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This paper develops a Bayesian MCMC algorithm to estimate a Panel Data Simultaneous
Equations model with a dependent categorical variable and selectivity. In contrast with
previous Bayesian analysis of selectivity models, the algorithm does not require the
observation of some regressors which do not enter into the likelihood function. This makes
the algorithm applicable to studies of the labor market where there are typically missing
regressors. In addition, the paper provides an scheme to sample the slope parameters using
an analytical approximation of the posterior distribution as a proposal density. Estimation
with a simulated dataset illustrates the performance of the algorithm.
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1 Introduction.

Applications of microeconomic theory to unit record data frequently encounter the joint problems of
sample selectivity, categorical variables and simultaneity. Simultaneous equation models with discrete
endogenous variables are an important area of research in econometrics, and are reviewed and extended
in Blundell and Smith (1993). The model considered in this article is a Bayesian MCMC extension
to longitudinal data of one of the models analysed in Blundell and Smith (1993). A random e¤ects
speci…cation is chosen to model the longitudinal nature of the data.

De…ne hit as a categorical variable taking values in the set f0; 1; :::; Jg. Assume that the observed
value of hit is determined by a continuous unobserved variable h¤

it such that hit = j if and only if
h¤

it 2 (lj ; lj+1], with l0 = ¡1 and lJ+1 = 1. Let wit be a continuous variable which is jointly
determined with h¤

it. The simultaneous realization of wit and hit and the non-representativeness of the
sample can be modelled as follows.

p¤
it = XT

1it¯1 + u1i + e1it i = 1; :::; N

wit = XT
2it¯2 + h¤

it± + u2i + e2it t = 1; :::; T

h¤
it = XT

3it¯3 + °wit + u3i + e3it (1)

0
@

e1it

e2it

e3it

1
A s N (0;§) § =

0
@

1 ¾e12 ¾e13

¾e12 ¾e22 ¾e23

¾e13 ¾e23 1

1
A

0
@

u1i

u2i

u3i

1
A s N (0;D) D =

0
@

¾u11 ¾u12 ¾u13

¾u12 ¾u22 ¾u23

¾u13 ¾u23 ¾u33

1
A

X1it, X2it and X3it are three vectors of explanatory variables of dimensions (l £ 1), (k £ 1) and
(f £ 1), respectively. ¯1, ¯2, and ¯3 are three comformably dimensioned parameter vectors. Selectivity
e¤ects are modelled by assuming that wit is only observed when the unobserved latent variable p¤

it is
positive. Since only the sign of p¤

it or the category in which h¤
it falls is observed, the model is not

likelihood identi…ed. As a normalization, ¾e11 and ¾e33 are restricted to be one and l1 restricted to be
zero. In addition, the usual conditions for identi…cation in linear simultaneous equation models apply
(see Judge et al. 1985, pp. 573-586).

De…ne ¯ =
³
¯T

1 ; ¯T
2 ; ±; ¯T

3 ; °
´T

, Zit = (p¤
it; wit; h

¤
it) and,

Xit =

0
BBBB@

X1it 0 0
0 X2it 0
0 h¤

it 0
0 0 X3it

0 0 wit

1
CCCCA

equations in (1) can be expressed as,

Zit = XT
it¯ + Ui + Eit

Three main features di¤erentiate the algorithm presented here from other Bayesian MCMC analysis
proposed in the literature. Firstly, in contrast with previous analysis of models with selectivity (e.g.
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Chib and Hamilton 2000) w is not imputed when it is not observed. This allows the algorithm to be
applicable to many situations in which not only w but also some regressors in X2it may not be observed.
This situation is common in studies of the labor market in which wages (w) depend on regressors such as
size of the company, type of industry and experience in that type of job. In such a situation, wages and
some regressors in X2it are not observed for people who stay out of the labor market. In this context,
hit could represent self-assesed health, which is usually recorded as a categorical variable and potentially
a¤ects and is a¤ected by wages (see for instance Haveman et al. 1994).

