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ABSTRACT

Panel datasets provide a rich source of information for health economists, offering the scope to
control for individual heterogeneity and to model the dynamics of individual behaviour.  However
the qualitative or categorical measures of outcome often used in health economics create special
problems for estimating econometric models. Allowing a flexible specification of individual
heterogeneity leads to models involving higher order integrals that cannot be handled by
conventional numerical methods. The dramatic growth in computing power over recent years has
been accompanied by the development of simulation estimators that solve this problem. This
review uses binary choice models to show what can be done with conventional methods and how
the range of models can be expanded by using simulation methods.  Practical applications of the
methods are illustrated using data on health from the British Household Panel Survey (BHPS).
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Introduction

Panel datasets, such as the European Community Household Panel (ECHP) and the U.S.

PSID and Monitoring the Future panels, provide a rich source of information for health

economists.  Panel data offer the scope to control for individual heterogeneity and to

model the dynamics of individual behaviour.  However the measures of outcome used in

health economics are often qualitative or categorical. These create special problems for

estimating econometric models. Allowing a flexible specification of individual

heterogeneity leads to models involving higher order integrals that cannot be handled by

conventional numerical methods. The dramatic growth in computing power over recent

years has been accompanied by the development of simulation estimators that solve this

problem. This review uses binary choice models to show what can be done with

conventional methods and how the range of models can be expanded by using simulation

methods.  Practical applications of the methods are illustrated using data on health from

the British Household Panel Survey (the BHPS).

Section 1 gives an overview of binary choice models for panel data and introduces our

empirical application to BHPS data for a binary measure of health. It discusses the

interpretation of individual effects in panel data models and shows how these can be

modelled using the random effects probit model, the conditional logit model and by

parameterising the individual effect. Extensions of the random effects model, to allow for

serial correlation, can be dealt with by simulation-based inference. Section 2 introduces

classical simulation methods. These are designed to approximate higher order integrals and

they include the GHK simulator for the truncated multivariate normal distribution. We

focus on a particular method of estimation, Maximum Simulated Likelihood (MSL). We

present some empirical results and use these to discuss issues in that arise in practical

applications of MSL. The section concludes with a brief overview of other methods of

estimation (MSM, MSS). Section 3 moves to Bayesian MCMC methods. It begins with an

introduction to the Bayesian approach to inference before introducing the concept of

Markov Chain Monte Carlo (MCMC). Implementation of MCMC involves the use of
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Gibbs sampling and Metropolis-Hastings algorithms, along with the use of data

augmentation to deal with latent variables. This section concludes with an overview of

convergence analysis and methods for model selection and testing.

1.  Binary choice models for panel data

1.1  A brief introduction to our model

To illustrate the methods reviewed in this paper we use a panel data model for a binary

measure of health applied to data drawn from the British Household Panel Survey (BHPS).

The BHPS is a longitudinal survey of private households in Great Britain, with the same

respondents questioned each year. The survey contains data on socio-demographic, income

and health variables. It is an annual survey of each adult household member (aged 16 and

over). The survey was designed to be a nationally representative sample of over 5,000

households, giving approximately 10,000 individual interviewees. The first wave was

carried out between 1st September 1990 and  30th April 1991.

Our model applies to a binary dependent variable (“does health limit your daily

activities?”). There are repeated measurements for each wave (t=1,… ., T) for a sample of n

individuals (i=1,… ..,n), and the binary dependent variable yit can be modelled in terms of a

continuous latent variable y*it,

(1) yit = 1(y*it > 0) = 1(X'itβ +uit > 0)

where 1(.) is a binary indicator function. X includes variables to capture “permanent” and

“transitory” income, measured by the mean of household income across all waves of the

panel and deviations around that mean respectively, along with marital status, education

and household composition. In our empirical application we restrict the analysis to a sub-
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sample of 2,715 men (full details of the sample and variables are given in Contoyannis,

Jones and Rice [1]).

The error term uit  could be allowed to be freely correlated over time or the correlation

structure could be restricted. A common specification is the error components model

which splits the error into a time-invariant individual random effect (αi) and a time-

varying idiosyncratic random error (εit),

(2) yit = 1(y*it > 0) = 1(X'itβ +αi + εit > 0)

The error term could be autocorrelated, for example following an AR(1) process, εit=ρεit-1

+ ηit, or it could be independent over t (giving the random effects model). The simplest

possible specification is to assume that the uit are independent over t.

1.2  Individual effects in panel data

To understand the role of individual effects in panel data models, consider the standard

linear panel data regression model, in which there are repeated measurements (t=1,… ., T)

for a sample of n individuals (i=1,… ..,n),

(3) yit = X'itβ + uit  = X'itβ + αi + εit

The presence of αi  implies clustering within individuals so that a random effects

specification can improve the efficiency of the estimates of β. This stems from the

structure imposed on the variance-covariance matrix of the error term,

(4) Var[uit] = E[uituis] = σα
2  + σε

2,  t=s

  E[uituis] = σα
2 ,  t≠s
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These efficiency gains can be exploited by using (4) to construct a generalised least squares

(GLS) estimator.

Consistency of the GLS estimator rests on the assumption that the error term is

independent of the regressors. Failure to account for correlation between the unobservable

individual effects (α) and the regressors (X) will lead to inconsistent estimates of the βs.

