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1 Introduction

Testing for structural change in the linear regression model has received considerable
attention in the statistical and econometric literature in the last thirty years. This
intense activity has led to the development of many tests for structural change which
are widely used by practitioners.

Two different testing situations have been studied under the heading of “testing
for structural change”. The first one arises when the change point is known because
of institutional changes, wars, etc. (for a survey of results see Pesaran, Smith and Yeo
(1984)). In this setup, testing for structural change is equivalent to testing for linear
restrictions on the parameters (provided the variance does not change over time) and
a characterization of similar tests for this problem can be found in Hillier (1987).

The second testing situation, the focus of this paper, occurs when there is no
information available regarding the time of the possible structural changes. This gives
rise to a non-standard testing setup where classical tests are not directly applicable
because of the existence of nuisance parameters under the alternative but not under
the null hypothesis of no structural change. Even in this case, several of the most
popular tests suggested in the literature (the CUSUM, the CUSUM of squares of
Brown, Durbin and Evans (1975), the fluctuation test of Ploberger, Krdmer and
Kontrus (1987), the sup F' test, and the tests recently suggested by Andrews, Lee and
Ploberger (1996)) are similar, i.e. their sizes do not depend on nuisance parameters.

In this paper we analyse similar tests for structural change in the linear model
with Gaussian errors, in finite samples. The emphasis is on the geometrical aspects
of the testing situation, because the difficulty of testing for structural change hinges
on the geometry of the problem.

Since, no uniformly most powerful (UMP) similar test exists, even for simple
cases, when it is not known where the structural breaks occur, we suggest a weaker
optimality criterion leading to a tests analogous to those suggested by Andrews,
Lee and Ploberger (1996). However, we will argue that the geometry of the testing
problem generates an “intrinsic difficulty”, which affects the power of all testing

procedures. Thus, following Hillier (1995), we emphasize the importance of reporting



a measure of this intrinsic difficulty, i.e. an index of the potential loss of power with
respect to the situation where both number and location of the change points is
known (this problem is further discussed in Section 7).

The paper stresses the idea that it is reasonable to test for structural change when
the intrinsic difficulty of testing is small (i.e. when we know approximately where the
structural breaks occur). However, in this case there is no need to use tests such as
the sup F' test or the optimal tests proposed by Andrews, Lee and Ploberger (1996)
or those derived in Section 4. An F test against any fixed changepoint could do
just as well. Tables 2, 3 and 4 in Andrews, Lee and Ploberger (1996) show that the
midsample F test performs as well as the other tests when the change point is more
or less in the middle of the sample (i.e. when it is approximately known where the
structural change occurs).

The remaining part of the paper is organized as follows. The model is described in
Section 2 where similar tests are also characterized. Section 3 reviews the geometrical
aspect of the standard F test, and Section 5 derives optimal tests for structural change
(the proofs of all statements are in the Appendix). Section 5 reviews other tests for
structural change and shows how they are affected by the geometry of the testing
problem In Section 7 we propose a measure of the intrinsic difficulty in testing for

structural change. The conclusions end the paper.

2 The model and characterization of similar tests

In this Section, we characterize similar tests for a linear regression model with ¢ 4 1

subsamples, containing respectively 7y, Ty, ..., Tt;1 observations:
Zn 0 o0 0 7
0 Z, .. 0 0 n -+
y=1| .. . . . . +V(i+u (1)
o 0 .. Z, 0 N+ Y
0 0 0 Zn., n+ 7

where ¥y is a T' X 1 vector of dependent variables , V' is a T’ X n matrix of independent

variables, 1 and 7i,...,%; are k x 1 vectors of parameters, ( is a n X 1 vector of



parameters, and u is N (0,0%17). The matrices Z,,, Z,,, ..., Zs,, Zr,,, have the form

Tt+1
21 Zri+1 27141 2|
L = Dory = g eees Dy = ooy Ly =
<71 ~T1+T2 7 <T

where 7; = E;:O 7; and z; is the i-th (1 X k) vector of observations.

In this paper we identify the change point by an index 7 which represents a
partition of T’ into ¢ 4+ 1 parts, 7 = (71,79, ..., Te41), 73 > 0 for all i, Zfii 7, =T. The
subset of partitions of T" of interest (i.e. the set of all possible changepoints in the
model) is denoted by T.

Let Z = (2},...,27)’, so that (1) can be written as
y=Xpf+7Z(1)v+u (2)

where X = (Z,V)isTxp, 3=, ) ispx1,v= (%, %, ...,7.) is Kx1and Z () is
the T'x K matrix obtained by deleting the first k columns in diag (ZT1 y Loty eees Dy Zn+1>
in (1). Moreover, p = n+k, K = kt. We assume that T'—p—K =T—-n—(1+4+1)k > 0,
otherwise the model is not identified even if 7 is known. Moreover, we do not allow
for changes over time for o2, either, to avoid Behrens-Fisher type problems.

Note that no assumption on the elements of the matrices X and 7 (7) has been
made. These can be considered as either fixed or random. In the latter case they
are assumed to be ancillary to y, and the following analysis will be conditional on
them. By so doing, we cover the case of both stationary and nonstationary regressors.
Note also that the set-up considered is fairly general: the change points can be
approximately located (for example they can occur about a particular date, or year),
or only their number can be specified, or they could be totally unknown.

