Another exception is where the risk premium can be
shown to be a linear function of the variables in the VAR. Although hardly ever exploited in the
literature, it is shown below that the Vasicek and CIR affine factor models of the term structure
have this implication. In the Vasicek model the risk premium is constant over time. In the CIR

model it is a linear function of the yields.

3.2 Multivariate conditional heteroskedasticity models

Two important implications follow from equations (6) and (10). First, in general, econometric
models that satisfy the no-arbitrage condition must have (time-varying) conditional covariance
terms in the mean. Second, since covariance is a multi-variate concept, the econometric model
will need to be multivariate and not univariate, and the conditional covariance will need to be
modelled at the same time as everything else. These requirements eliminate much of the literature
on financial econometrics from further consideration.

An obvious econometric model that does satisfy these requirements is the multivariate GARCH-
in-mean model, but not of course the multivariate GARCH model.> GARCH is preferred to
ARCH on the grounds of its greater flexibility, and on the basis of previous empirical findings.
We illustrate the use of the multivariate GARCH-in-mean (MGM) model under the assumption of
log-normality. It is also possible to use other distributions such as the t-distribution, see Wickens
and Smith (2001).

Many practical problems arise in using the MGM model. One is the computational problem of
achieving numerical convergence due to the large number of parameters that need to be estimated.
As a result, a trade-off arises between choosing a model that has sufficient flexibility, and one that
is sufficiently parsimonious to be estimable. A second problem, is the availability of suitable
observable factors. We would like to be able to identify the fundamental sources of risk, and for
the most part these will be macroeconomic. The problem is that a time-varying risk premium
requires conditional heteroskedasticity both in the excess return and the macroeconomic factors.
Even for returns, conditional heteroskedasticity tends to be observable only at frequencies of a
month or higher (eg stock returns). There is very little macroeconomic data at frequencies higher
than quarterly. The main macroeconomic series likely to prove useful for our purposes that are

available monthly are industrial production, retail sales, consumer price inflation and the money

2 A further illustration of the general lack of appreciation of the requirements is that FANPAC, a recent computer
package especially designed for financial analysis and based on GAUSS. does not contain a single program that
satisfies these requirements.
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supply.

In principle, a multivariate stochastic volatility model could be used instead of the MGM
model. The advantage of this would be the greater flexibility it offers in modelling volatility. When
volatility is fluctuating violently - as it can over short periods - the coefficients of the GARCH
process describing volatility struggle to capture these fluctuations. As a result, the GARCH
process often displays a unit root in the variance. The advantage of a stochastic volatility model
is that it includes a disturbance in the volatility process. This can be used to absorb extreme
fluctuations in volatility, which should be of help computationally. The conceptual value of this
is perhaps less clear. A practical problem is that, to our knowledge, to date no multivariate
stochastic volatility model which includes the conditional second moments in the mean has been
proposed in the literature.?

For a single asset, the MGM model must be capable of satisfying the no-arbitrage condition,
equations (23) or (24) where the factors z;; are assumed to be observable. It follows that we
require an MGM in the vector x;41 = (re41 —T{, 21,441, 22.t+1,---)’. We now require the conditional
distribution of x;41. In practice, initially we would specify the joint distribution of x;y; and any
other variables included in the information set that are used to form conditional expectations.
Where these are not simply past values of x;11, it will be necessary to augment x;;1 with these
additional variables. This will ensure that the conditional distribution of x;41 (including the

conditional covariance terms) is well specified. The MGM model can be written
Xep1 = o+ I'xy + Pg, + 6441 (30)
where the distribution of €441 conditional on information available at time t, Iy, is

€1 | Iy ~ N[0, Hyp1] (31)

gt = vech{H;y1} (32)

The vech operator converts the the lower triangle of a symmetric matrix into a vector. Equation
(24) imposes no-arbitrage restrictions on the first equation of (30). Thus the first row of T' is zero
and the first row of ® is (—%, —b11, —b12, —b13,...). Contrasting the MGM model with a VAR, we

note that in a VAR @ is implictly zero and H;y is assumed to be homoskedastic.

3 Stochastic volatility models have been used for univariate models of returns. Interestingly, it can be shown
that a model with an AR(1) volatility process can be transformed into an ARMA(1,1) model in the return with
homoskedastic errors. If this were a valid no-arbitrage condition it would imply that the risk premium is a linear
function of the past return and the past forecast error of returns.

4 It may be noted that the factors may themselves be jointly determined with other variables. It could, therefore,
be argued that the joint distribution should also include these other variables, but the variables themselves should
be constrained from entering the equation for the excess return.
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The remaining specification issue is how to choose Hyy. There have been several good surveys
of these issues, see for example Bollerslev (2001). A model with considerable generality is the

BEKK model described and generalized in Engle and Kroner (1995). This can be formulated as

vech(Hypr) = A+ SP20®;vech(Hy_;) + S92, ©;vech(e—je)_;) (33)

where the matrices A, ® and ® may be unrestricted. If there are n — 1 factors z;; then ® and ©
are both square matrices of size n(n + 1)/2 and A is a size n(n + 1)/2 vector.

A variant of the BEKK model that ensures the time-varying covariance matrices are symmetric
and positive definite, and involves far fewer coeflicients, is to specify the conditional covariance

matrix as an error correction model (ECM):
H; .1 =V'V+A'(H,— V'V)A+B'(g¢, — V'V)B. (34)

The first term on the right-hand side of equation (34) is the long-run, or unconditional, covariance
matrix. The other two terms capture the short-run deviation from the long run. This formulation
enables us to see more easily how volatility in the short run differs from that in the long run. To
reduce the number of parameters further, we can specify V to be lower triangular and A and B
to be symmetric matrices.

A specification that involves even fewer parameters is the constant correlation model. This
has been found by Ding and Engle (1994) to give a fairly good performance in comparison with

the more general BEKK model. It can be written

NS

hij i1 = pi[haierr X hyjeia] (35)

hi; o1 = vi + aihy g + by (36)

where p,; is the (constant) correlation between €;(¢ + 1) and €;(¢ + 1). The conditional variances
h;;(t + 1) each have a GARCH(1,1) structure.

It is instructive to compare the number of parameters involved in each of these formulations.
If n =3 and p = ¢ = 1, then we find that BEKK= n(n + 1)/2 + (p + ¢)n*(n + 1)?/4 = 78,
ECM unrestricted = 3n? = 27, ECM restricted = 3n(n + 1)/2 = 18, and constant correlation =
3n 4+ n(n —1)/2 = 12. Ideally, we would choose the most general model, but it is clear that this
involves estimating a very large number of parameters. The ECM may be a useful compromise.
But the constant correlation model may be the best that one can achieve. Further variants of

these models can, of course, be considered.
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3.3 Efficient Method of Moments (EMM)

The EMM estimator is an alternative way to estimate equations with unobservable variables. It
is particularly suitable for more general affine models than the Vasicek model, for non-Gaussian
distributions models and where dependencies in the processes for the (unobserved) state variables
make evaluation of the likelihood function impossible. Estimation of the CIR affine model is such
a case. Simulation-based method of moments estimators have been developed to analyse dynamic
highly non-linear models such as these. Variants of these methods were originally proposed by
Gallant and Tauchen (1996) (Efficient Method of Moments), Duffie and Singleton (1993) and
Ingram and Lee (1991) (Simulated Method of Moments) and Smith A. (1993) and Gourieroux,
Monfort and Renault (1993) (Indirect Inference).

The EMM method proceeds in two stages. In the first stage, an auxiliary model to the
theoretical (or structural) model is chosen whose variables are observable and whose likelihood
can be evaluated. The score of the likelihood for this model can then be evaluated using a
GMM criterion where data for the dependent variables of interest (here the returns) is generated
by simulation of the dynamic non-linear structural model. If the auxiliary model is a ”good”
approximation of the structural model, Gallant and Long (1997) show that the EMM estimator
will be asymptotically efficient. If the structural model is close to the true model, the GMM
criterion will be close to zero.

