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Abstract

An expression for the exact cumulative distribution function of a ratio of quadratic forms

in noncentral normal variable is derived in terms of infinite series of top order invariant poly-

nomials.

Key Words: ratio of quadratic forms, quadratic forms in normal variables
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1 Introduction

The distribution of a ratio of quadratic forms in normal variables has attracted considerable

attention in statistics over the last few decades. Imhof (1961), Davies (1973) and Shively,

Ansley, and Kohn (1990) have devised algorithms for the computation of the densities and

cumulative distribution functions (CDF) of ratios of quadratic forms which are efficient and

easy to implement. However exact results are available for specific cases only. Precisely von

Neumann (1941) has characterized the distribution of the von Neumann ratio in terms of the

derivative of its density. Gurland (1948) and (1953) has given inversion formulae for the

CDF and the density of a ratio of quadratic forms. Koopmans (1942), L.R Anderson (1942)

and T.W. Anderson (1971) have studied the serial correlation coefficient in the circular case

and have derived formulae for its density and CDF. Recently, Hillier (2001) has obtained the

density of a quadratic form uniformly distributed on the unit n-sphere, and Forchini (2001)

has derived the CDF of a ratio of quadratic forms in central normal variables. Lieberman

(1994) and Marsh (1998) have derived saddlepoint approximations for the density of a ratio

of quadratic forms in normal variables for the central and noncentral case respectively.

In this paper we generalized the results of Forchini (2001) to the noncentral case, and obtain

a representation of the CDF of a ratio of quadratic forms at a particular point by writing it

as the CDF evaluated at zero of the difference of two independent positive definite quadratic

forms in noncentral normal variables which are constructed by separating these eigenvalues

into positive and negative. The resulting expression in term of the invariant polynomials of

two matrix arguments introduced by Davis (1979) has not appeared before in the literature.

The relevant related literature is now summarised. The density of a positive definite

quadratic form of normal random variables is given by Gurland (1956), Ruben (1962), James

(1964) for the central case and by Phillips (1986) for the noncentral case. The distribution

of indefinite quadratic forms is given by Gurland (1955) and Robinson (1965) for the case of

central normal random variables and by Shah (1963) for the noncentral case. However, we will

not use these results because they give expressions which are not convergent everywhere or

contain unsolved integrals. Imhof (1961), Davies (1973) and Shively, Ansley, and Kohn (1990)

give algorithms for the numerical calculation of the density and CDF of a quadratic form.
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2 Preliminary results

Suppose that Y is a (n× 1) random vector having a multivariate normal distribution with

mean vector η and (positive definite) covariance matrix Ω,

pdfY (y) = (2π)
−n
2 |Ω|− 1

2 exp

½
−1
2
(y − η)0Ω−1 (y − η)

¾
. (1)

It is required to find the CDF of

R =
Y 0AY
Y 0BY

, (2)

where A and B are (n× n) symmetric matrices andB is positive semidefinite. The distribution
of R is the same as the distribution of (V 0AV ) / (V 0BV ) where V = Y (Y 0Y )

1
2 is a vector

distributed on the unit n-sphere. Therefore, the results below hold for scale-mixtures of

normals. Let FR (r) be the CDF of R at the point r given that Y ∼ N (η,Ω),

FR (r) = Pr

½
Y 0AY
Y 0BY

≤ r | Y ∼ N (η,Ω)
¾

= Pr

½
Y 0A∗Y
Y 0B∗Y

≤ r | Y ∼ N
³
Ω−

1
2η, In

´¾

= Pr
n
Y 0 (A∗ − rB∗)Y ≤ 0 | Y ∼ N

³
Ω−

1
2η, In

´o
, (3)

where A∗ = Ω
1
2AΩ

1
2 and B∗ = Ω

1
2BΩ

1
2 . Let Y = H 0X, and µ = H 0η, where H is an orthogonal

matrix which diagonalizes A∗ − rB∗,

H 0 (A∗ − rB∗)H =

 Σ1 (r) 0 0
0 −Σ2 (r) 0
0 0 0

 , (4)

and Σ1 (r) and −Σ2 (r) are diagonal matrices containing the n1 ≥ 0 positive and the n2 ≥ 0
negative eigenvalues of A∗ − rB∗ respectively. Note that n1 and n2 vary as r varies. By
partitioning Y and µ conformably to H 0 (A∗ − rB∗)H, X = (X 0

1, X
0
2,X

0
3)
0, µ = (µ01, µ

0
2, µ

0
3) we

obtain

FR (r) = Pr {X 0
1Σ1 (r)X1 −X 0

2Σ2 (r)X2 ≤ 0|X1 ∼ N (µ1, In1) , X2 ∼ N (µ2, In2)} , (5)

where X1, X2 and X3 are independent, and n1 + n2 = rank (A
∗ − rB∗) = rank (A− rB) ≤ n.