The least squares dummy variable approach (LSDV) gets around this by conditioning on

the individual effects, including a dummy variable for each individual, but this may be

prohibitive if there are a large number of cross section observations.   Alternatively, the

individual effects can be swept from the equation by transforming variables into deviations

from their within-group means. Applying least squares to the transformed equation gives

the covariance or within-groups estimator of β (CV). Similarly, the model could be

estimated in first differences to eliminate the time-invariant individual effects.

Identification of β rests on there being sufficient variation within groups. In practice, fixed

effects may only work well when there are many observations and much variation within

groups.

Now consider a nonlinear model, for example the binary choice model based on the latent

variable specification in Equation (2). Assume that the distribution of εit is symmetric with

distribution function F(.). Then,

(5) P(yit =1) = P(εit > -X'itβ - αi) = F(X'itβ + αi)

This illustrates the so-called problem of incidental parameters. As n→∞ the number of

parameters to be estimated (β, αi) also grows.  In linear models the estimators β̂  and α̂

are asymptotically independent, which means that taking mean deviations or differencing

the data allows the derivation of estimators for β whose limits do not depend on α̂ .  In

general, this is not possible in nonlinear models and the inconsistency of estimates of α

carries over into the estimates of β.  Setting the incidental parameter problem aside, the

fixed effect probit model can be estimated by including a dummy variable for each
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individual. Heckman [2] presents Monte Carlo evidence that suggests that the small sample

bias in the estimates of β is relatively small for values of T of 8 and over. More recently,

Greene [3] has championed the use of this ‘brute force’ approach to fixed effects estimation

of nonlinear models.

1.3  Random effects probit model

Assuming that α and ε are normally distributed and independent of X gives the random

effects probit model (REP). In this case α can be integrated out to give the sample log-

likelihood function,

(6) lnL = 
1

n

i=
∑  {ln

1

T

t

+∞

=−∞
∏∫ (Φ[dit(X'itβ + α)] )f(α)dα }

where dit = 2yit –1. This expression contains a univariate integral which can be

approximated by Gauss-Hermite quadrature.   Assuming α~N(0,σα
2), the contribution of

each individual to the sample likelihood function is,

(7) Li =  
+∞

−∞
∫  (1/√2πσα

2) exp(-α2/2σα
2) { g(α) }dα ,

where g(α) = 
1

T

t=
∏  Φ[dit(X'itβ + α)]. Use the change of variables, α = (√2σα

2)z,, to give,

(8) Li = (1/√π) 
+∞

−∞
∫ exp(-z2) {g((√2σα

2)z)}dz

This expression is suitable for Gauss-hermite quadrature and can be approximated as a

weighted sum,
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(9) Li ≈ (1/√π) 
1

m

j=
∑ wj g((√2σ2)aj)

where the weights (wj) and abscissae (aj) are tabulated in standard mathematical references.

Table 1 shows a summary of results for the pooled and random effects probit models

applied to our binary measure of health problems in the BHPS (for brevity we only report

the coefficients on the income variables). The pooled probit model treats the data as a

single cross section and ignores the fact that there are repeated observations for each

individual. The pooled probit estimates provide a useful benchmark for the random effects

model.  It has been shown that the pooled probit (pseudo-) ML estimator gives consistent

estimates of the βs, irrespective of whether the assumed error structure is correct. Of

course the pooled probit model does not provide an estimate of σα
2 and, therefore,

information about the structure of the error term and the relative importance of the

individual effect.

Table 1: Estimates for the pooled and random effects probits

Pooled probit Random effects probit
(24 point quadrature)

Ln(‘permanent income’) -0.573 -0.490
Ln(‘transitory income’) -0.115 -0.049

σα
2 - 0.784

LnL -6263.5 -4291.2

The income effects are negative, suggesting that those with higher household income are

less likely to report limiting health problems. The estimates of the coefficient on the log of

permanent income are quite similar for the pooled and random effects probits, although

the size of the permanent effect relative to the transitory effect is smaller in the pooled

probit. The estimate of the variance of the individual effect in the random effects

specification, σα
2, is 0.784. Since the overall error variance has to be set equal to one in
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order to identify the probit model, this can also be interpreted as the proportion of the

overall error variance that is explained by the time invariant individual effect.

1.4 Extensions and alternatives for the random effects probit

The random effects probit model has two important limitations: it relies on the

assumptions that the error components have a normal distribution and that errors are not

correlated with the regressors. Normality can be relaxed by using a  finite mixture model.

The possibility of correlated effects can be dealt with by using conditional (fixed effects)

approaches or by parameterising the effect.

The finite mixture model

Deb [4] presents a random effects probit model in which the distribution of the individual

effect is approximated by a discrete density. This is an example of a finite mixture model

(see [5]). In this case the sample log-likelihood is approximated by,

(10) lnL = 
1

n

i=
∑  ln ( 

1

C

j=
∑ πj {

1

T

t=
∏ Φ[dit(X'itβ + αj)] })   , 0 ≤ πj ≤ 1 , 

1

C

j=
∑ πj = 1 

Monte Carlo experiments are used to assess the small sample properties of the estimator.

These show that only 3-4 points of support are required for the discrete density to mimic

normal and chi-square densities sufficiently well so as to provide approximately unbiased

estimates of the structural parameters and the variance of the individual effect.

The conditional logit estimator.

