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Abstract

Diagnostic tests have great importance in applied econometrics as tools for assessing
the consistencey of the model estimated with the assumptions used. The Monte Carlo
evidence available about the power of such tests for the linear regression model is not to-
tally convincing. This paper focuses on tests for neglected nonlinearity for the Gaussian
linear regression model, and argues that the problem is related to the geometrical prop-
erties of the testing set-up. We find that testing for nonlinearity requires considerable
a-priori knowledge about the nature of the possible nonlinearity, which the practitioner
does not usually have. Therefore, the conclusions are similar to those of Davidson and
MacKinnon (1987) (but the analysis is different) in the sense that the power of a test
depends on an implicit alternative. In contrast to Davidson and MacKinnon (1987) we
focus on critical regions rather than on test statistics and our results are valid for every
sample size (rather than asymptotic), are global (rather than local) and hold for every
similar test (rather than just those tests having asymptotically chi-square distribution),
however, they are based on the stronger assumption of normal errors.
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1 Introduction

It has become common practice in applied econometrics to estimate a linear regression model
and then put it through a series of diagnostic or (mis)specification tests for nonnormality,
heteroskedasticity, serial correlation, structural change, omitted nonlinearity/variables, etc..
In spite of the broad use of such procedures, only a few theoretical papers have critically
evaluated their properties.

There seems to be widespread agreement that these procedures should be of help in achiev-
ing two objectives: (i) assessing the consistency of the estimated model with the assumptions
used, (ii) and, in case there is evidence that the assumptions are violated, indicating how the
model can be modified. Tt is commonly accepted that the second goal cannot be attained.
For example, Godfrey (1990, p. 163) summarizes the current attitude towards diagnostic tests
in the following way: “[...] misspecification checks cannot be expected to act as simple and
accurate guides to the reformulation of models that have been found to be inconsistent with
the sample data. They should, however, be useful tools for the detection of inadequate models.
The rejection of misspecified models with high probability will require careful use of available
information on, for example, relevant economic theories, related empirical work and the nature
of the data”.

The ability of diagnostic tests to detect inadequate models is also source of concern for
econometricians. Hillier (1991) argues that existing multiple diagnostic procedures can be
logically inconsistent and may not lead to critical regions with desirable properties, since they
consists of a series of tests for single alternative hypotheses. As a consequence, the goal of
assessing the consistency of the estimated model with the assumptions used is not attained
in the current practice. He suggests a different approach to the derivation of diagnostic
tests based on the consideration of critical regions rather than the fest statistics themselves.
Unfortunately, nobody seems to have developed this suggestion further.

Doubts about the possibility of achieving the first objective have also been expressed by
Davidson and MacKinnon (1987). They show that the local asymptotic power of a every test
having an asymptotically chi-squared distributed statistic depends on an implicit alternative.

For the likelihood ratio, the Lagrange multiplier and the Wald tests these implicit alternatives



are the explicit alternatives for which they are constructed. In general, the implicit alternative
of a test is the alternative for which the asymptotic power is maximized. Therefore, since all
diagnostic tests have implicit alternatives, none of them can be powerful against every kind
of misspecification.

In this paper we disclose some further doubts about diagnostic tests for the Gaussian linear
regression model based on a global finite sample analysis rather than on a local asymptotic
study as in Davidson and MacKinnon (1987). This is also reflected in the method used: we
first characterize all similar critical regions (i.e. the critical regions of tests for which the size
does not depend on nuisance parameters) and then try to choose an optimal critical region
according to optimality criteria specified in the text. Thus, our conclusions will concern all
similar tests, and not just the likelihood ratio, the Lagrange multiplier, the Wald test and
tests being asymptotically chi-squared distributed. In this respect our results are stronger
than those of Davidson and MacKinnon (1987).