Using the affine models above as an example, let f(y; | z¢—1,Q) be the auxiliary model where
the returns y; are determined by past values of returns ;1 = (y¢—1, Y¢—2, .....Js—; ) With parameter
Q. This could be thought of as a reduced-form equation. The score of the maximised likelihood
function for this model can be evaluated for two sets of data for current and past values of the

returns. First, for the actual data we know that the average of the scores must be zero ie

LS D, 0) =0 (37)
T o aQ Yt | Te—1, -

as these are the first-order conditions for a maximum. The EMM proceeds by replacing both
and x;_1 with values §; and Z;_jgenerated by simulation of the structural model g(y:, z:—1, 3)

for a particular set of parameters 3 . The resulting scores are then

T
s 9 -
SCUEE DI RV AESEY (38)

EMM then proceeds by choosing estimates of structural parameters § that minimise the GMM
criterion:

S'(3,Q).W.8(3,Q) (39)
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for a weighting matrix W.

Recent research reviewed by Gallant and Tauchen (2001) shows that the choice of auxiliary
function f(y: | x¢—1,8) is crucial to the performance of the EMM estimator. On the one hand it
needs to be computationally simple enough to make repeated solution not excessively burdensome.
On the other hand it needs to be close to the theoretical model to deliver maximum likelihood
estimates - were they to exist. Gallant and Tauchen (1996, 2001) propose the use of a semi-non
parametric (SNP) auxiliary function. Others have concentrated on choosing a function which
matches characteristics of the data. In evaluating various affine models of the term structure
Dai and Singleton (2000) choose an SNP function they describe as a "non-Gaussian, VAR(1),
ARCH(2), Homogenous-Innovation” function. This attempts to capture the non-Gaussian depen-
dencies in bond returns.

The evaluation of models estimated by EMM can be more intuitive than for a likelihood-based
method in that elements of the score can be examined along with the t-statistics associated with
them. The testing of individual components of the score allows particular areas of model weakness
to be identified. Following a similar logic, van der Sluis (1998) presents various tests of structural
stability for the EMM estimator.

The computational burden of simulating the full structural model for each candidate set of
structural parameters has limited the scale of the models which have been evaluated using this
technique. A closely associated, more limited information, estimation method is direct estimation

by GMM but evaluating a limited set of moments.

3.4 Generalised Method of Moments (GMM)

GMM is a non-linear instrumental variables estimator originally proposed by Hansen (1982) and
widely employed in estimating affine and other non-linear asset pricing models. It is particularly
suited to the direct estimation of the Euler equation and avoids the need to solve for the risky rate
of return. The robustness of FGMM to heteroskedasticity has encouraged its use with financial
data. Comprehensive presentations of GMM are available in Hall (1992) and Hamilton (1994).

In implementing the estimation of equation (40) by GMM, the information set I; consists of a
set of instruments h;. We define the set of moments that are being set equal to zero as E[f:(6)].
Hence,

E[fe(0)] = E[M41(0)(Ri1 — 1) ® he] =0 (40)

where ® is the Kronecker product. The model and the errors have the property that there exists
a true set of parameters 6y for which the error vector is orthogonal to the set of instruments h;.

T
Defining the sample average of f;(6) as gr(0) = T=! > fi(#), the GMM estimator minimises
=1
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Qr(0) = gr(0) Wr.gr(0) where Wr = + S Filye, 0).fo(ye, 0)' is a weighting matrix and 6 is a
consistent estimate of §. The first-order conditions are Dy (67) . Wy.gp(6) = 0 where Dp(07) =
dgr(0)/80. The variance of the estimator of 6 is Q = ((Dr(07).Wp.Dr (7))~ .

Given that W must itself be estimated, asymptotically efficient estimates can be obtained in
two steps. First an arbitrary weighting matrix W can be used to obtain an initial set of consistent
estimates 6. Second, these estimates can be used to construct a second weighting matrix Wy
and thence efficient estimates. It has been shown that in large-scale systems the finite sample
performance of GMM can be improved by further iterations (see Ferson and Foerster (1994)). A
further attractive feature of GMM is that the error ¢; can be heteroskedastic and autocorrelated.
In the case of autocorrelation, the adjustment to the weighting matrix W proposed by Newey
and West (1987) is commonly employed, although other weighting schemes have been proposed,
and are canvassed by Hamilton (1994).

The leading specification test for models estimated by GMM is the J-test of over-identifying
restrictions proposed by Hansen (1982). This is easily constructed from any remaining orthog-
onality conditions remaining beyond the number of estimated parameters. Further hypothesis
tests based on the evaluation of individual orthogonality conditions can also be constructed. For
example, structural parameter stability can be assessed in a similar way to EMM. Examples of
applications of this approach to latent variable models are Gibbons and Ferson (1985) to equity
markets, Campbell (1987) to stock returns and the term structure, and Smith P. (1993) to FOREX
and the term structure.

In applications such as the latent variable model, the lack of guidance from theory on the
number and type of instruments may potentially lead to lack of power of the J—test in rejecting
the model restrictions when wrong. A price sometimes paid for the robustness is bias in the
estimates and the test statistics arising from a version of the ”"weak instruments” problem, see

Staiger and Stock (1997).

4 SDF models of the term structure

The SDF model has been used in the most part to price bonds, and to model the term structure.
Of the different versions of the SDF model mentioned earlier, the Vasicek and CIR models are
usually used. There is a vast literature on this that has been surveyed by Shiller (1990), Marsh
(1995) and Cochrane (2001). The present discussion will focus mainly on the use of latent variable
affine factor models as there seems to be little in the literature on the use of observable factors
models at present. We suggest how observable factors models might be used.

First, we specialise the previous discussion to the pricing of zero-coupon bonds. A bond with
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a coupon can be converted to one without. Given the paucity of bonds of different maturities
available at any time, data on zero-coupon bond yields are usually a constructed series based on
coupon bonds, and the use of interpolation methods to fill in missing maturities.

We define the following variables: P, ; = nominal price of a zero-coupon n-period bond at ¢ (i.e.
has n periods to maturity), Py, = 1 (i.e. the pay-off at maturity is 1), R, ; = yield to maturity
on an n-period bond, Ry ¢ = s; (i.e. one period rate - the risk free rate), h, ;+1 = return to holding

an n-period bond for one period (i.e. from ¢ to ¢t +1). R, is defined as P, ; = and

P41 is defined as 1+ Ay 111 = P"%lj:“. Using the logarithmic approximation In(1 + z) ~ x for
small z, n P, ; = —nIn(14+ Ry, ;) ~ —nR, ¢ and Ayt >~ Pr_1441 — Pt = Ryt — (R —1)Rp—1 441,
where p,: =In P, ;.

>From the SDF model, P, ;, the price of an n-period zero-coupon bond in period ¢ is the
discounted value of P, _1 ¢41, the price of the bond in ¢ + 1 when it has n — 1 periods to maturity
Pnt = Ey[My+1Py—1¢+1]. Thus

EiMi1(1+hpiq1)] =1
When n = 1 the bond is risk free and
(1+ s¢) Et[My1q] =1

Assuming that P, ; and M, are jointly log-normal with ms11 = In My,

1
Pt = Ei(mpr +pn1e41) + §Vt(mt+1 + Pn—t1t41) (41)
1 1
= Ei(mi1) + Er(Pn-1,441) + §Vt(mt+1) + EVt(pnA,Hﬂ + Cove (M1, Pn—1,64+1)

Similarly, as po+ = 0,
1
Pre = By(mepr) + 5Vi(mira) (42)
Subtracting (42) from (41) and re-arranging gives the no-arbitrage equation
1
Ei(Pn-1441) — Pnt + D1t + §W(Pn71,t+1) = —Cove(Mis1, Pn—14+1) (43)
This can be re-written in terms of yields as

-1 2
—(n—=1)E{(Rp—1,041) + nRy .t — st + %

Vi(Rn—1,t41) = (n — 1)Cove(myy1, Ri—1,441)
and, since hy,; ~ —(n — 1)Ry—1 441 + nRyt, a8

1
Ei(hp 41— St) + §W(hn,t+1) = —Covy(myy1, b t41) (44)

This is the fundamental no-arbitrage condition for an n-period bond. The term on the right-hand

side is the term premium
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Each point on the yield curve must satisfy this no-arbitrage condition. As Vi(hp 1) =
Vt(hn,t+1 - St) = (n - 1)2‘/;5(Rn71,t+1) and COUt(mt+1,hn,t+1) = COUt(mt+1,hn,t+1 - St) =
—(n — 1)Cov(ms1, Rp—1,4+1), the term spread (the slope of the yield curve) for an n-period

bond must comply with

n—1 n—1
Ryt —s = - Ei(Rp—1,141 — St41) + - EiAsiqq
1(n—1)2 n—
_§(T)‘/1£(Rn—17t+1) - Cove(myq1, Rn—1,4+1) (45)
The yield itself can be expressed as
1 n—1 1 n—1 ) 9
Rt = =Y Esgri——=— > (n—i—1)*Vi(Rn—i—1t+i+1)
n =0 2n {5
1 n—1 )
n Yo (n—i—1)Covi(meyitr, Rn—i—1,t4i41)
i=0

This is a modification of the usual result that under risk neutrality the yield is the average of
current and expected future short rates. From the Fisher equation s; = ry + Fymey1, where ry is
the real return and 7441 is the inflation rate, the shape of the yield curve is determined by average

future value of real returns, the inflation rate and the risk premia on that bond until maturity.

