THE UNIVERSITYW

Discussion Papers in Economics

No. 2001/16
The Evolution of Consistent Conjectures
by

Huw D Dixon and Ernesto Somma

Department of Economics and Related Studies
University of York
Heslington
York, YO10 SDD




The Evolution of Consistent Conjectures

Huw D. Dixon* Ernesto Somma,
Department of Economics Dipartimento di
and Related Studies, Scienze Economiche
University of York, Universita degli Studi di Bari
York YO10 5DD UK Via C. Rosalba 70124 Bari
Tel: (44) 1904 433788 Tel (39) 80 5049100
email:hdd1@york.ac.uk email: e.somma@dse.uniba.it
Abstract

In this paper we model the evolution of conjectures in an economy
consisting of a large number of firms which meet in duopolies. The
duopoly game is modelled by the conjectural variation (CV) model.
An evolutionary process leads to more profitable conjectures becoming
more common (payoff monotone dynamics). Under payoff monotonic
dynamics, convergence occurs to a small set of serially undominated
strategies containing the consistent conjecture. This set can be made
arbitrarily small by appropriate choice of the strategy set. If the game
is dominance solvable, then the dynamics converges globally to the
unique attractor.
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1 Introduction

Beliefs determine behavior, behavior determines payoff. From an evolution-
ary perspective, those types of behavior that lead to higher payoffs tend to
become more common. Why not apply the same argument to the beliefs that
give rise to those forms of behavior? We call this the evolutionary approach
to explaining beliefs. This contrasts with the epistemic approach, which
seeks to explain beliefs in terms of rationality and the information avail-
able to agents. The evolutionary approach explains beliefs in the context of
boundedly rationality.

We explore the evolutionary approach to beliefs in the conjectural varia-
tions (C'V') model, which has a long history in Industrial Organization and
oligopoly theory but has been subject to much recent criticism by game the-
orists. We discuss this in detail in section 2. Not only has the CV approach
proven useful in a wide range of theoretical and empirical applications, but it
has also been reappraised in several more recent theoretical papers (Driskill
and McCafferty, 1989; Dockner, 1992; Cabral, 1995).

In the CV approach, the duopolistic firm has a belief, its conjecture about
how the other firm will respond to it if it alters its own output (the conjecture
¢ is the derivative of the other firm’s output with respect to own-output).
This belief gives rise to behavior: the firm’s beliefs about its competitor will
determine its own maximizing choice of output in relation to its competi-
tor’s. This behavior is captured in the decision rule (reaction function). We
consider the particularly simple case of homogeneous good Cournot duopoly
with quadratic costs of production. In this case, the CV model yields linear
decision rules, with a unique mapping from beliefs to the decision rules: each
decision rule can be thought of as representing or embodying the belief of the
firm. In its most general form, the conjecture ¢ can be thought of as vision
or belief about competition underlying the corporate strategy (decision rule)
of the firm.

We consider an economy populated by firms playing the duopoly game
in randomly matched pairs. A process of social evolution occurs, meaning
that beliefs that yield more profitable behavior in the competitive process
will become more common. The nature of the social evolution can be viewed
in several ways. It can be a process of imitation: less successful firms imitate
the more successful. It can be a process of propagation, in that the best
practice of successful firms is spread by some mechanism: the successful
firms diversify (multiply), the managers of successful firms move around and
bring the ideas of the successful firm to the less successful firm types. It can
also be a method of selection: the least successful firms are more likely to go
bankrupt than the more successful. We do not attempt to model this process



in detail. Rather, we assume that there is indeed some selection dynamics at
work which leads to beliefs that yield a higher payoff becoming more common
(payoff monotone dynamics).

The results we obtain are very clear cut. If we restrict conjectures to a
finite set, we find that the only beliefs that survive in the long run are close
to the consistent conjecture (Propositions 3 and 4). Consistency here means
that the conjecture of a firm about the slope of its competitor’s reaction
function is equal to the actual slope!. The surviving conjectures can be made
arbitrarily close to the consistent conjecture by making the distance between
conjectures small enough. The set of surviving strategies corresponds to the
set of serially undominated strategies 2. If there is a unique conjecture in this
set, then it is a global attractor to the payoff monotonic selection dynamics
(Proposition 6). In the case where we allow for a continuous strategy set,
the consistent conjecture is generally the unique evolutionary stable strategy
(ESS) (Proposition 1).