Secondly, all the free elements in § are sampled directly from their conditional distributions given
¾e13. In addition, the acceptance probability of the Metropolis step which generates § only depends on
¾e13. This is made possible by analysing the marginal and conditional distributions of the elements in
§.

Thirdly, it uses an analytical approximation of the conditional posterior of the slope parameters (¯)
as a proposal density in a Metropolis-within-Gibbs step. Using this proposal density, the acceptance
probability only depends on (°; ±). Hence, (¯1; ¯2; ¯3) do not have to be sampled when the proposed
value is rejected.

Section 2 describes the algorithm to simulate from the posterior distribution. Section 3 illustrates
the performance of the proposed method with simulated data. Section 4 concludes.

2 Sampling from the Posterior Distribution.
A Gibbs sampler algorithm (Gelfand and Smith 1990) with data augmentation (Tanner and Wong 1987)
can be followed in order to sample from the posterior distribution. The algorithm proposed in this
paper blocks the parameters into six groups so that all the elements in one group are jointly generated
conditional on the rest of the groups. Let ¨i = ft : p¤

it > 0g. The six groups are, G1 = §, G2 = ¯;

G3 = fUigN
i=1, G4 =

n
fh¤

it : t 2 ¨igN
i=1 ; fljgJ

j=2

o
, G5 = fp¤

it : t = 1; ::; TgN
i=1, G6 = D,.

Latent data and individual e¤ects are regarded as parameters following the ideas of data augmentation
in Tanner and Wong (1987). Following Cowles (1996), the latent data h¤

it and the cutpoints fljgJ
j=2 are

grouped into the same block. This substantially increases the speed of convergence in large datasets.
Non informative priors are chosen for the parameters ¯, D, fljgJ

j=2 and §,

¼
³
¯;D; fljgJ

j=2 ;§
´

= ¼ (¯)¼ (D)¼
³
fljgJ

j=2

´
¼ (§) _ j§j¡4=2 jDj¡4=2

Section 3 estimates the model with simulated data, showing that the algorithm converged to the true
value of the parameters. Therefore, it does not seem necessary to specify proper priors to ensure the
convergence of the algorithm. By the other hand, the algorithm could easily accomodate the speci…cation
of informative conjugate priors.

To simplify the exposition the following notation will be used below,

ci =
P

t2¨i
1 ¢ =

0
@

1 0 0
0 1 ¡±
0 ¡° 1

1
A

2.1 Sampling §

This section describes a Metropolis-Hasting step to generate §. The acceptance probability can be seen
to depend only on ¾e13. Hence, the rest of parameters in § are not generated when the proposed value
is rejected.

The conditional posterior for § is an inverted Wishart with the restriction that both ¾e11 and
¾e33 are equal to one. The parameters of this inverted Wishart are df =

PN
i=1 (ci) + 4 and

K =
PN

i=1

P
t2¨i

EitE
T
it .
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Cowles et al. (1996) outline the algorithm to sample from an IW with the restriction of one element
in the diagonal being equal to one. They implicitly make use of the following theorem, which can be
found in Bauwens et al. (1999, pages 305-306).

Theorem 1 Let § be distributed as an IW (d; n;G), and be partitioned as § = (§ij) ; i,j=1,2, §11 being
a scalar. De…ne §22¢1 = §22 ¡ §21§

¡1
11 §12, then

1) §22¢1j§11 » IW (d ¡ 1; n ¡ 1; G22¢1)

2) §12j (§22¢1;§11) » N
³

§11

G11
G12;

(§11)
2

G11
§22¢1

´

De…ne §22¢1 as

µ
¾11

22¢1 ¾12
22¢1

¾12
22¢1 ¾22

22¢1

¶
=

µ
1 ¾e12

¾e12 ¾e22

¶
¡

µ
¾e13

¾e23

¶¡
¾e13 ¾e23

¢

The following proposition gives the marginal distribution of ¾e13.