We focus on the Gaussian linear model because it yields an intuitive geometrical interpreta-
tion of the testing problem. Although restrictive, the assumption of Gaussian errors does not
violate the standard assumptions used in asymptotic theory, so, by emphasising the existence
of significant difficulties to construct and interpret diagnostic tests in this simple set up, we
highlight problems possibly occurring in more complicated situations where the asymptotic
analysis seems to give a clear answer. The analysis also provides a direct interpretation of
Monte Carlo simulations which are often based on the assumption of normality of the errors.

To simplify the exposition we analyse tests for neglected nonlinearity in the mean. Using a
theorem in Hillier (1991) we characterize all similar tests for nonlinearity. For the testing set
up considered, most of the tests suggested in the literature (see for example Ramsey (1968),
Andrews (1971), Thursby and Schmidt (1977), White (1980), Lee, White and Granger (1993))
are similar, therefore the focus on similar tests must not be seen as a restrictive condition.
Moreover, following Hillier (1991) this paper focuses on the properties of the critical regions
of the tests rather than on the test statistics themselves, and, thus, fills a gap in the literature
on testing for nonlinearity.

Two different testing set-ups are analysed. Section 3 considers the cases where the func-

tional form of the possible nonlinearity under the alternative hypothesis is known. Since uni-
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formly most powerful tests do not exist, we consider weaker optimality conditions. However,
these do not lead, in general, to “optimal” tests unless there is sufficient a-priori information
on the nature of the possible nonlinearity.

The second testing situation analysed (Section 4) concerns the case where the functional
form of the nonlinearity under the alternative hypothesis is totally unknown. We discuss the
properties of some of the existing tests, and find that diagnostic tests for neglected nonlinearity
cannot be theoretically justified in finite samples. Following Davidson and MacKinnon (1987)
we identify the implicit alternatives of these tests and show that they are far from being
satisfactory. Thus, this paper provides a theoretical explanation for the results summarized in
a growing literature which has tried to assess the properties of various tests for nonlinearity,
especially for dynamic models, using Monte Carlo simulations (see among others, Lee, White
and Granger (1993), and Barnett, Gallant, Hinich, Jungeilges, Kaplan and Jensen (1998)).
Our analysis clearly explains the reason why no test has a reasonably good power against an
arbitrary and unknown type of nonlinearity.

The paper is organized as follows. Section 2 gives a description of the model and character-
izes similar tests for nonlinearity. Section 3 analyses the case where it is known what type of
nonlinearity is present under the alternative, and Section 4 deals with the case where nothing

is known about the nature of the possible nonlinearity. The conclusions end the paper.

2 The problem of testing for nonlinearity

The paper focuses on tests for the null hypothesis Hq : y ~ N (X3, 0%I7) where X isa T x k
matrix of independent (fixed) variables, Fisa kx1 (k < T') vector of unknown parameters, and
o? is a scalar unknown parameter. The alternative hypothesis is Hy : y ~ N (f, (X) ,021Ir),
where f4 (X) = ([, (z1) , ..., [4 (x7)), ¢ isan n x 1 (n < T) vector of parameters. To simplify
the notation we write f, instead of f, (X), and f instead of f (X) if no parameter is present.

This testing setup, although simple, comprises many important special cases:
1. fyis linear in ¢, i.e. fy, = f-¢. For example, the model under the alternative is log-linear

f¢ = (1na71t7 In @y, ...,lna:kt) ¢,



or has products or squares of the elements of X,

_ 2 2 2
Jo = <371t7372t7---;ajktuajltux%u---;ajkt;ajltaj%;---;ajltajktu----;ajkflta:kt)¢

t = 1,..T

2. f, is partially linear in ¢ = (¢q,¢,), where ¢, and ¢, are n; x 1 and ny X 1 vectors

Jo = [g, - @9. For example,

Jo = (fo, (w10), fo, (at) o foy (@Re))

T = 1,...,T,TLQ = k.

The function fy, (zi), i = 1,...,k, could be the Box-Cox transformation of x;, or, in

general any function depending on x;; and some parameters.