This is an interesting result: the original literature on consistent or "ra-
tional” conjectures saw the justification in terms of epistemic rationality:
"rational” firms ought to be correct. Here, however, we can see an alterna-
tive explanation: a population of boundedly rational firms can evolve to the
consistent conjectures. There has been even stronger criticism of the con-
cept of consistency of conjectures than of CVs in general (see for example
Makowsky (1987), Shapiro (1989), Lindh (1992)). However, this criticism
does not apply to the approach adopted in this work, since the criticisms
view consistency from a conventional theoretical perspective. From an evo-
lutionary perspective, however, the emergence of consistent or near consistent
conjectures is simply a result of selection over time.

2 Conjectural Variation Duopoly.

There is every reason to think that oligopolists in different
markets interact in different ways, and it is useful to have mod-
els that can capture a wide range of such interactions. Conjec-
tural oligopoly models, in any event, have been more useful than
game-theoretic oligopoly models in guiding the specification of

!This is equivalent to Bresnahan’s definition of consistency (Bresnahan, 1981). Other
early contributions to the literature on consistent conjectures include Hahn (1977, 1978),
Perry (1982), Kamien and Schwartz (1983), Ulph (1983), Boyer and Moreaux (1983).

2This uses a result in Samuelson and Zhang (1992). A serially undominated strategy
is a pure strategy that survives the iterative elimination of strategies that are strictly
dominated by another pure strategy.



empirical research in industrial economics. (Martin, 1993).

We consider an economy populated at any moment by a large number of
firms matched in pairs playing a duopoly. We model the duopoly using the
notion of conjectural variations.

Firms choose output levels which are produced with total cost T'C® =
£g”, i = a,b. The market price is a linear function of the two outputs
p=1—¢"— ¢ . Firm i’s payoff function is given by

i (i g i i i C
W(q,qj)zq(l—q—q”—§q> (1)
Firms choose output levels given a conjecture about the response of their
rival to a change in their level of production. We define such conjecture as
the conjectural variation parameter ¢’
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The maximization of the profit function (1), given ¢' (2) yields the first
order condition:

dm'
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Equation (3) defines the decision rule (DR) of firm i given its belief ¢',
which relates the output of firm 7 to the output of its competitor. The
decision rule is linear which linear and parametrized by the intercept term
ho and slope term h;, where:

¢ = hy+hid
, 1 , 1
M= g M=y
2+¢ +c 2+ ¢ +c
Firm behavior is described by the decision rule {&{, i} and hence their
belief ¢. The conjectural variation ¢ is usually interpreted ® as a measure
of the expected competitiveness of the rival, ranging from a more collusive
conjecture (¢ > 0) to a more competitive conjecture (¢ < 0). In the rest
of the paper we will use the terms conjecture and decision rule (DR) inter-
changeably.

$Martin (1993, p.25).



Given a pair of DRs, the equilibrium output pair is given by their point
of intersection. We restrict conjectures to the range * ¢ € [—1, 1], capturing
all of the economically interesting cases. The range of DRs runs from the
Walrasian whereby the firm produces output up to the point where price
equals marginal costs (¢ = —1) to the perfectly collusive (¢ = 1).

It is easy to verify that for pairs of conjectures between [—1,1] a stage
game equilibrium always exists and is stable when ¢ > 0. When ¢ = 0, the
stage game is stable unless both firms have conjectures equal to minus one.
This allow us to compute the equilibrium pair {¢’, ¢’} and the related payoffs
as a function of firm’s beliefs ¢

Dy 1+¢ +c
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Expressions (4) and (5) give the equilibrium output and profits given any
two DRs {gbi,gbj} respectively. If both firms have ¢ = 1, the stage game
equilibrium will be symmetric and joint-profit maximizing. When both firms
have ¢ = —1 equilibrium will occur at the Walrasian outcome. If both firms
have Cournot conjectures ¢ = 0, the equilibrium will occur at the Cournot
outcome.

The consistent conjecture ® ¢* equates the slope of the decision rule and
the conjecture

4e + 2
4
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Note that 0 > ¢* > —1, with |¢"| strictly decreasing in c.