We want to test Ho : y ~ N (Xf,0%Ir), and in this case the statistics B8 =
(X’X)f1 X'y and s? = ' Pxy (Px = It — X(X’XY1 X') are jointly sufficient for
the nuisance parameters 3 and 2. Since they are boundedly complete, any similar
region of size « is a fraction « of the surface (B, s%) =constant (Hillier (1987)).

The alternative hypothesis is Hy : y ~ N (X3 + Z (1) ~,0%I1). The term Z (1)~
depends on ¢, T and 7, and as -y varies over R | it spans m (K-dimensional) subspaces
of RT, V7 = {Z (T)vy:v€ ]RK}, indexed by 7, where m is the number of elements in
T. Note that the number of change points determines the dimension of the subspaces

V7, while the position of the potential breaks influences the number of such subspaces.
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This setup is quite different from the classical testing situation where the alter-
native is specified as Hy : y ~ N (X8 + Wr,0%Iy), and W is a completely known
(T x K) matrix. In this case the columns of W span a fixed K-dimensional subspace
of RT, as ~y varies over RX, V = {W’y Dy € ]RK}. In the structural change case this
is no longer so.

Note also that it may happen that 7; < k for some 4, so that the vector Z (7) v can
be zero even if 7y is different from zero. Thus, the null hypothesis under consideration
is different from H; : 7 = 0, because this might not be testable (Breusch (1986)).
If 7, < k for some i, Z(7)vy can be written as linear combination of the linearly
independent columns of 7 (1), Z* (7) say, and under the alternative Z* (7)~* = 0.
We assume that Z (7) v is replaced by Z* (7) and v by v* if 7; < k for some i, but we
will continue to indicate the resulting full rank matrix by 7 (7) and the parameter
vector by 7. The number K is thus to be understood as the number of columns of
the reduced matrix Z* (7).

A characterization of similar tests of Hy : y ~ N (Xf,0%Iy) is given in the

following theorem.

Theorem 1 (Hillier (1991), Theorem 1) The class of all similar tests for Ho : y ~
N (X3,0%Ip) against any alternative whatever is characterized by the vector v =
C'y/ (s%)lﬂ, where C is a T x T — p matriz such that CC' = Px, C'C = Ir_, and
C'X = 0. That is, a critical region for testing Hy has size independent of 3 and o?
if and only if it is defined in terms of v alone. Moreover, under Hy, the vector v is

uniformly distributed over the unit (1" — p)-sphere Sp_, 1 = {U eERT P v = 1}.

The matrix C can be chosen so that w; is the vector of recursive residuals for the
model y = X +u but, we do not need to impose this condition on the tests considered
in the following pages. The CUSUM, the CUSUM of squares, the fluctuation test,
the sup F' test and the tests of Andrews and Ploberger (1993) and Andrews, Lee and
Ploberger (1996) (even in the case where the error variance is unknown) are similar
because they are all functions of v.

Before discussing the structural break case, we will give a geometrical interpreta-
tion to the familiar F-test in the problem of testing Hy : y ~ N (X3,0%I1) against
Hy:y~ N(XB+Wr,0%Iy). This will allow us to introduce some tools and some

ideas which will be developed in later Sections.
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3 The geometry of the standard F-test

When constructing tests econometricians tend to focus on the properties of tests
statistics rather than critical regions. This Section shows that by emphasising the
importance of critical regions, geometrical considerations come into play even for the
well known F test. This is also useful to better understand the traditional technique
used to overcome the problem of the nonexistence of uniformly most powerful tests.

In the the simple set-up where Hy : y ~ N (Xf,0%I1) is tested against the
alternative Hy : y ~ N (XB+ Wny,0%l;), where W is a fixed matrix and v, is
known, the most powerful (similar) critical region w exists, and has the form of a
“cap” on St_,_1 centred around the (known) straight line going through the origin
and the point "W+, /o, with an area equal to a fraction « of the surface area of the
unit sphere, where « is the size of the test and C is a T X T — p matrix such that
CC" = Px, C'C = Iy, and C'"X = 0. Moreover, the power of the test depends on
the distance of C'Wry; /o from the origin even though the critical region does not.

When the null hypothesis Hy : y ~ N (X3,0%I7) is tested against the alternative
Hy :y ~ N(XB+ Wr,o%Ir), where vy is not known, the optimal critical region w
depends on the unknown C'W+/o. Since 7 can be any vector in R, C'W+ /o can
be any point in the fixed k-dimensional hyperplane generated by the columns of C'W
as y/o vary over RX. The nonexistence of UMP tests is thus related to fact that
St_p-1N{C'Wr /o : /o € RE} consists of more than one point.

A procedure which can be traced back to Wald (1943) and which is often used
to handle the existence of nuisance parameters consists in weakening the optimality
criterion, i.e. in choosing to critical region to maximize an “average” power. Hillier
(1987) suggests to maximize the average power on the surface of constant A, by
averaging over all possible directions of C'Wry/o. The most powerful similar critical
region (in terms of average power) is given by the points on Sr_, 1 for which the
angle with the subspaces {C”W’y/(f cy/o € ]RK} is small (Hillier (1987), Section 3).
That is, w is a “strip” on Sp_,_1 close to Sp_p,_1 N {C”W’y/(f cy/o € ]RK}.