Proposition 2 The marginal distribution of ¾e13 conditional on (¾e11 = ¾e33 = 1), is proportional to

g (¾e13) = 1

(1¡(¾e13)
2)(df¡3)=2 exp

n
¡1

2
1

1¡(¾e13)
2 k11

22¢1
o

£ 1

((1¡(¾e13)
2)=k33)

1=2 exp

½
¡1

2
(¾e13¡k13=k33)

2

(1¡(¾e13)
2)=k33

¾
I¡1<¾e13<1;

(2)

Proof. Theorem 1 gives the joint conditional distribution of §22¢1 and (¾e13; ¾e23)T given ¾e33 = 1,
which is the product of the marginal of §22¢1 times the conditional of (¾e13; ¾e23)

T given §22¢1. The
restriction ¾e11 = 1 implies only one restriction on the joint distribution of §22¢1 and (¾e13; ¾e23)

T . This
restriction is that ¾11

22¢1 + (¾e13)
2 = 1. Thus, integrating out ¾e23; ¾12

22¢1 and ¾22
22¢1 we obtain that the

unrestricted marginal distribution of
¡
¾11

22¢1; ¾e13

¢
is proportional to,

1

(¾11
22¢1)

(df¡3)=2 exp
n

¡1
2

1
¾11

22¢1
k11
22¢1

o
1

(¾11
22¢1=k33)

1=2

£ exp
n
¡1

2
(¾e13¡k13=k33)

2

¾11
22¢1=k33

o
I¾11

22¢1>0

The derivation of this marginal distribution has used the property according to which the submatrices
centered along the diagonal of an inverted Wishart matrix also follow an inverted Wishart distribution
(Press 1982, p. 118). The restriction ¾11

22¢1 + (¾e13)
2 = 1 can be imposed by calculating the joint density

function of
³
¾11

22¢1 + (¾e13)
2 ; ¾e13

´
. Since the Jacobian of the transformation is 1, the desired density is

proportional to expression (2).
A Metropolis step could be employed to generate ¾e13, using a normal proposal density centered

in the previous value of ¾e13 in the chain. ¾e13 could also be generated using a proposal density that
approximates g (¾e13). Since the unrestricted marginal distribution of ¾e13 is a student-t, one possible
approximation is a student-t centered on k13=k33 with (df ¡ 2) degrees of freedom and truncated to
(¡1; 1).

The distribution of (¾e12; ¾e22; ¾e23) conditional on ¾e13 can be sampled directly. Once ¾e13

has been generated, §22¢1 should be sampled from an IW (2; df ¡ 1;K22¢1) with the restriction
¾11

22¢1 = 1 ¡ (¾e13)
2. By theorem 1, this distribution can be sampled by sampling ~n = ¾22

22¢1 ¡¡
¾12

22¢1
¢2

=¾11
22¢1 from a IW

³
1; df ¡ 2; k22

22¢1 ¡
¡
k12
22¢1

¢2
=k11

22¢1
´

and ¾12
22¢1 = ¾e12 ¡ ¾e23¾e13 from a

N
³
¾11

22¢1k
12
22¢1=k11

22¢1;
¡
¾11

22¢1
¢2

~n=k11
22¢1

´
. The sampled value for ¾22

22¢1is ~n +
¡
¾12

22¢1
¢2

=¾11
22¢1. Finally, ¾e23

follows a

N

Ã
k23

k33
+

¡
¾12

22¢1=k33

¢

(¾11
22¢1=k33)

µ
¾e13 ¡ k13

k33

¶
;
¾22

22¢1
k33

¡
¡
¾12

22¢1=k33

¢2

(¾11
22¢1=k33)

!
(3)
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Once ¾e13 and ¾e23 have been sampled, ¾e12 and ¾e22 will be …xed to ¾e12 = ¾12
22¢1 + ¾e13¾e23 and

¾e22 = ¾22
22¢1 + (¾e23)

2.
Let ¾k

e13 be the kth value of ¾e13 in the chain. The following algorithm summarizes the procedure
to sample the (k+1) value of § in the chain.