The conditional logit estimator uses the fact that ∑tyit is a sufficient statistic for αi (see e.g.,

[6]). This means that conditioning on ∑tyit allows a consistent estimator for β to be

derived. Using the logistic function,

(11) P(yit =1) = F(X'itβ  + αi) = exp(X'itβ  + αi)/(1+ exp(X'itβ + αi))
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it is possible to show that,

(12) P[(0,1)|(0,1) or (1,0)] = exp((Xi2 - Xi1)'β )/(1+ exp((Xi2 - Xi1)'β ))

This implies that a standard logit model can be applied to differenced data and the

individual effect is swept out.

Parameterising the individual effect

Another approach to dealing with individual effects that are correlated with the regressors

is to specify E(α|X) directly. For example, in dealing with a random effects probit model

Chamberlain [6,7] suggests using,

(13) αi = X'iα  + ui    ,   ui ∼ iid N(0, σ2)

where Xi=( Xi1,....,XiT), the values of the regressors for every wave of the panel, and α=(

α1,....,αT). Then, by substituting, the distribution of yit  conditional on X but marginal to αi

has the probit form,

(14) P(yit =1) = Φ[(1+σ2)-½(X'itβ  + X'iα)]

The model could be estimated as a random effects probit to retrieve the parameters of

interest (β,σ). Recently Wooldridge [8] has shown that this approach can also be applied in

a random effects probit model with state dependence. In this case the initial values of the

dependent variable are also included in Equation (13) in order to deal with the problem

that the initial conditions are correlated with the individual effect (the so-called ‘initial

conditions’ problem, see Heckman [2]).
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1.5  Simulation-based inference

The random effects probit model only involves a univariate integral. More complex

models, for example where the error term εit is assumed to follow an AR(1) process lead to

sample log-likelihood functions that involve higher order integrals. Monte Carlo

simulation techniques can be used to deal with the computational intractability of

nonlinear models, such as the panel probit model and the multinomial  probit. Popular

methods of simulation-based inference include classical Maximum Simulated Likelihood

(MSL) estimation,  and Bayesian Markov Chain Monte Carlo (MCMC) estimation. These

are discussed in more detail in sections 2 and 3, but the basic principles of simulation-based

estimation can be illustrated in the context of the random effects probit model.

The principle behind Maximum Simulated Likelihood (MSL) estimation is to replace

population expectations with a sample analogue. As a simple illustration, consider the

example of the random effects probit model. An individual’s contribution to the sample

likelihood function can be written in the form,

(15) Li  = 
+∞

−∞
∫ {g(α)} φ(α) dα = Eα [ g(α)]

Then the individual contribution to the corresponding simulated likelihood function is,

(16) Li = (1/R) 
1

R

j=
∑ g(αj )

The αj’s are draws from a standard normal and the simulated likelihood is the average of

g(αj) over R draws. The MSL estimator finds the parameter values that maximize the

simulated likelihood function. The properties of this estimator are discussed more

thoroughly in the next section.
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2. Classical simulation methods

2.1 Simulation-based estimation

Recall that the general version of our model is,

(17) yit = 1(y*it > 0) = 1(X'itβ + uit > 0)

This implies that the  probability of observing the sequence yi1 …….yiT for a particular

individual is,

(18) Prob(yi1,… ,yiT) =  
1

1

bi

ai
∫  …

biT

aiT
∫ f(ui1,… ,uiT)duiT,… ,dui1

with ait = -X'itβ, bit=∞ if yit=1 and ait=-∞,  bit =-X'itβ if yit=0. The sample likelihood L is

the product of these integrals, Li, over all n individuals. In certain cases, such as the

random effects probit model, Li can be evaluated by quadrature. In general, the T-

dimensional integral Li cannot be written in terms of univariate integrals that are easy to

evaluate. Gaussian quadrature works well with low dimensions but computational

problems arise with higher dimensions. Multivariate quadrature uses the Cartesian product

of univariate evaluation points and the number of evaluation points increases

exponentially. Instead we can use Monte Carlo (MC) simulation to approximate integrals

that are numerically intractable. This includes numerous models derived from the

multivariate normal distribution (the panel probit, multinomial and multivariate probit,

panel ordered probit and interval regression, panel Tobit, etc.). MC approaches use

pseudo-random selection of evaluation points and computational cost rises less rapidly

than with quadrature.

The principle behind simulation-based estimation is to replace a population value by a

sample analogue. This means that we can use laws of large numbers (LLNs)  and central
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limit theorems (CLTs) to derive the statistical properties of the estimators. The basic

problem is to evaluate an integral of the form,

(19)
b

a
∫ {h(u)}f(u) du = Eu[ h(u)]

This can be approximated using draws from f(u), ur, r=1,… ,R,

(20) (1/R) 
1

R

r =
∑  h(ur)

This is the direct MC estimate of Eu[ h(u)]. Direct MC estimators are usually unbiased and

consistent in R (due to the LLN) and asymptotically normal (due to the CLT).

The Crude Frequency Simulator

Lerman and Manski [9] proposed a MC algorithm for the evaluation of multivariate

normal (MVN) probabilities such as those in the panel probit model. This is rarely used in

practical applications but it illustrates a simple way of simulating MVN probabilities

directly. The CFS for the probability, Pi., of a sequence of binary outcomes in the panel

probit model works as follows:

The CFS algorithm

1. Generate a T vector of pseudo-random independent standard normal variates.

2. Convert this into a N(0,∑) vector, where ∑ is the covariance matrix of f(ui1,… , uiT).

3. Determine whether this vector matches the conditions for the observed sequence of

outcomes yi1, … , yiT.