The above results allow us to write the CDF of R as

FR (r) = Pr {Q1 −Q2 ≤ 0} , (6)
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where Q1 = X
0
1Σ1 (r)X1 > 0 and Q2 = X

0
2Σ2 (r)X2 > 0 are independent noncentral quadratic

forms in normal variables. Note that FR (r) = 0 for values of r for which n2 = 0, and FR (r) = 1

for values of r for which n1 = 0. If n1 > 0 and n2 > 0 we can find the joint density of (Q1, Q2)

as a product of the marginal densities of Q1 and Q2 (since they are independent). Thus the

CDF of R at r = 0 is

FR (r) =

Z
q2>0

Z
0<q1<q2

pdfQ1 (q1) pdfQ2 (q2) dq1dq2 (7)

=

Z
q2>0

Z
0<x<1

pdfQ1 (q2x) dx pdfQ2 (q2) q2dq2.

This integral can be evaluated by expanding the densities of Q1 and Q2 as infinite series and

by integrating term by term. This procedure leads to an expression for the CDF of a ratio of

two quadratic forms in normal variables which does not seem to have been derived before in

the statistical literature.

The relationship between equation (6) and lack of differentiability of the CDF of R at some

points in its domain is studied in Forchini (2001).

3 The exact density function of a quadratic form in non-

central normal variables

This section derives the exact density of a quadratic form in noncentral normal variables which

is analogous to that derived by Phillips (1986) but is more suitable to be used in the procedure

outlined above.

Let X ∼ N (µ, In) and consider Y = Σ
1
2X ∼ N

³
Σ

1
2µ,Σ

´
, then

pdfY (y) = (2π)
−n
2 |Σ|− 1

2 exp

½
−1
2
µ0Σ−1µ

¾
exp

½
−1
2
y0Σ−1y + µ0Σ−

1
2 y

¾
. (8)

By writing

Σ−1 =
¡
trΣ−1

¢
In −

¡
trΣ−1

¢
In + Σ−1 (9)
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we have

pdfY (y) = (2π)−
n
2 |Σ|− 1

2 exp

½
−1
2
µ0Σ−1µ

¾
exp

½
−1
2
y0y
¡
trΣ−1

¢¾

exp

½
−1
2
y0
¡
Σ−1 − ¡trΣ−1¢ In¢ y + µ0Σ− 1

2y

¾
. (10)

Decomposing y to polar coordinates y = q
1
2 v where q = y0y and v = y/ (y0y)1/2 (the

Jacobian is qn/2−1) and integrating out v we obtain the density of Q = Y 0Y as

pdfQ (q) =
π
n
2

2
n
2Γ
¡
n
2

¢ |Σ|− 1
2 exp

½
−1
2
µ0Σ−1µ

¾
exp

½
−1
2
q
¡
trΣ−1

¢¾
qn/2−1

Z
v0v=1

exp

½
−1
2
qv0
¡
Σ−1 − ¡trΣ−1¢ In¢ v + q1/2µ0Σ− 1

2v

¾
(dv) , (11)

where (dv) denotes the normalized Haar measure on the unit n-sphere (Muirhead (1982)).

Noting that the integral over v0v = 1 is invariant to the transformation of µ to hµ, where

h ∈ O (1), we have that the density of Q is

pdfQ (q) =
π
n
2

2
n
2Γ
¡
n
2

¢ |Σ|− 1
2 exp

½
−1
2
µ0Σ−1/2µ

¾
exp

½
−1
2
q
¡
trΣ−1

¢¾
qn/2−1

Z
v0v=1

exp

½
−1
2
qv0
¡
Σ−1 − ¡trΣ−1¢ In¢ v¾ (12)

0F1

µ
1

2
;
1

4
qµ0Σ−1/2vv0Σ−1/2µ

¶
(dv) .