Note that w is the union of all the critical regions (of a suitable size a*) for a given
7 as 7y varies in R¥. Therefore the most powerful critical region (in terms of average
power) contains subsets of Sy, 1 for which the (unconditional) power is very small:

these are the sets in w for which the angle between v and C'W+y /o is small. The



average power depends on the dimension of the subspace {C”W’y/d cy/o € ]RK}, le.
on K, because it increases the average distance of points in w from the subspace
C'Wr/o. The power of w depends on A, but the critical region itself does not.
Finally, note that the angle between v and subspace generated by the columns
of C'"W is related to the F-statistic, f, for testing Hy : v = 0 against H; : v # 0.

However, by focusing on the test statistics the geometrical intuition is missed out.

4 Optimal tests for structural change

In this Section we analyse the construction of optimal similar tests for structural
change. We will find that the power of the optimal test is affected by the relative

position of the subspaces
Vi ={C"Z(1)v/o:v/o e RE} =C'VT.

We consider optimal similar critical regions for tests of Hy : y ~ N (Xg,0%Iy)
against Hy : y ~ N (X8 + Z (1), 0%Ir), where v is unknown. Since when ~y varies in
R¥ | the columns of Z (7) generate a hyperplane V" indexed by 7. When weakening
the optimality criterion to maximize an “average” power, we are confronted with the
problem of averaging over and among different spaces V7. To do this we assign a
weight p (7) to each subspace V7, and maximize the average power over the surfaces of
constant A\, = U—lgfyZ (1) Px (1) v in each V7, and among the subspaces V". However

this is not enough to yield a test which is UMP in terms of average power.

Theorem 2 The critical region w, which mazximizes the average power P, = Y orer P(7)

where P7 is the power of w for each fized T, is

w = {v €S8rp1: Yy p(r)exp {—%)\T} Fy <¥; %; % (cos 97)2> > c} (3)

7Y
where 0 < 0, < T 1s the angle between v and V™. The constant c is determined by
[T (52) /22TP72] [ (dv) = o, where (dv) denotes the unnormalized Haar measure

on St_p_1. Thus no UMP test in terms of average power ezists.

Averaging among subspaces requires much more information than just averaging

over the surface of constant A\, for fixed 7. It requires taking into account A, itself,

7
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i.e. the distance from the origin of the alternative for each fixed 7. Thus a further
weight on A; is needed. We will assume that the weight for A\ /c is proportional to
the density of a chi-square distribution with K degrees of freedom. The constant ¢
determines the relative weight given to different alternatives. If ¢ is close to zero then
small deviations from the null are given a large weight. If ¢ is large more weight is

given to large parameters.

Theorem 3 The critical region w which mazimizes the unconditional power averaged
over (i) the partition T with weights p (1), (i) the direction of p, with uniform weights
on Sk_1, and (iii) the A with weights proportional to a the density function of a chi-

square random variable with K degrees of freedom, is given by

LRC > C
where
—p— T—
LR, = (1—|—C)T 2 KZp(T) (1—|—csin297)7_23, (4)
T7€T
u
T-p-K 1+ ﬁfT ?
= (1+¢) 2 ZP(T)( T : (5)
Ter Ltet gl

where 0 < 07 < 3

testing Hy : y ~ N (X 3,0%1y) against Hy : y ~ N (X8 + Z (1) ~,021p) for a fized T.

s the angle between v and V7, and f; is the F test statistic for

The critical value ¢y, is determined by the condition

I (5") /
— (dv) = «,
27" Jvesr p 1LRe>en}

where (dv) denotes the unormalized Haar measure on Sp_p_1.

The statistic LR, is called the “likelihood ratio” by Andrews and Ploberger (1994)
and Andrews, Lee and Ploberger (1996).

Remarks
(1) The derivation of the LR, test is based on a particular weighting function for
Ar, and can be very sensitive to its choice. Moreover, since it requires averaging over

three weighting functions, its power may be very small. Only if the subspaces V7



are “very close” to each other (i.e. if the intersection of the optimal critical regions
for each fixed 7 is “large”), we can expect the LR, test to be powerful. In this case
however, an F test against any fixed 7 could do just as well. If, however, the subspaces
V7 are very far from each other (i.e. optimal critical regions for fixed 7 do not have
many parts in common) the power of the LR, test will be low. Thus, reporting an
index of distance between the subspaces is important as a measure of “goodness” of
the test.

(i) Andrews and Ploberger (1994) and Andrews, Lee and Ploberger (1996) suggest
to average the power also over all values of (#,v') with weights proportional to
the density of a normal distribution over V7, and obtain a class of similar tests
for the case where 02 is known. Our approach is the same as taking a weight for
C'7 (1)y/o proportional to a N (0,clk) density, where ¢ is an arbitrary positive
constant which scales the variance matrix. Averaging the unconditional power with
respect to C'Z (1) y/o ~ N (0, clk) is equivalent to averaging the power of a critical
region w with respect with both the direction of C'Z (7)v/o (i.e. p, uniform on
Sk_1) and its length (i.e. A, with A, /c ~ x%). Note that the weighting function we
use is different from that of Andrews and Ploberger (1994) and Andrews, Lee and
Ploberger (1996), because ours does not depend on the nuisance parameter 5. Our
approach can be justified by the fact that the statistic 3 is not informative about
Z (1)~ for arbitrary 3, so there is no loss of information in constructing inference
about Z (1)~ from wy only (which, also, does not depend on ). Moreover, our
results are valid for unknown o2, too (note that the average exponential Wald test
suggested by Andrews, Lee and Ploberger (1996) for the case of unknown ¢? is also
similar since it is a function of v only through the f;).