4.1 Affine models of the term structure

4.1.1 The single factor affine model

In a single factor affine model we write p, ; as a linear function of the factor z:
Pnt = _[An + ant]

The coefficients differ for each maturity but are related in such a way that there are no arbitrage
opportunities across maturties. Below, we derive the restrictions implied by this. The yield to

maturity is

1 A, By,
Ryt =——pop=—+—"2
n n

and the one-period risk-free rate is
st =—pit = A1+ Bz

In order to derive the restrictions on A, and B, we need to introduce an assumption about

the process generating z;. We consider first the CIR model.
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The Cox-Ingersoll-Ross model (CIR) The CIR model assumes that

—Miyr1 = Zt+>\6t+1 (46)

zipr— = 0(z—p) + e (47)

where e;11 = 0\/Zte411 and 411 i1d(0,1). Thus Vi(ety1) = 02z. We now evaluate equation (43)

using these assumptions. We note that

Eymis1 +pn—1441] = —[zt+ An—1+ Bno1Eiziia]

—[zt + An_1 4+ B (p(1 — @) + ¢zt)]

and

Vilmis1 +pn—1.411] = Vi[Aerr1 + Buoterr1]) = A+ Bu_1)*Vi(ers1)

= (A +B,_1)%0?%
hence equation (41) becomes

1
_[An + ant] - _[(1 + (an—l)Zt + An—l + Bn—l:u’(l - ¢)] + 5(/\ + Bn—1)202'zt

w4 Buopl— )] = [+ 0Bus — 50+ Bu 1))

Equating terms on the left-hand and right-hand sides (i.e. the intercepts and the coefficients on

zt) gives the recursive formulae

An = An—l + Bn—l,u(l - (b)

1
B, =1+ ¢B,_1 — 5(/\ + B,,_1)%*?

Using Py = 1 implies pg; = 0 and Ay = 0, By = 0. This enables us to use the two formulae to

solve recursively for all A,,, B,. Forn=1, By =1— %)\202 and A; = 0. Hence

s = —prp =41+ Bz
= (1- %A%Q)zt (48)
The no-arbitrage condition, equation (43), is therefore
Eipn-1,4+41] — Pt + 01t = Et[hp 41 — 8¢ = 332_102% +AB,_10%2
The first term is the Jensen effect and the second is the risk premium. Thus

risk premium = — Covy(Myt1, Pn_1.4+1) = ABy_10°2
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Both are linear functions of z;. We note that if A = 0 (ie if m;41 = —2; and non-stochastic) then
the risk premium is zero.

So far z; has been treated as a latent variable and assumed to be observable. However, equation
(48) shows z; that it is a linear function of s; which is observable. This implies that we can replace
z; everywhere by s;. As a result p, ¢, R, and the risk premium can all be shown to be linear

functions of s; and the model becomes an SDF model with observable factors. Thus
B7l
An + —1 _ %)\20_2 S;|
1 A B

R ,=—[A B e T ——

n,t n[ n + nzt] " +7L(1—%/\202)St
)\Bn,10'2 s
1-— %)\202 K

This implies that over time the shape of the yield curve is constant and the curve shifts up and

Pn,t = 7[An + ant} = -

risk premium = AB,,_10%2z; =

down due to movements in the short rate. Since the shape of the yield curve actually varies over

time, this single-factor CIR model is clearly not an appropriate model of the term structure.

The Vasicek model The Vasicek model is also based on equations (46) and (47), but it assumes
that e; = oe¢y1, i.e. e; is homoskedastic. The analysis proceeds as for the CIR model. It can be
shown that
Vilmis1 + po—1,41] = (A + Bn_1)’0?
and equation (41) is
—[An + Bnzi] = —[An_1 + Buo1p(1 - ¢) + %(A +Bn1)?0)] = [1+ ¢Bn]z

Thus A4,, = An,l+Bn,1u(1—¢)+%()\+Bn,1)202) and B,, = 1+¢B,,_1. Using pg, = Ag = By =0
we obtain B; =1 and A; = %/\202. Thus

1
st =—p1t=A1 + Bz = 5)\202 + 2
Once again we can therefore re-write the yields as a linear function of s; :

1
Pn,t = 7[An + ant] = 7[An - §>\202Bn] — By sy

1 1 1 B,
Ryt = —[Ap + Bazi) = —[An — SX0°Ba] + —s;
n n 2 n
>From equation (43), and as B,, = 11—1‘%,
Eipn-t1441) —Pnt + P14 =  Ei[hpn 41 — i)

1
= §Bi_1a2 + )\Bn_102

1.1-¢"
2T

A(L—¢"Y)o?
I—¢

25



A1 —¢" Ho?
1—¢ '
Thus, like the CIR model, yields are linear functions of the short rate, and the shape of the

risk premium =

yield curve is constant through time and shifts due to changes in the short rate. But unlike the
CIR model, the risk premium depends only on the time to maturity and not on time itself. The
Vasicek model is, therefore, an even more unsatisfactory way to model the term structure than

the single-factor CIR approach. Clearly, both specifications should be rejected a priori.

4.1.2 Multi-factor affine models

One of the problems with these CIR and Vasicek models is that they are single factor models. A
multi-factor affine CIR model may be better able to capture both changes in the shape of the yield
curve over time and shifts. A two factor CIR model of the term structure has been used by Gong
and Remolona (1997) and by Remolona, Wickens and Gong (1998). Dai and Singleton (2000)
have used a three factor continuous-time CIR model. The evidence suggests that although two
factors capture most of the behaviour of the yield curve, a third may still prove to be significant.

The multi-factor CIR model of the term structure proposed by Dai and Singleton can be
written in discrete time as:

Pnt = _[An + Bfnzt] (49)

where z; is a vector of factors. The stochastic discount factor is

—mep1 = Cz+ Newp
Zepi—p = 0(z,—p) +e
€y1 = E\/S_tEtJrl
Siit = Vit @iz

where £ is a vector of ones, S; is a diagonal matrix, £;41 is 4.i.d(0, ), and 6 and ¥ are both square
matrices. Gong and Remolona and Remolona, Wickens and Gong use particular versions of this.

To illustrate, we consider the case where the factors are independent so that 8 and X are
diagonal matrices. Also, we set S;;+ = z;z. The whole model is therefore additive. As result, it

can be shown that
1
Eilpn—1t41] = pnt + 1t = 3 > Bl 107z + Y AiBin107z
i i

risk premium = g AiB, n,lafzit
i
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Hence the risk premium is the sum of the risk effects associated with each factor. Further, the

ShOI‘( rate iS a linear funCliOIl Of bOlh faClOI‘S
St pl t E (>\z ag; Zif)
) 2 - (2 L

which implies that the yields and the term premia can no longer be written as a linear function of
the short rate. Since every yield is a linear function of the factors, if there are n factors, it would
require the short rate plus n — 1 further yields to represent the factors. If there are more than
n yields (including the short rate) then the factors would not be a unique linear function of the
yields. A way would then be needed to project the yields onto the lower dimension factor space.
A possibility is principal components. If there were less than n yields no observable representation
of the factors would be possible, and the model could not be re-interpreted as an observable factor
model. If each yield is a linear function of two or more reference yields then the shape of the yield
curve can now change over time, although only with limited additional flexibility.

We may summarise our findings as far as the term structure is concerned in the following way.
The SDF model commonly used is the affine term structure model factor. This requires at least
two factors to adequately represent the yield curve. But having more factors than yields implies

that the model cannot necessarily be interpreted as an observable factor model.