4. Repeat these steps a large number, R, times.

5. Evaluate the relative frequency of draws that are consistent with the observed

outcomes. This gives an approximate value for Pi.
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The CFS is computationally simple and cheap. But it has problems. It can easily return

zero for Pi. This leads to computational problems when taking logs or ratios. It is

discontinuous in the  parameters creating a problem for derivative-based optimisation

routines. The CFS has higher variance than other unbiased and consistent simulators for

MVN probabilities.

An alternative is the GHK (Geweke-Hajivassiliou-Keane) simulator (see Part II of the

structured bibliography in the Appendix). The GHK is a smooth recursive conditioning

simulator (SRC). The GHK algorithm draws recursively from truncated univariate

normals. This relies on the decomposition,

(21) f(u1,… ,uT) = f(u1)f(u2|u1)……f(uT-1|uT-2,… u1)f(uT|uT-1,… .u1)

along with the fact that the conditional (in our case truncated) normal density can be

written as a univariate normal. The GHK simulator produces probability estimates that

are bounded between 0 and 1. The estimates are continuous and differentiable with respect

to (β,∑), because each contribution is continuous and differentiable. It has a smaller

variance than the CFS, because each element is bounded between 0 and 1. The GHK

appears to be the most accurate simulator available for a given computation time. Box 1

provides Hajivassiliou’s [10] Gauss code for the GHK algorithm.
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BOX 1:  GAUSS code for obtaining probability estimates using the GHK algorithm

(source: Hajivassiliou [10])

proc ghk(m,mu,w,wi,c,a,b,r,u);

local j,ii,ta,tb,tt,wgt,v,p;

j=1;

ii=1;

ta=cdfn((a[1,1]-mu[1,1])/(c[1,1]+1.e-100))*ones(1,r);

tb=cdfn((b[1,1]-mu[1,1])/(c[1,1]+1.e-100))*ones(1,r);

tt=cdfni(u[1,.].*ta+(1-u[1,.]).*tb);

wgt=tb-ta;

do while j<m;

j=j+1;

ta=cdfn(((a[j,1]-mu[j,1])*ones(1,r)-c[j,ii]*tt)/(c[j,j]+1.e-100));

tb=cdfn(((b[j,1]-mu[j,1])*ones(1,r)-c[j,ii]*tt)/(c[j,j]+1.e-100));

tt=tt| cdfni(u[j,.].*ta+(1-u[j,.]).*tb);

ii=ii|j;

wgt=wgt.*(tb-ta);

endo;

p=sumc(wgt')/r;

retp(p);

endp;
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2.2  Maximum Simulated Likelihood (MSL)

This is a simple extension of classical maximum likelihood estimation (MLE) and is useful

in many cases when the log-likelihood function involves high dimensional integrals. This

includes the panel probit with RE+AR(1). The idea is to replace the likelihood function Li

with a sample average over random draws,

(22) li = (1/R) 
1

R

r =
∑  l(uir)

where l(uir) is an unbiased simulator of Li. The MSL estimates are the parameter values that

maximize,

(23) Lnl =  
1

n

i=
∑  Lnli

In practice, antithetics can be used to reduce the variance of the simulator. These are based

on,

(24) li = (1/2R) 
2

1

R

r =
∑ l(uir)

where uir = ui1 ,… .., ui2R and uj = -uj-R for j=R+1,… .2R. Antithetics reduce the variance by

using symmetric draws. If the probability simulator is linear in the draws, this approach

reduces the variance to zero.

Having an unbiased simulator li of Li (from CFS or GHK) does not imply an unbiased

simulator of lnLi or the overall sample log-likelihood function (as E[lnli] ≠ ln(E[li])). Of

course MLE is, in general, biased due to nonlinearity. But, unlike MLE, the MSL estimator

is not consistent solely in n. This is because the simulator is biased downwards for all
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individuals and the bias depends on β. Consistency and asymptotic unbiasedness can be

obtained by reducing the error in the simulated sample log-likelihood to zero as R→∞ at a

sufficient rate with n. Hajivassiliou and Ruud [11] show that a sufficient rate is R/√n→∞

as n→∞. Hajivassiliou and Ruud also show that this is sufficient for the usual MLE

estimate of the covariance matrix to be used without any correction.

2.3  Application of MSL

Table 2 compares the estimates of the income effects and the variance of the individual

effect for the random effects probit model computed using both quadrature (with 24

points) and MSL (with 150 replications). Simulation is not required for this model but it

provides a useful test of the reliability of the simulation approach. It is clear from the table

that the estimates are very similar.

