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Abstract

Recent models of monetary policy can have indeterminacy of equi-
libria. The indeterminacy property is often viewed as a difficulty of
these models. We consider its significance using the learning approach
to expectations formation by employing expectational stability as a ro-
bustness criterion for different equilibria. We derive the expectational
stability and instability conditions for forward-looking multivariate
models, both with and without lags, that cover a wide range of mon-
etary policies proposed in the literature.
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1 Introduction

There has been a large amount of recent literature studying the performance
of alternative monetary policies in dynamic macroeconomic settings, see for
example the survey (Clarida, Gali, and Gertler 1999) and the papers in the
1999 Special Issue of the Journal of Monetary Economics and in the volume
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(Taylor 1999). An important feature of the recent setups is the forward-
looking aspect of economic behavior, so that expectations about the future
evolution of economic variables influence the current state of the economy.

The standard way of closing a model with expectations is to postulate
rational expectations (RE). Attention is often directed at a specific rational
expectations equilibrium (REE) that is thought to be the most natural one.
In the general macroeconomics literature terms like fundamental equilibrium
or minimal state variable (MSV) solution are used to describe this particular
REE. It has been, however, pointed out that several of the recent models
of monetary policy are plagued by the problem of indeterminacy, i.e. there
are multiple, even continua of equilibria which include bubbles or sunspots,
see e.g. the discussions in (Kerr and King 1996), (Bernanke and Woodford
1997), (Woodford 1999), (Clarida, Gali, and Gertler 1999), (Bullard and
Mitra 2000b), and (Carlstrom and Fuerst 2000). In this paper we will use
the terms fundamental and non-fundamental equilibrium when making the
distinction between these different REE.

Our perspective on the problem of multiplicity of REE is to impose addi-
tional criteria that the REE should satisfy if it is to be reasonable or robust.
Such criteria can be applied to both fundamental and non-fundamental REE.
While different criteria have been suggested, the learning approach to expec-
tation formation has recently gained some popularity.! In general terms this
approach suggests that expectations might not always be fully rational, and
the REE of interest should satisfy a natural stability criterion in expecta-
tions formation. In other words, if economic agents make forecast errors
and adjust their forecast functions over time, the economy will reach the
REE asymptotically. Perhaps the most widely used criteria are stability un-
der adaptive learning and the closely related notion of expectational stability
(E-stability). Equilibria which are not stable in this sense will not be reached
after a perturbation from REE has occurred.

The notion that the REE should be robust to expectational errors and the
consequent correction mechanisms is important from the applied viewpoint,
since such errors can naturally arise in practice. For example, the economy
might be subject to changes in its basic structure or in the practices and rules
of policy makers, and the assumption that agents somehow have RE imme-
diately after such changes is clearly strong and indeed may not be correct

!(Evans and Honkapohja 2001c) provides a comprehensive treatment of the learning
approach. See also the surveys (Evans and Honkapohja 1999) and (Marimon 1997).



empirically.

Most recently, monetary policy making has been analyzed from this learn-
ing viewpoint. The importance of this approach is argued in (Bullard and
Mitra 2000b) who consider the determinacy and learnability (i.e. stability
under adaptive learning) of the fundamental REE arising in a benchmark
forward-looking model with different classes of monetary policy rules. Also
taking the learning viewpoint (Evans and Honkapohja 2000) show that, if
the policy maker conducts optimal monetary policy under discretion using
an implied interest rate rule, the fundamental REE is not learnable in this
kind of model. They also propose an alternative interest rate rule that is
always E-stable.

These papers limit their attention to the fundamental REE even if other
equilibria exist under the indeterminacy arising with specific policy rules. In
this paper we rectify this limitation and consider learnability of the other
types of non-fundamental REE in the standard model under different types
of monetary policies.

The above motivation is made from a theoretical perspective, but there
is an important practical motivation for conducting the study. Pursuit of
optimal monetary policy on the part of the central bank or, flexible inflation
targeting in the sense used by (Svensson 1999), implies that the instrument
of monetary policy (the short-term nominal interest rate) should respond to
inflation forecasts, see (Clarida, Gali, and Gertler 1999). There is evidence
that monetary policy in a number of industrialized countries (like Germany,
Japan, and the U.S.) has been forward looking since 1979, see (Clarida,
Gali, and Gertler 1998). There is also some recent evidence to suggest that
the European Central Bank (ECB) may have been forward looking since its
inception in 1999, see (Alesina, Blanchard, Gali, Giavazzi, and Uhlig 2001).
Moreover, in practice, a number of inflation-targeting central banks like those
in England, Canada, and New Zealand are forward looking.

Though there is obviously a lot of evidence in favor of forward looking
policy rules, a number of theoretical studies (mentioned above) have found
an enormous indeterminacy problem with these rules. Different views have
been taken on this problem. (Bernanke and Woodford 1997) have argued
against inflation forecast targeting owing to this problem - these rules may
lead to too much volatility in inflation and output which any central bank
ought to avoid.

At the other end of the spectrum, indeterminacy is sometimes viewed
as an unimportant curiosum. This position has been taken, for instance,



in (McCallum 2001a) and (McCallum 2001b). One argument for regard-
ing non-fundamental equilibria as ”empirically irrelevant” is that the fun-
damental equilibria which result when the bank targets inflation forecasts
can be learnable adaptively, as shown in (Bullard and Mitra 2000b). How-
ever, in order to complete this argument, one needs to also show that the
non-fundamental equilibria associated with these policies are unstable under
plausible learning schemes. (Woodford 1990) was first to show that adaptive
learning rules can converge to stationary sunspot equilibrium in simple mod-
els with overlapping generations. If the non-fundamental equilibria possible
under inflation forecast targeting happen to be stable under learning, then
indeterminacies again have the potential to become empirically relevant. On
the contrary, if these equilibria are unlearnable, then this would provide some
support for the policies of inflation-targeting central banks.

In this regard, an interesting recent paper which does take indeterminacy
as an empirically relevant possibility is (Clarida, Gali, and Gertler 2000).
They estimate a forward looking policy reaction function for the postwar
U.S. economy, both before and after the appointment of Paul Volcker as Fed
Chairman in 1979. They conclude that monetary policy in the pre-Volcker
era was compatible with the possibility of bursts of inflation and output
that resulted from self-fulfilling changes in expectations of the private sec-
tor. In other words, the monetary policy of the Federal Reserve may have
contributed to the high and volatile inflation of the 1960s and 1970s. In con-
trast, monetary policy in the Volcker-Greenspan era is compatible with the
existence of a unique fundamental equilibrium and this may have contributed
to low and stable inflation during this era. We use stability under adaptive
learning to assess the plausibility of these explanations in Section 4.3.

The plan of the paper is as follows. We present the (by now) standard
model of monetary policy in Section 2 and several examples of monetary
policies considered in the literature. Section 3 characterizes and carries out a
general analysis of E-stability for all of the known forms of non-fundamental
equilibria in purely forward looking multivariate linear models. These general
results are then applied to the model of monetary policy presented in Section
2. Section 4 extends the model to include lagged endogenous variables. This
model covers several important examples of monetary policies proposed in the
literature, in particular interest rules which react to past values of inflation
(output) and/or interest rates. While the expectational stability conditions
can be extended, the results are not theoretically clear-cut. We present the
main methodology for the analysis of this case. Section 4.3 analyzes in some
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detail the model presented in Section 4 of (Clarida, Gali, and Gertler 2000).
Finally, we discuss the implications of our results in Section 5.

2 The Basic Model of Monetary Policy

We conduct the analysis using the framework in Section 2 of (Clarida, Gali,
and Gertler 1999). The structural model consists of two equations:

2z = —p(is — EAtWt+1) + Etzt-H + Gt, (1)
T = /\Zt + ﬁEtﬂ'tJrl + Uy (2)

where z; is the “output gap” i.e. the difference between actual and potential
output, m; is the inflation rate, i.e. the proportional rate of change in the
price level from ¢t — 1 to t and 4; is the nominal interest rate. EAt7Tt+1 and
Etztﬂ denote private sector expectations of inflation and output gap next
period. We will use the same notation without the “~” to denote RE. All
the parameters in (1) and (2) are positive. 0 < § < 1 is the discount rate of
the representative firm.