4.2 Empirical Evidence on Affine Models
4.2.1 Vasicek models

Estimation of the Vasicek model is typically carried out by Kalman filter methods in order to
obtain maximum likelihood estimates. Hamilton (1994) presents a comprehensive treatement of
these recursive methods which rely on assumption of Gaussian errors and are therefore not suitable
for estimation of the more general CIR-type models. Jegadeesh and Pennacchi (1996) employ the
Kalman filter to estimate the parameters of single and two-factor Vasicek models. The single
factor model is given in (46 and 47) with e; = oe¢, whilst the two factor model is a restricted
version of (49). The motivation for the second factor in Jegadeesh and Pennacchi (1996) is as a
time-varying mean, or ‘target’ for the short-term interest rate, the observable single factor of the

Vasicek model. The structure of the model for the state variables is therefore:

2141 = (1 —=01)pq + 61210 + 0161041 (50)

zotr1 = (1 —02)z1¢ + O222¢ + 0282441 (51)

where the short-term interest rate is z9; and the ‘target’ or ‘central tendency’ is z1;. The data set

employed is monthly sampled three-month Eurodollar futures prices based on the 90-day LIBOR
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for contracts of four different maturities from 1992 to 1995 (ie n=1,..,4.). The maturities are
concentrated at the short end but extend up to five years. This is an actively traded market and,
the authors argue, less susceptible to the consequences of thin trading seen in some of the bond
markets which have been used to construct term structure data. Whilst many of the parameters
of the single factor model are significantly different from zero, the steady-state level of the state
variable, the short interest rate is not. The point estimate is also counter-intuitively negative. The
single state variable is found to mean-revert at a very slow rate. The estimate of 0.934 implies a
half-life of 10.5 yars. This implied borderline unit-root behaviour of interest rates seems counter-
intuitive. The estimate of the price of risk is positive and close to one. The implication is that
the risk premium, which is constant over time, is positive and increases with maturity, and the
yield curve is upward sloping.

In the two factor model, the coefficient is positive. A likelihood ratio test of 65 = oo, the
restriction implied by the single factor Vasicek model, is rejected at less than 1% significance.
Mean reversion in the short rate is somewhat closer to that found elsewhere in the literature, with
a half-life closer to four years. The short rate reverts somewhat faster to its central tendency
according to these estimates. Given these adjustment speeds, any interpretation of these factors
as reflecting the conduct of monetary policy seem unreliable - contrary to the claims of Jegadeesh
and Pennacchi. The estimate of the mean interest rate to which these state variables converge
is positive but, as for the single-factor model, not well determined. This, taken together with
the theoretical drawbacks of the Vasicek model discussed above, suggests that a more general

specification may further improve the model.

4.2.2 General affine models with unobservable factors

As noted, the empirical literature has gravitated to the conclusion that three factor models prob-
ably contain enough flexibility to fit the yield curve to most term structure data sets. Het-
eroskedasticity in the term structure along with the theoretical considerations discussed above
have motivated the analysis of multi-factor CIR models. Dai and Singleton (2000) provide the
most complete statistical comparison of various three factor models. They provide tests of models
with both one and two sources of conditional volatility amongst the three affine factors. Here we
focus on the single source case, that preferred by Dai and Singleton. To be compatible with our
earlier discussion, we present discrete-time versions of their models. The preferred structure of

the model of the three state variables is

zigr1 = (1= 01)pq + 6121t + o1/Z1e€1e41 (52)
Zotr1 = (1 —02)ug + 0220t + V2 + 21482041 + 023\ 2143141 (53)
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zgtr1 = (1 —03)zot + O323¢ + /2143141 + 03101/ Z14€ 1441 + O32V2€2¢41 (54)

where the short-term interest rate is z3¢, the ‘central tendency’ is zy;, and the ‘volatility’ factor zy;
is the sole source of conditional volatility. A similar three-factor model is proposed by Balduzzi et
al. (1996) with the restrictions o923 = 032 = 0 (i.e. the conditional correlation between the short
rate and the ‘central tendency’ is zero). This structure can be incorporated into the stochastic
discount factor through equation (49).

Dai and Singleton (2000) estimate the three-factor model on a dataset of yields on plain-vanilla,
fixed-for-variable rate US dollar swap contracts. The data are weekly from April 1987 -August
1996 on three yields; 6 month LIBOR and 2 and 10-year fixed-for-variable rate swaps. The
continuity of swap yield data making them preferable to treasury rates. The estimation method
employed is EMM. To capture the non-Gaussian dependencies in bond returns, Dai and Singleton
choose a semi-non-parametric function as the auxiliary model. Interestingly, this includes forms
of heteroscedasticity, such as ARCH, that are more general than those assumed in the strucutural
affine model being estimated. Whether a more general specification not constrained to be affine

would be preferable is still an open question.
4.2.3 Vasicek Model with Observable Macro Factors

Ang and Piazzesi (2000) use a modification of the multi-factor Vasicek model discussed above

with additional observable macroeconomic factors, but with Gaussian errors.The structure of the

model is
—Mi41 = E'(slzt + A/et+1
Zepi—p = 0(z,—p) +e,
€11 = XEpq1
s = 0z

where z; = (27, 2")" includes observable factors z? and unobservable factors z;*, and the short
interest rate is assumed to be a linear function of the factors. Ang and Piazzesi choose a specifi-
cation with two observable macroeconomic and three unobservable factors. The macroeconomic
factors are inflation and real activity factors created as principal components from a larger set of
macroeconomic data. The factors are assumed to follow ARMA processes, the parameterisation
of which is dealt with in the construction of the § matrix.

Ang and Piazzesi estimate a restricted version of the model in which the price of risk is zero.
The model is estimated in two steps. The coefficients on the observed factors are first estimated

by GMM. Those for the unobserved factors are estimated by maximum likelihood in a manner
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similar to that for the Vasicek models discussed above. Their term structure data are bond yields
of maturities 1, 6, 12, 36 and 60 months. In order to identify the three unobservable factors, they
assume that the 1, 12 and 60 month yields are measured without error.

The macroeconomic factors account for about 30% of of the forecast variance of the mid-range
of the term structure, but somewhat less at the longer end. The estimates of the processes gener-
ating the state variable show strong persistence in two of the three unobservable state variables.
These three factors are assumed to be independent of each other as well as of the two macroe-
conomic variables which by construction are independent of each other. Ang and Piazzesi report
that the persistence in the two most persistent unobservables in a standard multi-factor Vasicek
model is not significantly affected by adding the macroeconomic factors. But the third factor be-
comes more persistent. Both macroeconomic factors and all three unobservable factors are found
to have a significant impact on the short interest rate and hence the term structure. They are
not independent of the unobservable factors. There is a clear statistical relationship between the
two most persistent of the unobservable factors from the Vasicek model and the macroeconomic
factors of the full model suggesting that the macroeconomic factors are picking up part of the
behaviour of the unobservable factors.

The incorporation into affine term structure models of observable macroeconomic factors in
adition to the short interest rate is a clear step forward. However, the restrictions implied by the
Vasicek model - even one that is multi-variate with independent factors - limit the credibility of

the results.

4.3 Nominal and real term structures and inflation risk

In some countries data exist on indexed as well as on nominal yields. The UK has the longest data
set of indexed yields and the few studies available on indexed bonds have used these data. An
additional interest in these data is that, when combined with nominal yields, it is possible, from
financial data alone, to extract an estimate of future inflation, and of the inflation risk premium.
Evans (1998) and Remolona, Wickens and Gong (1998) have estimated SDF models of the real
term structure. In the UK, indexation occurs with a lag of eight months, so indexed yields are
not exactly the same as real yields. We illustrate the methodology by describing the approach of
Remolona, Wickens and Gong (RWG). Evans takes a very different approach and does not use
affine factor models.

RWG assume a two-factor CIR model for nominal yields and a one-factor CIR model for

indexed yields. Thus, for the logarithm of nominal bond prices,

pfzv,t = _[ArJLV + Bi]\,]nzlt + Bé\fnz%]
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and for the logarithm of indexed prices
Pt = —[A5, + Bj214]
The pricing kernel for indexed bonds is
My, = 21t + A1e1,t41
and that for nominal bonds is
N r
—Miy1 = =M + 2o + A2e2ip1

RWG assume that e;; and eg; are uncorrelated. The model is therefore additively separable. The
model for the nominal yields is that for the indexed yields plus an independent factor that can
be interpreted as an inflation factor. The factors are assumed to be generated by generalised CIR
models

Zigr1 — Wy = 0i(zie — p1;) + €141

i1 = 0/ I+ 12,8141 and €; 441 792d(0, 1) for ¢ = {1,2}. Recursive relations can be derived
for the coefficients of the price equations, and expressions for the risk premia can be obtained as
above. The risk premium for nominal yields is the sum of the risk premia for indexed yields and
inflation. The pricing equations can be combined into a multi-variate model where the vector of
nominal and indexed yields are linear functions of the two factors. As the factors are unobservable,
this model together with the equations for the two factors, was estimated using the Kalman filter.