(iii) As far as the choice of ¢ is concerned, there does not seem to be any optimal
value. However, as ¢ — oo, C'Z (1) /o tends to be uniformly distributed over R¥,

and this, using a Bayesian interpretation, might be taken as a non-informative prior.



A normalized version of the LR, test for this case is

LRw = lim(1+¢) * LR,
T_
= Zp(T) (1 — cos? 97>7_22
TET
T—p
K 2
= S0 (14 i)
TET

If ¢ is small, the distribution of C"Z (7)y/0 tends to be more concentrated around 0.

Letting ¢ tend to zero, a normalized LR, test is

ol

Liy = T—p%li% c

= Zp (1) cos? 0,

T

ra
= ) p(n)—tF—

K
Lty fr

as a consequence LRy should have power in detecting small deviations from the null.
It can be easily shown that LRy maximize the average slope of the power function
given the uniform weighting function for p. and {p (7)}, -

(iv) Monte Carlo simulations reported in Andrews, Lee and Ploberger (1996)
suggest that the choice of the (arbitrary) constant ¢ does not affect the outcome of
the test. This statement seems reasonable in our case, too, because (1 + c)f(Tfp)/2
also scales LR, under Hy. Moreover, the factor 717 changes very slowly as ¢ increases.

(v) The distribution of LR, under Hy is difficult to derive, and the critical values
will depend on the geometrical relations among the spaces V7. However, it can be

simulated for the given regressors.

5 Other tests for structural change

In the preceeding Section an optimal test for structural changed has been derived.
However, it was noticed that the power of the optimal test is strongly affected by the
relative position of the subaspaces V7. Since the subspaces V7 do not depend on the
particular test chosen, they will affect all test procedures. This Section shows how

some existing tests are affected.
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5.1 The CUSUM and the CUSUM of squares tests

The CUSUM and CUSUM of squares test statistics of Brown, Durbin and Evans

(1975) can be written in terms of the vector v as follows:

(i) The CUSUM test consists in rejecting the null of no structural change if
laLv| > ¢4, for at least one r = p+ 1,...,T, where ¢, , is a constant depending on
r and on the size, o, of the test (see Brown, Durbin and Evans (1975) Section 2.3),
and a, is a T'— p dimensional vector for which thefirst 7 — p components are equal to
(I'—p)
a,, the CUSUM test will reject the null of no structural change if |cos0,| > ¢, for

N[=

and the remaining (1" — ) are zero. If 6, denotes the angle between v and

at least one r. Therefore, the critical region of the CUSUM test consists in the union

of “caps” (of different dimensions) near the projection of a, and —a, on Sr_, 1.

(ii) The CUSUM of squares test rejects the null hypothesis of no structural change

if the angle 0, between v and the space spanned by the columns of

(L, 0
BT_< 0 0>7

satisfies,
2 r—p
(COS 87,) > C/a —I— T——p
or
7" JE—
(cosf,)” < _‘Z —d,,
for some r = p+1,...,T, where ¢, is a constant depending on the size « of the test.

The critical region or the CUSUM of squares test is the union of “strips” near the
intersection of the subspace spanned by the columns of B, and Sp_, 1 and “strips”

near the intersection of the subspace spanned by the column of Iy — B, and Sp_,_;.

Note that the CUSUM and CUSUM of squares identify respectively T" — p direc-
tions (the a,) or subspaces (B,). These are chosen independently of the subspaces
V7, so that the critical regions of both tests could be quite far from such spaces V7.
From Theorems 2 and 3, we would like the critical region to be close to (some of)
these subspaces. This explains why the CUSUM and CUSUM of squares can have

no power in detecting structural breaks as is well known in the literature (Garbade
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(1977)). Note that their powers depend on the unknown parameter 7, even though
their sizes do not. The failure of these tests stresses the importance of taking into
account the subspaces V7.

The fluctuation test of Ploberger, Kramer and Kontrus (1987) has the same struc-
ture of the CUSUM and the CUSUM of squares tests as it can be written in terms
of v and identifies 7" — p directions on Sp_,_1. Although in the flucutation test such
directions depend on the matrix of regressors (in contrat to the CUSUM and CUSUM
of squares tests), it is not clear how they might be related to the subspaces V, and

to the direction corresponding to the “true” alternative.

5.2 The sup F' test

The sup F' test represents an attempt to take into account the existence of the
subspaces V7. This is based on Roy’s union-intersection principle (Roy (1953))
which can be stated as follows: take as critical region of size «, w, for testing
Ho :y ~ N(XB,0%Ir) against Hy : y ~ N (X8 + Z(7)7,02%Ir), the union of the
most powerful critical regions w;, w = |J . ws, of a properly chosen size a*, for a
fixed 7 € T. Since each w; can be characterized in terms of the F test, Roy’s union-
intersection principle together with Lemma 2 in the Appendix produces the sup I
test. The critical region of the sup F' test is the union of “strips” on Sp_, 1 along

the intersections of Sr_, 1 and the subspaces V7.

Remarks.