Algorithm 3 Step 1. Sample a candidate v from a Normal distribution centered on ¾k
e13 and with

variance s1.
Step 2. If jvj < 1 go to step 3. Otherwise …x §k+1 = §k.
Step 3. Accept v as a value for ¾k+1

e13 with probability

min

(
g

¡
¾k+1

e13

¢

g
¡
¾k

e13

¢ ; 1

)

If v is accepted …x ¾11
22¢1 = 1 ¡

¡
¾k+1

e13

¢2
and go to step 4. Otherwise …x §k+1 = §k.

Step 4. Sample ~n from a

IW
³
1; df ¡ 2; k22

22¢1 ¡
¡
k12
22¢1

¢2
=k11

22¢1
´

Step 5. Generate ¾12
22¢1 from a

N
³
¾11

22¢1k
12
22¢1=k11

22¢1;
¡
¾11

22¢1
¢2

~n=k11
22¢1

´

and …x ¾22
22¢1equal to ~n +

¡
¾12

22¢1
¢2

=¾11
22¢1.

Step 6. Sample ¾e23 from distribution (3).
Step 7. Fix ¾e12 equal to ¾12

22¢1 + ¾k+1
e13 ¾e23 and ¾e22 equal to ¾22

22¢1 + (¾e23)
2.

2.2 Sampling ¯

The fact that wit cannot be imputed whenever it is not observed, together with the simultaneous
realization of wit and h¤

it, means that the posterior distribution for ¯ is di¤erent from the common
Normal distribution obtained in similar models (e.g. Chib and Hamilton 2000).

Proposition 4 The conditional posterior for ¯ up to a constant of proportionality is

(j¢j)
PN

i=1 ci exp

½
¡1

2
(¯1 ¡ m)

T
(ª1)

¡1
(¯1 ¡ m)

¾
exp

½
¡1

2
(¯ ¡ ¹)

T
(ª)

¡1
(¯ ¡ ¹)

¾
(4)

where

m =
³PN

i=1

P
t=2¨i

X1it (X1it)
T
´¡1 PN

i=1

P
t=2¨i

X1it(p
¤
it ¡ u1i), ª1 =

³PN
i=1

P
t=2¨i

X1it (X1it)
T
´¡1

,

ª =
³PN

i=1

P
t2¨i

¡
Xit§¡1XT

it

¢´¡1

¹ = ª
³PN

i=1

P
t2¨i

¡
Xit§

¡1 (Zit ¡ Ui)
¢´

.

Proof. The likelihood of ¯ given G1; G3; G4; G5 and G6 is proportional to

(j¢j)
PN

i=1 ci exp

(
¡1

2

NX

i=1

X

t2Yi

¡
Zit¡(XT

it¯ + Ui)
¢T

§¡1
¡
Zit ¡ (XT

it¯ + Ui)
¢
)

£ exp

8
<
:¡1

2

NX

i=1

X

t=2Yi

¡
p¤

it ¡
¡
XT

1it¯1 + u1i

¢¢2

9
=
;

This expression can be shown to be proportional to density (4) using standard algebraic
transformations.

The e¤ect of simultaneity on the posterior distribution is captured in the following proposition.
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Proposition 5 Let ¹e and ªe be the elements corresponding to (±; °) in ¹ and ª, respectively. The
conditional posterior of e = (±; °)T marginally on the rest of elements in ¯ is

¼ (±; °) / (j¢j)
PN

i=1 ci exp

½
¡1

2
(e ¡ ¹e)

T (ªe)
¡1 (e ¡ ¹e)

¾
(5)

The conditional distribution of (¯1; ¯2; ¯3) given (±; °) is not normal due to the non-observability
of some wit. However, as the following proposition shows, both the marginals and conditionals of this
distribution are normal, making it possible to sample from it.

