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ABSTRACT

Improving the educational outcomes which schools achieve  in the primary and secondary education

sectors has become a central public policy goal, to which large sums of public money have been devoted.

Being able to estimate the educational production function between pupil educational achievements,

resource inputs and characteristics of the pupil intake in an unbiased way can help progress both ex ante

policy formation and ex  post  effectiveness monitoring. Such an unbiased estimation requires

recognition of not only the supply-side concept of the educational production function but also several

demand-side relationships affecting the demand for school places, the socio-economic characteristics

of a school’s pupil intake, the quality of teaching staff a school can recruit, and the determination of local

property prices. Failure to recognise these additional inter-relationships through the use of standard

single-equation Ordinary Least Squares multivariate regression will result in  multiple sources of

cumulative downward bias in the estimated importance of resource variables in influencing pupil

educational outcomes, in ways which are analysed in this paper.  The analysis of this paper calls into

question the conclusions drawn by Hanushek and others, from many of the earlier statistical studies of

the educational production function, of there existing no substantial link between educational resourcing

and educational outcomes.
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1. INTRODUCTION

Education has many of the economic characteristics of a local public good, being typically provided by

local schools to a  local population of the school’s pupil intake. Education is produced at different levels

by different individual schools, with these different  levels of production impacting upon the educational

outcomes which the pupils of each school achieve. Improving the educational outcomes which schools

achieve  in the primary and secondary education sectors has become a central public policy goal, to

which large sums of public money have been devoted in return for Public Service Agreements on the

target levels of educational outcomes which are expected to be achieved by the education system as a

whole in return for  increased levels of public funding (see Mayston, 2000a). 

Being able to correctly identify the levels of  educational outcomes which are achievable from different

levels of resource inputs, for given characteristics of the pupil intake, and  the levels of resourcing which

are required to achieve any given desired level of educational outcomes,  is of importance not only for

public expenditure planning at the  national level. It is also important for the determination of the levels

of resources which should be allocated to different individual schools with differing characteristics of

their pupil intake to achieve individual target levels of educational outcomes, and for monitoring the

levels of educational outcomes which can be expected from these individual schools from their available

resource budgets.

In the case of  a single scalar measure of educational outcomes, q, for any given school, such as  the

school’s average GCSE point scores for its pupils, we may seek to represent the relationship between

the levels of educational outcomes, q, that are achievable from different levels of resource inputs and

different characteristics of the school’s pupil intake, through the concept of an educational production

function, f, of the form:

           q = f (r, s)                                                                                                              (1.1)

where r is a vector of school resource inputs.  s is here a vector of characteristics of the school’s pupil

intake, which can include variables relating to the pupils’ home and parental circumstances which may

influence their educational outcomes for given levels of school resourcing.In the case of  a vector of

educational outcomes, q, for the given school, we may write the production function in the implicit

multi-product form:

         g(q, r, s) = 0                                                                                                            (1.2)
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with g specifying the different combinations of the individual educational outputs within the school

output vector q that are achievable  from different given levels of the school resource input vector r and

of the vector of characteristics of the school’s pupil intake s.

The positive role of  the resource vector, r, in improving educational outcomes has been called into

question by Hanushek (1979, 1986), based upon a review of earlier statistical studies which allegedly

find no statistically significant relationship between school expenditure and pupil outcomes. The method

of statistical estimation used in these earlier studies has been predominantly that of Ordinary Least

Squares (OLS) multivariate regression analysis. However, whether or not this estimation technique

provides unbiased estimates of the parameters of the relationship being investigated depends upon

whether or not the assumptions which the OLS technique makes are fully satisfied (see Johnston, 1984;

Gujarati, 1995). One of the main prior assumptions made by OLS is that the disturbance term in the

multivariate regression equation is uncorrelated with the explanatory variables that are used in the

regression equation.  A failure to satisfy this prior assumption will in general result in the parameter

estimates which OLS produces being biased away from their true underlying values, even if a large

sample of  data is used for the estimation. In this paper, we will investigate a number of important

sources of this bias, in the context of the estimation of the educational production function.

2. THE ENDOGENEITY PROBLEM

For the sake of concreteness, we will first examine an efficient school with a single educational output,

q, and a Cobb-Douglas production function of the form:

                                (2.1)

where the i subscripts  denote the corresponding variables for school i. 