1) The sup F' reduces to the classical F'-test when the change points are known.
In spite of this the sup I test does not have any optimal property.

ii) For a fixed a*, the size of the sup F' test depends in a complicated way upon
the angles among the subspaces V7. For example, if p is the angle between V™ and
V7™ the size of the test is

(p) = 200" if p > a*rm
ap)= at*+p fo<p<a*m '

Clearly the size of the sup I test is in the interval [o*, 1], however there is no easy way
of measuring a.. The use of Bonferroni-type inequalities could require the use of very
small o, if we do not want w to be the whole Sy_,, ;. Moreover, asymptotic critical

values for the sup F' test (see for example Andrews (1993)), have been tabulated
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ignoring the geometry of the testing problem, i.e. the angles between the subspaces
V7 and this can also result in serious size distortions in finite samples. However, the
distance between the subspaces V7 can be measured (see Section 7), and provides
an indirect way of measuring «: if it is small, then the size of the sup I test will be
approximately a*, i.e. the size of the F test for any fixed 7.

iii) The area of the region w (and thus the geometry of the V) measures the
variability of the optimal (in terms of average power) critical regions as 7 varies
under the alternative. Thus, the spatial relation between the spaces V7 affects the
power properties of the sup I test as well as its size. The F test for a fixed 7 = 7
will not be very powerful (in terms of average power) if the true 7 is 72 and V™ is far
from V™. As a consequence, the average power over 77 and 7» could be very low. On
the other hand, if the angle between V™ and V™ is small, the average power over 7
and 75 will be almost the same as the power of the F test against any fixed 7, that
is, the averaging process does not significantly reduce the power. Confirmation of
this can be found in the simulation study of Table 1 of Andrews, Lee and Ploberger
(1996), where the power of the sup F' appears to be significantly less than the power
of the F test for known changepoint, when the changepoint is near the beginning or
the end of the sample (so that the subspace V7 corresponding to the true 7 is “far”
from most of the other subspaces).

iv) In the previous Sections we have shown that the position of the subspace V7
in RT? affects both the sup /' and the LR, tests. If such subspaces are close, the
outcomes of both tests will be similar, and their interpretation will be easy. Note
however, that in this case both critical regions will be approximately the critical
region of an F test for a fixed 7. If this is the case, using a (simple) F test for any
fixed 7 will yield a test approximately as powerful as the (more complicated) sup F'
and LR, tests. Tables 2, 3 and 4 of Andrews, Lee and Ploberger (1996) support this
statement, as the midsample F test performs as well as the other tests they consider,
if the structural change occurs approximately in the middle of the sample. If the
subspaces V7 are well spread out over RT"7, the sup F' and the LR, test have very
different critical regions, and the outcomes of such tests could be totally different (see
Figure 1). Therefore, there are problems in choosing a test. The sup F' test does not
have optimal properties, but its critical region covers the optimal critical region for

the true unknown 7. On the other hand the LR, test has some optimal properties,
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Figure 1: Critical regions on S; for the sup F' and the LR, tests of Hy : y ~
N (X3,0%I7) against Hy :y ~ N(XB+ Z (1)vy,0%lr), r=11,12 (T —p=2, K =6,
c=1, a=01).

but its critical region could be quite far from the optimal critical region for the true

unknown 7.

6 Local properties of tests for structural change

In Section 4 optimal tests for structural changed has been derived and Section 5 has
compared these with existing tests which are used by practitioners. This Section
studies the local properties of similar tests for structural change with reference to
local optimality and unbiasedness.

The unconditional power of a similar critical region w of size « is (Hillier (1986))

P e {2 () Pz} [Y # (WC'Z (7)) (dv)

2m 732
(6)

where 7 = /0 and (dv) denotes the unnormalized Haar measure on the (7" — p)-unit
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sphere. By expanding F,, as a Taylor series around nn = 0, we obtain

P, = a+ % /w VC'Z (1) n (dv) — %om’Z () PxZ(T)n
L) [ 26y e @ ot )

A level « locally most powerful critical region w maximizes the second term in the
expansion, leading to a critical region of the form (v/C"Z (1) n) > c¢. Note that this
critical region depends on both 7 and 7, so that it is not uniformly most powerful in
a neighbourhood of n = 0.

By requiring the test to be locally unbiased, the critical region must satisfy

Y [wermma = o ®

22
L) [ = o )

272

and
1 T-pl (52
—5047]/Z (1) Px 7 (1) n + Tp<7T2p> / 0 Z (1) Cov'C' Z (1) n (dv) (10)
2m 2 w

must be large and positive. Note that (8) will be satisfied everytime we choose w so
that I' (552) / (QWT_;B) [0 Z () Cov'C'Z (7)1 (dv) is large. A test satisfying these
conditions does not exist uniformly in a neighbourhood of 7 = 0 since it depends on
1 and T.

A different issue involves the existence of locally unbiased tests. First we assume

7 known. Equation (8) can be written as

5

That is the average value of v in w, v, = T’ (%) / (QWT_;B) [, v (dv), must be or-

/

C'Z (t)n=0. (11)

thogonal to C'Z (1) n. Note that v,, cannot be the zero vector: suppose it is, then it

must be true that

T—p
2m 2

) [ -

for all unit vectors ¢;, i = 1,2,...,7 — 2. This shows that w must have the form of

two caps around the point e; and —e;. Therefore not all components of v, can be
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simultaneously zero. So a locally unbiased test must satisfy (11) n and ,in general, it
is not possible to chose v, ortogonal to all the subaspaces V7. This means we need to
choose the critical region so that v is orthogonal to C'Z (7)n for all possible n. For
this choice of critical region, though, (10) might not be positive for all 7. If we allow
T also to vary over T no unbiased test for structural change exists.