Proposition 6 De…ne ªcon = ª¯¯ ¡ ª¯e (ªee)
¡1 ªe¯ where ª¯¯ is the submatrix of ª which

corresponds to the variance-covariance matrix of (¯1; ¯2; ¯3), and ª¯e is the submatrix of ª with the
covariances between (¯1; ¯2; ¯3) and (±; °). Let ¹1 and ¹2 be the elements in ¹ corresponding to ¯1 and
(¯2; ¯3), respectively. Let ªcon be partioned as ªcon =

¡
ªij

con

¢
, i,j=1,2, with ª11

con being a squared matrix
with the same number of rows as ¯1. Then, the distribution of ¯1 conditional on (±; °) is a normal

distribution with mean
³
(ª1)

¡1 +
¡
ª11

con

¢¡1
´¡1 ³

(ª1)
¡1 m +

¡
ª11

con

¢¡1
¹1

´
and variance-covariance

matrix
³
(ª1)

¡1 +
¡
ª11

con

¢¡1
´¡1

. The conditional distribution of (¯2; ¯3) given (¯1; ±; °) is normal with

mean ¹2 + ª21
con

¡
ª11

con

¢¡1
(¯1 ¡ ¹1) and variance-covariance matrix ª22

con ¡ ª21
con

¡
ª11

con

¢¡1
ª12

con.

Parameters (±; °) can be generated using a Metropolis-within-Gibbs step. A student-t centered on a
consistent estimator of the mode of distribution (5) can be used as a proposal density. The instrumental
variables three stages least squares (see Judge et al. 1985, pp. 599-601) is adapted to the situation in
which both Ui and § are known. Such approximation of the mode converges to the true value as the
number of observations in the sample tends to in…nity. The estimated variance-covariance matrix of this
estimator can be used as the variance-covariance matrix of the proposal density. Alternatively, it can be
set to be equal to the inverse of the negative of the Hessian of the logarithm of expression (5) evaluated
at the approximated mode. The negative of this Hessian can be obtained analytically and is equal to

ª¡1
e +

1

(1 ¡ ±°)2

µ
°2 1
1 ±2

¶ NX

i=1

ci

Let ´ (±; °) be the described proposal density and ¯k =
³
¯k

1 ; ¯k
2 ; ±k; ¯k

3 ; °k
´

the kth value of ¯

in the chain. The (k+1)th value of ¯ is generated as follows.

Algorithm 7 1) Generate a candidate v = (v1; v2) from the proposal density ´ (±; °).
2) Accept candidate v as a new value for (±; °) with probability

min

8
<
:1;

¼
³
±k+1; °k+1

´
´

³
±k; °k

´

¼
³
±k; °k

´
´

³
±k+1; °k+1

´

9
=
;

If v is not accepted …x ¯k+1 = ¯k. Otherwise …x
³
±k+1; °k+1

´
= v and go to step 3.

3) Sample ¯1 conditional on (±; °) = v from the distribution described in proposition 7.
4) Sample (¯2; ¯3) conditional on (¯1; ±; °).

2.3 Sampling fUigNi=1
The conditional posterior distribution of Ui is of the same type as that of (¯1; ¯2; ¯3). The joint
distribution is still not normal even though the marginals and conditionals are normal.
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Proposition 8 The distribution of Ui is proportional to

exp

½
¡1

2
(Ui ¡ ai)

T V ¡1
i (Ui ¡ ai)

¾
exp

½
¡1

2

1

vi
(u1i ¡ bi)

2

¾

where ai =
¡
ci§

¡1 + D¡1
¢¡1

§¡1
¡P

t2Yi

¡
Zit ¡ XT

it¯
¢¢

, Vi =
¡
ci§

¡1 + D¡1
¢¡1

, 1
vi

= T ¡ ci, bi =
P

t=2Yi

(p¤
it¡XT

1it¯1)
T¡ci

if T ¡ ci 6= 0, bi = 0 if T ¡ ci = 0

Let ai = (ai1; ai2; ai3)
T =

¡
ai1; a

T
ir

¢T
and Vi =

µ
vi11 Vi1r

V T
i1r Virr

¶
, where vi11 is a scalar.