3 The evolution of conjectures

Individual firms in any one period can only adopt a pure strategy. The finite
and ordered strategy set common to all firms is defined as

d={¢p,:p,€[-1,1i=1,... ,n}

4In fact all of the results of this paper apply if we restrict attention to conjectures in
the range [1, k] where k > 0.
°See Bresnahan, (1981).




For example, ® can be a grid of granularity ¢ so that n =1+ %

O={¢: ¢ =—1+65xi, z‘:o,...%}

When two firms meet their payoff will depend on the specific DRs they
employ: let m;; be the payoff when DR 7 plays DR j so that the n x n
payoff matrix is T = [m; ;] where ¢,j = 1,2,... ,n, denote row and column
respectively. The distribution of the population across DRs is summarized
by a state n— vector z(t) = {z1(t), z2(t), ... , z,(t)}, where z;(t) represents
the share of the population adopting DR i at time ¢ 6. The set C' at time ¢ is
the set of conjectures with strictly positive population shares (i.e. it excludes
those conjectures which are not being adopted by any firm). This is called
the support of z(t) and is defined as C(z(t)) = {¢; € ® : z; > 0}.

Given a population distribution z(t), we can define the average " payoff
of conjecture ¢, as

n
(¢, 2) = Z ZjTij
j=1

The average payoff of a particular conjecture depends on the distribution of
conjectures.

The selection dynamics gives the evolution of the distribution of conjec-
tures over time. We adopt the standard forms:

for continuous time, or
Zigp1 = Zig + 9i(2(t)) 2iy (7)

for discrete time. In both cases, however, the function g;(-) specifies the rate
at which pure strategy ¢ (DR;) replicates when the population is in state z.
We focus of a particular class of dynamics called payoff monotonic. A regular
growth-rate function g is payoff monotonic if, for all z

(95, 2) > (95, 2) < gi(z) > g;(2) (8)

6The population proportions are non-negative and add up to one in each period. Hence
z(t) € A, the unit simplex. The state vector z(t) is formally identical to a mixed strategy
where the z; represents the probability of playing pure strategy ¢,.

"Or expected payoff in the case of the mixed strategy interpretation.



Payoff monotonicity requires the growth rates of each firm type to respect
the internal ordering of their payoffs. The regularity of g ensures that the
associated system of differential (difference) equations possesses a unique
solution through any initial state in the unit simplex A; a solution that
never leaves the simplex.

We are interested in identifying stable equilibrium population profiles. An
equilibrium population profile z(t) is one where all strategies with z;(t) > 0
earn the same payoff. This is a state of rest of the dynamic processes (6) and
(7). However, as only stable equilibria are likely to occur, we use stability as
a criterion to select between equilibria and rule out trivial cases. There are
two concepts of stability: i) Lyapunov stability and ii) asymptotic stability.
Broadly speaking, a population z(t) is Lyapunov stable if all solutions that
start sufficiently close to z(t) stay close; a state z(t) is asymptotically stable
if it is Lyapunov stable and if in addition any trajectories starting sufficiently
close to z(t) approach z(t) as t — oo.

4 The Nash equilibria of the conjecture game

As is well known, there is a close relationship between the dynamic equilib-
rium and the Nash-equilibrium. Thus, in order to understand the evolution
of conjectures in the economy, we need to further analyze the stage-game
I = {®, n', i = a,b}: if we can identify the properties of the Nash-
equilibrium, we will be able to identify and characterize the stable equilibria
for the dynamics.

We interpret I" as a hypothetical conjecture game between two firms. The
game has two stages, in stage 1 the firms form their conjectures, and in the
second stage the outputs are determined given the chosen conjectures (ac-
cording to(4)). It should be clear that the conjecture game is purely hypothet-
ical, being a fiction which we use as modelers to understand the evolutionary
dynamics of the economy. The individual firms on our economy never play
the conjecture game: in any period, they simply play the output game given
their current conjectures.

4.1 Continuous strategies.

In order to analyze the stage game with a finite strategy set ®, we will
first analyze the related game where we treat conjectures ¢ as a continuous
variables ' = {¢' € [-1,1], 7', i = a,b}. There is a unique pure strategy
equilibrium; this is strict when ¢ > 0 and weak if ¢ = 0. Furthermore, the
equilibrium conjectures are consistent.



Proposition 1 Consider I' = {¢' € [-1,1], 7', i = a,b}.

(a) Let ¢ > 0. There exists a unique and symmetric Nash equilibrium
where both players have the consistent conjecture ¢*.