Since there is no locally unbiased test exist, we weaken again our optimality

criterion by averaging the power on the surface of constant A = \/1/n to obtain

» aX? ! (T—p) )‘21—‘(%) v ! 2
Pw:oz—ﬁtr[Z(T) PxZ(1)] + Ve - /wUCZ(T)Z(T) Cv (dv) + 0 (X?) .

So, a necessary condition for a test to be locally unbiased is

P(%) N / tr [Z(T)/sz(T)}
= [)UCZ(T)Z(T) Cv (dv) > « T _

Note that, for a fixed 7, a locally average most powerful test on the surface of constant
A is to reject Ho if v'C"Z (1) Z (1) Cv > ¢, so that a sufficient (but not necessary)
condition for unbiasedness is

tr [Z () PxZ (T)}
> T—p -

The constant ¢ is a decreasing function of ¢, so that if « is large the test might not

C

be locally unbiased in terms of average power.

For a fixed 7 € T, let VT denote the subspace of R”~? orthogonal to V". Then

1’*<T;p> /C/Z ! 1’*<T;p> IYali l
7 v (1) Z (1) Cv(dv) = 7 V'C'Z (1) Z (1) Co (dv)
/w (vruvr) /umVT

27T2 Qw2

because v'C'Z (1) = 0 in V]. So a necessary condition for local unbiasedness is that
w N V7 is sufficiently large for all 7. When we allow 7 to vary in Y, this condition
cannot be satisfied if the subspace V7 are far from each other. So in general there
are no unbiased tests for structural change at unknown changepoints.

In order to weaken the optimality condition even further we need to average the

power of different spaces V7 by {p(7)}, .y, leading to
= 22
P, = oz—a—tr Zp PxZ(T)| +
TeY
(T—p) T (52) / 2
T Cv(dv) 4+ o (A
2K 27_[_TQ " ;p ) ( ) < )
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In this case a locally average most powerful critical region is given by values of
v’ [ETGT}?(T)Z(T)Z(T)/} Cv > ¢, and the test will be unbiased provided the

following inequality is satisfied

L (5") /C

S0 (1) Z(5) Z (1) | Co (dv) = o™ [Emp(TT) 4 ]<07> PxZ(7)]

7Y

T—-p
272

A sufficient (but not necessary) conditon for a locally average most powerful test to be
locally unbiased is that ¢ > tr [ETeTp (1) Z (1) PxZ (T)} /(T — p), which requires
the size of the test to be small.

7 A measure of the intrinsic difficulty of testing
for structural change

The power properties of any test for structural change is strongly affected by the
relative position of the subspaces V7, 7 € T. If these spaces are far enough from each
other, tests for structural change have potentially very low power and are not locally
unbiased (even in terms of average power). Therefore it is important to measure the
“distance” between them, and this can be considered, following Hillier (1995), as a
measure of “intrinsic difficulty” of the testing problem, i.e. as a relative measure
of the potential loss of power with respect to the situation where both number and
location of the change points is known.

If the subspaces V7 are straight lines through the origin, a measure of the intrinsic
difficulty can be related to the angles between the V7, 7 € T. More precisely, we
can take one of the straight lines as a reference line, V™ , say, and measure the angles
between V™' and all the other lines V7, 7 € T, 7 # /. Suppose these angles are a, .,
7,7 € T, 7 # 7'. Then a measure of intrinsic difficulty is dy = max, ey {20 /7}.
If dv is close to zero there is a small intrinsic difficulty, but if it is near one, the
potential loss of power is large.

This idea can be generalized using the critical angles between spaces, i.e. the
angles, along orthogonal directions, between two spaces such that the largest angle is
the largest possible angle between any two arbitrary points in the two spaces.

Assume that all hyperplanes V7 have the same dimension, and choose a particular
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7 € Y, and the associated subspace V7 = {C”Z (T)vy:v€ ]RK}. Then, project
all VTN Sy, 1, 7 € T, on V7' by multiplying every element of V™ N Sy, ; by
the projection matrix P = C'Z (7') [Z (7Y PxZ (T’)}fl Z (") C. Tt can be shown
that the cosines of the critical angles between V7™ and V7 (i.e. the square of the
canonical correlation coefficients between them) are the solutions to the equation

(James, (1954))

-1

Z(r) PxZ () [Z (7" PxZ(7")] " Z (') PxZ (1) = \Z (T)/PXZ(T)‘ =0. (12)

More precisely the cosine of the largest of the critical angles is the square root of the
smallest nonzero eigenvalues of (12). Thus, a measure of intrinsic difficulty of the
testing situation is dy = max, ey {2, /7}, where o, = arccos <m> and A7 _,
is the smallest of the nonzero eigenvalues of the determinental equation (12). Again,
a large dv entails a potentially low power for any test for structural change.

If the hyperplanes are of different dimension, we have to choose 7 so that V7 is
one of the spaces of smaller dimension. The measure of intrinsic difficulty dy can be
defined again as above.

Note that hyperplanes orthogonal to another hyperplane, might be orthogonal
among themselves as well. The intrinsic difficulty of testing for structural change will
certainly be large when no information at all is available regarding the time and the
number of possible structural changes, because we can always find two spaces which
are orthogonal.