Information about inflation can be extracted from this model by noting that the nominal and

indexed yields to maturity satisfy

1 n—1 1 n—1 N
Roi==73% EiRitri+—= 3 Eior
n i=o n =0
1 n—1 1 n—1

'
Tt == > B+ = Y0 Bl oy
n ;—o n ;=0

where R,, ; and r, ; are the yields on n-period nominal and indexed bonds, @ﬁ ¢ and ¢y, , are their
combined risk premia and Jensen effects. Using the Fisher equation R; ¢ = r1; + Eym4q, where
mi+1 is the inflation rate, and noting that if o7 ; is the sum of the Jensen effect and inflation
risk premium, then @7 , = gpr + — ¥+, and hence the average expected inflation over the next n
periods is

1 n—1 1 n—1
— Z Et7Tt+z' =Ryt — 1t — — Z Etsﬁftﬂ' (55)
n i—o n ;=0

To estimate future inflation, it is necessary to subtract the average expected value of the inflation

risk premium plus the Jensen effect from the difference between the nominal and indexed yields,
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rather than use the difference itself. The inflation risk premium varies over time and is estimated
to be around 1% for the UK in the 1990’s.

Evans (1998) proceeds very differently. He estimates equation (55) directly using as the de-
pendent variable data on inflation over the next n-periods. The yields on n-period nominal and
indexed bonds are the explanatory variables and the inflation risk premium is not taken into ac-
count. A variant is based on using the VAR approach to proxy the risk premia in which the risk
premium is taken into account. The VAR is defined in terms of all of these variables. Thus Evans
does not specify the stochastic discount factors explicitly. From the results above, however, it may
be noted that if the factors were specified and the CIR model used, then the risk premia would

in fact be a linear function of nominal and indexed yields.

4.4 QObservable factors using the MGM model

We complete our discussion of SDF models of the term structure by considering how one might
go about using the approach based on observable factors and the MGM model. We have shown
that the no-arbitrage condition for bond yields is equation (44) or equivalently, equation (45). If
we also assume that the log discount factor is generated by

M1 = a + E bizi 1.

3

then the no-arbitrage condition for bond yields can be written as

1
Ei(hn 41— St) + §Vt(hn,t+1) =- Z biCove(2i 141, i t41)

K2

or as
n—1 n—1
Ryi—s: = " Ei(Rp—1,t41 — St+1) + - EiAsiq
1(n—1)2 n—1
—5%‘/}(}%71,&1) - " Zi:bicovt(zi,tJrl,Rnfl,H»l)
This suggests that we model the joint distribution of X;41 = (Bn, 141 — St, P t41 — Styeeers 21,6415

22 t4+1,-...) as an MGM model defined by equations (30), (31) and (32), where we include the
maturities ni, no,... in the model.

As yields are nominal, using CCAPM with power utility would give the log discount factor
mi41 = 0 — O'AIIICH_1 — Tt41

Thus the factors would consist of just consumption growth and inflation. There is also an
argument for including As;y; as one of the factors as this is an independent source of variation.
Other possible factors are output, and money growth, the exchange rate, and for countries other

than the US, perhaps the change in the US short rate. We are currently pursuing this approach.
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5 SDF Models of the Foreign Exchange Rate Risk Premium
5.1 The Forward Premium Puzzle

The SDF approach has only recently been applied to modelling the FOREX. Surveys of the
FOREX market have been written by Lewis (1995) and Engel (1996) following earlier coverage of
futures as well as forward markets by Hodrick (1987). In this area modelling has become focused
on potential solutions to what is known as the forward premium puzzle. Before analysing SDF
models, we first outline the nature of the puzzle.

Consider two countries (domestic and foreign) each of which issues a one-period bond that is
risk-free in terms of its own currency. Let R;;; denote the excess return to domestic investors

from investing at time ¢ in the foreign bond. Thus
Rt+1 = Zr + A8t+1 — U (56)

where i; and ¢} are the domestic and foreign one-period nominal interest rates, respectively and
s¢ is the logarithm of the domestic price of foreign exchange. If investors are risk neutral and
rational then the expectation of R;yq conditional on information at time ¢ is Fy[R;y1] = 0, the
uncovered interest parity condition. But if investors are risk averse then E;[R;y1] = ¢,, where,
for the moment, ¢, will be given the interpretation of a risk premium. If only domestic investors
are exposed to exchange risk (i.e. foreign investors hold only their own bond) then ¢, > 0. The
sign is reversed if only foreign investors are exposed to exchange risk. More generally, ¢, can be
positive or negative depending on the relative magnitudes of these portfolio composition effects.
If the logarithm of the forward rate is denoted by f; = s; +4; — i; then the expected excess

return can be written
EiRiy1 = Eisepr — fr = EvAsepr — [fe — 8¢ = ¢y (57)

where f; — s; is the forward premium. If the rational expectations innovation is defined as €441 =

Ry 1 — Et[Ry41], then equation (57) can be written

Rt+1 =a+ B[ft - St] + €1 (58)

where e;41 = ¢; + €141. Market efficiency implies that o = 8 = 0 and rationality implies that
Ei[et+1] = 0. If, in addition, investors are risk neutral then ¢, = 0, and so E}[e;y1] = 0. When

all these assumptions hold the OLS estimators of o and 3 will be consistent.” Equation (58)

% A more familiar way of writing this model is in terms of As(t + 1) instead of R(t + 1) when equation (58)
becomes

Ast+1)=a+ (B+1)[f(t) —s(t)] +e(t+1)
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- or more commonly a variant in which R;;; is replaced by As;y1 - is used as the alternative
hypothesis in most tests of the efficiency of the foreign exchange market.

Estimates of (58) assuming risk neutrality uniformly reject the parameter restrictions required
for market efficiency. In particular, many studies find estimates of § which are negative. Although
theory predicts that the dollar will depreciate if the forward premium is positive, the implication
of a negative value of 3 is that it will appreciate. Thus, instead of the interest differential i — i*
compensating for an expected future exchange rate depreciation, this evidence implies that it
is accompanied by an exchange rate appreciation. Or, put differently, the greater the interest
differential of the foreign over the domestic bond i* — i, the larger will be the excess return to
doing so. This is the forward premium puzzle. In general, therefore, the appropriate investment
strategy would be to hold the bond with the higher interest rate; the subsequent exchange change
will usually reinforce this advantage. In practice, this would be bound to lead to destabilizing
FOREX speculation; investing in the bond with the higher domestic currency return is therefore
a one-way bet.

The implausibility of the presence of such an arbitrage opportunity suggests that there must be
another explanation for the puzzle. One explanation is that the estimate of § is biased downwards
due to the presence of the risk premium in the error term of the regression. This is also consistent
with the finding of significant serial correlation and heteroskedasticity in the residuals. Assuming
that the FOREX market is efficient and investors are rational, Fama (1984) has shown that the

bias in 8 can be expressed as

bias = covlfy — st, d,]/var(fi — st

S } (59)

var(f; — s
where p is the correlation between f; — s; and ¢,, (i.e. between the forward and risk premia).
Negative bias implies, therefore, that p < 0. This can be interpreted as meaning that for US
investors, the greater the expected depreciation of domestic currency, the lower is the required
risk premium for holding foreign assets. Furthermore, the size of the bias (about -2 in many
studies) implies that the variance of the risk premium must be a multiple factor (four for these
studies) greater than the variance of the forward premium.

It may be noted that when the test is carried using a regression of s;1 on f;, the slope cofficient
is close to its theoretical value of unity even though a risk premium is still being omitted. The
probable explanation for the different outcome is that whereas s;41 and f; are non-stationary
processes, the risk premium is stationary. Hence super-consistent estimates are obtained even

when the risk premium is omitted. This test can therefore tell us nothing about whether there
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should be a risk premium, although it does suggest that § = 0 in (58).