(b) If ¢ > 0, the equilibrium is strict and ¢* is ESS.
(c) If ¢ = 0, the equilibrium is weak and there exists no ESS.

The conjecture game thus has a unique Nash equilibrium in which both
firms hold the consistent conjecture. In the case of strictly convex costs
(¢ > 0), the Nash equilibrium is strict and hence an evolutionary stable

strateqy ® (ESS).

4.2 Finite strategy set o.

We now turn to the case of a finite strategy set ®, yielding the discrete
conjecture game I' = {®, 7, i = a,b}. As we move from the continuous
case to the discrete case the set of Nash equilibria of the game changes. In
particular whereas [' = {¢' € [-1,1], m;, i = a,b} is dominance solvable
and yields a unique Nash equilibrium, I' = {®, 7%, i = a,b} need not be
dominance solvable and the set of Nash equilibria may contain more than one
element. The analysis that follows identifies more precisely the equilibrium
set and also gives an algorithm to compute the Nash equilibria in T'.

A pure strategy @' for player i is said to be strictly dominated by another

pure strategy ¢ if it is the case that for all ¢/, (¢, ) < W(gAbl, ¢'). A set
of strategy pairs is denoted ¢ = (gzﬁi, & ) € ®?, where ®? is the product space
of all possible strategy pairs. Consider a subset U of possible strategy pairs
9;5, <~ﬁ € U™ C ®: we can define the set of player i’s undominated responses to
U,

v ={¢' e | (v e ®) @ ¥) | n(¢',¢)) > 7(6". 9}

That means if ¢’ is in the set U?(¥7), then for any ¢’ occurring in U7, ¢'
yields as high a payoff as any other g~bz occurring in U7,

Let U(WT) = (UY(¥7),U7(¥7)) be the list of undominated responses for
each player, and let U(¥") C R denote the interval formed between the
highest and the lowest undominated responses [inf(U(¥7)), sup(U(¥7))].
We can then define a new subset U™*! of strategy pairs, allowing only those

8For definition, see Weibull (1995, p.36).



pairs where both conjectures lie in the range U(¥7). In moving from ¥7 to
U™ we are in effect deleting those conjectures that were dominated.

Define W° = ®2, the full set of possible strategy profiles. A strategy
¢ is serially undominated if ¢' € U'(U7) for all 7. Let us denote the set
of undominated strategies as ¥* ?, with conjectures in the range @“, @“}
Conjectures in this set remain undeleted, never being strictly dominated.

We show that the set of pure strategy Nash-equilibria A is non empty,
and that N contains the smallest and largest serially undominated strategies.
Furthermore, for all serially undominated strategies ¢’ there is a symmetric
equilibrium where both firms play the strategy.

Proposition 2. I' = {®, 7', i = a,b}.

(a) The set of pure strategy Nash equilibria of T is non-empty and con-
tains the largest and smallest serially undominated strategies { 9", qﬁu} .

(b) for any serially undominated strategy ¢’ € [¢", $"], there exists a
symmetric pure-strategy equilibrium (¢, ¢').

Finally, we need to relate the results directly to the concept of consistent
conjectures. The consistent conjecture is always contained within the range
of undeleted conjectures.

Proposition 3 Consider the consistent conjecture ¢*.

(a) if ¢* € @, then (¢*,¢") € U and (¢*,¢") is a symmetric pure
strategy equilibrium.

(b) if ¢* ¢ @, then ¢* € [¢",¢"]

Let us define the set of almost consistent conjectures ®* C ®
" ={¢' € U": ¢' = argmin (¢* — ¢)°}
In the case where ¢* ¢ ®, then ®* contains either one or both of the con-
jectures nearest to the consistent conjecture ¢*. Clearly, ®* C W¥“. The
almost consistent conjectures is/are undeleted, and hence there exists a sym-
metric pure-strategy equilibrium in which both firms have the same almost
consistent conjecture.

Let us take an example of a discrete strategy set generated by forming a
grid consisting of granularity 6. The next proposition considers what happens
as 6 becomes small. If § is small enough then undominated conjectures
will be close to the consistent conjecture. Since consistent conjectures are

negative, it implies that all undominated strategies become negative, i.e.
more competitive than the Cournot conjecture.

9Where ¥ = (77, U7.