The following algorithm shows how to sample from this distribution.

Algorithm 9 1) Sample u1i from a normal distribution with mean
(bi (T ¡ ci) + ai1=vi11) = (T ¡ ci + 1=vi11) and variance 1= (T ¡ ci + 1=vi11).

2) Sample (u2i; u3i) given u1i from a normal with mean air + V T
i1r (ui1 ¡ ai1) =vi11 and variance

Virr ¡ V T
i1rVi1r=vi11.

2.4 Sampling
n

fh¤it : t 2 ¨igNi=1 ; flig
J
i=2

o
.

The algorithm in Cowles (1996) can be applied to sample G4 just noting that the distribution of h¤
it is

given by the reduced form of system (1).
De…ne §¤ = ¢¡1§

¡
¢¡1

¢T
and denote the elements in §¤ as

¡
¾¤

ij

¢
, i; j = 1; 2; 3. Let §pw =µ

¾¤
e11 ¾¤

e12

¾¤
e12 ¾¤

e22

¶
, and §h;pw = (¾¤

e13; ¾
¤
e23). The conditional posterior distribution of h¤

it given
³
hit = j; fligJ+1

i=1

´
is a normal truncated to (lj ; lj+1] with mean ¹it

j¢j¡1 ((XT
3it¯3 + u3i) +

§h;pw (§pw)¡1

µ
p¤

it ¡ XT
1it¯1 ¡ u1i

wit ¡ j¢j¡1 ((XT
2it¯2 + u2i) + ±(XT

3it¯3 + u3i))

¶

and variance ¾ = 1 ¡ §h;pw (§pw)¡1 (§h;pw)T .

Let h¤k
it ,

©
lki

ªJ

i=2
denote the kth value of these parameters in the chain. De…ne Ck

it as the interval¡
lkj ; lkj+1

¤
with j being the value taken by h¤

it. The (k+1)th value is generated as follows.

Algorithm 10 1) Sample a candidate v = (v2; :::; vJ) from (J-1) independent normal distributions
centered on

©
lki

ªJ

i=2
and with variances s2; :::; sJ .

2) If 0 < l2 < ::: < lJ then go to step 3. Otherwise, …x
©
h¤k+1

it : t 2 ¨i

ªN

i=1
,

©
lk+1
i

ªJ

i=2
equal to©

h¤k
it : t 2 ¨i

ªN

i=1
,
©
lki

ªJ

i=2
.

3) Accept v as a value for
©
lk+1
i

ªJ

i=2
with probability

min

(
NY

i=1

Y

t2¨i

Pr
¡
N (¹it; ¾) 2 Ck+1

it

¢

Pr
¡
N (¹it; ¾) 2 Ck

it

¢ ; 1

)

if v is accepted go to step 4. Otherwise, …x
©
h¤k+1

it : t 2 ¨i

ªN

i=1
,
©
lk+1
i

ªJ

i=2
equal to

©
h¤k

it : t 2 ¨i

ªN

i=1
,©

lki
ªJ

i=2

4) Sample h¤
it from a normal with mean ¹it and variance ¾ truncated to Ck+1

it , for i = 1; :::; N and
t 2 ¨i.
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The values for the variances s2; :::; sJ are chosen to obtain a reasonable acceptance rate. Note that
the proposal density does not incorporate the restriction 0 < l2 < ::: < lJ . This speci…cation is preferred
because the acceptance probability is simpli…ed and new candidates never violated the restriction in the
estimation presented in section 3.