(1) is a dynamic “IS” curve that can be derived from the Euler equa-
tion associated with the household’s savings decision. (2) is a “new Phillips
curve” that can be derived from optimal pricing decisions of monopolistically
competitive firms facing constraints on the frequency of future price changes.

g: and u; denote observable shocks following first order autoregressive
processes

9 = HG—1+ G, (3)
Uy = put_l—l—ﬂt. (4)

where 0 < |u| < 1,0 < |p| < 1 and § ~ iid(0,02), 1 ~ iid(0,02). g
represents shocks to government purchases as well as shocks to potential
GDP. u,; represents cost push shocks to marginal costs.

Monetary policy is conducted by means of control of the nominal interest
rate 7;. A number of different types of control have been analyzed in the
literature and we present below several well-known examples.

Ezample 1. (Taylor rules based on contemporaneous data) Suppose that
nominal interest rate is adjusted in accordance with contemporaneous data
on inflation and output gap, so that

it = XnTt + Xzt



The structural model becomes
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This model may be determinate or indeterminate. (Bullard and Mitra 2000b)
show that the condition for determinacy is A(x,, —1)+(1—3)x, > 0 and that
there necessarily exists a positive eigenvalue more than 1 when the model is

indeterminate. Thus there may exist other REE besides the fundamental
equilibrium.

Ezample 2. (Taylor rules based on forward expectations) The nominal
interest rate is now adjusted in accordance with expectations of output gap
and inflation next period. For simplicity (and as a first approach) we assume
that the expectations of private agents and policy makers are identical. Then

1 = Xp BT + X Eizi

and the structural model becomes
( <t ) _ < 1 —ox, (1 —Xx) ) ( l?tzt+1 ) 4
U ML =px,) B+ Ae(l—x,) Eymia

() ()

This model may be determinate or indeterminate. (Bullard and Mitra 2000b)
show that the conditions for determinacy are x, < ¢ (1 +371), AMx, — 1)+
(1+8)x, <20 '(1+) and AM(x, — 1)+ (1 = B)x, > 0. It is also possible to
show that, depending on the structural parameters and policy coefficients,
there may exist eigenvalues which are more than 1 or less than —1 in the
indeterminate case.

Optimal monetary policies can also lead to purely forward-looking struc-



tures. For example, postulating a standard quadratic objective function?

1 — i
min §Et {;ﬂ [ozzfﬂ + Wfﬂ-} } , (5)

we consider optimal monetary policy under discretion. Carrying out the
optimization and assuming that the economy is in the fundamental REE
yields the following interest rate rule in terms of the observable exogenous
shocks:?

It = Xy Ut + X9t (6)
where policy optimization yields the values

v = (1 = p)A+app v= o
‘a1 = pB) + N

Ezample 3. (Interest rate rules based on observable shocks and a pure
interest rate peg) More generally, one can consider the class of interest rate
rules that depend on the observable fundamental shocks. These take the form
(6), but with x,, and x, not specified as the optimal values just given. If we
think of (6) as a fixed monetary rule we obtain the purely forward-looking
structural model

a\_(1 ¢ B \ | ( 1-9x, —9n 9
i A B+ Ap Eymi ML —=px,) 1-2px, u )
(7)

Monetary policy pegging the interest rate at a certain target level would
lead to the same coefficient matrix for the expectation variables since then
Xu = Xy = 0. It is easy to check that the coefficient matrix of the vector of
expectations has one eigenvalue greater than one (the other being between

2 is the relative weight for output deviations, and 3 is the discount rate. The policy

maker is assumed to discount future at the same rate as the private sector. If desired, one
could allow for a possible deviation of socially optimal output from potential output and
a non-zero target value for the inflation rate.

3(Evans and Honkapohja 2000) call (6) the fundamentals form of the RE-optimal policy
rule. We avoid this terminology, since we make the distinction between the fundamental
and non-fundamental REE.



0 and 1), so that the model necessarily exhibits indeterminacy. Moreover,
(Evans and Honkapohja 2000) show that the fundamental equilibrium for
this model is not learnable (E-stable).

Ezample 4. (Expectational form of RE-optimal policy) In the funda-
mental equilibrium optimal monetary policy without commitment can be
characterized in other ways besides (6) with the specified values for x, and
X,- Under RE the optimal interest rate can also be written as

(1-p)A

VEimi1 + 0 g, (8)
pap

as pointed out in (Clarida, Gali, and Gertler 1999). We can alternatively
think of (8) as a specified interest rate rule and consider the resulting struc-
tural model. It is again purely forward-looking and takes the form

(zt)_(l —(1 = p)A\/pa )(Etzt“)—i—(())u

™) \AB—-(1- P))\Q/PO‘ EAtWt—i—l 1 "

(Evans and Honkapohja 2000) point out that in this case the model is either
determinate or indeterminate, depending on the values of structural parame-
ters and p. If —1 < p < 0, then equilibrium is necessarily indeterminate since
in this case there are two positive eigenvalues with one exceeding 1. On the
other hand, when 0 < p < 1, indeterminacy obtains if p < A2 [\ +2a/(1+3)] "

since in this case the characteristic polynomial has a root less than —1 (the
other being between —1 and 0).

All of these examples lead to purely forward-looking frameworks. As
was pointed out in the introduction, it is important to consider whether
an equilibrium is robust to small expectational errors and mechanisms to
correct them. This view has particular significance when the model exhibits
indeterminacy, since stability under learning (or E-stability) can then provide
a selection criterion between the fundamental and non-fundamental REE. In
the next section we will provide a general analysis of E-stability and learning
of the non-fundamental REE, as the stability of the fundamental REE has
already been studied in the papers cited above.



3 Purely Forward-Looking Models
Consider a general bivariate linear model

Ty = QEtZL‘H_l‘f‘(DU)t (9)
wy = qut_1+vt, (10)

where z;, w, € R? are, respectively, the vectors of endogenous and exogenous
variables and all constants have been eliminated by centering the variables.
The exogenous variables follow a stationary vector autoregressive process, so
that the eigenvalues of U are inside the unit circle. v; is iid. Examples 1-4
all fit the framework (9)-(10). The limitation to a bivariate model, however,
is not crucial, as many results extend to general multivariate frameworks.
These will be noted below. For the main part we assume that the 2 x 2
matrix € is invertible (which is true for all of the Examples 1-4), but we will
take note of the necessary modifications when € is singular.

3.1 Characterization of Non-Fundamental Solutions

In this subsection we impose RE, so that Et:th = Fyx;,1, the mathematical
conditional expectation. The most common way to obtain non-fundamental
solutions is to represent classes of solutions in terms of arbitrary (unantic-
ipated) innovations to the expectations. Thus let n,,; = 2,41 — Eyxiq be
any innovation process, so that it satisfies Eyn,,, = 0 i.e. it is a (vector)
martingale difference sequence.

The general class of solutions of (9)-(10) can be written in the form?

Ty = Q_ll't_l — Q_l(I)wt_l + T4 (11)

wy = Ywi_1+ v
or, introducing the notation y, = (x}, w})’, uy = (1}, v;)" in the VAR form

at —0e ) . (12)

Yy = By_1 + uy, where B = ( 0 U

Since there are many ways of specifying the innovation process 7, it is evident
that in general there are indeterminacies of REE. The only restriction we

4There is a large literature on representing solutions to linear RE models, see e.g.
(Broze and Szafarz 1991) or Part III in (Evans and Honkapohja 2001c).
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have on 7, is that it must be a martingale difference sequence. However, a
common further restriction is stationarity of the process (12) and we consider
this next.

We first diagonalize the coefficient matrix of (12), so that B = QAQ™!
and introduce the notation Q=1 = (Q¥). We note that A is a diagonal matrix
with the eigenvalues of B along its diagonal, i.e. A = [Aq,..., \4]. Since B is
block-triangular, the last two eigenvalues are those of ¥ and are inside the
unit circle. The remaining two eigenvalues of B (A; and Ag) are then given
by those of Q1. If both A\; and A, are inside the unit circle, then (11) forms
a stationary class of solutions. However, it may also be the case that one or
both roots of Q7! are outside the unit circle. If both roots of 27! are outside
the unit circle, we have the so-called regular case and only the fundamental
solution (which does not involve any lags z;_1) is stationary.’

If just one of the roots is outside the unit circle, there exist stationary non-
fundamental solutions that can be derived by using an extension of the di-
agonalization technique originally developed in (Blanchard and Kahn 1980).
This procedure is normally applied to the original structural model (9)-(10).
Since invertibility of {2 has been assumed, the same procedure can equally
well be applied to the form (12), as we now show. The following proposition
represents the class of non-fundamental stationary solutions to (9)-(10) in
this case.