To have an idea of how much the spaces V7, 7 € T, change in a practical applica-
tion, we calculate the distance between these spaces for Example 7.9 in Greene (1991),
for which Greene (1991) finds evidence of parameter instability using the CUSUM of
squares test. These data are yearly U.S. data from 1966 to 1985, for the money stock
M2 (dependent variable), GNP seasonally adjusted in 1982 constant dollars (zgnp),
and the interest rate (z,). A constant is also included, and following Greene (1991)
we assume no prior knowledge about the number and the position of the break points,
and the parameters affected.

We will start by considering a very simple situation. Suppose that we know that
there is only one possible change point, but its location is unknown. Table 1 gives
2 arccos(()\:ﬁ,)lﬂ)/?r for all possible partitions of 20 of length 2 excluding the possi-

bility that the structural change occurs in the first and the last three observations.
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The variability of dy depends strongly on Y. If T = T, 6 contains all possible
partitions in Table 1, then dy,,; = 0.75 would indicate a large variability of the
best critical regions for fixed 7 to changes in 7. If we had some prior information

suggesting a structural break at the beginning of the 1970’s, we could restrict T to
Ty10=1{(4,16),(5,15),(6,14),(7,3),(8,12),(9,11),(10,10)}

for which dy, ,, = 0.37, which is considerably lower than before. Note that dy depends
the number of partitions in it, and also on the values of the elements of the matrix
of regressors (dv,, = 0.37, dv;,, = 0.13 and dv,,;, = 0.21, even though the tree sets
contain the same number of partitions). The partition (10,10) is the one which is
less far from every other partition in term of the index of intrinsic difficulty.

To verify how the power of the tests is affected, we have run a Monte Carlo
simulation (based on 100000 replications) to compare the relative losses of power of
the sup F', LRy, LRy, analised in this paper, the avgf, and the expfl tests of Andrews,
Lee and Ploberger (1996) based on the test statistics

avgf = Y p(7)/

7Y

expfl = 272 Zp(T) exp {prT} .

7Y

F tests for a fixed 7 equal or close to the true one are also considered. The model is

generated with a structural break at ¢t = 6,

—3169.42 — 14.99223, ; + 1.558815x6np, + 175.73¢; 1<t<6

Y =
—1.5 % 3169.42 — 1.5 x 14.99223x,, + 1.5 X 1.55881bxcnpy + 175.73e, t > 6

where the e; are independent N (0,1) (and the parameters are those estimated by
Greene (1991)). Table 2 shows the power of the sup F';, LRy, LRy, the avgf, and
the expfl tests, when these are evaluated over two partitions sets T4 16 and Ty 19. A
uniform weight over 7 is considered.

A few things are worth noting in Table 2. Although all the parameters are changed
by 50% the power of the F test for known 7 = (6,14) ([{g14)) equals .276 only since
the sample size is only 20. The power of the sup F' test is about 55% of the power
of the Fig 14y test when T = T 16, and increases to about 70% when T = T4 10. The
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expfl test has power slightly larger than the sup F' test but significantly less than the
powers of the LRy, LRRjand avgf tests. Restricting the set of partitions from T, 14 to
T4 10 increases the powers of all tests considerably.

F tests for fixed 7 close to the true one perform almost as well as the other tests
if 7= (7,13),(8,12),(9,11). For 7 = (4,16),(5,15) the power of F; is considerably
less than the power of the Fig14) test because there are very few observations in the
first subset.

If nothing at all is known about the possible change points, then all partitions
of 20 in at most 20 parts must be considered. In such cases it is enough to take
some random partitions and if the angles between the subspaces V7 are large we have
to conclude that every test for structural change has low power. So we randomly
generate ten partitions of 20 and compare the largest critical angles between the
corresponding subspaces V7, 7 € T, on V14 The results are summarized in Table
2, where we report 2 arccos(()\j’(G’M))l/Q)/?T for these ten random partitions. Note that
the index of intrinsic difficulty dy = .99, which suggests that testing for structural
change knowing only that the structural breaks might be associated with these ten

partitions, does not lead to very powerful results.

8 Conclusions

This paper has characterized similar tests for structural change in the linear model
under the hypothesis of normality of errors with emphasis on their geometrical as-
pects. We have emphasized the idea that geometrical considerations can help to
better understand existing tests and to find out why they can fail.

It has been shown that it is easy to characterize similar tests in terms of the vector
v € St_p1. The geometry of existing tests (CUSUM, CUSUM of squares and sup F'
tests) has been analysed, and this has allowed us to understand the setups where such
tests can be powerful. Tests optimal in a weak sense have also been suggested which
are similar to those of Andrews, Lee and Ploberger (1996). It has been shown that
their performances are strongly affected by the geometry of the testing situation.