3. [y is nonlinear in ¢. For example,

k
fo = doexp {H%t@} )
i=1

f¢ = f¢1 (ajlt) + f¢2 (aj?t) + .+ f¢k (ajkt)

where [y (x;t) could again be the Box-Cox transformation of x;.

Two testing situations can be considered. In one, analysed in Section 3, the functional
form of f; is known. In the other, studied in Section 4, concerning tests for neglected nonlin-
earity, the function f, is unknown. The characterization of similar tests is the same for both

situations.

2.1 A characterization of similar tests

Every similar region of size o has Neyman structure, because under Hy, the statistics B =
(X’X)f1 X'y, and s? = ¢y’ Myy, where My = Ip — X (X’X)f1 X', are jointly sufficient for the
nuisance parameters 3 and o2, and their densities are also boundedly complete. Thus, every

similar region of size « has constant size in the conditional distribution of y given (B, 32),
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3.3 f, totally nonlinear in ¢

If f; is non linear in ¢ the most powerful similar critical region can be constructed by choosing
v in the same direction as C' f (as in Theorems 2 or 4), but this would depend on ¢. Therefore,
it is important to report a measure of how sensitive the optimal critical region is to changes
in ¢ as indicated in the previous Subsection. Any F test against any specific value of ¢ will

be almost optimal if the critical regions are not affected much by ¢.

Remarks

Section 3.1-3.3 have shown that when f; is partially or totally nonlinear in ¢, no (average)
most powerful test for nonlinearity can be constructed even if the functional form of fj is
known. However, if the possible values of ¢ can be restricted to a set ®, and if for all ¢ € &
the optimal critical regions almost overlap each other, then there is an almost optimal test.
This is an F test for any alternative having a fixed ¢ € ®.

It seems that relevant a priori knowledge is essential for tests of this kind, and that the
lack of it invalidates the testing procedure. The results are analogous to those concerning
tests for structural change obtained by the author in another paper (Forchini (1997)). The
difficulty intrinsic to the testing situation which has been emphasized in these setups seems
to be peculiar to testing situations where there are nuisance parameters under the alternative

which are not identified under the null.

3.4 Distance between similar critical regions

The power of this test clearly depends on the distance of the true direction

1/2
C'fys/ (f(;MXst) Y2 fom a = C'fs/ (f(;*MXfW) say. To see how sensitive the direction of

the alternative is to changes in the parameters we consider a simple practical example. We
calculate the angle between C'f/ (f(;M xf ¢> Y2 und a for the data in Example 7.9 in Greene
(1991). These data are yearly U.S. data from 1966 to 1985, for the money stock M2 (depen-
dent variable), GNP seasonally adjusted in 1982 constant dollars (xgnp), and the interest rate
(x,). A constant is also included.

Let’s suppose a test for neglected nonlinearity is sought. To simplify the analysis we assume
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that the form of nonlinearity under the alternative has a known functional form fj:

i —1 a:(éQNP—l

fo= + 1
4 2 W
and
(a:fl — 1) (a:gQNP — 1)
fo = 5
’ b1, o)
Suppose that the case where ¢] = ¢; = 1 gives implicit alternative corresponding to the

direction a. A contour plot of the sine of the angle between a = C’ f+/ (f(;*MXfW)lﬂ and
another vector C'f,/ <f(;MXf¢> 12 generated by different valuesof 0 < ¢p; < land 0 < ¢, < 1
is plotted in Figures 1 and 2 for f, given in (4) and (5) respectively. The areas are shaded
in such a way that regions with higher values of sin (Vj;, V,+) are lighter. It is clear that the
distance between the “true” alternative and the implicit alternative can vary significantly as
the parameters change, so that any test constructed using Theorem 1 or Theorem 2 will be

powerful only if we restrict enough the values of ¢; and ¢, under the alternative.