Table 2: Comparison of quadrature and MSL for the random effects probit

MLE
(24 point)

MSL
(R=150)

Ln(‘permanent income’) -0.490 -0.510
Ln(‘transitory income’) -0.049 -0.052

σα
2 0.784 0.788

LnL -4291.2 -4290.5

Simulation becomes necessary to move beyond the simple random effects (RE)

specification. Table 3 presents estimates of the income effects for models ranging from

independent probit equations, through the RE and RE+AR(1), to an unrestricted

covariance matrix. The results show that the income effects are largely unaffected by

moving to more flexible specifications of the covariance matrix.
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Table 3:  Estimated income effects under alternative covariance structures

INP RE RE+AR(1) Unrestricted
Ln(‘permanent

income’)
-0.573
(0.061)

-0.510
(0.049)

-0.509
(0.049)

-0.511
(0.049)

Ln(‘transitory
income’)

-0.115
(0.030)

-0.052
(0.023)

-0.057
(0.025)

-0.055
(0.024)

To assess the overall statistical performance of the models Table 4 shows various model

selection criteria. The most general model, with an unrestricted covariance matrix, has the

largest log-likelihood function. But the model has many more parameters than the

RE+AR(1) and RE specifications. Information criteria can be used to penalise the measure

of goodness of fit for the loss of degrees of freedom. The unrestricted model is still

preferred according to the Akaike information criterion (AIC) but, when the number of

parameters is penalised more heavily with the Bayesian information criterion (BIC) and

Consistent AIC (CAIC), the RE+AR(1) specification is favoured.

Table 4:  Model selection criteria using MSL

lnL AIC BIC CAIC
Unrestricted -4188.07 8421.12 8731.92 8820.00

RE+AR(1) -4214.83 8455.66 8635.23 8626.82
RE -4290.55 8606.10 8778.76 8851.31

Table 5 assesses the impact of simulation bias on the results by comparing estimates based

on different numbers of replications. These show that the estimates are robust for  values

of R in the range 75-150.
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Table 5:  Estimates for different R

‘permanent’ ‘transitory’ σα
2 ρ

R=75 -0.515 -0.057 0.698 0.521
R=100 -0.515 -0.059 0.695 0.528
R=150 -0.510 -0.057 0.691 0.541

Simulation bias can be assessed more formally by using the test statistic proposed by

Hajivassiliou [10]. Table 6 shows statistics for both the full sample and for separate sub-

samples  selected according to individuals’ highest academic qualifications. Statistics are

presented with p-values in parentheses. As expected, using only one replication is

insufficient to obtain an asymptotically unbiased estimator. However there is a positive

relationship between the test statistics and sample size. This suggests that the statistics

reflect the relative magnitude of the bias: for smaller values of n, R can be reduced while

maintaining the variance due to simulation. As the number of replications is increased the

average value of the test statistics gradually reduces.

Table 6:  Test statistics for simulation bias

R=1 R=40 R=75 R=150
FULL SAMPLE 701.1

(0.00)
30.4

(0.25)
17.7

(0.89)
37.5

(0.07)
DEGREE 72.1

(0.00)
16.1

(0.85)
34.9

(0.05)
32.8

(0.08)
A LEVEL 171.0

(0.00)
24.8

(0.36)
34.0

(0.06)
17.9

(0.77)
O LEVEL 273.7

(0.00)
22.7

(0.48)
30.0

(0.15)
32.8

(0.08)
NO

QUALIFICATIONS
257.1
(0.00)

58.1
(0.00)

38.3
(0.02)

22.5
(0.49)
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Some guidelines

Theoretical considerations and experience of applying these methods suggests that the

following guidelines should be taken into account when putting MSL into practice:-

1.  Use fixed draws: The random draws should only be drawn once and not varied as the

optimisation algorithm searches. If the random variates do change, the values of (β,∑)

which maximize the simulated log-likelihood will change and the optimisation routine

may never converge. This is a general requirement for any simulation-based estimation

that uses an iterative optimisation routine. Furthermore, the asymptotic theory for these

estimators is based on a given set of draws.

2.  Use a smooth and bounded simulator:  It is important to use a simulator which is

smooth in β (such as the GHK algorithm) so that derivative based optimisation routines

may be used. It is also important to use simulators which are bounded by 0 and 1 (e.g.

GHK), so the simulated sample log-likelihood can always be evaluated. When using

numerical derivatives it is advisable to use alternative step sizes until the estimates of the

derivatives are stable.

3. Scale the data and use good initial values: The tails of the multivariate normal density

die out very rapidly. This causes potential underflows during computation (the values are

smaller than can be expressed and manipulated during computation). This problem is

severe when taking logs. Hajivassiliou [10] suggests standardising regressors (to zero mean

and unit variance) before estimation. More generally, reasonable starting values will help

to prevent this problem.

4. Use antithetics: Use of antithetic variates can reduce simulation variance and bias

substantially.

5. Validate the algorithm: Use a simple model to validate a new program by comparing

MSL and MLE.

6. Check for bias: Bias is model specific and, while there is guidance in the literature – for

example many studies suggest that values of R less than 50 are sufficient - sensitivity

analysis is important. As noted above, a test for asymptotic bias is available (Hajivassiliou,

[10]). Bias corrections are available but are computationally difficult and may not perform

well (e.g., Lee, [12]).
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2.4  Other Classical estimators

MSL is not the only classical simulation estimator available. The Method of Simulated

Scores (MSS) is a general approach based on the simulated score function. The estimator is

implicitly defined as the value of β which satisfies,

(25) 1/n 
1

n

i=
∑  liβ / li  =  0

where liβ  = [1/R1 
1

1

R

r =
∑  liβr ] is an unbiased simulator for the vector of derivatives Liβ  and li

is an unbiased simulator for Li  based on R2 simulations. In general, the MSS estimator is

consistent and asymptotically normal as n→∞ and R2/√n→∞. The value of R1 affects the

efficiency of the estimator.