There is an intrinsic difficulty in testing for structural change, due to the existence
of several spaces V7, 7 € T, and this affects all tests. Unfortunately there is nothing

we can do to overcome this problem, apart from acknowledging its existence. In order
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416 514 6,14 7,13 8,12 9,11 10,10 119 128 13,7 146 155
5,15 || 0.00
6,14 || 0.00 0.00
7,13 ] 0.02 0.00 0.00
8,12 1 0.33 0.10 0.00 0.00
9,11 | 0.37 0.13 0.02 0.00 0.00
10,10 || 0.37 0.13 0.02 0.01 0.00 0.00
11,9 | 0.43 0.25 0.21 0.02 0.02 0.00 0.00
12,8 |1 0.50 0.39 0.33 0.06 0.06 0.01 0.00 0.00
13,7 || 0.66 0.56 046 0.30 0.29 0.23 0.05 0.00 0.00
146 | 074 0.59 0.51 049 047 031 0.09 0.02 0.00 0.00
15,5 || 0.75 0.59 0.51 049 047 033 0.12 0.04 0.01 0.00 0.00
16,4 | 0.75 0.59 0.51 049 047 033 0.13 0.04 0.01 0.01 0.00 0.00
Table 1: Measure of intrinsic difficulty for partitions of 20 of length 2.
Ty16 A URT)
test Power Relative Power | Power Relative Power | Power Relative Power
sup F' 151 54.71% 194 70.29%
LRy 191 69.20% 219 79.35%
LRy 190 68.84% 224 81.16%
avgf 190 68.84% 224 81.16%
expfl 155 56.16% .199 72.10%
Fla6) | 043 15.58%
Fisasy | 110 39.86%
Flgay | -276 100%
Flrasy | 217 78.62%
Fgazy | -209 75.72%
Foay | 179 64.86%

Table 2: Power of tests for structural change.
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Partition 7 M
(9,3,5,1,2) 0.8469
7 = (6,14) 0
(8,5,1,1,2,3) 0.2061
(9,6,5) 0.8469
(15,3,2) 0.9861
(17,1,2) 0.9917
(16,1,2,1) 0.9901
(5,1,14) 0
(13,1,3,3) 0.9835
(9,3,7,1) 0.8469

Table 3: Measure of intrinsic difficulty for ten random partitions of 20. The reference

hyperplane is indexed by the partition (6,14)

to measure its potential impact on the tests we have suggested reporting an index of
intrinsic difficulty.

The main message from our study is not particularly original but it is important:
tests for structural change can have very low power, so it is important in practical ap-
plications to use all the information available. This message also generalizes to other
testing setups involving parameters under the alternative which are not present under
the null: sensible testing requires a priori restrictions of the alternative hypothesis.

Testing against the “most general” alternative is inappropriate.
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Appendix
This appendix contains two Lemmas, and the proofs of Theorems 2 and 3.
Lemma 1 (Chikuse, 1991) Any vector v € S,,_1 can be written uniquely as
v = cos 0C v + sin 0Cy04 (13)

where v1 € Sp1, V2 € Sy g1, and 0 < 0 < 5; Cy and Cy are (n X k) and (n x n — k)
matrices satisfying C1Cy = Iy, CLCy = I, and C1Cy = 0; 0 is the angle between the
vector v and the orthogonal projection of v onto the subspace spanned by the columns

of Cy. The Jacobian of the transformation v — (0,v1,v9) is
(dv) = (cos 9)’“71 (sin Q)nfkfl (dv1) (dvg) db. (14)

Lemma 2 (Hillier, 1995) Let w = | .rw; with {v:t; (v) > c} where t. (v) is a

continuous function of v, and Y is a set of indexes. Then w = {v : sup, .y t- (v) > c}.

Proof. If there is an index 7* such that ¢+ (v) > ¢, then, sup .yt (v) > t+ (v) > ¢,
so w = U;ex {v:tr(v) >c} € {v:sup,cytr (v) >c}. On the other hand if v €
{v :sup,cy t; (v) > ¢} then the fact that ¢, (v) is a continuous function of v guarantees
that there is an index 7* such that ¢, (v) = sup, .y tr (v) > ¢, le. v € W Cw. So
{v:sup,ey by (v) > ¢} Cw.

Proof of Theorem 2

The unconditional average power over the surface of constant A\ of a critical region

(‘e _
<T27p> /exp {—1)\7} 1B <u K. ﬁv’/\ﬂ\’w) (dv)

o L5 2 2 7272

wis

By averaging it over the partition 7 € T it becomes

r(L=e 1 T'—p K A ,, .,
8 ol ) (5

Worer

where C'Z (1) v/o = M, Ay = 5vZ (1) PxZ (1) > 0, pr € Sk, and A, =
C'7Z (1) [Z (T)/PXZ(T)T% is a fixed 7" — p X K matrix such that A’A = [k, and C
is a T" x T" — p matrix such that CC’' = Px, C'C = Iy_, and "X = 0.

Using Lemma, 1 v can be written uniquely as v = cos@,A;vi; + sin€,CJ vy,

where v1; € Sk1, V2r € St p k1, and 0 < 0, < . Since vy, and vy, are uniformly

24



distributed over Sk_; and Sy_, x_1, respectively, the most powerful critical region
must contain all such spheres and the test is characterized in terms of cosf,., 7 € T,

only,

=y Y p(7)exp {—%AT} (15)

The statement of the theorem follows.

Proof of Theorem 3.

Averaging with respect to A, in (15) in the proof of Theorem 2, where the weight
for A;/c is the density function for a random variable having the chi-square distribu-

tion with K degrees of freedom, x%, vields

_ 2P H 87— K-1 . 87— T*[)*K*l
B _ _ T( 3{ ) _ p(7) / (cosB;) (sinf;) .
P<7>P< 5 )(1+C)2 TET w (1—ﬁ(cos87)2> 2
The statement of the theorem follows.
The power of any critical region w is
_ 1 T - r (L2
Po=a—ad p(MA+— L3 p(r)A ( Q / (VAN w) (dv) + D p(r) O (A2)
2 TeY 2k TeY 212 w TeY
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