4 Tests against an arbitrary alternative

Section 3 has analysed similar tests of Hy : y ~ N (X 3,0%I7) against Hy : y ~ N (f4,0%I7),
where f; is a known function of the elements of X, but ¢ is an unknown parameter. This
Section considers the case where the function f; is not known and shows that the solutions
proposed in the literature are not satisfactory.

The geometrical construction of Section 3 shows that an optimal similar critical region is
a fraction a of the surface of the unit (7" — k)-sphere close to the projection on the sphere
of the admissible points under the alternative. The existence of an “optimal” similar critical
region requires the specification of the direction of the alternative. If the neglected nonlinearity
can have any direction whatsoever, then any region of size o« would be as preferable as any
other region on the sphere (having the same size). As a consequence, testing for neglected
nonlinearity depends upon a priori restrictions of the possible nonlinearity of the model under
the alternative, in terms of both functional form and parameter values. This information is
not usually available to the practitioner, and therefore no test for neglected nonlinearity with

good power properties can be constructed in general.
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Figure 1: Sine of the angle between C'f;/ <f(;MXf¢> 172 ond a = C'fo/ (f(;*MXf¢*) for
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The values of ¢, are on the horizontal axis while the values of ¢, are on the vertical axis.
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Figure 2: Sine of the angle between C'f,/ <f(;MXf¢> 1/2 and a = C'fu/ (f(;*MXfW) for
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fo= (=572 <;§> o =gy = 1.

The values of ¢, are on the horizontal axis while the values of ¢, are on the vertical axis.
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All existing tests for neglected nonlinearity suggested in the literature are (often) implicitly
based on Lemma 5 in the Appendix, which shows that wy = C"y (with C defined as in Theorem

1) can be written as a regression model
w =C'fy+u (6)

where u ~ N (0,021 ), and under Hy C'fy = 0. Since f, is not known, this is usually
replaced by an approximation of the form Z¢* (the implicit alternative), and then an I test
is performed to test if ¢* = 0. This is equivalent to saying that f; is linear or partially linear
in ¢ under the alternative. If the approximation to C'f, is good, the test is very close to
an “optimal” test. In general, this goal cannot be achieved though. So it is important to
understand how the implicit alternative is chosen with some existing test procedures.

Some of the approximations to C'f, considered in the literature are the following:

1. Thursby and Schmidt (1977) suggest using powers and cross products of the regressors
as elements of Z. Therefore, they consider an implicit alternative where f, is linear
in ¢. By testing for the significance of the coefficients of powers and cross products of
the regressors the Thursby and Schmidt test can be considered as a test for omitted

variables.

2. White (1980) sets Z = WX, where W is a T x T diagonal matrix with (arbitrary)
nonzero diagonal elements. As observed before by other authors (for example Godfrey
(1988), Section 4.3) the power of the test depends on the choice of W, i.e. on the a priori
knowledge of the direction of the alternative. The amount of information required by
this tests is considerable, and is unlikely to be available to the practitioner. Moreover,

the advice of considering different possible weights might induce a large size distortion.

3. Lee, White and Granger (1993) use Z = U, where

W@T) h(@Ts) - h(#L,)
| h@T) AT - k(L)
BTy h(aTy) - h(yT,)

x, denotes the i-th row of X, h(.) is the logistic cumulative distribution function, ¢

is the number of hidden layers in the neural network, and I'y,....I'; are chosen a priori
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independently of X (usually at random). In this case f; is assumed to be partially linear

in ¢, and some of the parameters are chosen randomly.

4. Ramsey’s (1969) RESET test is based on the idea of using B (which according to Lemma
1 is independent of wy) to estimate C' fs. The approximation is done by choosing 7 =

(9,99, ....9"), where g = (41,95, .. 95), i = 1,..., P, § = XJ3.