The method of moments (MoM) estimator for the probit model solves the orthogonality

condition,

(26) 1/n 
1

n

i=
∑  Qi [yi  - Φ(X'iβ)]  = 0

for a fixed and exogenous vector of instruments Q (e.g. X). MoM is equivalent to MLE

with a suitable choice of Q. If  the moments cannot be evaluated analytically (as in the

panel probit model) then the residual can be simulated and, for efficiency, so can the

optimal instruments. This gives the Maximum Simulated Moments (MSM) estimator

(McFadden [13]). Further details of the links between MSL, MSM and MSS can be found in

the references given in the Appendix.

Box 2 suggests some convenient sources of software for classical simulation estimation.
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BOX 2: Software for classical simulation methods

http://econ.lse.ac.uk/~vassilis/pub/simulation

NMRSIM\_G.LIB

Library of GAUSS routines for multivariate normal rectangle probabilities and their

derivatives. Companion to Hajivassiliou, McFadden and Ruud  [14]

SSMLMNP by A. Borsch-Supan & V. Hajivasilliou

Estimation code for simulated maximum likelihood of multinomial probit in Fortran 77

Limdep v.7.0 for Windows  (http://www.limdep.com)

Simulator for multivariate normal CDF using GHK algorithm.  By default, R=100 but

can be changed. Up to m=20 variate integral



21

3.  Bayesian MCMC methods

3.1 The Bayesian approach

In Bayesian analysis a prior distribution  π(θ ) is updated with the information contained in

the sample (for the RE+AR(1) panel probit model θ = {β,ρ,σ2
α}). Given a specified

likelihood, π(y|θ ), the posterior density is given by Bayes' theorem,

(27)  π(θ|y) =  π(θ)π(y|θ ) / π(y)

where,

(28) π(y) =  ∫ π(θ )π(y|θ ) dθ

π(y) is known as the predictive likelihood and it is used for model comparison. It

determines the probability that the specified model is correct. The posterior density  π(θ|y)

reflects updated beliefs about the parameters. Given the posterior distribution, a  95%

credible interval can be constructed that contains the parameter with probability equal to

95%. Point estimates of the parameters of interest, θ1, are provided by the posterior mean,

(29) E(θ1|y) =  ∫  θ1π(θ1 |y) dθ1

3.2 Markov Chain Monte Carlo (MCMC) Methods

MCMC methods are used when it is not possible to obtain the characteristics of the

posterior distribution analytically. The methods provide a sample from the posterior

distribution. Posterior moments and credible intervals are obtained from this sample. The
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method works because, under appropriate conditions, a Markov chain, in which draws are

conditional on the previous iteration, should converge to a stationary distribution that is

independent of the initial values. After discarding the initial iterations, the remaining

values can be regarded as a sample from the posterior distribution.

Gibbs Sampling

A draw from a distribution π( 1θ , 2θ ) can be obtained in two steps. First, draw 1θ  from its

marginal distribution π( 1θ ). Second, draw 2θ  from its conditional distribution given 1θ ,

π( 2θ | 1θ ).  In many situations it is possible to sample from the conditional distribution

π( 2θ | 1θ ) but it is not obvious how to sample from the marginal π( 1θ ). The Gibbs

sampling algorithm obtains a sample by sampling iteratively from the full conditional

distributions. Even though the Gibbs sampling algorithm never draws from the marginal,

after a sufficiently large number of iterations the draws can be regarded as a sample from

the joint distribution.

To implement Gibbs sampling the vector of parameters θ  is subdivided into s groups,

θ =( 1θ ,... sθ ). The initial values 1θ =( 1
1θ ,... 1

sθ ) are fixed arbitrarily. For example, let

θ =( 1θ , 2θ ), then kθ =( 1
kθ , 2

kθ ) is drawn as follows:

1. 1
kθ  is drawn from the distribution π( 1θ |y, 1

2
kθ − )

2. 2
kθ  is drawn from the distribution π( 2θ |y, 1

1
kθ − )

The process is repeated until a sufficiently large sample is obtained.

In practice the conditional distributions must be easy to sample from. Also, the number of

sub-groups in which θ is subdivided should be kept as small as possible to speed up

convergence. Good starting values can substantially save in computing time in complex

models.
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Data Augmentation

Following Tanner and Wong [15], latent or missing data can be regarded as parameters

belonging to θ. Once the latent data is imputed, the model becomes linear and the

conditional distributions are easier to sample from. For example, in a simple probit model,

(30) y*i = X'iβ + εi, ε~N(0,1), θ=(β,y*)

The conditional distribution of y*i  given β is N(X'iβ,1), truncated to positive values if y=1

and truncated to negative values if y=0. If the prior for β is non-informative, the

conditional of β given y* is a N(b,V) where b and V are the OLS estimators when y* is

observed and the variance of ε is known.

Metropolis-Hastings (M-H) Algorithms

When the conditional distributions cannot be sampled directly, Gibbs sampling can be

combined with a Metropolis step. Assume π( 1θ |y, 2θ ) is not easy to sample from. Let

q( 1θ | 1
1
kθ − , 1

2
kθ − ) be a density for 1θ  given 1

2
kθ −  that can be sampled easily. A M-H

algorithm generates kθ =( 1
kθ , 2

kθ ) as follows:

1. Draw a candidate value *
1θ for 1

kθ  from the distribution q( *
1θ | 1

1
kθ − , 1

2
kθ − ).

2. Set 1
kθ  = *

1θ  with some probability γ otherwise keep 1
kθ  = 1

1
kθ − .