Proposition 4 Consider I' = {®, 7, d = a,b}. Let —¢" > & > 0. There
exists a ¢ > 0 such that for all 6 < 4 if ¢' is a serially undominated
strategy, then ‘gzb’ — | < e.

5 The dynamic equilibrium

One can derive the implications of payoff monotonic dynamics for aggregate
equilibrium behavior, in particular its relationship with Nash-equilibrium in
the stage game I' = {®, 7', i = a,b}. It has been shown that (Nachbar,
1990; Bomze, 1986):

(a) If z € int(A) is stationary in (6), then z is a Nash equilibrium of the
stage game.

(b) If z € A is Lyapunov stable in (6), then z is a Nash equilibrium of the
stage game.

(c) If z € A is the limit to some interior solution to (6), then z is a Nash
equilibrium of the stage game.

(d) If z is a strict Nash equilibrium then z is asymptotically stable.

Whereas stationarity under the dynamics (6) and (7) does not require
Nash equilibrium, Lyapunov and asymptotic stability implies aggregate Nash
behavior. Provided that the initial state z(0) is completely mixed, i.e. has
full support on @, all strategies outside the set of serially undominated strate-
gies are eliminated by a payoff monotonic selection dynamics regardless of
whether it converges. Cycles cannot be ruled out but the strategies in the
support must all be serially undominated.

Proposition 5 Let z* be an equilibrium of I' = {, 7r"', 1= a, b_} under any
payoff monotonic dynamics. If ¢* € C(z*) then ¢' € U'[¢, §|.

This result is a direct application of Theorem 1 in Samuelson and Zhang
(1992). The next proposition shows that pure strategy equilibria are in gen-
eral asymptotically stable (because they are strict equilibria) whilst equilib-
rium states that mimic mixed strategy equilibria are unstable, i.e. do not
satisfy Lyapunov stability conditions.

Proposition 6. Consider I' = {®, 7', i = a,b}.

(a) All equilibrium states z* in which #C(z*) > 1 are Lyapunov un-
stable.

10



(b) Pure strategy Nash equilibria (¢, ¢’) € N are generally strict and
therefore are asymptotically stable.

If more than one strategy is played in equilibrium, a perturbation to z*,
however small, leads the system to a different equilibrium where only one of
the two strategies survives.

It should be clear that, if present in ®, the consistent conjecture is an
element of the set of serially undominated strategies. Due to the discreteness
of the strategy space however there might be more than one undominated
strategies. However, as we know from Proposition 4, if the distance between
consecutive strategies in ® is made small enough, then the set of serially
undominated strategies can be contained in an arbitrarily small neighborhood
of the consistent conjecture.

6 Conclusions

In this work, we have taken a model in which firm behavior depends on firm
beliefs. Firms play the conjectural variation duopoly, and their belief is their
conjecture about the slope of other firms reaction functions. We analyze
this in the context of an evolutionary framework, in which more successful
types of rule become more common. We model the Darwinian process using
payoff monotonic selection dynamics. Analytically, we find that in the case of
strictly convex costs, the unique ESS is the consistent conjecture. In the case
of no costs, there exists no E£SS, and the consistent conjecture (Bertrand) is
a dominated type.

We consider the case of a finite set of possible conjectures and study the
properties and equilibria of the dynamics. Analytically, we find that there
is a set of possible attractors contained within a compact convex interval
containing the consistent conjecture. This set is formed by the serially un-
dominated strategies and we show that all symmetric serially undominated
strategy profiles are pure strategy Nash equilibria. These symmetric equi-
libria are generally strict and therefore asymptotically stable in the class of
dynamics considered. The serially undominated strategies (conjectures) are
negative and the equilibrium is therefore more competitive than the Cournot
equilibrium, confirming similar findings of other papers dealing with dynamic
duopoly games (Fershtman and Kamien, 1987; Reynolds, 1987; Maskin and
Tirole, 1987; Driskill and McCafferty, 1989).

We believe that the framework proposed in this model provides a ratio-
nale for consistency of conjectures which is based on bounded rationality and
evolutionary selection. Most of the criticisms of the consistency and conjec-
tural variations have focussed on the issue from the perspective of classical

11



game theory based on perfect rationality and common knowledge. Whilst we
accept these criticisms as valid within the their own framework, our approach
is based on different and we believe more plausible foundations.

12
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7 Appendix: Proofs.