Proposition 1 Assume, without loss of generality (w.l.o.g) that |M\| < 1,
|A2| > 1 for the two eigenvalues of Q7. The unique stationary solution takes

Tt takes the form 3, = bwy, where matrix b satisfies the equation b = Qb + ®.
Vectorizing this last equation we get the linear system of equations (I — ¥’ ® Q)(vecb) =
vec ® which normally has a unique solution.

10



the form
v\ Q1 Q2T MQY MQPY (2
Tot N Q21 Q22 0 0 T2,t—1 (13)
( QU Q2 -1 QB Qu wy
—\ o~ Q22> (Q23 Q% > <w2:t)

QH Q12 ! /\1Q13 )\1Q14 Wi1,t-1
Q21 Q22 0 0 Wa,t—1

11 12\ 1 11 12 13 14 Tt
+<Q Q ) (Q Q® Q% Q ) o

Q1 Q= 0O 0 0 0 o

Vot

Proof. See Appendix A.1. m
At this point we make two observations.

Remark 1: If  is singular, then the representation (12) does not exist.
Using the analogous diagonalization procedure on the coefficient matrix of
the system

ze \ [ Q oYt Ty n r o Ni+1
w, )\ 0 0! Wit1 (N Viyr )

where 7, = 2441 — Ey7441, the stationary RE solutions can be obtained, see
Chapter 10, Appendix 2 of (Evans and Honkapohja 2001c).

Remark 2: If the system (9)-(10) is higher-dimensional, the same tech-
niques can be used. However, different classes of stationary solutions may

emerge when the above procedure is applied to the general solution class
(12).

The above methodology does not readily yield all stationary solutions
to (9)-(10). A further class of non-fundamental equilibria can be directly
constructed as follows.5 Suppose that economic agents condition their ex-
pectations on a sunspot process s; which is a stationary Markov chain taking

6These kinds of solutions are a generalization of the class of sunspot equilibria intro-
duced in (Chiappori, Geoffard, and Guesnerie 1992) for a linear framework with AR(1)
exogenous variables and shocks. They can be derived from the general form by suitably
defining the innovation process n,, as discussed in (Evans and Honkapohja 2001b) for
scalar models without exogenous variables.
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values in a finite set {1,..., K}, K > 2. We denote its transition matrix by
II = (m;;), where m;; is the probability that the sunspot will be in state j
next period if it is in state ¢ in the current period.

At time t and with sunspot in state s at that time we consider a solution
of the form

Yt,.s = Qs + bwt> (14)

where y; ; denotes the vector of endogenous variables at time ¢ and state
s. The intercept vector is thus made dependent on the state of the sunspot
process s;. The following result shows that this kind of equilibria exist:

Proposition 2 There exist sunspot equilibria of the form (14) if at least one
eigenvalue of I1 is equal to the inverse of an eigenvalue of Q, i.e. |, — 11 ® Q| =
0, and where matriz b solves the equation b = Qb¥ + &.7

Proof. Consider solutions of the form (14). Computing the conditional
expectation

K
Ei sy 1 = 0wy + Z T iy

=1

where F; s denotes the conditional expectation at time ¢ and state s. The
structural model (9) with conditioning on the state of the sunspots can be
written as

Yts = QEt,syt—i—l + <I>wt.

Substituting in the expectations we get

K
Yrs = (QOU + @)w, + Z T si i,
i=1

so that in the REE the equations
b = QWU+ o (15)

K
a, = Y mQai,s=1,.,K (16)

i=1

"Note that the linear equation for b is just the system for computing the coefficient
matrix of the fundamental solution.
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must hold. Letting a = (a}, ...,a%)" € R?%, (16) can be re-written in matrix
form as

([-TT®a=0
which must have a non-trivial solution. m

We note that these resonant frequency sunspot equilibria® form a contin-
uum of solutions, since the equilibrium value of a = (ai, ..., a;)’ is not unique.
This is because, by Proposition 2, at least one eigenvalue of the coefficient
matrix [T ® 2 is equal to one.

3.2 Learnability of Non-Fundamental REE

We now consider how the learnability of these non-fundamental equilibria
can be analyzed for general forward looking models (9)-(10) and in the next
section apply these results to the monetary policies of Examples 1-4. We
employ the methodology exposited in (Evans and Honkapohja 2001c) as it
is by now fairly standard. In this approach the conditions for learnability of
REE are given by E-stability conditions.

From the literature it is known that in most cases E-stability provides pre-
cisely the conditions of the stability under least-squares (and related) learning
schemes.” However, this theoretical connection sometimes fails for technical
reasons. The main case of failure are the continua of RE solutions in linear
models and we are indeed facing this situation here. Simulation studies for
univariate linear models suggest that the connection between E-stability and
convergence of real time learning does hold for solutions continua.! Though
multivariate models have not been numerically studied for this question, there
appears to be no reason why the situation would be different for them.

With these remarks in mind we employ the E-stability criterion in our
analysis of learnability of the REE. The analysis of E-stability of the different

8This terminology is suggested in (Evans and Honkapohja 2001b).

9(Marcet and Sargent 1989) established the connection in models with a unique
equilibrium This result was extended to local stability of multiple REE in (Evans and
Honkapohja 1994a). (Woodford 1990) used the same general methodology to establish a
global result about the possibility of convergence of learning to a sunspot equilibrium.

10See (Evans and Honkapohja 1994a) and Part I1I of (Evans and Honkapohja 2001c) for
a discussion of these questions and for further references.
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types of REE discussed above in the structural model (9)-(10) can generally
be developed as follows.

We begin with the classes of REE taking the form (11) or (13). The
analysis of E-stability begins with the (in general non-rational) perceptions
of the agents. We thus introduce the perceived law of motion (PLM)

Ty =a+ bxy_1 + cwiq + dn, + evy,

where a, b, ¢, d and e are parameter matrices or vectors of appropriate
dimensions. Note that this form of the PLM is the same as (11) and (13),
but with parameter values that are in general different from any REE. Note
also that we have allowed for a possible intercept in the PLM.

At any moment of time agents make forecasts using this PLM with given
values of the parameters, so that the forecasts are given by

EA'tIt_A'_l = a+ bEtxt + Vw1 + cuy
= a+ba+ b2z, 1+ (be + c®)w,_1 + bdn, + (be + c)v,.

In this formulation we have made the assumption that, when making forecasts
at time ¢, agent can observe the values of the exogenous variables and shocks
but not of the endogenous variables at time ¢.!! Substituting these forecasts
into (9) leads to the actual law of motion (ALM) taking the form

zy = Qla + ba + b*zy_; + (be + W) w,_1 + bdn, + (be + c)vy] + PVw,_; + v,
The ALM describes the temporary equilibrium of the economy when agents

use the PLM with the specified parameter values when forming expectations.
We have obtained a mapping

(a,b,c,d,e) — T(a,b,c, d,e)
from the PLM to ALM, where

T(a,b,c,d,e) = (I + b)a, W, Q(bc + c¥) + W, Qbd, Q(be + ¢) + D).

Tt can be shown that nonfundamental equilibria cannot be E-stable if the period ¢
values of the endogenous variables are included in the information set, see Chapter 10 of
(Evans and Honkapohja 2001c).
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The different REE are fixed points of the 7" mapping. They must thus satisfy
the matrix equations

a = QI+ba (17)
b= Qb (18)
c = Qbc+c¥)+ OV (19)
d = Qbd (20)
e = Qbe+c)+ . (21)

It can be seen that the equation for matrix b is a quadratic matrix equation.
Clearly, b = Q! solves this equation, but in general it has other solutions.
Some of the solutions can be singular matrices and this possibility will be
illustrated below.

Given a solution b, equations (17) and (19) generically uniquely determine
a and ¢ (@ and ¢). Given b, ¢, (21) solves e uniquely. For sunspot equilibria,
equation (20) has non-trivial solutions for d when, given b, the matrix I — Qb
is singular. This happens e.g. when b = Q1.

E-stability of a fixed point is defined using the ordinary differential equa-
tion

diT(a, b,c,d,e) =T(a,b,c,d,e) — (a,b,c,d,e). (22)
Thus a fixed point (@, b, ¢, d, €) is said to be E-stable if it is locally asymp-
totically stable under (22). Since we will analyze continua of RE solutions,
E-stability of a class of equilibria must also be defined. Following the lit-
erature, we say that a class of REE is E-stable if the dynamics under (22)
converge to some member of the class.