5.2 SDF FOREX Models

We consider how to obtain an expression for the foreign exchange risk premium using the stochastic
discount model. These factors are jointly distributed with the excess return on foreign exchange,

the only asset we consider. The SDF model in this case can be expressed as
1= Ef[Mysr(1+ 47 + Aseya))] (60)

Here, M, is the discount factor required to make the present value of the total income (1 + i})
from holding a foreign bond and converted to domestic currency equal to one unit of domestic
curency. The only source of uncertainty here is the one-period ahead spot exchange rate as both
ir and ¢f are known at time ¢. Taking logarithms of equation (60) and assuming log-normality
gives

Eimisq + i + Asepa] + %Vt[mtﬂ +i; +Asi41] =0 (61)
Replacing R:41 in equations (60) and (61) by the risk free rate i; gives
Ey[myqy + ] + %W[mt-&-l] =0 (62)
Subtracting equation (62) from equation (61) gives
B[R] + %V;‘/[Rtﬂ] = —Covy[myy1, Ris1] (63)

The last term on the left hand-side of equation (63) is the Jensen effect. The term of the right
hand-side is the FOREX risk premium for the US investor. Comparing equation (63) with equation

(58) implies that ¢, is not in fact just the risk premium but is
1
¢ = —5VilBen] — Covi[mysr, Risa] (64)

This implies that ¢, will have a higher variance than the FOREX risk premium which will be of
some assistance in helping to generate the additional variability required in ¢,.5
Because equation (63) involves conditional expectations, and given equation (57), it can be

expressed in other ways, for example, as’

1
Et[Rt+1] + §W[A8t+1] = —Cou [mt+17 ASH—I} (65)

Qi (£)5(t41) then the

CE=IOEIO) arbitrage

6 If logarithms are not taken, and the excess return is defined as 1+ R(t+1) =

relation would be E¢[R(t + 1)] = —Covt[M(t + 1), R(t + 1)]
which does not involve the Jensen effect.

7 As(t + 1) could be replaced in equation (65) by s(t + 1).

35



This shows explicitly that uncertainty about the future spot exchange rate is a necessary element
in the risk premium. The larger the predicted covariance between the rate of appreciation of
domestic currency and the discount rate, the smaller the risk premium of domestic investors
holding foreign denominated assets. Although these domestic investors only suffer a loss when
domestic currency appreciates, the larger the discount rate, the less this loss is.

It has been implicitly assumed that the risk is being borne by domestic investors through
their holding of foreign bonds. This would imply that the discount factor is that appropriate for

domestic investors. In practice, of course, foreign investors are exposed to the same FOREX risk

in reverse.® Measuring returns and the discount factor in foreign currency would give
By t+1} + §Vf[ t+1] = Ovt[mt-l—lv t+1] (66)
where —m™ is the foreign investor’s discount rate and is measured in foreign currency, and R* =

—R. This implies that for the UK investor the expected excess return is determind by
1 *
Ey[—Reya] + §W[Rt+1] = Cove[myyy, Rit1] (67)

where Covi[m}, , Riy1] is the risk premium.

Subtracting equation (67) from (63) gives
1 *
Et[Rt+1] = —C’ovt[g(mt“ + mH—l)vRt-‘rl] (68)

Thus the Jensen effect disappears. The combined risk premium is the difference between the
individual investor risk premia and is due to covariation between the average of the discount factors
of the domestic and foreign investors and the excess return defined for the domestic investor (or,

equivalently, As;1). Adding equations (68) and (63) gives
W[Rt—i-l] = CO’Ut [mZ‘H, ASH_l] — CO’Ut [mt+1, A8t+1] (69)

This implies that As, 11 = mf, ;| —myp1 4+, with Cov[Asi1,1;,4] = 0. Equation (69) reveals
that there is a linear relation between V;[Asyy1], Covi[my, |, Asyyq] and Covy[myy1, Asyyq] and
only two terms are required, as in equation (68). There is an important proviso to this result. If,
as is likely, there is measurement error in the proxy for the discount factor, then it will not hold in
practice in the data. This is not a weakness of SDF theory per se, but an indication of the likely

effects of modelling the discount factor incorrectly.

8 Tt is also possible for domestic investors to hold short positions. In this case the source of risk would be the
same as that of foreign investors, though the discount factor would still be that of the domestic investor. We ignore
this complication in our discussion. It is probable that a relatively small proportion of FOREX transactions are of
this type.
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In the case of complete markets the two discount factors are identical when measured in the
same currency, see Backus, Foresi and Telmer (2001). Hence m;,; = m1 + Asiyq. This would

imply that equations (65) and (67) are then identical.

5.3 Affine Models of FOREX

The affine models of the term structure discussed above can be applied to the FOREX problem.
Backus et al (2001) assess the ability of two affine models to match the properties of the risk
premium set out by Fama (1984). The first model they consider is a two factor CIR model
where the factors are assumed to be independent and country-specific. As we have seen, this is a
model that was rejected by Dai and Singleton (2000) as a good description of the term structure.
However, it can be used to make the issues with multi-country affine models clear. Using the
notation employed earlier, the structure of the affine models of the SDF for each country and the

processes for the unobservable state variables are

—My1 = 21t + AMO1VZ1E 1841

—mi = Zor + Ao02ay/Z2E2141
Zippr — = Oz — 1) + o1z 1041
Zog41 — 0 = O(z2r — 1) + 0ov/Z2tE2e 41

It can be shown that the independent state variables, the short interest rate for each country, are

proportional to the country-specific state variable

1

Tt (1 — 5)\%0’%)2’” (70)
1

rio= (1= §>\§0§)Zzt (71)

Backus et al. work in a complete markets environment. This gives the forward premium

im0 = (1= 3007 (a1 — 220) (72)

for the simplified case where the prices of risk and unconditional variances are symmetric A\; =

Ao = X and 01 = 03 = 0. The expected rate of depreciation of the spot rate is
EtAStJr] = Zl,t — Zg’t (73)
and the implied risk premium is

1
rp; = 75)\202(z17t — 22¢) (74)
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In this case the first of Fama’s requirements is satisfied, namely, the risk premium and the expected
rate of depreciation are negatively correlated. The implied slope coefficient in a regression of the
expected rate of depreciation on the forward premium is 1/(1 — %/\202) which will be positive
and greater than one for plausible calibrations. Hence this fails to provide an explanation for the
empirical results discussed above. Backus et al. show that this slope coefficient can be negative
if a common independent factor is added to the model. However, in this case there is a finite
probability that interest rates could be counter-factually negative.

Backus et al. also use a version of the two-factor affine model that is closer to that preferred
by Dai and Singleton (2000), namely a two-factor model with interdependent factors. Again, in
theory, this model is capable of matching both the negative correlation between the risk premium
and the expected rate of depreciation, and the negative regression slope. But this only happens if
the home country factor has a larger impact on the interest rate in the foreign country, and vice
versa.

Backus et al. also present GMM estimates of the parameters of the unobserved state variable
processes based on matching the first two moments and the autocorrelation coefficient of the home
currency short rate, the variance and autocorrelation of the forward premium, the variance of the
depreciation rate and the slope parameter of the forward premium regression. Using monthly data
on the US dollar - sterling exchange rate from July 1974 - November 1994, their estimates imply
extreme distributional properties for the unobserved factors and the forward premium for both the
CIR independent factors and for the interdependent factor models. In particular, if these factors
were interpreted in the term structure context, interdendent factors imply high prices of risk and
counterfactually steep term structure slopes. Backus et al. therefore conclude that whilst the more
general model with interdependent factors can in theory be consistent with the features of the risk
premium that were laid out by Fama, the estimates suggest the model has severe shortcomings.
A more direct comparison with observed factor models could be made if other moments were used
in the estimation, or the direct estimation approach of Dai and Singleton were followed.

An extended version of the approach followed by Backus et al. is presented in Hollifield and
Yaron (2001). They extend the modedl to allow for the risk premium to be decomposed into
real and nominal components for each country, and for their interaction. Using GMM estimation,
Hollifield and Yaron find that all of the predictable components in FOREX returns can be ascribed
to predictable variation in real risk and none to nominal risk, or to the interaction between the
two. An interesting conclusion is that the effects of monetary policy on predictable returns are

not observable in inflation rates, but only in interest rate differentials.
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5.4 The SDF FOREX model with observable factors
5.4.1 CCAPM

An early study of the SDF model of the FOREX market is that of Mark (1985). Based on CCAPM
with power utility, assuming complete markets and taking the US as the home country, he uses

GMM to estimate the Euler equation for a number of exchange rates. This can be written

Cm)" Py Sio1 (1414))
E -
b tw( Cy PS¢ (1+4)

where P; is the domestic price level and S; is the domestic price of foreign exchange. Mark finds
estimates of the coefficient of relative risk aversion o which are both large and not well determined.
He also rejects the over-identifying restrictions implied by CCAPM. Also using GMM, Hodrick
(1989) subsequently confirmed this result, but for a wider set of currencies and for additional
home countries. Although the model was not rejected for one or two configurations, the overall
conclusion is negative.