The vector v can be seen as the first column of an orthogonal matrix H ∈ O (n). So we can
write

v0
¡
Σ−1 − ¡trΣ−1¢ In¢ v = tr

¡¡
Σ−1 − ¡trΣ−1¢ In¢ vv0¢

= tr
¡¡
Σ−1 − ¡trΣ−1¢ In¢HEnH 0¢

and the argument of the hypergeometric function becomes 1
4
qΣ−1/2µµ0Σ−1/2HEnH 0 (note that

by so doing it becomes a matrix argument hypergeometric function), where En is an n × n
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with all components equal to zero apart from the element in position (n, n) which is one. So

pdfQ (q) =
π
n
2

2
n
2Γ
¡
n
2

¢ |Σ|− 1
2 exp

½
−1
2
µ0Σ−1/2µ

¾
exp

½
−1
2
q tr

¡
Σ−1

¢¾

qn/2−1
Z
O(n)

exp

½
1

2
q tr

¡¡
Σ−1 − ¡trΣ−1¢ In¢HEnH 0¢¾

0F1

µ
1

2
;
1

4
qΣ−1/2µµ0Σ−1/2HEnH 0

¶
(dH) .

Expanding the exponential and the hypergeometric functions and integrating term by term

we have

pdfQ (q) =
π
n
2

2
n
2Γ
¡
n
2

¢ |Σ|− 1
2 exp

½
−1
2
µ0Σ−1/2µ

¾
exp

½
−1
2
q tr

¡
Σ−1

¢¾

qn/2−1
∞X
i=0

∞X
j=0

1

j! (1/2)i i!

µ
1

2

¶j+2i
qi+j

Z
O(n)

C[j]
¡¡
Σ−1 − ¡trΣ−1¢ In¢HEnH 0¢

C[i]
¡
Σ−1/2µµ0Σ−1/2HEnH 0¢ (dH) .

The last integral can now be evaluated using equation (1.2) of Davis (1979)

X
φ∈[j]·[i]

C
[j],[i]
φ

¡
(Σ−1 − (trΣ−1) In) ,Σ−1/2µµ0Σ−1/2

¢
C
[j],[i]
φ (En, En)

Cφ (In)
, (13)

where [k] denotes the top order partition of k. The notation employed is explained in Davis

(1979).

Note that C
[j],[i]
φ (En, En) = 1 for φ = [j + i] but it is zero for every other partition φ of

j + i. Moreover, C[j+i] (In) = (n/2)j+i / (1/2)j+i, so the last term is just¡
1
2

¢
j+i¡

n
2

¢
j+i

C
[j],[i]
[j+i]

¡¡
Σ−1 − ¡trΣ−1¢ In¢ ,Σ−1/2µµ0Σ−1/2¢ (14)
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and the density of the quadratic form Q is

pdfQ (q) =
π
n
2

2
n
2Γ
¡
n
2

¢ |Σ|− 1
2 exp

½
−1
2
µ0Σ−1/2µ

¾
exp

½
−1
2
q tr

¡
Σ−1

¢¾

qn/2−1
∞X
i=0

∞X
j=0

¡
1
2

¢
j+i

(1/2)i
¡
n
2

¢
j+i
j!i!

µ
1

2

¶j+2i
qi+j

C [j],[i][j+i]

¡¡
Σ−1 − ¡trΣ−1¢ In¢ ,Σ−1/2µµ0Σ−1/2¢ . (15)

The form of the density of a quadratic form given in the above display is similar to that of

equation (13) of Phillips (1986). The existence of a term in which q is in the exponent in

equation (15) makes it easier to derive the CDF of a ratio of quadratic forms.

4 The exact CDF of a ratio of quadratic forms in non-

central normal variables

As indicated in Section 2 the CDF of a ratio of quadratic forms in normal variables can be

written as the CDF of the difference of two positive definite quadratic forms in noncentral

normal variables Q1 = Y
0
1Σ1Y1 and Q2 = Y

0
2Σ2Y2 where Y1 ∼ N (µ1, In1) and Y2 ∼ N (µ2, In2),

and Σ1 = Σ1 (r), and Σ2 = Σ2 (r), and we use (7) to find the CDF of Q1 −Q2 at zero. To do
this we need to evaluateZ

0<x<1

pdfQ1 (q2x) dx =
π
n1
2

2
n1
2 Γ
¡
n1
2

¢ |Σ1|− 1
2 exp

½
−1
2
µ01Σ

−1/2
1 µ1

¾

Z
0<x<1

exp

½
−1
2
xq2 tr

¡
Σ−11

¢¾

∞X
i1=0

∞X
j1=0

¡
1
2

¢
j1+i1

(1/2)i1
¡
n1
2

¢
j1+i1

j1!i1!