Formally, this differential equation describes partial adjustment in con-
tinuous (artificial) time 7 between the PLM that the agents use in forecasting
and the actual outcome of the economy under these forecast functions. In
view of this formal interpretation, E-stability is also sometimes used as highly
stylized learning process.

To derive the E-stability and E-instability conditions we linearize (22).
Since the system is matrix-valued, it must be vectorized. We use standard
results from matrix algebra and analysis of multivariate linear models, see
Chapter 10 of (Evans and Honkapohja 2001c), to obtain the coefficient ma-
trices of the linearized and vectorized form of (22). This yields the necessary
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E-stability condition that the real parts of the eigenvalues of the following
matrices

DT,(a,b) = QI +0b)

DTy(b) = 0 @Q+1®Q (23)
DT.(b,e) = V@Q+I20b
DTy(b) = Qb

must have real parts less than one. The sufficient condition for E-instability
is that at least one eigenvalues of these matrices has a real part greater than
one.

This general analysis yields the result that the class of non-fundamental
REE (11) for the structural model (9)-(10) is not E-stable:!'?

Proposition 3 The solution class (11) is not E-stable.

Proof. Using (23), if we evaluate DT,(b) at b = Q71 we get (271 ®
Q + I, where I; denotes the 4 x 4 identity matrix. Using the properties of
the eigenvalues of the Kronecker product of two matrices, we observe that
the eigenvalues of DT,(27!) include an unstable root (with value 2) which
proves the result. m

Remark: This proposition also holds in higher than two-dimensional
purely forward-looking models.

This proposition has, however, a limitation. In the analysis of E-stability
we have not imposed the requirement that the RE solutions and the possible
PLM be stationary. Of course, if both eigenvalues of () are outside the
unit circle, then (11) forms a class of stationary sunspot solutions. If only
one eigenvalue of €) is outside the unit circle, then indeterminacy is, in a
sense, lower-dimensional and (11) does not form a class of stationary sunspot
solutions. We, therefore, turn to the analysis of E-stability for this class of
stationary sunspot equilibria (SSE).

With attention being restricted to stationary solutions, we must focus
on the class of REE given in (13). First, we note that, since E-stability is
local concept, all non-rational PLM’s sufficiently near these REE must be
stationary. We have the following result.

12(Evans 1989) analyzed E-instability of the solution class (12) for univariate forward-
looking models.
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Proposition 4 The class of stationary REE (13) is not E-stable.

Proof. We will show that instability arises from the eigenvalues of the
matrix DTy(b) evaluated at this REE. For this we first need to compute the
solution b which is given by

3 11 12 \ 1 11 12
(S E)CPA) e

The eigenvalues of b are 0 and A; so that this solution is stationary. A
necessary condition for b to be E-stable is that the eigenvalues of the matrix

DT,(b) =V @ Q+ T ® Qb

have real parts less than 1. However, one of its eigenvalues is always 2 which
proves the result. See Appendix A.2 for a Mathematica routine calculating

the eigenvalues of DTy (D). m

Propositions 3 and 4 together show that for solutions classes (11) and
(13) non-fundamental REE of 2-dimensional purely forward-looking models
are E-unstable.

Remark: This proposition is currently limited to bivariate models, but
we conjecture that it also holds generally.

Finally, we need to consider E-stability of the resonant frequency sunspot
REE of the form (14).!® Thus assume that agents have PLM of that form but
as and b do not take the REE values given by equations (15) and (16). The
right-hand sides of (15) and (16) define the T—mapping used in the analysis
of E-stability in the standard way. Thus denote

To(a) = (II®Q)a
Ty(b) = QbY + P
in matrix form. Introducing the notation £ = (a,b), T(&) = (T,(a), T,(b)),
E-stability is defined as usual by the differential equation
dg
==
13 E-stability of these kinds of sunspot equilibria for univariate models without exogenous

shocks were considered in (Evans and Honkapohja 1994b), (Evans and Honkapohja 2001b)
and (Evans and Honkapohja 2001a).

T() —¢.
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For these non-fundamental equilibria, a sufficient condition for E-instability
is as follows:!*

Proposition 5 The class of sunspot equilibria of the form (14) are not E-
stable if Q2 has an eigenvalue with real part > 1.

Proof. Consider the component T,(a) = (II ® Q)a of the T—mapping
constructed in the proof of Proposition 2. Its eigenvalues are the products
of the eigenvalues of II and €. Since 1 is an eigenvalue of the probability
matrix II, the matrix II ® ) has an eigenvalue with real part greater than
one. W

What about the possibility of E-stable resonant frequency sunspots? For
the non-stochastic scalar model, where (in our notation) 2 < —1, and a two-
state sunspot process (Evans and Honkapohja 2001b) recently discovered
that resonant frequency sunspot solutions are E-stable. Here we provide an
extension of that result for the multivariate stochastic setup (9)-(10):

Proposition 6 Assume that (i) all eigenvalues of V' @) have real parts < 1
and that (ii) with the exception of a single eigenvalue equal to 1 (which exists
by Proposition 2) the other eigenvalues of 11 ® Q2 have real parts < 1. Then
the class of resonant frequency sunspot equilibria are E-stable.'®

Proof. We first vectorize the matrix-valued differential equation

@:Qb\ll—l—@—b.
dr

This yields

d(vecb)
dr

= (V' ® Q — Ivech + vecd

which is stable by assumption (i).

14This result was first obtained in (Evans and Honkapohja 1994b) for scalar models
without shocks.

15The different E-stability properties of the resonant frequency sunspot solutions and of
the ”AR(1) form” (13) may seem surprising, since an appropriate specification of 7, in the
latter gives the same RE solution as the former. However, this is reconciled by observing
that the parametric form of the PLM can matter for the E-stability properties, see (Evans
and Honkapohja 2001b) for a further discussion and references.
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Next consider the (linear) differential equation for a. Its coefficient matrix
IT ® Q — I has a single eigenvalue equal to zero while the others are, by
hypothesis, stable. The mathematical lemma in Appendix A.3 shows that
for such systems we have convergence to the set of equilibrium points. m
Propositions 2, 5 and 6 show the following corollary:

Corollary 7 There exist E-stable SSEs when the parameter matriz () has a
real eigenvalue < —1.

This is accomplished by selecting the transition matrix II so that (i) and
(ii) of Proposition 6 can be met.'¢

3.3 Learnability in Examples 1-4.

We now discuss the implication of these results for the monetary policies in
Examples 1-4. As pointed out, the non-fundamental equilibria of the form
(11) and (13) are never E-stable, so that these equilibria can be ruled out
by the criterion of learnability. In addition, Proposition 5 implies that non-
fundamental equilibria of the form (14) are not E-stable also for the policy
rules in Examples 1, 3, and for Example 4 when —1 < p < 0. This follows,
because the "irregular” eigenvalues are greater than 1 in those models.!”

These results seem to suggest that indeterminacies are indeed an unim-
portant curiosum once one takes into account the criterion of learnability.
However, an important caveat here is that Proposition 6 and Corollary 7
show theoretically the existence of E-stable SSEs in certain cases. However,
the interesting question is the possibility of learnable SSEs for plausible values
of structural and policy parameters. As it turns out, this is indeed possible
for Examples 2 and 4.

In Example 2, it is easy to show that a set of sufficient conditions for 2
to have one eigenvalue less than —1 (with the other in the interval (—1,1))
are x, > 1 and x, > 2p !, so that there may exist E-stable sunspots for
plausible values of parameters if one uses, for instance, ¢! = .157, as in

16Tf () has more than one real eigenvalue < —1, one selects II so that the inverse of
just one of these eigenvalues is an eigenvalue of II. Note that if ) has a pair of complex
eigenvalues with modulus > 1 the analytical construction does not work. This is because
the inverses of this pair must both be eigenvalues of II if one of them is. Then the E-
stability differential equation will have two zero eigenvalues and it is not stable.
1"Proposition 5 also applies to Example 2 in some situations.

19



(Woodford 1999). This strengthens the worries concerning the indeterminacy
problems with forward looking interest rules pointed out in (Bernanke and
Woodford 1997), since some of the SSE’s are learnable.