7.1 Proposition 1

(a) Maximization of the payoffs functions as given in (5) with respect to ¢,
yields the best response function 3:

G =0 (¢) = ———

24+

The best response conjecture corresponds to the actual slope of the rival’s
reaction function in output space. Solving the above system yields the Nash
equilibrium in conjectures in which each firm conjectures the actual slope of
the other firm, i.e. both firms have the consistent conjecture: ¢' = ¢/ = ¢*.
Uniqueness is established noting that (3 is a contraction mapping. Since

@ __ 1
d¢’ (2+c+¢7)2

for ¢ € [-1,k] (where k > 1), and ¢ > 0, this implies that the solution is
unique.

(b) If ¢ > 0, then the payoff function is strictly concave in ¢,, hence the
equilibrium is strict and ES'S.

(c) If ¢ = 0, the equilibrium conjecture is equal to —1, and implies zero
profits whatever the conjecture of the rival firm so that the equilibrium is
weak. From definition of ESS it must be that 7 (-1, —1) > 7 (¢', —1) and if
m(=1,-1) =7 (gbi, —1) then (-1, qﬁ) > (gzﬁi, qﬁ) noting that m (—1, ¢j) =
m(¢',—1) =0 V¢',¢ , and that w (¢, ¢’) > 0 V¢', ¢’ # —1, the only Nash
equilibrium of the game, given by (—1,—1) is not ESS. Moreover being the
equilibrium unique, there are no others ESS.

i,j =a,bi#j

0< <1

7.2 Proposition 2
7.2.1 Part (a)

Consider the full set of strategy profiles ¥° and let EO = sup (¥ and
¢° = inf (I°). For k > 1 define ¢' = BR($' ') and ¢* = BR(¢" ). Where
ﬁ{(%’“) and BR(¢*!) denote the collections of the largest and smallest

best replies for players ¢ and j to Ek_l and Qk_l respectively. Firstly we show
that U(¥*) C [Qk ,ak] This is trivially true for k& = 0; assume it is true for
k < r. Then
—r+1

]

U cu(l¢’, ) c o e
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The first inclusion follows from the observation that U is a monotonic non de-
creasing function, the second inclusion is readily proved using two properties
of the payoff function:

sr(g¢)) _ [ >0 ¢ ¢<d
P1
6¢* {<0 D> o

P2 Monotonicity of the best reply: If ¢ is a best response to ¢ and éﬁz is
a best response to gNDJ, where &J > ¢/, then gAbl > ¢

where (Abl is the best response to ¢’. By definition m@k) and ﬁ{@k) are
in U([¢", Ek]) and thus [@(Qk),ﬁ{@k)] C U([@k,ak]) Consider a strategy
profile o ¢ [BR( ", ﬁ{@k)] and let g;ﬁz > ¢f = ﬁiz@k) We claim that
o ¢U [gzﬁ gzﬁ ] because ¢* * strictly dominates (b Indeed for any ¢ € [(;5 ¢ ],

7(,¢) — (¢, ¢) <0

because ¢* * is the largest best reply to the largest profile Ek, the best re-

ply to any other profile in [?k,ak] is smaller than ¢* * thanks to P2. In
addition property P1 ensures that the above inequality holds. Similarly if

¢" ' < BR(¢").
Hence sup U([¢", Ek]) _R@ ) and inf U([Qk,ak]) = BR(¢") and we con-
clude that T([¢",5)) = [BR(¢"), BR(7 )

The sequences qﬁ ,qﬁ ..., ¢ and Qo,gl, ..., @™ have limits ¢ and ¢ re-
spectively. We now show that ¢ (and similarly ¢) is a Nash equilibrium

profile. If this was not the case then for some player ¢ = a,b there exists
some other ¢ € [§, ¢] such that

(3, 8) > (@, F)

but then again the monotonicity of best replies coupled with P1 implies that
gb strictly dominates ¢, which contradicts ¢ being the limit of the sequence.