Wickens and Smith (2001) compare the use of two models: CCAPM and CAPM. Both are
expressed as observable stochastic discount factor models. They also note the relevance of the
market structure: whether it is assumed that investors are domestic residents, foreign residents or
both. They consider the sterling dollar exchange rate, where s; is the logarithm of the number of
dollars per pound. For the US domestic investor the no-arbitrage condition for the excess return
is

EiRypr + %V;S[RHl] = 0" Covy[ci 1, Re1] + Covt[Apffy, Req] (75)
where Ri11 = Asiy1 + ¢ — 4t. Thus, the larger the predicted covariation of the depreciation of
domestic currency with the rate of growth of domestic consumption and with domestic inflation,
the greater the risk premium for domestic investors in foreign bonds. For the UK investor the

no-arbitrage condition is
1
ERi 1y — §Vt[Rt+1] = —UUkCOUt [C?JrkpRtH] — Cov, [Apﬁkp Rt+1] (76)
When both investors are in the market these two equations can be added to obtain

Riy1 = %{Uuscovt [ett1s Resr] + Covg[Ap}y, Reya] — 0*F Covy[cffy, Rega] — Covg[Apity, Resal}

(77)
Under the assumption of complete markets the US and UK discount factors are identical when
expressed in the same currency. It can be shown that in this case the three equations (75), (76)

and (77) are identical.
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5.4.2 CAPM

The discussion in Section 2 shows that in traditional CAPM the value function is defined in terms
of the mean and variance of financial wealth rather than consumption. For the two-period problem

this gives
Wit

t

M1 = o0y :Ut(l"’_RK/H) (78)

where W; is nominal financial wealth and RK/H is the nominal return on wealth. The discount
factors can be obtained from the variables that explain this portfolio return.

The relevance of CAPM to FOREX is the widespread use of mean-variance analysis in hedging
FOREX risk. The uncertainty about the pay-off to the possibly partly-hedged portfolio then arises
from the future return on the portfolio. In the case of FOREX this is just pure currency risk and
anything correlated with this - such as tomorrow’s domestic and foreign money supplies and output
- could be used to help reduce it. Wickens and Smith use the monetary model of the exchange
rate to generate observable factors that determine the exchange rate. In the monetary model, the
exchange rate is determined by future expected relative money supplies and output levels, see for
example Frenkel (1976) and Obstfeld and Rogoff (1998). This would suggest that exchange risk
might be due to forecast covariation between today’s exchange rate and tomorrow’s domestic and
foreign money supplies and output.

The index of industrial production is used as the monthly output measure, and narrow money
as the measure of money. For the US investor model, only US industrial production and the US
money supply are used, and for the UK investor model, only UK industrial production and the
UK money supply. The combined investor model includes all four variablesWickens and Smith
then use the monetary model of the exchange rate to explain this, and hence to provide the

macroeconomic factors.
5.4.3 Empirical evidence

Wickens and Smith estimate all of the CCAPM and CAPM models using constant correlation
MGM for the vector of stationary variables @441 = {R4+1,%;,,} where the 2,4, is the vector of
observable factors appropriate for each specification. As explained in section 3.2, the equation for
the excess return must be constrained to avoid arbitrage possibilities. For comparison purposes,

a general alternative model is also estimated. This can be written
Regr =1 Ry + volfe — st] + Vi[Rega] + 0"/ Clsy + 0"V CPEy + €10

where Cy%; and CyF; denote the macroeconomic factors associated with the US and UK investor

models, respectively. €1¢41 is used to refer to the error term in the excess return equation no
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matter which model is chosen. In practice the error terms in each model would be different.

The data used are monthly from 1975.1 - 1997.12. As consumption data are not available
monthly, deflated retail sales data are used. The output series are the indices of industrial pro-
duction. The money supply is the money base for the US and MO for the UK. At a monthly
frequency there are significant ARCH effects for all of the variables. Estimates are presented for
the dollar-based investor holding sterling assets, the sterling-based investor and for both types
of investor. For CCAPM, the conditional covariance terms in the two single investor models are
significant at the 10% level. In the two investor model only the conditional covariance with US
consumption is significant. In the general model none of the conditional covariances is significant,
but the covariance with UK consumption is significant. The implied estimate of the coefficient of
relative risk aversion for the US and UK investors is -289 and -283. For the two-investor model it
is -410 for US investors. All of these estimates therefore have the wrong sign and are very large.
Moreover, in the general model none of the conditional covariances is significant and, as would be
expected in view of this, the lagged excess return and forward premium retain their significance.
In other words, the forward premium puzzle is not resolved. The broad conclusion that emerges
from these results about CCAPM is similar to those of Mark and Wu (1998), Lewis (1995) and
Engel (1996). Estimates based on power utility are not consistent with the theory.

The theoretical predictions for the monetary model are that the coefficient on conditional
covariances should be positive for US money and negative for US output, and these signs should
be reversed for the UK variables. The estimates for the UK investor have the correct sign and are
significant. For the two investor model all the signs are correct, but the covariances with UK money
are not significant. In the general model the output covariances are the most significant. These
results therefore show considerable support for the monetary model and hence for the traditional
models of currency risk. However, the continued significance of the lagged excess return and
forward premium in the general model indicates, however, that the forward premium puzzle is not

resolved even if output, and in some cases money, seem to be significant sources of FOREX risk.

6 SDF models of equity returns

A great deal of empirical evidence has been accumulated on equity returns based on the capital
asset pricing model (for surveys of this see, for example, Ferson (1995) who refers to them as
beta models, and Campbell, Lo and MacKinlay (1997)) and on the use of VAR models to test
the present value model of equity (see, for example, the surveys of Campbell, Lo and MacKinlay
(1997), Cuthbertson (1996) and Bollerslev and Hodrick (1995)). Although we have shown that
CAPM can be interpreted as an SDF model, and the present value model of equity is an SDF
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model with a constant discount factor, for space reasons, we will not include this material in this

survey. The beta versions of the CAPM as implemented in many empirical studies of portfolio

9

returns assume that the risk premium is constant; this rules these models out a priori.” Instead,

we will concentrate on the more explicit use of the SDF model to price equity.

The theory is straightforward. We can use the SDF models, equations (6) or (10) using

Pii1+Diy1 1

— 10
1 + Tt41 = 2 “Thrers

as our measure of real equity returns. The remaining issues

are the choice of discount factor model and the method of estimation. Nearly all of the research
on SDF models for pricing equity are based on CCAPM or its variants. For recent surveys see
Ferson (1995) and Campbell (1999). Almost no work has been carried out using other methods.
A notable exception is the explicit use of the affine factor model by Bekaert and Grenadier (1999).

6.1 CCAPM

GMM estimation The widely cited paper by Hansen and Singleton (1982) was the first to
estimate the Euler equation directly. Their SDF model was CCAPM based on power utility and
their method estimation was GMM. Using equations (13) and (18) their Euler equation can be
written .

505 (%) " -1=0 (79)

Cétl (1 + Tt+1). The

This is a particular case of equation (40). The instruments used were lags of
estimates were found to give some, but not strong, support for the theory.
The consensus of a large number of studies, using a wide variety of usually less formal empirical
methods, including calibration, is that CCAPM equity returns are not well explained by CCAPM
based on power utility. As noted above, the general conclusion is that equity returns are too
large to be explained by the model and implausibly large values of the coefficient of relative risk
aversion, o;, would be required to remedy this. This is the equity premium puzzle. Attention
therefore turned to reformulating the utility function to produce a larger risk premium. We now

examine these attempts in more detail.

9 An interesting debate has recently begun over whether more precise estimates can be obtained from estimation
of factor models such as the CAPM by traditional beta methods or by treating the model as an SDF. Kan and
Zhou (1999) find in favour of beta methods in a very restrictive case. Whilst Cochrane (2000) and Jagannathan
and Wang (2002) show how restrictive this case is, it may be relevant in particular for linear or linearised models
such as those reviewed by Campbell (1999) and thus be of more general importance.