Proposition 6 is also applicable to Example 4 when 0 < p < 1, which is
the empirically plausible case. Note that, when « is close to 0, one is almost
certain to have indeterminacies with the policy (8). This would correspond to
a policy of (almost) strict inflation targeting in the sense used by (Svensson
1999). In addition, as mentioned in Example 4, 2 will have one root less than
—1 and the other in the interval (—1, 0) in this case so that Proposition 6
immediately suggests that E-stable sunspots are possible. Quite apart from
the well known problem of large volatility in output, a policy of strict inflation
targeting may also result in indeterminate E-stable equilibria. A large(r)
value of «, on the other hand, reduces the possibility of indeterminacy. This
perspective, therefore, supports a policy of flexible inflation targeting.

A theme that we will elaborate further in Section 5 is the connection
between E-stability and the ”Taylor principle”, see (Woodford 2000) for a
definition. Intuitively, the Taylor principle means that nominal interest rates
rise by more than the increase in the inflation rate in the long-run. (Bullard
and Mitra 2000b) showed earlier this connection for the fundamental REE
/MSV solution: rules fulfilling the Taylor principle are learnable and rules
violating the principle are unlearnable.

In this paper we find that the connection (in a sense) extends to the set
of non-fundamental equilibria. Policies violating the Taylor principle lead
to indeterminacy in Examples 1 and 2. Combining the results in (Bullard
and Mitra 2000b) with ours, we find that both the MSV as well as all of the
non-fundamental equilibria are unlearnable for these examples.'®

On the other hand, while the Taylor principle suffices for determinacy in
Example 1, it does not do so for Example 2. As pointed out, in Example 2
we may have learnable indeterminate equilibria. In other words, if a policy
conforming with the Taylor principle is associated with indeterminacy, then
all forms of solutions, fundamental and non-fundamental, are potentially
learnable.

18Q) has an eigenvalue more than 1 in Examples 1 and 2 when the Taylor principle is
violated since the characteristic polynomial of 2, evaluated at 1, is negative under this
condition.
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4 Forward Looking Models with Lags

In this section we consider the stability of stationary sunspot equilibria in
models with lags. Some recent models of monetary policy lead to such for-
mulations.

Example 5. Suppose that the central bank sets the nominal interest
rate based on lagged values of inflation and output. This rule is argued by
(McCallum 1997) to be particularly realistic of actual central bank behavior
since the bank does not usually have information about contemporaneous
output and/or inflation when formulating policy. This rule is given by

U = XnTt—1 T X22t—1

and plugging this into the structural model (1) and (2), we get
2 1 %) Etzt+l
= A 25
(7t> ()‘ﬁJF)‘SO)(EﬂTtH)Jr (29)

—OX.  —PXx -1 Lo 9t
—APX, —AOX, M1 Al w )

Other specifications of interest rate rules commonly used in applied work
also lead to models with lagged endogenous variables. Typically, the class
of generalized (inertial) Taylor type rules which (also) reacts to the lagged
interest rate will lead to such formulations.

Consequently, we now consider the general class of bivariate models:!

Ty = QEt$t+1 + 6331571 + (I)'LUt (26)
wy = \Ifwt,l + Vt, (27)

where x;, w; are, respectively, the vectors of endogenous and exogenous vari-
ables. The exogenous variables follow a stationary VAR, so that the eigen-
values of ¥ are inside the unit circle. vy is iid.

4.1 Characterization of Non-Fundamental Solutions

In this subsection we impose RE, so that Et:z:tﬂ = Eryyq. Let n =
Ty11 — Eywepq be any innovation process, so that it satisfies Fyn,,, = 0. For

9The modifications are obvious when ;,w; are of arbitrary (finite) dimension.
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the main part we assume that the matrix () is invertible, but we will also
encounter the case where () is singular and will show the modifications to
the technique.
The general solution of (26)-(27) can be written in the form
Ty = Q_ll't_l — Q_l(sfl:t_g — Q_lcbwt_l + ur (28)

wy = Ywy + vy

3 : 4 _ / / 1\/ _ / AV
or, introducing the notation y; = (x}, z}_;, w;)’,uy = (1}, v;)’, in the form

Ot -0l —Q'e I 0
Yyt = Biyi—1 + Lu,, where By = 1 0 0 L=100
0 0 L 0 I

(29)

Note that this formulation does not assume invertibility of . Since there
are many ways for specifying the innovation process 7,, there can be inde-
terminacies of REE as before. A very common further restriction on (29)
is stationarity of the process. The general characterization (29) will form a
stationary class of solutions if all eigenvalues of B; are inside the unit circle.
However, it may also be the case that one or more roots of B; are outside
the unit circle and we consider this next.

The main methodology we use is similar to the one used in the previous
section, so we illustrate it concretely with Example 5. The technique will
work even though ¢ is non-invertible here, see (25). First, the coefficient
matrix of (29) is diagonalized, so that B; = QAQ™!, where A is a diagonal
matrix with the eigenvalues of B; along its diagonal, i.e. A = [Aq, ..., \g].
Since B is block-triangular, the last two eigenvalues (denoted A5, \g) are just
those of ¥ and, hence, inside the unit circle. The remaining eigenvalues of
B, are given by those of the top left corner block 2 x 2 matrix that has a zero
determinant since ¢ is singular in Example 5. So (at least) one eigenvalue
is 0 (denoted A4) and if 0 or 1 of the remaining three eigenvalues (Ay, Ao, or
A3) are outside the unit circle, equilibrium is indeterminate. Equilibrium is
unique if exactly 2 of these eigenvalues are outside the unit circle and it is
explosive in the remaining scenario. In fact, all of these situations are possible
for Example 5, as illustrated in Figure 2 of (Bullard and Mitra 2000b).

(Bullard and Mitra 2000b) studied the learnability of the fundamental
equilibrium in Example 5. Here our aim is to study the learnability of non-
fundamental equilibria which are possible for values of x, less than 1. We
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develop the technique for obtaining the stationary sunspot solutions when
exactly one eigenvalue of B; is outside the unit circle since this usually obtains
for plausible values of structural parameters. Hence, assume, w.l.o.g., that
|IA1] < 1, |[A2] > 1 and |A3] < 1. We use the notation Q~! = (Q¥) and
zy = (T14,%9:) below. Appendix A.4 shows that the unique stationary
solution can be written in the form

Qll QIQ 1t
( Q2 Q2 > ( $2:t >

_ AlQll—Ql?’ )\1Q12—Q14 T1t—1 (30)
—Q23 —Q24 T2t—1
+ )\1Q13 )\1Q14 T1,t—2 - Q15 Q16 Wy ¢
0 0 Tos o Q¥ Q* Wa g
Mg
+ MY Q' Wi,t—1 + i he his la Uby
0 0 W2 t—1 0 0 0 0 V1t
Vot

which generally gives a vector ARMA(2,1) process in z;. To shorten notation,
rewrite the previous equation as

r; = bixsq + baxy_o + other terms involving shocks, (31)
e (O93) (00 ey
B 11 12\ 1 13 14
o (@@ NeE QY
Q* Q 0 0

Introducing the notation y; = (z},x}_;)’, we can rewrite (31) in the form a
vector auto-regression of order one, VAR(1), as

yl = ( ) y; , + other terms involving shocks.

Stationarity requires that the four eigenvalues of the above coefficient matrix
be less than one in modulus.
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4.2 Learnability of Non-Fundamental REE

Using the concept of E-stability, learnability of these non-fundamental equi-
libria can be analyzed as before using the standard methodology. We proceed
from the structural model (26)-(27) and begin with the PLM of the agents

Ty =a-—+ blxt_l + bg(Et_Q + cwy—1 + d?’]t + evy,

where a, by, by, ¢, d and e are parameter matrices or vectors of appropriate
dimensions. The form of the PLM is the same as (28). Using this PLM, the
forecasts are given by

Etxt+l = (I + bl)a + (b% + b2>xt—l + blbgib'tfg + (blc + C\D)wt,l + bldnt
+(bre + c)vy,
where we have again assumed that agents observe only the time ¢ values of
the exogenous variables and shocks but not the time ¢ values of endogenous

variables in making their forecasts.?’
Substituting these forecasts into (26) leads to the ALM

Ty = Q(I + bl)a + {Q(b% + bz) + 6}.’171571 + lengt72 +
{Q(byc + V) + PV twy_q + Qbydn, + {Q(bre + ¢) + Ploy.
The mapping from the PLM to ALM, (a,by,bs,c,d,e) — T(a,by,bs,c,d,e),

is given by
T(a,bi, by, c,dye) = (I +by)a, QT + by) + 6,
lebg, Q(blc + C\If) + (I)\I/, led, Q(ble + C) + (D)

The different REE are fixed points of the 7' mapping that, therefore,
satisfy the matrix equations

a = QU +b)a (32)
b = Qb +by)+6 (33)
by = Qbiby (34)
c = Qbic+c¥) + OV (35)
d = Qbd (36)

Q(bre +c) + . (37)

20As in the case of no lags, the equilibria will be E-unstable if the information set
includes period ¢ values of the endogenous variables.

24



It can be seen that the equation for matrices b; and by form an independent
sub-system and involve a (matrix) quadratic equation. Clearly, b; = Q71
by = —Q 716 solve this sub-system, but in general there are other solutions.
Some of the solutions can again be singular matrices and this will be illus-
trated below.

Given a solution by, by equations (32) and (35) generically uniquely de-
termine @ and ¢ (a and ¢). Given b; and ¢, (37) uniquely determines e.
For sunspot equilibria, given b;, the matrix I — Qb; must be singular (e.g.
when b; = Q1) in which case the equation for d has nontrivial solutions and
sunspot equilibria exist.

E-stability of a fixed point is defined by means of the ordinary differential
equation

di(a, bi,be,c,d,e) =T(a,by, by, c,d, e) — (a,by,be,c,d,€). (38)
-

Thus a fixed point (@, by, bo, €, d, €) is said to be E-stable if it is locally asymp-
totically stable under (38). To derive the E-stability and instability condi-
tions we linearize (38). The necessary E-stability conditions are that the real
parts of all the eigenvalues of the following matrices

DT, (a,by,by) = QI +b)
DT.(by, by, ) U ®Q+1Q 0
DTy(by,bs) = Qb

as well as the matrix

(M®Q+I®Qm I )

b, @ Q I ® Qb (39)

have real parts less than one. On the other hand, the solution is E-unstable
if any of the eigenvalues of these matrices has a real part exceeding one.

In this case, clear-cut theoretical results for E-instability are generally
not available since the eigenvalues of (39), when evaluated at b; = Q7!
by = —Q 716, depend on §. Nevertheless, these conditions can readily be
applied to specific models, as we now illustrate.

Continuing with Example 5, we consider the model (25) numerically.
Adopt the calibrated values of the structural parameters ¢ = (.157) ! ~ 6.37,
A =.024, = .99, given in (Woodford 1999). For illustrative purposes, also
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consider x, = .8, x, = .1, p = p = .9, which leads to indeterminate equilib-
ria, see Figure 2 of (Bullard and Mitra 2000b). For these values the solution
given by by = Q71 by = —Q 716 turns out to be non-stationary. Consequently,
we use the sunspot solution given by (31) with

b ( —0.29 1.03 ) by — ( 0.08 O.67>
! 02 79 ) 0.02 0.13
which results in a stationary sunspot solution. However, one eigenvalue of
(39) is 2.28 which makes the solution E-unstable.?!
(Bullard and Mitra 2000b) found two stationary MSV solutions in the
indeterminate region of Example 5 and both of them were always unlearnable.
We, therefore, again observe the failure of Taylor principle leading to E-

instability of all types of solutions, fundamental and non-fundamental, as in
Section 3.3.

4.3 The Model of Clarida, Gali, and Gertler (2000)

We now look at a model analyzed in Section 4 of (Clarida, Gali, and Gertler
2000) which is similar to the one considered in the previous section with some
slight modifications noted below. The structural model continues to consist
of (1) but (2) is replaced by a slightly modified equation, namely,

Ty = )\Zt + ﬁEtWt+1 — /\'LLt, (40)

where the parameters are the same as in Section 2 and the shocks g; and wu;
continue to follow the processes (3) and (4). (Clarida, Gali, and Gertler 2000)
use an interest rate rule of the form

7:15 = elltfl + (1 - 9>X7rEt7Tt+l + (1 — H)Xzzt. (41)

which has an inertial component captured by 6 and reacts to the contempo-
raneous output gap and future forecast of inflation.
Plugging this rule into (1) and (40) yields the reduced from

2t f?tztﬂ Zt—1 g
m | =Q| By | FO| Mo |+ R < ut ) ) (42)
it Et'l'tJrl Z.t—l !

2L A similar situation seems to prevail for other values of policy parameters in the inde-
terminate region.
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where

ko koe{l — (1 = 0)x.} 0
0 = ko B4+ Meop{l —(1—=0)x.} 0 |,
ko(1—0)x,  ko(L—=0)(ox.+X:) O
0 0 —kopb ko 0
§ = | 00 —Meopb |,k= Mo A |,
00 ko ko(L—0)x, 0
ko = {1+(1—-0ex.} " (43)

It is possible to show that indeterminacies can arise in this model. This
model fits the general framework of (26)-(27), except that z; is now three-
dimensional. In this case neither 6 nor (2 are invertible, so that for computing
the indeterminate equilibria we need to apply the diagonalization technique
directly on (42) rather than the autoregressive form used previously. Define
the free variables as a:tl =z = (24,7, z't)' and the predetermined variables as
x? = (4,1, Wy, wy) where wy; = gy and wy = ;.

The technique starts from the following general form (e; = (g, ;) below)

;. = BiEwx, +Ca}, (44)
x; = Rxj_,+ Sz}, + ki€ (45)
where in our case we have B; = (),
—kopl ko 0
Cc = —koApl koA -2 |,

0 01 0 0 O 00
R=oo0oo0)|,s=l0upo0],m=[10
000 0 0 p 0 1

and ko is defined in (43). Having put the model in this form we compute the
matrix J given by (see Chapter 10, Appendix 2 of (Evans and Honkapohja

2001c) for the details)
I —c]'[Qo
[reTe w

Equilibrium will be unique if exactly 3 (of the 6) eigenvalues of J are inside
the unit circle, while it will be indeterminate if fewer than 3 eigenvalues are
inside the unit circle.
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For the model (42), J takes the form??

1 ) 0 —p put 0
A B+ Ay 0 —Ap Apt —Apt
0 0 0 1 0 0
J = —(1-0x, —(-0)(eXs+Xx) 0 1+(1-0ex, —(1-0)x, 0
0 0 9 10
0 0 00 pt 0
0 0 00 0 p!

We now compute and examine the learnability of indeterminate equilibria
in (Clarida, Gali, and Gertler 2000). They have suggested that monetary
policy in the pre-Volcker era (i.e., 1960 — 1979) led the economy to stationary
sunspot equilibria. The calibrated parameter values they use are ¢ = 1,
A=.3,0=.99 0= .68 x,=.27 u=p=.9 x, was consistently found
to be less than one in this period and is the cause for indeterminacy. If we
use the baseline estimate of x,, = 0.83 in Table 2 of their paper, we find that
exactly 2 eigenvalues of J are inside the unit circle.

Appendix A.5 shows that the final solution for ; = (2,7, 4) is a vec-
tor ARMA process given by (69) with the corresponding solutions for by, by
given by (70) and (71). This (sunspot) solution will be stationary if all the

eigenvalues of the matrix
by by
< b ) (47)

are inside the unit circle. For the period 1960 — 79, the b; and b, matrices
are

i 41 50 —-15\ 0 0 1.02
by=| 44 54 —82 |.by=| 0 0 1.10
12 .15 45 00 .30

The maximum eigenvalue of (47) is .95 so that this solution is stationary.
However, the eigenvalues of (39) have a pair of complex conjugates with real
parts 2.1 so that the solution is not E-stable. This shows that even though
there exist stationary sunspot equilibria in the pre-Volcker period, they are
not learnable by private agents.

22(Clearly, from its structure, it is apparent that 3 of the eigenvalues of J are always 0,

p~tand pt.
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It can also be shown that even the fundamental equilibria are not E-stable
for these parameter configurations. The MSV (fundamental) solutions take
the form

ry = bxy_1 + cwy

and solving the matrix quadratic, Q0? —b+6 = 0, yields two stationary MSV
solutions for b given by

0 0 —15 0 0 .19
0 0 —8 Jand [ O O 1.01 |. (48)
0 0 .45 0 0 .95
If agents have a PLM of the form
Ty = a + bxi_; + cwy (49)

then a necessary condition for E-stability is that the eigenvalues of the matrix
Q) + Qb have real parts less than one if agents use last period data on output,
inflation, and interest rates to form their forecasts. However, it is easy to
check that this condition is violated for both the solutions given in (48).%3
We note here that the estimated rule in the pre-Volcker era fails the Taylor
principle and we (again) find all types of RE solutions, both MSV and SSEs,
unstable under learning.?*

These results offer a novel explanation for the high inflation in the pre-
Volcker era. Since neither the fundamental nor the non-fundamental equilib-
ria are E-stable, the high inflation of the 1960s and 1970s may have been due
to the persistent learning dynamics of private sector agents. The forecasting
errors made by agents did not disappear over time owing to the monetary
policy being pursued by the Federal Reserve. On this interpretation, these
errors were not due to the convergence of the economy to a sunspot equilib-
rium, as suggested in (Clarida, Gali, and Gertler 2000).

On the other hand, in the Volcker-Greenspan era the monetary policy
followed was not compatible with the existence of a stationary sunspot equi-
librium. Using the baseline estimates of x, = 2.15, x, = .93 and 6§ = .79 in

23 A similar conclusion follows if agents use contemporaneous information on output,
inflation, and interest rates in forming their forecasts.

24Unlike the rules in Examples 1-5, this rule is inertial but it still fails the Taylor
principle, see (Woodford 2000) for the definition of the Taylor principle in this case.
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Table 2 of (Clarida, Gali, and Gertler 2000) for this period, one can check
that there exists only one stationary MSV solution, namely

00 —1.22
00 —064 |,
00 043

which is E-stable if agents have a PLM of the form (49). This monetary
policy satisfies the Taylor principle and was conducive to learnability of the
unique MSV solution. This may in fact have contributed to the low inflation
during this period.

5 Discussion and Concluding Remarks

We have carried out a general analysis of learnability for multivariate for-
ward looking linear models (with and without lags) and all of the known
forms of non-fundamental equilibria. These results apply to models of mon-
etary policy which are being used to give advice to policy makers. We em-
phasize that learnability of fundamental equilibrium and unlearnability of
non-fundamental equilibria are an important constraint that monetary policy
makers should respect since otherwise, undesirable fluctuations may result.
In addition, learnability puts restrictions that model parameters must satisfy
if non-fundamental REE are going to be a useful framework for applications.

A theme that is apparent in our results is the connection between the
Taylor principle and learnability. (Bullard and Mitra 2000b) earlier observed
this for the fundamental REE and we find that this extends (in a certain
sense) to the set of non-fundamental equilibria. Policies violating the Taylor
principle usually result in indeterminacy, see (Bullard and Mitra 2000b), and
this is put forward as a primary reason for avoiding them - this is true for
the rules in Examples 1, 2, 3, and 5. In all of these cases we have found that
all of the indeterminate equilibria are also unlearnable. This provides a novel
explanation for the undesirability of rules violating the Taylor principle: they
result in E-instability of both MSV and indeterminate solutions. Once we
abstract from the assumption of RE on the part of private agents, these rules
may lead to persistent learning dynamics as agents try to find (unsuccessfully)
some equilibrium when in fact no learnable RE solution exists.

A concrete application of this idea is to the scenario in (Clarida, Gali,
and Gertler 2000). They use estimated values for a forward looking policy
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rule, which violates the Taylor priciple, to suggest that the high and volatile
inflation in the U.S. in the 1960s/70s may have been due to the indeterminate
equilibria caused by the policy. Our analysis has shown that neither the
fundamental nor the non-fundamental equilibria were learnable during this
period so that the volatile period was perhaps a situation of agents trying
unsuccessfully to find some equilibrium. A further analysis of this issue would
certainly seem worth while.

At the other end of the spectrum, we have found that when an interest
rule satisfying the Taylor principle is associated with indeterminacy, there
may exist (some) learnable, non-fundamental equilibrium. In this regard, of
particular importance, are the policies in Examples 2 and 4, i.e. when the
bank uses inflation forecasts in its policy. Both fundamental and some non-
fundamental RE solutions, are potentially learnable with these rules. Our
analysis, therefore, provides in some cases support to the dangers pointed
out in (Bernanke and Woodford 1997) from the learning viewpoint.

This result also underlies the importance of avoiding indeterminacies
when forward looking policy rules conform to the Taylor principle. Inde-
terminacy can be avoided with moderate aggression to inflation and/or out-
put forecasts and this (also) results in E-stability of the unique fundamental
equilibrium, see (Bullard and Mitra 2000b).?®

An additional way to reduce the possibility of indeterminacy is to make
the interest rule react directly to its own past values. These inertial rules
have been found to have desirable properties: they can lead to the existence
of a unique learnable fundamental equilibrium and also have the potential to
implement optimal policy of the central bank (see (Bullard and Mitra 2000a)
and (Rotemberg and Woodford 1999)). It has been well documented that
policymakers indeed show a clear tendency to smooth out changes in nomi-
nal interest rates, see (Rudebusch 1995). Note that this inertial component
makes it easier to satisfy the Taylor principle, see (Woodford 2000) for the
details. The interest rule estimated for the U.S. since the 1980s by (Clarida,
Gali, and Gertler 2000) has this inertial component that in conjunction with
its response to the inflation forecast and output gap fulfils the Taylor princi-
ple and leads to the existence of a unique learnable fundamental equilibrium.

2>We note that relatively modest responses, particularly to the output gap, are
also supported in the very different model of (Christiano and Gust 1999). Similarly,
(Orphanides 2000) argues for prudent policies owing to the difficulties in measuring the
output gap. Existence of parameter uncertainty also supports a less activist optimal policy
for a central bank, see (Wieland 1998).
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Our analysis, therefore, suggests that Taylor principle in rules with inertia
may have contributed to the low and stable inflation to the present times.

In summary, we do not advocate policies that violate the Taylor princi-
ple. Policies satisfying the Taylor principle are recommended as long as they
do not lead to indeterminacy. In addition, inflation-targeting central banks
should adopt a policy of flexible inflation targeting instead of strict inflation
targeting since the latter may easily lead to the existence of learnable, inde-
terminate equilibria. This is probably what most inflation-targeting central
banks seem to do in practice.

Finally, on a broader perspective, the general results of this paper show
that, in many cases, the non-fundamental equilibria are not learnable. This
suggests that focus on the fundamental REE is often justifiable, provided this
equilibrium is shown to be learnable. In this sense, the analysis lends some
support to the arguments in (McCallum 2001a) and (McCallum 2001b).

A Appendices: Derivations

A.1 Proof of Proposition 1

Define the new variables p; = Q'1;.26 This allows us to write the system
(12) in the form

pe = Apy + Q My (50)
The second equation of (50) can then be written as
Pat = AoPoy—1 + Q21771,t + Q22772,t + Q23U1,t + Q24U2,t>

where the notation Q! = (Q%) has been used. Stationarity implies the
restriction py; = 0 or

QQll‘l,t + Q221‘2,t + Q23w1,t + Q24w2,t = 0. (51)
The first equation is

Pt = MiPi—1 + Q“m,t + Q12772,t + ngvl,t + Q14vz,t~ (52)

26This is a modification of the well-known Blanchard-Kahn technique for obtaining
stationary solutions to regular (i.e. ”saddle-point stable”) multivariate linear RE models.
See, Appendix 2 of Chapter 10 in (Evans and Honkapohja 2001c) for the extension of the
technique to irregular models.
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These imply that one of components of the martingale difference sequence
7, is a linear combination of the other component and the 7td shocks to the
exogenous variables. Using the definition

Pt = in"l,t + Q12$2,t + ngwl,t + Qmwu

we can write (52) as

Qlll‘l,t + Q12$2,t = /\1Q11$1,t—1 + >\1Q12952,t—1 — lewl,t — Q14w2,t
+)\1Q13w1,t—1 + )\1Q147~U2,t—1 +
QllnLt + Q12772,t + Qv + QM vy

This equation and (51) make up the system (13) in the text.

A.2 Mathematica Routine used in Proposition 4

We give a brief description of the Mathematica routine used in computing
the eigenvalues of DTy (b). For computing b, we need only the top left 2 x 2
block of the diagonalization matrix for B, namely (). In addition, since B
is block triangular, this matrix corresponds to the diagonalization of Q1.
Denote the 2 x 2 matrix Q = (2;;). The Jordan decomposition on Q! yields
the following diagonalization matrix

2921 ZQ21

911—922-&-\/9%1 +02,-2011022+4Q12021 Q11 —922—\/Qfl-i-Q%Q—2911922+4Q12921
M =
1 1

Note that, as mentioned above, M coincides with the top left 2 x 2 block of
Q. The eigenvalues of Q71 are

N Qi1+ Doz — /2, + 035 — 2041 Q09 + 40150
' 2 (10 — Q1201) ’
Qi+ Qo + \/9%1 + Q3 — 2011 Q90 + 40120

2 (911922 - 912921)

Ay =

In general, we do not know whether A\; or A3 has the smaller modulus. As-
sume for now |A1| < 1, |Az] > 1. With this,

- MM MG
o (M
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where Migl denotes the (4,5) element of M~ and b coincides with (24). It
is then easy to check that one of the eigenvalues of DT}(b) =0 @ Q+1® Qb
is 2.27

A.3 Mathematical Lemmma used in Proposition 6
Consider the following linear system of differential equations
T = Ax (53)

with z an n dimensional vector. We assume that A can be written in the
form A = QAQ !, where the matrix of eigenvalues takes the form

A:(Aol 8) (54)

and all n — 1 eigenvalues of A; have negative real parts. A; is thus invertible.
Partition Q! = (QY) as
11 12
Q' = ( 821 822 >

where Q" is (n — 1) x (n—1), Q%is (n —1) x 1, @Q** is 1 x (n — 1) and
(QQ*? is a non-zero scalar. We assume that the matrix Q' — Q*?(Q*)~1Q?! is
invertible.

We prove the following auxiliary result:?®

Lemma 8 For any initial condition x(0) the trajectory x(t | x(0)) of (53)
converges to the set of equilibrium points {% | Az = 0}.

Pre-multiplying (53) by Q7' we get
Q' = AQ 'z (55)

or defining the transformed variable, y = Q 'z, we get y = Ay. So, using
(54), we have §; = Ajyp, and o = 0 where y; is (n — 1) x 1 and s is

2TWe refer the reader to the web page www.valt.helsinki.fi/raka/seppo.htm for the full
Mathematica routine used in this proof.

28We have not discovered this result in the mathematics literature, though we suspect
that it is a known result.
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scalar. Thus, yo(t) = y2(0) for all ¢, i.e. given an initial condition x(0), we
can compute y(0) = Q'z(0) and along the trajectory z(t | z(0)) the last
component of y(t) = Q~'z(t | z(0)) does not change over time.

Generally, we have

n(t) = QUm(t) + Q% m(t), (56)
yg(t> = Qzll'l(t>+Q22l'2(t>. (57)

Using (55) we, therefore, get

QUi+ Q%iy = A(Q"z1 +Q%1y), (58)
QM+ Q%iy = 0. (59)

where the time subscripts have been suppressed. Since Q?? is non-zero, we
have z, = —(Q*)'Q?'%,. Plugging this into (58) we get

Q" — QP(Q*)7QM i1 = Mi(QMx1 + Q). (60)
We know from (57) that Q*'x1(t) + Q*2xa(t) = ya(t) = y2(0) which implies
wa(t) = (@%)'y2(0) — (@) 7' Q™ (2). (61)

Substituting (61) into (60) yields

Q" — Q@)@ 11 = M[Q"w +Q™(Q™) 'y2(0) -
Q12(Q22)—1Q21x1]

or, after rearranging,

[QH . QlQ(QQQ)—lQQl]C-Ul — A1Q12(Q22>_1y2(0> + Al[QH . QIQ(Q22>_1Q21]$1

(62)
Define » = [Q'! — Q'2(Q??)~'Q*"|z,. Then (62) yields
2= MQ™(Q%) 2(0) + Az
implying that
2=z =—-Q%(Q%)2(0) as t — oo. (63)
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Since [Q' — Q2(Q**)~1Q?] is invertible,
vy = 3 = [Q - QQR) QMM as t - .
Using (61), this in turn implies that
Ty — Ty = (Q*) yp(0) — (Q*) Q% 7, as t — oo. (64)

We now return to the original system (53). Obviously, any equilibrium
point & satisfies A7 = 0 or QAQ 12 = 0. It follows that QAg = 0 or, since Q
is invertible, Ag = 0. Thus A;7; = 0, implying ¢; = 0, since A; is invertible.
In other words, Q''2; + Q225 = 0.

The final step is to check whether Q7 + Q275 = 0 so that T = (71, T»)
is indeed an equilibrium of the original system. Thus, calculate

Q'z +Q%zy = QY7+ QP[(Q%) (0) — (@) Q¥ 7]
- Q" - Q(QP) QM + Q(Q) (0
= 7+ Q%(Q%)1(0)=0

as required, where we have used (63) and (64) above.

A.4 Details on Section 4.1

Define new variables p; = Q'y;. This allows us to write the system (29) in
the form

pe = Ape1 + Q' Luy. (65)
The second equation of (65) can then be written as
P2t = Aopai—1 + loamyy + l2amgy + lozvrg + logvay,

where the notation Q'L = (I;;) has been used. Stationarity thus implies
the restriction py; = 0 or

Q21$1,t + Q22$2,t + Q23$1,t71 + Q24372,t71 + Q25w1,t + Q26w2,t =0. (66)
where Q' = (QY), and z; = (z14,22,)'. The first equation is

Pt = MiPre—1 + luny e + liangy + ligve + liavay (67)

36



Using the definition

D1t = Qlliﬂl,t + leiﬂzt + ngﬂﬁl,t—l + Q14$2,t—1 + Q15w1,t + Qlﬁwz,t

we can write (67) as

Qllxl,t + leiﬂz,t = (MQH - ng)iﬂl,t—l + (>\1Q12 - Q14)$2,t—1 + >\1Q13$1,t—2
+/\1Q14I2,t72 — Q15w1,t — waz,t + )\1Q15w1,t71
FANQ wo 1 + Ly + lianyy + ligviy + Liavay (68)

Equations (66) and (68) imply (30) in the text.

A.5 Details on Section 4.3

For the computation of irregular equilibria in the model of (Clarida, Gali, and
Gertler 2000), we follow the technique illustrated in Chapter 10, Appendix
2 of (Evans and Honkapohja 2001c). We factor J as A = Q7 1JQ, where

Q'=1{q" i,j=1,..,6} and A are correspondingly partitioned as

QU(L1) Q'(1,2) Q1)
Q™ = | Q21 Q"(22) Q%(2) |,
Q*(1) @) Q%
A0 0
A = 0 AF 0
0 0 A

Note that the diagonal matrix A] above contains the eigenvalues of J with
modulus less than one whereas A# and A, are diagonal matrices containing
the eigenvalues of J with modulus more than one. The free variables are also
partitioned into the sets

If we use the baseline estimates in Table 2 of (Clarida, Gali, and Gertler
2000) for the period 1960 — 79, the eigenvalues of J happen to be \; = 0,
Ao = .63, A3 = 1.05, \y = 2.21, \s = u~ 1, \¢ = p 1, i.e., exactly 2 eigenvalues
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of J are inside the unit circle. Assume that A* = {\;, A2}, A7 = {3}, and
Ay = {4, As, A¢}. We have here z2* = {z, m,}, 217 = {i;}, and

1 12 13
Qll(Ll) = ( q21 322 ) 7Q11(1:2) = ( 323 ) )

q
Q"M2,1) = (¢ ¢*),Q"(2,2) = (¢"),
14 15 16
q q q
Qm(l) = (q24 q25 q ) (2) ( q36 >7
g R ¢ g B g
Q¥(1) — 2 072 = ¢ |,02=| ¢ & ¢
2 e B o
Q' = (Q'(4,7)) is then given by (i,j = 1,2)
JRESEMERIE:
o= & &2 &
I

Assume that Q! is invertible and let (Q")™! = {¢;, 4,7 = 1,..,3}. It can
be checked that (see (Evans and Honkapohja 2001c) for the details) the final
solution (with some abuse of notation) for z; = (z, m,%;) is

Ty = Blflﬁt,l + [_)21’1315,2 + .. (69)

which is a vector ARMA process (terms involving the shocks are omitted
since they are not needed for E-stability). Here we have

Al qd® A asd® ais(g 1q33

B q 4) — quq"* — qag™
by = )\51%3(131 /\51%3(132 Q23(/\3 ¢ — @) — gug" — g2®* |(70)
1 1 1
A3 as3q® A3 assq® ass(A @ — ) — gzg™ — gaq™

00 A§1Q13q34
by = 0 0 A'gusg™ |. (71)
00 )\51(]33(134
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