Ramsey’s (1969) RESET test uses more sample information than any of the other tests (1)-
(3) and appears to be less dependent on the practitioner’s prior knowledge about the direction
of the departure under the alternative hypothesis. The main characteristic of the tests (1)-(3)
consists in choosing arbitrarily a rejection region on St . As a consequence, such tests do
not have any optimal properties, and, also, seem to be completely uninformative about the
existence of neglected nonlinearity (or any other form of misspecification).

Since the RESET test estimates C' f using sample information it might seems preferable
to the other three tests. Unfortunately, the approximation used is equally uninformative about

the mean of w; as the approximations implicit in the other tests. In fact, the means of w; and

~

g,
E(w) = CO'fy

p(7) = oox

correspond to the decomposition of f; in two orthogonal subspaces of R”| one of dimension k
spanned by the columns of (X'X )71 X', the other of dimension I"— k spanned by the columns
of (. Therefore E (B) cannot be used to estimate F (w;) even if it is exactly observed. As
a consequence B cannot be informative about C’ f;.

Figure 3 gives a graphical intuition for the inadequacy of all tests of neglected nonlinearity.
The smaller circle represents the 2-sphere, v'v = 1, where v is defined. The larger circle is the
density of the uniform distribution on the 2-sphere. The straight line indicates the direction
of the alternative, C'f;/0?, and the curve concentrated about the straight line is the density
of v when the alternative hypothesis is true. By choosing a test we identify a region w on
v'v = 1 having probability & when the null hypothesis is true. Since for all tests for neglected

nonlinearity considered this choice does not take account of the direction of the model under
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the alternative hypothesis (which is unknown to the researcher), the critical region is located
arbitrarily on the unit sphere. This might lead to a powerful test, if the critical region is in
that part of the sphere where the probability mass of v under the alternative is concentrated.
However, the critical region might also be in that part of the sphere where the probability
mass of v under the alternative is very small, delivering a powerless test. Obviously, we do
not know where the alternative lies so there is no way to know whether the test considered is

powerful or powerless.

Ct(X)e

Density of v under
/the alternative hypothesis

Density of v under
the null hypothesis

Figure 3: Null and alternative density of v on the unit 2-sphere.

5 Concluding Remarks

This paper has analysed tests for neglected nonlinearity in the linear model with Gaussian
errors. It has pointed out that there is a difficulty in testing for neglected nonlinearity, which
implies that the standard procedures to construct tests are not applicable. No similar critical
region is unaffected by this problem, and no simple solution seems available even for the
(relatively simple) problem under consideration.

Testing for some specific kind of nonlinearity is possible but tests are affected by the type
of nonlinearity under the alternative hypothesis. As indicated in Section 3 sensible testing

requires consistent a priori knowledge sufficiently restricting the alternative hypothesis: only
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if the class of nonlinearity is small enough is there an approximately optimal test, and this is
an F test against any specific nonlinear model under the alternative hypothesis.

The use of tests for neglected nonlinearity as diagnostic tools is seriously undermined by
the arguments brought forward in Section 4. None of the tests considered there has satisfactory
properties as diagnostic test, and given the difficulties of deriving a test for the case of known
nonlinearity, it seems very difficult to make any progress in this area.

These problems are common to other testing situations (e.g. omitted variables, structural
change, etc.) and raise doubts about the possibility of devising diagnostic tests in general.
By relaxing the assumptions used, to allow for example for nonnormal errors, testing for

nonlinearity becomes even more problematic.
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Appendix
Proof of Theorem 2

A useful lemma can be easily established:

Lemma 1 Giveny ~ N (f,,0%17), define wy = C'y (where C is defined in Theorem 1) and
8= (X'X)"X"y. Then

wy N <C/f¢70_2]Tfk>

B~ N((0X) XS0t (X))
and wy and B are independent.