µ
1

2

¶j1+2i1
(xq2)

n1
2
+i1+j1−1

C
[j1],[i1]
[j1+i1]

³¡
Σ−11 −

¡
trΣ−11

¢
In1
¢
,Σ

−1/2
1 µ1µ

0
1Σ
−1/2
1

´
dx.
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Integrating term by term we just need to findZ
0<x<1

exp

½
−1
2
xq2 tr

¡
Σ−11

¢¾
x
n1
2
+i1+j1−1dx

=
Γ
¡
n1
2
+ i1 + j1

¢
Γ
¡
n1
2
+ i1 + j1 + 1

¢ exp½−1
2
q2 tr

¡
Σ−11

¢¾

1F1

µ
1;
n1
2
+ i1 + j1 + 1;

1

2
q2 tr

¡
Σ−11

¢¶

=
Γ
¡
n1
2

¢ ¡
n1
2

¢
i1+j1

Γ
¡
n1
2
+ 1
¢ ¡

n1
2
+ 1
¢
i1+j1

exp

½
−1
2
q2 tr

¡
Σ−11

¢¾

1F1

µ
1;
n1
2
+ i1 + j1 + 1;

1

2
q2 tr

¡
Σ−11

¢¶
. (16)

The desired integral is Z
0<x<1

pdfQ1 (q2x) dx =
π
n1
2

2
n1
2 Γ
¡
n1
2
+ 1
¢ |Σ1|− 1

2

exp

½
−1
2
µ01Σ

−1/2
1 µ1

¾
exp

½
−1
2
q2 tr

¡
Σ−11

¢¾

∞X
i1=0

∞X
j1=0

¡
1
2

¢
j1+i1

(1/2)i1
¡
n1
2
+ 1
¢
i1+j1

j1!i1!

µ
1

2

¶j1+2i1

C
[j1],[i1]
[j1+i1]

³¡
Σ−11 −

¡
trΣ−11

¢
In1
¢
,Σ

−1/2
1 µ1µ

0
1Σ
−1/2
1

´

q
n1
2
+i1+j1−1

2 1F1

µ
1;
n1
2
+ i1 + j1 + 1;

1

2
q2 tr

¡
Σ−11

¢¶
. (17)
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The CDF of R at r is can thus be written as

FR (r) =
π
n1+n2

2 exp
n
−1
2
µ01Σ

−1/2
1 µ1 − 1

2
µ02Σ

−1/2
2 µ2

o
2
n1+n2

2 Γ
¡
n2
2

¢
Γ
¡
n1
2
+ 1
¢ |Σ1| 12 |Σ2| 12

Z
q2>0

exp

½
−1
2
q2
¡
tr
¡
Σ−11

¢
+ tr

¡
Σ−12

¢¢¾

∞X
i1=0

∞X
j1=0

∞X
i2=0

∞X
j2=0

¡
1
2

¢
j1+i1

¡
1
2

¢
j2+i2

¡
1
2

¢j1+j2+2(i1+i2)¡
1
2

¢
i1

¡
1
2

¢
i2

¡
n1
2
+ 1
¢
i1+j1

¡
n2
2

¢
j2+i2

j1!i1!j2!i2!

C
[j1],[i1]
[j1+i1]

³¡
Σ−11 −

¡
trΣ−11

¢
In1
¢
,Σ

−1/2
1 µ1µ

0
1Σ
−1/2
1

´

C
[j2],[i2]
[j2+i2]

³¡
Σ−12 −

¡
trΣ−12

¢
In2
¢
,Σ

−1/2
2 µ2µ

0
2Σ
−1/2
2

´

q
n1+n2

2
+i1+j1+i2+j2−1

2 1F1

µ
1;
n1
2
+ i1 + j1 + 1;

1

2
q2 tr

¡
Σ−11

¢¶
dq2 (18)

So that evaluating the Laplace transform term by term and defining

Σ∗−11 =
1

tr
¡
Σ−11

¢
+ tr

¡
Σ−12

¢Σ−11
and

Σ∗−12 =
1

tr
¡
Σ−11

¢
+ tr

¡
Σ−12

¢Σ−12 ,
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we find the CDF of R in (2) is