2.5 Sampling fp¤it : t = 1; ::; TgNi=1.
Let pit be a binary variable which takes the value 1 when p¤

it > 0 and 0 otherwise.
If pit = 0, p¤

it follows a normal distribution truncated to the interval (¡1; 0) and having mean and
variance equal to XT

1it¯1 + u1i and 1, respectively.

Let §wh =

µ
¾¤

22 ¾¤
23

¾¤
23 ¾¤

33

¶
, and §p;wh = (¾¤

e12; ¾
¤
e13). Then, if pit = 1 the conditional posterior

distribution of p¤
it is a normal truncated to (0;1) with mean

XT
1it¯1 + u1i + §p;wh (§wh)¡1

µ
wit ¡

¯̄
¢¡1

¯̄
((XT

2it¯2 + u2i) + ±(XT
3it¯3 + u3i))

h¤
it ¡

¯̄
¢¡1

¯̄
((XT

3it¯3 + u3i) + °(XT
2it¯2 + u2i))

¶

and variance 1 ¡ §p;wh (§wh)¡1 (§p;wh)T .

2.6 Sampling D

The conditional posterior of D is an inverted wishart distribution.

D » IW

Ã
3; N + 4;

NX

i=1

UiU
T
i

!

3 Estimation with a simulated dataset.

The model was estimated using a simulated dataset with 1200 individuals in 7 periods. This size
resembles that of the widely used British Household Panel Survey. The exogenous regressors were
simulated from a standard normal distribution. The estimations are based on 5000 iterations after
having discarded 3000. The algorithm was implemented in the Gauss language. The following tables
indicate that the algorithm converged to the true values.

4 Conclusions.

This paper has outlined a Bayesian MCMC algorithm to estimate a simultaneous equation model with
a dependent categorical variable and selectivity. Due to simultaneity and selectivity, the conditional
posteriors of ¯, and Ui do not belong to standard families of distributions. However, this paper shows
how these parameters can be generated using standard distributions.

Acknowlegment: I thank P. Contoyannis, A. Jones and N. Rice for helpful comments and
discussions. Of course, all errors and omissions are of my own responsability. I am also grateful to the
Centre for Health Economics for …nancial support.
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TABLES.
Table 1. True Values, Initial Values, Posterior Means and Credible Intervals for Slope Parameters.

!1 !2 !3 !4 !5 !6 ± !7 ° l1 l2
TV 1 2 0.5 -0.2 -1 0.8 0.8 -3 0.5 2 4
IV 0.29 0.58 0.14 -2.49 -1.45 0.4 1.8 -0.15 0.21 1.12 1.41
PM 1.04 1.99 0.48 -0.24 -0.98 0.78 0.79 -3.02 0.48 1.99 3.93
CI- 0.97 1.88 0.43 -0.32 -1.04 0.71 0.76 -3.2 0.44 1.87 3.71
CI+ 1.11 2.08 0.52 -0.17 -0.92 0.85 0.83 -2.86 0.52 2.11 4.12

NOTE: ¯1 = (!1; !2; !3) ; ¯2 = (!4; !5) ; ¯3 = (w6; w7) ; TV indicates true value,IV initial value, PM
posterior mean,and (CI-,CI+) is a 95% credibleinterval.

Table 2. True Values, Initial Values, Posterior Means and Credible Intervals for Variance and Covariance Parameters.

¾u11 ¾u12 ¾u13 ¾u22 ¾u23 ¾u33 ¾e12 ¾e13 ¾e22 ¾e23

TV 1 1 0.5 3 1 2 1 -0.3 2.5 0.2
IV 0.04 -0.014 0.07 3.33 -0.27 0.26 -0.48 0.02 14.46 -1.45
PM 1.03 0.987 0.42 3.05 1.15 2.17 1.027 -0.39 2.55 0.12
CI- 0.85 0.8 0.26 2.69 0.89 1.76 0.86 -0.52 2.35 -0.04
CI+ 1.21 1.17 0.58 3.45 1.41 2.62 1.14 -0.25 2.77 0.28
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