7.2.2 Part (b)

Having proved part (a) of the proposition we only have to show that the
set of Nash equilibria is a closed, bounded and convex subset of ®. Let
6 = |¢ — ¢| be the distance between any two adjacent strategies in ®. Define

V'(9,8) = n(¢' —6,¢) — (¢, ¢’) where 7(¢' — §,¢") is the payoff to player
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1 adopting the strategy immediately to the left of the strategy adopted by

player j (¢’). Similarly let V(¢,6) = m(¢" + 6,¢) — n(¢", ¢7).
Define

S ={¢'ed| V(9,8 <0}
and

S'={¢'e®|V'(¢,6) <0}
P1 implies that if

(0, ¢) < (¢, &) for § < ¢
then

7(,¢) < (¢, &) Vh < ¢

and similarly for ¢ > ¢ Vé > ¢. For a given 6, both Vi(¢,6) and V' (¢, 6)
are continuous in ¢ and cross the horizontal axis only once over the range
[—1,k], Kk > 11t follows that S* and S are closed, bounded and convex
subsets of ®. _ .

Define the intersection of S° and S as S = S'NS and let £ =
{(¢',¢") € S = 5" x S | ¢ = ¢’} be the set of symmetric strategy profiles
in S. We now show that ¢ is a Nash profile iff ¢ € £. The only if part
of the statement is obvious from the definition of Nash equilibrium. The
if part is proved by contradiction. Consider a profile ¢ € € and assume
that it is not a Nash equilibrium, this implies that there exists a strategy
&' such that ﬁ(gbi,g?ﬁ]) > 7(¢,4"). Assume that ¢ > @, it follows that
(¢ +6,¢) > w(¢,¢") and V(¢,8) > 0 contradicting the assumption
that ~q~b € £. Mutatis mutandis, the same contradiction is derived assuming

¢ < ¢.

7.3 Proposition 3

Part (a) This is trivial. ¢* is the unique serially undominated strategy in r
and it remains undominated if present in ®.
Part (b) we prove it by contradiction. Clearly ¢* and ¢ are, respectively, the

smallest ¢ € ® such that V'(¢,6) < 0 and the largest Vi(@ 6) < 0. We also
know that ¢ > ¢". Consider any finite strategy set ® spanning the interval
[—1,1] and assume that ¢* ¢ [Q“,Eu] This implies that either ¢* > ¢* or
#" < ¢* . Suppose that ¢ > ¢*, this will imply that 7(¢*+6,¢*) < 7(¢*, ¢")
which contradicts that ¢” is a best reply to itself. Similarly if we assume that

P < ¢
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7.4 Proposition 4

Let us assume the contrary: there exists some " < g% < 0 such that for all
§>09 > 0o (and analogously for undominated conjectures below ¢*). In
this case, since ¢ is undominated for all § > 0:

M(¢" —6,¢") <N(¢",4")
But, for any ¢ > ¢*, 3(¢") < ¢, with
(36", ¢") > 1", 9")
Let 6 = ¢ — 3(¢). Then for § < 6,
((¢" - 6),6") >4, ¢)

The desired contradiction. The same argument holds when there is a lower
bound ¢ < ¢* such that ¢" < ¢ for all 6 > 0. Hence as 6 — 0, ¢" — ¢" and

¢ — ¢*, from which the Proposition immediately follows.

7.5 Proposition 6
7.5.1 Part (a)

All ¢ such that ¢ < ¢ < ¢ are strict Nash equilibria because both V (¢, )

and V (¢, 6) are negative. All strict Nash equilibria are asymptotically stable
under the dynamics considered. ¢* and ¢ are in general strict Nash equi-
libria, being weak only if by chance V(¢*,8) = 0 or V(¢",65) = 0. However,
the case of a weak equilibrium is not robust. A small perturbation to 8, the
distance between ¢ (¢*) and the strategy immediately to its left (right),

will not alter the set N of Nash equilibria and will make ¢" (") a strict
equilibrium.

7.5.2 Part (b)

We show that such states z* do not satisfy the conditions for Lyapunov
stability. Taking the case where #C(z) = 2, with .¢, < ¢;. The profit to
strategies ¢; and ¢; are respectively:

71' = Ziﬂ'i,i + (1 — Zi)ﬂ'i,j

ﬁj = Ziﬂ']"i + (1 — Zi)ﬂ-j,j
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Recall that these strategies belong to the set of serially undominated strate-
gies and therefore are strict best replies to themselves:

Tji < Tii < Tij < Tj;
and @ > 0. Given a neighborhood V' of z* a trajectory originating from
it will converge to a monomorphic equilibrium state where only one of the

two strategies survives. The proof easily generalizes to the case where there
are more than two strategies in the support C(z*).
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