3. Generate 2
kθ  from the distribution π( 2θ |y, 1

kθ ).

The probability γ depends on the values of the ratio π(.)/q(.) evaluated at the new

proposed value and at the previous value in the chain. New candidates can be generated in

a simple way from a normal distribution centred at the previous value in the chain and

with arbitrary variance. However, if the dimension of 1θ  is greater than 2, this may not

work well. Alternatively, new candidates can be generated from a distribution that

approximates the conditional density π( 1θ |y, 1
2
kθ − ). Bad approximations may result in low

probabilities of acceptance and slow convergence.
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3.3  MCMC estimation of the panel probit

To see how MCMC works in practice consider the panel probit with autocorrelated error

terms,

(31) yit = 1(y*it > 0) = 1(X'itβ +αi + εit > 0) ,   εit =  ρεit-1 + ηit,     var(αi ) = σ2
α

The priors for β, σ2
α and ρ are normal, inverted gamma and uniform (-1,1) distributions

respectively. The parameters and latent data are divided into 5 groups: y*it , β, αi , σ2
α, ρ.

The parameters in each group are generated conditionally on the parameters in the rest of

the groups in the following way:

1. Fix the initial values.

2. Generate y*it from a truncated normal distribution with mean X'itβ +αi and variance

var(εit), according to the value of yit.

3. Generate β from a normal distribution. The mean and variance of this distribution are

the Bayesian point estimates in a model in which y*it and αi are observed and (σ2
α, ρ)

are known.

4. Generate αi from a normal distribution. The mean and variance are the point estimates

in a model in which y*it is observed and (β,σ2
α,ρ) are known.

5. Generate σ2
α from an inverted gamma distribution. The parameters of this inverted

gamma are the same as in a model in which y*it and αi are observed and (β,ρ) are

known.

6. ρ can be generated with a M-H step. New candidates can be generated from a normal

distribution.

Box 3 shows how this algorithm can be implemented in Gauss.
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BOX 3:  Gauss code for MCMC estimation of panel probit model

iter=1;

Beta[1,.]=zeros(1,K);

Rho[1]=0;

Var_ind[1]=1;

Do while iter<=NIT;

Latent=augment(Beta[iter,.], Effects, Var_ind[iter], Rho[iter]);

Beta[iter+1,.]=sampleB(Latent, Effects, Var_ind[iter], Rho[iter]);

Effects=sampleI(Latent, Beta[iter+1,.], Var_ind[iter], Rho[iter]);

Var_ind=sampleV(Latent, Effects, Beta[iter+1,.], Rho[iter]);

Rho[iter+1]=sampleR(Latent, Effects, Beta[iter+1], Var_ind[iter+1],

Rho[iter]);

iter=iter+1;

endo;
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3.4  Output and convergence analysis

Sample means, standard deviations and correlations estimated from the MCMC draws are

all strongly consistent estimates of the corresponding characteristics of the posterior

distribution. A sample for any transformation of the parameters g(θ ) can be obtained by

equivalently transforming the sampled values for θ. This allows the calculation of credible

intervals and posterior means for g(θ ). In the panel probit model, g(θ ) could represent the

marginal effect of income on the probability of being ill. Since values in the chain are not

independent, sample standard deviations are usually biased. Geweke [16] proposes an

alternative method that is implemented in standard packages.

Table 7 shows that the MCMC algorithm produces very similar point estimates and

standard errors to those estimated by MSL, for the full range of specifications. Figure 1

shows the results of the MCMC estimation for the autocorrelation parameter ρ and the

variance of the individual effect σ2
α in the RE+AR(1) model. The left-hand panels show

the output of the Markov chain for successive iterations, while the right-hand panels show

kernel density estimates of the posterior densities for the two parameters.

Table 7: Comparison of MSL and MCMC estimates for the panel probit models

RE
MSL MCMC

RE +
MSL

AR(1)
MCMC

Un-
MSL

restricted
MCMC

Ln(‘permanent income’) -0.510
(0.049)

-0.499
(0.050)

-0.510
(0.049)

-0.504
(0.049)

-0.511
(0.049)

-0.481
(0.051)

Ln(‘transitory income’) -0.052
(0.023)

-0.051
(0.023)

-0.057
(0.025)

-0.057
(0.024)

-0.054
(0.024)

-0.051
(0.022)

σα
2 0.788

(0.012)
0.791

(0.012)
0.691

(0.025)
0.696

(0.025)
ρ 0.541

(0.040)
0.541

(0.042)
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Figure 1:  MCMC parameter estimates and posterior densities.

Trace and densities for  ρ and σ2
α

Convergence Analysis
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Independently of the initial values, after a sufficient number of iterations, the algorithm

should converge to the posterior distribution. An informal way of checking for

convergence is to subdivide the chain in several parts and compare the average and

standard deviations for each part. Alternatively, averages and standard deviations of chains

started at different initial values may be compared. High serial correlation in the chain

values indicates that a longer chain will be necessary to obtain precise estimates. Cowles

and Carlin [17] review some formal tests of convergence. The freely available software

CODA includes the following tests: the Geweke  test for convergence; the Heidelberger

and Welch test for convergence which also tests whether the posterior mean has been

estimated with a given degree of accuracy; and the Raftery and Lewis test gives the length

of the chain necessary to calculate a credible interval with a specified degree of accuracy.