10 Tt may be noted that when the discount factor Mi41 is the constant M, equation (1) becomes P; =

Et [Mt+1Xt+1] = MEt[Pt+1 + Dt+1} = Z:il MSEtDt+S if hmn_nx, M‘SPt+S = 07 iInplying that the price of

1 .
equation
1+7‘{ 4

equity is the present value of discounted expected future dividends. And since E¢(Miy1) = M =

(6) becomes Eiriy1 = r{ = ﬁ —1.
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6.1.1 Habit persistence

One of the most successful alternatives is the habit persistence model in which instantaneous utility
is assumed to depend on current consumption and past consumption habits (or the sustainable

level of consumption) X; to give U(Cy, X¢). We consider two examples. Abel (1990) assumes that

1—0o
c
(%) -1
Up = ~—4—

where X; is a function of past consumption, for example, X; = C’f_l. The stochastic discount

the utility function can be written

Ciq1 7
factor becomes M1 = (3 <Xé—jl> and the no-arbitrage condition is
b
Et(rt+1 — th) = ,6(1 + T,{)atC’ovt (A In Ct+1 —Aln Xt+1, Tt+1) (80)

It appears from this that there is additional flexibility in the risk premium arising from the
conditional covariance between Aln X1 and r¢y1. But if X; is a function of past consumption
then the conditional covariance is zero, and equation (80) simply reverts to (16), an unhelpful
outcome.

As noted earlier, Constantinides (1990) has proposed a utility function of the form

(Cr = AX) 7 =1

1—0

U, =

This has been used by Campbell and Cochrane (1999) with the restriction that A = 1. They

Ct(;Xt. Maintaining the framework

t

introduce the concept of surplus consumption, defined as S; =

above, the no-arbitrage condition can be written
Et(T't+1 — 7"{) = ﬂ(]. + th)O'tCO’Ut (A In Ct+1, 7"t+1) + /6(]. + TZ)O'tCO’l)t (h’l St+1, Tt+1)

This has the added flexibility provided by the conditional covariance of In Sy 41 and r;1. Campbell
and Cochrane assume that In S; is generated by an AR(1) process with a disturbance term whose
variance depends on In S;. They do not estimate the resulting model but, like Constantinides, use
calibration methods. By calibrating the variance of the error term of the AR process suitably,
it is possible to force the conditional covariance between InS;;; and r;11 to be of the necessary
size. By this means success is virtually guaranteed. A final judgement about habit persistence
models must await the use of empirical methods based on classical statistical inference that are

less biased in favour of the model.
6.1.2 Time non-separable preferences

Empirical work on time non-separable utility has concentrated on the Epstein-Zin utility function.

This has been implemented by, for example, Epstein and Zin (1991). They estimate the Euler
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equation

Crr\ 7|3 1-1=g
ﬁ( t“) ] R TE Ry 1% =0 (81)

by GMM using as instruments current and lagged consumption growth and R}* which is measured
by the value-weighted index of NYSE shares. R; is an individual share price. Using the parameter
definitions above, a typical example of their estimates based on the Epstein-Zin results is 8 = 0.997,
o = —0.94, v = —0.97. Since the estimates of o and  are negative, and not positive, this is not
encouraging.

Campbell and Viceira (1999) also use the Epstein-Zin model in an examination of portfolio
choice, but they calibrate the model and do not estimate it. They assume log-normality and use

the no-arbitrage condition, equation (19).

6.2 Affine models of equity

Bekaert and Grenadier (1999) have proposed a class of affine factor models for pricing equity that
involves observable factors. Starting with CCAPM, they argue that in equilibrium the consump-
tion process C; must equal the exogenous aggregate real dividend process D; and hence, from

equation (18), the log stochastic discount factor can be written
mi+1 = lnﬁ — O'Adt+1

where In D = d. They then assume that the dividend process is driven by real productivity shocks

¢ so that
o, Ing 1
04t —— Fomt aliy1

and they assume that x; has a CIR process. We write this as

Adiyr =

Tpy1 — p=0(x — p) + 0u/TiEr11

&, and €; are asumed to be 4id(0, 1) processes. They do not derive the no-arbitrage equation for
pricing equity that would be implied by this, but it is
1
Et(rt-l—l — th) + 5‘/;5(7”15_;,_1) = O'COUt(Adt+1, Tt+1) =0.
Hence the equity risk premium is zero. If the dividend process had been written instead as
o, Ing 1

504+ — + &1 +0al
d o o + t+1

Adyy = B)

then the no-arbitrage condition would become
1
Ey(repr — 1) + 3Vi(re1) = 0uv/TCove(erin, o).
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This would be a more useful formulation.

Bekaert and Grenadier model equity and bond togther. They therefore introduce another
factor, the inflation rate, which is also assumed to be generated by a CIR process. The whole
model is estimated by GMM. Given the complexities involved, and the space that would be

required to explain these, we are unable to go into further detail.

6.3 Observable factors using the MGM model

As for the term structure, we complete our discussion of SDF models of equity by proposing a new
approach based on observable factors and the use of the MGM model. This is based on a discussion
paper currently in preparation, see Smith, Sorensen and Wickens (2002). A problem with the affine
factor approach of Bekaert and Grenadier is the assumption that the macroeconomic variables are
generated by CIR processes may be incorrect. In fact, it is unlikely that they are. Ideally, we would
like to model the macroeconomic factors using appropriate macroeconomic theory and econometric
models, and not necessarily models that satisfy finance conventions, however convenient this may
be. On the other hand, to be useful for asset pricing, the macroeconomic variables must exhibit
time-varying volatility, something very few macroeconometric models allow.

Our starting point is the assumption that the log discount factor is generated by
mip1 = a+ Z bizit11-
i
and hence the no-arbitrage condition is
Ey(req —rf) + %Vt(rwl) ==Y biCov(zir1,7er1) (82)
i

Instead of assuming that the factors are generated by CIR processes we suppose that the joint
distribution of x;y1 = (r¢41 — r'tf, 21,441, 22,441,---) 18 the MGM model defined by equations (30),
(31) and (32). Next we must choose the factors. We could do so on the basis of any (or all) of
the equity pricing models discuss in this section. The alternative hypothesis could be formulated
from an inclusive choice, and the null hypothesis from any specific model. The previous discussion
suggests that possible variables are the growth in consumption, output and dividends. we could
also include, for example, bond yields, inflation, the exchange rate, money growth and earnings
growth. It would, of course, be more satisfactory if our choice had sound theoretical under-
pinnings. Essentially, we are aiming to exploit any volatility contagion between equity returns
and other variables. For many stock markets, contagion from the US stock market is likely to be
important. There may also be contagion from the domestic bond market and the foreign exchange

market. There is, therefore no shortage of potential factors. The main practical problem is that
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the more factors we include, the larger the number of parameters to be estimated, and the more
difficult it is to achieve numerical convergence. As shown above, the parameters in the unrestricted
BEKK model grow at the rate n*, and for the other models they grow at the rate n2.

Among the models considered by Smith, Sorensen and Wickens is CCAPM with power util-
ity. For real returns, this generates just one stochastic discount factor, the rate of growth of
consumption. The model does not perform well. Although the estimate of the coefficient on
the conditional covariance in mean (ie the coefficient of relative risk aversion) is positive and

significant, it is implausibly large, like previous studies based on CCAPM.

7 Conclusion

Empirical work on financial markets has recently become more conscious of using a well-specified
no-arbitrage condition to price assets, rather than the more more traditional expectations hypoth-
esis. The stochastic discount factor model provides a general way of deriving this condition that
encompasses most standard asset pricing models. One of the main problems that remain is how
to implement the SDF model. In this paper we have provided a selective survey of the methods
that have been used in the literature, and we have shown how they been implemented in the three
principal financial markets: the bond market, the foreign exchange market and the stock market.

We have outlined the main features of the SDF approach and shown why a large number of
standard asset pricing methods are implicitly SDF models. A key issue in selecting an SDF model
is the choice of pricing kernel, or discount factor. Both latent and observable factors have been
used. In general, the SDF model is a highly nonlinear. This greatly complicates the estimation
of the model. One response is to use affine factor models. Another is to find better non-linear
estimators. We discuss both approaches. We have considered in some detail the implementation
of latent variable and observable affine factors models, especially in the bond market. And we
have described several non-linear econometric methods and their application.

In addition to surveying the literature, we have proposed a new way to formulate and estimate
the SDF model using observable factors. This provides a general formulation convenient for
comparing and testing different types of SDF model. We show how the model can be estimated

by multivariate GARCH-in-mean and we include empirical examples of this approach.
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