Using L.emma 1, we can thus find the joint density of (B ,wl). Now, note that we can
transform w; to polar coordinates: w; = (32)1/21), v = wy (W) %, 2 = wjw, and the
Jacobian is (1/2) (32)(T7k)/271. Thus we can derive the density of v as

i () = ) T e {5} Z%m teand

=0

where A = f, My fs. The unconditional power of a critical region w is thus

Pw:%(%) =t exp{——}/z (&) )\2(va) (dv).

The Theorem follows from the Neyman-Pearson Lemma.

Proof of Theorem 3

The proof of Theorem 1 follows Hillier (1987) Section 3. Tet V' be the n dimensional
subspace of R? % spanned by the columns of C'f (X) ¢ as ¢ varies in R". Every point in V

can be written as a linear combination of an orthogonal basis of V:

C'f (X) ¢ = Az,

with z € R™ and the columns of A = C'f (X) [f (X) Mxf (X)} 2 form an orthogonal basis
of V. The vector z can be written in polar coordinates as z = AV 211, where A > 0 and
@€ S, 1. Thus,

C'[(X) o =\"Ap,
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from which it follows that A = ¢'f (X) Mx f (X) ¢/0?.

The conditional weighted power of any critical region w is
B 1 Tk T+] k
P=gem Tepi-gl [ / PO 0t (i () ()
2 wu=1Jw ;g

where (dp) is the normalized Haar measure on S,_1 (Le. [q _, (dp) = 1), and (v'dv) denotes
Tk

the unnormalized Haar measure on St (i.e. f Sp_i (Vdv) = M) Averaging over pu, the
- o2~ 2

unconditional average power of w is

_ (& _
Pw = < T2—k> exp {_%)\} / 1F1 <¥, g; %U/AA/U> (U/dl}) . (7>

2772

The vector v can be written uniquely as
v = cos OAv; + sin 0Cyvo,

where vy € S;_q, v2 € Sp_p_n_1, and 0 < 0 < T (Chikuse (1991)), and the Jacobian of the
transformation v — (0,v1,v9) is (cos Q)nil (sin Q)Tﬁk*n*l. Since P, does not depend on vy
and vy, the most powerful critical region must contain the whole spheres S,,_1 and Sr_p_,_1.

Therefore, w can be characterized in terms of 6 only,

T—k A
/ (cos Q)nil (sin&)Tﬁk*n*1 a <T Z 5 (cosB) > dé,

where the fact that v/ ANv = (cos 9)2 has been used. The result follows from using the Neyman-

Pearson Lemma and noting that the hypergeometric function is an increasing function.
Proof of Theorem 4

Proceeding as in the proof of Theorem 3, we can find the unconditional power of a critical

region w as

A (o) (vdv),

ev
I
b | —
S
A
MH
]
>
o)
—N
|
DO | >
——
’ﬂ
+
Q
?v
wIN
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where A = fiMx fy and p=C"f;/ <f(;MXf¢> 2 By considering a weighting function propor-

tional to exp {ﬁa’u}, the average power is

P, = ;(2@ T ex {——}/Z )

Let p = vcos O+ Ay sinf, where 0 < 0 < /2, uy € Sy 9,and Ayisa (T —kxT —k—1)

wp,

matrix such that A} A; = Ir_x_1 and v/ A; = 0. Then the integral over p/p = 1 can be written

b Lot

= / exp { a'v cos 8} (cos Q)j (sin Q)Tfkf2
0 1 — C

T—k—11( ¢ \°, . ,
ol ( 2 1 <1 —c> (sin)” (a A1M1>2>

e

1+2p ]
1 ’}/ij <T> (0/1}) (a/AlA/la)p
i—0 p=0

as

0
avcos + 1

‘ a’ Aqpiq sin 9} (cos0) (sin6)" * 2 dO (dp,)
—c

T

k-
@lpl
where v, . = [T (cos )" (sin )T T2 qp > 0 can be written in terms of the Beta function.

Vigp 0

Now, the theorem follows again from the Neyman-Pearson Lemma.
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