Results of applying the CODA software to our MCMC algorithm for the RE+AR(1)

model are shown in Table 8. These show that a longer chain is required to get convergence

in the estimates for σα
2   and ρ than for the income effects. This finding is reflected in the

plots of the autocorrelation functions, shown in Figure 2, these ‘die-out’ for the two

income parameters but persist for σα
2   and ρ.

Table 8:  Results of convergence analysis

Geweke Convergence
(H-W)

Posterior
mean (H-W)

Length of
chain

Ln(‘permanent income’) 0.108 passed passed 11,000
Ln(‘transitory income’) 0.255 passed passed 8,000

σα
2 -0.782 passed passed 35,000

ρ 0.420 passed passed 21,000
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Figure 2: Autocorrelations for key parameters
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3.5  Testing and model selection

Testing in the Bayesian approach consists of comparing the probabilities of different

hypotheses. The probability of each model is determined by the predictive likelihood, π(y),

which is the normalising constant in the denominator of Bayes' theorem,

(32) π(y|Mi) =  ∫ π(θ)π(y|θ, Mi) dθ

Given m possible models {Mi}, and prior probabilities for each model, π(Mi), the posterior

probability for model Mi is,

(33) π(Mi|y) =   π(Mi)π(y|Mi) / 
1

m

j=
∑ π(Mj)π(y|Mj)

Although the posterior probability depends on the number of models m, which is

determined a priori, the ratio of the probabilities of two different models does not depend

on m. In the case of equal prior probabilities for each model this ratio is known as the

Bayes factor,

(34) Bi,j = π(y|Mi)/π(y|Mj)

If a model is to be selected, it should be the model with the largest value for the predictive

likelihood.

To illustrate the Bayes factors for our models let:

M1: Random effects and independent time variant errors

M2: Random effects and AR(1) errors

M3: Unrestricted variance-covariance matrix

The log of the predictive likelihood (lnπ(y|Mj)) for each of the models is:
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M1: -4293.18 (1.02)

M2: -3986.85 (0.88)

M3: -4367.28 (1.19)

Giving Bayes factors:

Pr(M2)/Pr(M1) = 1.09E+133

Pr(M1)/Pr(M3) = 1.52E+32

Pr(M2)/Pr(M3) = 1.66E+165

These results support the RE+AR(1) specification against the simpler RE model and

against the more general unrestricted model. This parallels the finding based on the BIC

and CAIC criteria in the classical analysis.

The posterior probabilities for each model lead to a procedure to deal with uncertainty

about the appropriate model to use. The posterior density for θ  takes into account the

different possible specifications,

(35) π(θ |y) =   
1

m

j=
∑  π(θ |y,Mj)π(Mj|y)

The posterior mean for θ is a weighted average of the posterior means in each model,

(36) E(θ |y) =   
1

m

j=
∑  E(θ |y,Mj)π(Mj|y)

Chib and Jeliazkov [18] present a method to calculate the predictive likelihood, π(y). From

Bayes' theorem,

 

(37) π(θ|y) =  π(θ)π(y|θ) / π(y)

It follows that any particular value, θ*, of the parameters satisfies the identity,
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(38)  lnπ(y) =  lnπ(θ*) + lnπ(y|θ*)  -  lnπ(θ*|y)

Chib and Jeliazkov [18] propose a method to estimate the posterior ordinate lnπ(θ*|y).

The method requires running the algorithm for additional iterations. In order to assess the

accuracy of the calculation, they also provide the standard deviation of the estimated value

for lnπ(θ*|y). If evaluation of the likelihood, π(θ*|y), involves multiple integrals it can be

computed using the methods described in Section 2.

Testing hypotheses about θ

When the hypothesis of interest is of the type θ1=k , it is possible to use Verdinelli and

Wasserman’s [19] method. Unlike the Chib and Jeliazkov method, in many situations this

method does not require any additional computations. Their procedure gets more

complicated in terms of computing time when the normalising constant of π(θ1|y,θ2) is not

known, or when θ1 and θ2 are not independent a priori.

Box 4 lists sources of software for doing Bayesian analysis using MCMC. It also provides a

reference for the Gauss code used to estimate the panel probit models.

Overview

This review illustrates the scope for using simulation methods to allow for flexible

specifications of heterogeneity in nonlinear models for panel data. It uses binary choice

models to show what can be done with conventional methods and how the range of

models can be expanded by using classical and Bayesian simulation methods.  Practical

applications of the methods are illustrated using data on self-reported health from the

British Household Panel Survey (the BHPS). Our aim is to provide a brief introduction to

simulation methods and to show their relevance for applied analysis in health economics.

To provide some guidance for readers who would like to pursue the topic in more detail

the Appendix includes a structured bibliography.
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BOX 4: Software for Bayesian MCMC analysis

BACC freely available at www.econ.umn.edu/~bacc

Includes, among other models, univariate latent models with flexible distributions for the

error term (mixture of normals and student-t distributions). Allows the user to implement

more complex procedures building on simpler models. This requires knowledge of C

language.

BUGS and CODA freely available at www.mrc-bsu.cam.ac.uk/bugs/

BUGS allows users to easily specify their own MCMC sampling algorithm

CODA provides checks of convergence for the MCMC output

MLWIN is commercial software which includes Bayesian estimation of multi-level models

The Gauss code  in Box 3 can be downloaded from http://www.york.ac.uk/res/herc/yshe
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