The variable Ti denotes the school’s teacher-pupil ratio, whilst Qi  is an index of teacher quality, the

variable Ni represents non-teaching staff per pupil, Ki represents non-staff inputs per pupil, mi denotes

total pupil numbers, and the variable Si is a measure of the socio-economic background of the pupil

intake. Higher levels of Si are assumed here to indicate a more advantaged pupil background.  Whilst

Si is here a scalar variable, the analysis may be readily extended to include a whole set of different socio-

economic variables that characterise the pupil intake and  which may influence the school’s educational
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log qi ' â0% â2.logTi% â3.logQi% â4.logNi% â5.logKi% â6.logmi% â7.logSi% log åi (2.3)

b01%b11log qi%b21.logTi%b31.logQi%b41.logNi%b51.logKi%b61.logmi%b71.logSi ' ui1 (2.3a)

outcomes for a given set of resource inputs. In any given period of time, the parameter A is a constant,

but may increase over time if technological change makes possible higher levels of productivity within

schools. The parameters â2 , ...., â7  correspond to the proportional change in educational output which

can be achieved by a unit proportional change in the input of each of the corresponding variables, with

â6   indicating the extent of the economies of scale with respect to pupil numbers which  exist within the

educational production function at the school level.

 For any individual school i, whether fully efficient or not, we will write:

                               (2.2)

where åi denotes an index of efficiency of school i, yielding the linear regression equation:

when the variables are expressed in logarithmic form. Equation (2.3) may be re-written in the form:

where b01  / - â0 , b11  / 1, bk1  / -âk < 0 for k = 2,..., 7 if Si  denotes a measure of socio-economic

advantage, and ui1  / log åi .

Under the standard assumption of OLS that  the disturbance term is of zero mean and positive variance,

log åi in (2.3) can take on positive values for some schools in the sample. One main problem with the

use of OLS to estimate the underlying production function is then that OLS will  estimate a statistically

average ‘educational production function’, rather than  the fully efficient educational production

function, corresponding to the underlying education production possibility frontier, in which log åi

would take on only non-positive values. A positive relationship may then exist between resource inputs

and educational outcomes along the educational production frontier, even if no such positive relationship

exists within the estimated statistically average ‘educational production function’. 

However, even if we ignore this problem, important additional considerations arise when a second main

assumption of OLS is broken. This is the assumption that the explanatory variables are uncorrelated with
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the random disturbance term in an equation such as (2.3). As noted above, the parameter estimates

which OLS produces may then be biased estimates of the underlying parameters, such as â2 , ...., â7 in

equation (2.1), that deviate from their true underlying values , even if an infinitely large sample of

observations is analysed, with the parameter estimates which OLS producing of the influence of each

of the school inputs on the school’s educational output then failing to be consistent estimators of their

true underlying value (see Johnston, 1984; Gujarati, 1995 ).

One way in which non-zero correlations may be generated between the disturbance term and the

explanatory variables is if there are additional inter-relationships between the variables beyond those

defined by the supply-side concept of the educational production function. In order to form a complete

model of  these  inter-relationships, we will add further equations to the single equation that is involved

in (2.1a). These additional equations will recognise that there are likely to be additional demand-side

inter-relationships between the different variables beyond those that are involved in the supply-side

concept of the educational production function in (2.3) or (2.3a). The importance of educational

demand-side relationships, and their relationship to the optimal allocation of resources within schools,

is stressed in Mayston (1996).

Equation (2.3), or equivalently equation (2.3a), will be the first equation in our overall model of the

inter-relationships which may exist between the different variables of  pupil outcomes, resource input

and characteristics of the pupil intake. Within this model, the coefficient b k j will be used to designate

that on the kth variable in the jth equation of our model. Our first variable here  is log qi , the log of

examination scores,  our second variable is log Ti , the log of the school’s teacher-pupil ratio, our third

variable is log Qi, the log of teacher quality, and so on. b21 is then, for example, the coefficient on the

second variable in our first equation (2.3a). 

3. INPUT INTER-RELATIONSHIPS

The first such inter-relationship involves the teacher-pupil ratio, Ti , for school i.  This will depend upon

a number of factors. Under the devolved budgetary arrangements of  Local Management of Schools, or

the current Fair Funding framework (DfEE, 1998), these are likely to include the level of the school’s

available income per pupil, ÷i , which will form the eighth variable in our model. They are also likely to

include the local cost, pTi , of attracting teaching staff of a given quality to the local area,  the local price,

pNi , of  non-teaching staff and the local cost, pKi , of other inputs that must be purchased out of the

school’s total expenditure budget, and the quality, Qi, of the teaching staff which the school is successful
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in recruiting. These factors will then enter into the demand function of the individual school for teaching

staff, which we may write in the form:

logTi  =  a02   + a32 . log Qi  + a82 .log ