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This paper develops a Bayesian MCMC algorithm to estimate a Panel Data Simultaneous
Equations model with a dependent categorical variable and selectivity. In contrast with
previous Bayesian analysis of selectivity models, the algorithm does not require the
observation of some regressors which do not enter into the likelihood function. This makes
the algorithm applicable to studies of the labor market where there are typically missing
regressors. In addition, the paper provides an scheme to sample the slope parameters using
an analytical approximation of the posterior distribution as a proposal density. Estimation
with a simulated dataset illustrates the performance of the algorithm.
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1 Introduction.

Applications of microeconomic theory to unit record data frequently encounter the joint problems of
sample selectivity, categorical variables and simultaneity. Simultaneous equation models with discrete
endogenous variables are an important area of research in econometrics, and are reviewed and extended
in Blundell and Smith (1993). The model considered in this article is a Bayesian MCMC extension
to longitudinal data of one of the models analysed in Blundell and Smith (1993). A random ewcects
speci..cation is chosen to model the longitudinal nature of the data.

De..ne hj; as a categorical variable taking values in the set 0;1;:::;Jg. Assume that the observed
value of hj; is determined by a continuous unobserved variable hj; such that h;; = j if and only if
hit 2 (lj;lj+1], with Ip = §1 and I341 = 1. Let wj; be a contlnuous variable which is jointly
determined with hj;. The simultaneous realization of wi; and h;; and the non-representativeness of the
sample can be modelled as follows.
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Xiit, Xoit and Xgj¢ are three vectors of explanatory variables of dimensions (I £1), (k £ 1) and
(f £1), respectively. ~;, 5, and "5 are three comformably dimensioned parameter vectors. Selectivity
eaects are modelled by assuming that wi. is only observed when the unobserved latent variable pj; is
positive. Since only the sign of pj, or the category in which hj; falls is observed, the model is not
likelihood identi..ed. As a normalization, %e11 and ¥%e33 are restricted to be one and |, restricted to be
zero. In addition, the usual conditions for identi..cation in linear simultaneous equation models apply
(see Judge et al, 1985, pp. 573- 586)
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equations in (1) can be expressed as,

Zit= Xy +Uj+Ei

Three main features dicerentiate the algorithm presented here from other Bayesian MCMC analysis
proposed in the literature. Firstly, in contrast with previous analysis of models with selectivity (e.g.



Chib and Hamilton 2000) w is not imputed when it is not observed. This allows the algorithm to be
applicable to many situations in which not only w but also some regressors in Xaj may not be observed.
This situation is common in studies of the labor market in which wages (w) depend on regressors such as
size of the company, type of industry and experience in that type of job. In such a situation, wages and
some regressors in Xaj¢ are not observed for people who stay out of the labor market. In this context,
hit could represent self-assesed health, which is usually recorded as a categorical variable and potentially
acects and is arected by wages (see for instance Haveman et al. 1994).

Secondly, all the free elements in 8 are sampled directly from their conditional distributions given
%e13- In addition, the acceptance probability of the Metropolis step which generates 8§ only depends on
%e13. This is made possible by analysing the marginal and conditional distributions of the elements in
8.

Thirdly, it uses an analytical approximation of the conditional posterior of the slope parameters ()
as a proposal density in a Metropolis-within-Gibbs step. Using this proposal density, the acceptance
probability only depends on (°;t). Hence, ( 1; »; 3) do not have to be sampled when the proposed
value is rejected.

Section 2 describes the algorithm to simulate from the posterior distribution. Section 3 illustrates
the performance of the proposed method with simulated data. Section 4 concludes.

2 Sampling from the Posterior Distribution.

A Gibbs sampler algorithm (Gelfand and Smith 1990) with data augmentation (Tanner and Wong 1987)
can be followed in order to sample from the posterior distribution. The algorithm proposed in this
paper blocks the parameters into six groups S0 that all the elements in one group are jointly generated
conditional on the rest of the groups Let ""i g ft:pj >0g. The six groups are, Gl =8, G, = ;

Gz = fU; gl_l, Gy= fThi:t2° .gI Z1 ,fIJgJ_2 , Gs =Tpj it =1;: TgI -1, Ge =
Latent data and individual ezects are regarded as parameters following the ideas of data augmentatlon
in Tanner and Wong (1987). Following Cowles (1996), the latent data h;; and the cutpoints fIJg _, are

grouped into the same block. This substantially i increases the speed of convergence in large datasets
Ngn informative priors are chosen fog the patameters , D, fl; gJ —, and §,
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Section 3 estimates the model with simulated data, showing that the algorithm converged to the true
value of the parameters. Therefore, it does not seem necessary to specify proper priors to ensure the
convergence of the algorithm. By the other hand, the algorithm could easily accomodate the speci...cation
of informative conjugate priors.

To simplify the exposition the following notation will be used below,
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2.1 Sampling &

This section describes a Metropolis-Hasting step to generate 8. The acceptance probability can be seen
to depend only on %e13. Hence, the rest of parameters in § are not generated when the proposed value
is rejected.

The conditional posterior for 8 is an inverted Wishart with the restriction tpat both ¥%e11 and
Yae33 |zzre e&gal to one. The parameters of this inverted Wishart are df = i— 1(c) + 4 and

K= N, o EtEf



Cowles et al. (1996) outline the algorithm to sample from an IW with the restriction of one element
in the diagonal being equal to one. They implicitly make use of the following theorem, which can be
found in Bauwens et al. (1999, pages 305-306).

Theorem 1 Let 8 be distributed as an IW (d; n; G), and be partitioned as 8 = (8;;); i,j=1,2, 811 being
a scalar. De..ne 8z = 822 i 82181 812, then
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The following proposition gives the marginal distribution of ¥e;3.

Proposition 2 The marginal distribution of ¥%e;3 conditional on (%11 = %e33 = 1), is proportional to
o]
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Proof. Theorem 1 gives the joint conditional distribution of 8201 and (Ye13; %e23)T given %ess = 1,
which is the product of the marginal of 8,51 times the conditional of (%elg;%ezg)T given §22¢1. The
restriction %e11 = 1 implies only one restriction on the joint distribution of 8251 and (Ye13; %ez3) ' . This
restriction is that %33, + (%e13)® = 1. Thus, mgegratmg out Yeps; Y33, and %33, we obtain that the
unrestricted marginal distribution of "%33.,;%e13 is proportional to,
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The derivation of this marginal distribution has used the property according to which the submatrices
centered along the diagonal of an inverted Wishart matrix also follow an inverted Wishart distribution
(Press 19825p. 118). The restriction %33, + (%elg)2 =1 can be imposed by calculating the joint density

function of %35, + (%e13)”; %e13 . Since the Jacobian of the transformation is 1, the desired density is

proportional to expression (2). ®

A Metropolis step could be employed to generate %13, using a normal proposal density centered
in the previous value of %13 in the chain. %13 could also be generated using a proposal density that
approximates g (%e13). Since the unrestricted marginal distribution of %e313 is a student-t, one possible
approximation is a student-t centered on kiz=ksz with (df j 2) degrees of freedom and truncated to
(iLD).

The distribution of (¥%e12; ¥%e22; %e23) conditional on Y13 can be sampled directly. Once ¥%e13
has been generated, 8,5 should be sampled from an IW (2;df j 1; K1) with the restriction
3/422¢1 = 1 (%es)®. By theorem 1, this dlstrlb&mon can be sampled by sampling R = %33, i

3/4?32¢1 3/422“_ from a IW 1 df L2 k22¢1 | k22¢1 —k22¢1 and %22@1 = %912 i 3/49233/4913 from a
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Once Y%e13 and Yieps3 have been sampled, ¥%e12 and %exz Will be .xed t0 %e1p = %33 + Yie13¥e2z and
Yhezo = W3¢ + (%he23)”.

Let 3/4';13 be the kth value of %e13 in the chain. The following algorithm summarizes the procedure
to sample the (k+1) value of & in the chain.

Algorithm 3 Step 1. Sample a candidate v from a Normal distribution centered on %K, and with
variance Si.
Step 2. If jvj <1 go to step 3. Otherwise .x §k+1 = gk,

Step 3. Accept v as a value for %551 with probability
min —le—13¢- 1
4e13

i ¢,
If v is accepted .x %33, =1 i '%'gg and go to step 4. Otherwise ..x 8k+1 = gk,
Step 4. Sample R from a
3 -

IW  1;df § ;K55 i k22¢1 K331

Step 5. Generate %33, from a
3 ¢ -
My a1 72
N A22¢lk22¢l_k22¢11 12200 A= k22@1

¢,
and ..x %33,,equal to R + %zm Z=ydl
Step 6. Sample ¥%eo3 from distribution (3).

Step 7. Fix ¥%e12 equal to %33, + 3/4e13 Yie2s and Yiez2 equal to %33, + (3/4823)2.

2.2 Sampling

The fact that w;¢ cannot be imputed whenever it is not observed, together with the simultaneous
realization of wi; and h;;, means that the posterior distribution for = is dimerent from the common
Normal distribution obtained in similar models (e.g. Chib and Hamilton 2000).

Proposition 4 The conditional posterior for — up to a constant of proportionality is
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This expression can be shown to be proportional to density (4) using standard algebraic
transformations. |
The erect of simultaneity on the posterior distribution is captured in the following proposition.



Proposition 5 Let 1, and =, be the elements corresponding to (z;°) in * and &, respectively. The
conditional posterior of e = (+;°)" marginally on the rest of elements in ~ is
) Y
- . PN C; 1 1
h(£°) /7 (€)) =T exp 5(9'1) GORCEEN! )

The conditional distribution of (" ;; ,; 3) given (£;°) is not normal due to the non-observability
of some wi:. However, as the following proposition shows, both the marginals and conditionals of this
distribution are normal, making it possible to sample from it.

Proposition 6 De.ne &, = &— j & (aee)”aef where &— is the submatrix of & which
corresponds to the variance-covariance matrix of ( 1; »; 3), and & is the submatrix of & with the
covariances between (" ;; ,; 3) and (%;°). Let 1, and.* be¢the elements in 1 corresponding to ; and
(" 5; " 3), respectively. Let 2, be partioned as S¢on = acon , ,j—l 2, with &1 being a squared matrix
with the same number of,rows as _1. Then,,theglstrlbutlon of , conditional on (&;°) is a normal
distribu;ion with mean (3 yit+! ai it o ) m+ a%},n "2 and variance-covariance

. i1 Ci1 i1l . N — L ) .
matrix (2) 1+ 'all "It " The conditional distribution of (",; ) given (1:; ) is normal with

mean 1, + 221 'aécl,n (", i 1,) and variance-covariance matrix 222 j 2L 'a}}m itaz
Parameters (t; °) can be generated using a Metropolis-within-Gibbs step. A student-t centered on a
consistent estimator of the mode of distribution (5) can be used as a proposal density. The instrumental
variables three stages least squares (see Judge et al. 1985, pp. 599-601) is adapted to the situation in
which both U; and 8 are known. Such approximation of the mode converges to the true value as the
number of observations in the sample tends to in..nity. The estimated variance-covariance matrix of this
estimator can be used as the variance-covariance matrix of the proposal density. Alternatively, it can be
set to be equal to the inverse of the negative of the Hessian of the logarithm of expression (5) evaluated
at the approximated mode. The negative of this Hessian can be obtained analytically and is equal to

;o Mo g T

aei 1 + Ci
i=1

= .

Let ~ (%;°) be the described proposal density and % = %, 7k; £, 7%;°k  the kth value of ~

in the chain. The (k+1)th value of ~ is generated as follows.

Algorithm 7 1) Generate a candidate v = (v1;V2) from the proposal density ~ (; ©).
2) Accept candidate v as a new value for (z; ©) with probability
8 =3 -3 ‘9
< ik+1;c>|(+j|_ - +|(.ok —

min _1; —= — -
- 1/4 ik.ok - ik+1-°k+l >

- .
If v is not accepted ..x K. Otherwise .x +*1;°k+1 =y and go to step 3.

3) Sample ~; conditional on (z; °) = v from the distribution described in proposition 7.
4) Sample (" ,; 3) conditional on (" ;;%;°).

—k+1

2.3 Sampling fUigly,

The conditional posterior distribution of U; is of the same type as that of (;; ,; 3). The joint
distribution is still not normal even though the marginals and conditionals are normal.



Proposition 8 The distribution of U; is proportional to
Y% 1 Yo Yo 11 Ya
exp inUiia) Vit (Uiia) exp i (Ui b’
1

i P i _t¢ i e

where a; = ';§it +Dil itgit! 2y, 'Ziv i X Vi = ‘il +Dit T F=Ticb=
P e i XTI~

oy, B ) f T Ge0,=0 if Tig=0

Let a; = (ai1; aiz; Aiz)' = ajz;al,  and V; = V'%l Vflr , where vj; is a scalar.
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The following algorithm shows how to sample from this distribution.

Algorithm 9 1) Sample Ugj from a normal distribution with mean

(bi (T j c¢i) +ain=vi11) =(T i ¢i +1=vj11) and variance 1=(T j ci + 1=vi11).
2) Sample (uyj;usi) given ugj from a normal with mean aj, + ViL (uj1 i aj1)=Vvi11 and variance
Virr i Vi-ll-rvilr:Vill-

n o
2.4 Sampling fhi:t2 gl ;fligl,

The algorithm in Cowles (1996) can be applied to sample G4 just noting that the distribution of h;; is
given by the reduced form of system (1). L e

De.ne 8° & ¢i1§l¢i1 T and denote the elements in §° as '%f‘j , 1) = 1;2;3. Let §pw =
%gll %212

vl

Yo ym , and 8npw = (Y13 %ep3). The conditional posterior distribution of hj, given
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Let Q;‘t", I ?:2 denote the kth value of these parameters in the chain. De.ne CK as the interval

IIJ'-<; IX, 1 with j being the value taken by h;. The (k+1)th value is generated as follows.

Algorithm©10a1) Sample a candidate v = (v;:::;vy) from (J-1) independent normal distributions

J . R
centered on I{‘ > and with variances s,;:::;S;. a a
N ©|I-(+l J
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4) Sample h%, from a normal with mean 1;; and variance % truncated to CK**, for i = 1;:::;N and
t277.



The values for the variances sp;:::;s3 are chosen to obtain a reasonable acceptance rate. Note that
the proposal density does not incorporate the restriction 0 < |, < ::: <. This speci..cation is preferred
because the acceptance probability is simpli..ed and new candidates never violated the restriction in the
estimation presented in section 3.

2.5 Sampling fp i t=1;:Tgy,.

Let pic be a binary variable which takes the value 1 when p;; > 0 and 0 otherwise.
If pit = 0, p;; follows a normal distribution truncated to the interval (j 1;0) and having mean and
variance equal tﬁxlTit_l + Uny and 1, respectively.
3/ 0 3/ 0
Let S8wh = 3252 3252 , and 8p.wh = (%215;%213)- Then, if pir = 1 the conditional posterior
distribution of p;; is a normal truncated to (0; 1) with mean

vl - - _ _

T — _ i1 Wig i -CHE (XS 2+ uzi) +£(Xdi¢ 3 + usi))
Xllt 1 F U+ §p;wh (§Wh) h?t i ¢i 1 ((XQTit_3 + u3i) + O(Xérit_Z + U2i))
and variance 1 i 8p,wh (8wn) " (§p;wh)T-

2.6 Sampling D

The conditional posterior of D is an inverted wishart distribution.
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3 Estimation with a simulated dataset.

The model was estimated using a simulated dataset with 1200 individuals in 7 periods. This size
resembles that of the widely used British Household Panel Survey. The exogenous regressors were
simulated from a standard normal distribution. The estimations are based on 5000 iterations after
having discarded 3000. The algorithm was implemented in the Gauss language. The following tables
indicate that the algorithm converged to the true values.

4 Conclusions.

This paper has outlined a Bayesian MCMC algorithm to estimate a simultaneous equation model with
a dependent categorical variable and selectivity. Due to simultaneity and selectivity, the conditional
posteriors of , and U; do not belong to standard families of distributions. However, this paper shows
how these parameters can be generated using standard distributions.
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TABLES.

Table 1. True Values, Initial Values, Posterior Means and Credible Intervals for Slope Parameters.
L I, L 1, I Is + 1 ° I I,
TV 1 2 05 -02 -1 08 08 -3 05 2 4
v 029 058 014 -249 -145 04 18 -015 021 112 141
PM 104 199 048 -024 -098 0.78 079 -3.02 048 199 3.93
Cl- 097 188 043 -032 -104 071 076 -3.2 044 187 371

Cl+ 111 208 052 -0.17 -0.92 085 083 -2.8 052 211 4.12

NOTE: {1 =(11;2;13); =14 "5); 3= (Ws;Wy); TV indicates true value,lV initial value, PM

posterior mean,and (Cl-,Cl+) is a 95% credibleinterval.
Table 2. True Values, Initial Values, Posterior Means and Credible Intervals for Variance and Covariance Parameters.
Your  Ywiz Yz Yz Yz %z ez Yers ez Yie2s
TV 1 1 0.5 3 1 2 1 -03 25 0.2
v 0.04 -0.014 0.07 333 -027 0.26 -048 0.02 1446 -1.45
PM 1.03 0987 042 305 115 217 1.027 -039 255 0.12
Cl- 085 0.8 026 269 089 176 086 -0.52 235 -0.04
Cl+ 121 117 058 345 141 262 114 025 277 0.28