FR (r) =
π
n1+n2

2 Γ
¡
n1+n2
2

¢
exp

n
−1
2
µ01Σ

−1/2
1 µ1 − 1

2
µ02Σ

−1/2
2 µ2

o
Γ
¡
n2
2

¢
Γ
¡
n1
2
+ 1
¢ |Σ∗1| 12 |Σ∗2| 12

∞X
i1=0

∞X
j1=0

∞X
i2=0

∞X
j2=0

¡
1
2

¢
j1+i1

¡
1
2

¢
j2+i2

¡
n1+n2
2

¢
i1+j1+i2+j2¡

1
2

¢
i1

¡
1
2

¢
i2

¡
n1
2
+ 1
¢
i1+j1

¡
n2
2

¢
j2+i2

j1!i1!j2!i2!

C
[j1],[i1]
[j1+i1]

µ
Σ∗−11 − ¡trΣ∗−11

¢
In1,

1

2
Σ
∗−1/2
1 µ1µ

0
1Σ
∗−1/2
1

¶

C
[j2],[i2]
[j2+i2]

µ
Σ∗−12 − ¡trΣ∗−12

¢
In2,

1

2
Σ
∗−1/2
2 µ2µ

0
2Σ
∗−1/2
2

¶

2F1

µ
n1 + n2
2

+ i1 + j1 + i2 + j2, 1;
n1
2
+ i1 + j1 + 1; tr

¡
Σ∗−11

¢¶
. (19)

This series can be shown to be absolutely convergent by majorization for all values of r. When

µ1 = 0 and µ2 = 0 this reduces to the formula given in Theorem 4 of Forchini (2001).

Note that the CDF of R depends only on Σ∗−11 , Σ∗−12 (i.e. it depends only on the normalised

n1 positive and the n2 negative eigenvalues of A
∗ − rB∗) and the noncentrality parameters

Σ
∗−1/2
1 µ1µ

0
1Σ
∗−1/2
1 and Σ

∗−1/2
2 µ2µ

0
2Σ
∗−1/2
2 .

The numerical evaluation of the top order invariant polynomials can be done using the

results of Chikuse (1987) and Smith (1993).

5 Discussion: convergence problems

Although the infinite series representation for the CDF of R given in (19) is convergent, its

convergence is very slow. To understand how serious the problem is, a simple example will be

considered. Let Y ∼ N (0, In), and consider the quadratic form

R =
Y

0
i (i0i)−1 i0Y

Y 0
¡
IT − i (i0i)−1 i0

¢
Y/ (n− 1)

where i is a n-dimensional vector of ones. Note that R ∼ F (1, n− 1), and has a CDF which
can be easily and accurately calculated numerically using Imhof (1961)’s procedure. Noting

11



that D1 = 1 and D2 =
r
n−1In−1, after a straightforward but tedious simplification, equation

(19) yields

FR (r) =
2Γ
¡
n
2

¢
π
1
2Γ
¡
n−1
2

¢ ¡
r
n−1
¢n−1

2

Ã
1 +

(n− 1)2
r

!−n
2

∞X
p=0

¡
n
2

¢
p

p!

Ã
(n−1)(n−2)

r

1 + (n−1)2
r

!p
2F1

Ã
n

2
+ p, 1;

3

2
,

1

1 + (n−1)2
r

!
. (20)

A plot of the exact CDF of R (dashed line) and of (20), with the summation in the above

display replaced by
PP

p=0, for various values of P (solid lines), is shown in Figure 1 for n = 10.

Even for this very simple example and this very small sample size, the number of terms to

include in the summation is very high and a reasonable approximation can be obtain with

P ≥ 100. The number of terms required by a good approximation of the CDF of R increases
considerably with the sample size. In more complicated examples the convergence problems

are more serious.

[Figure 1 approximately here]

6 Conclusion

This paper has derived for the first time an exact expression for the CDF of a ratio of quadratic

forms in noncentral normal variables, and has extended the results available in the literature.

Although the series representation in equation (19) solves the problem by finding in a rigorous

exact expression for such a CDF, its practical use is limited by its very slow convergence rate.
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Figure 1. Exact (dashed line) CDF of F(1,9) and approximations (solid lines) for different values of P.


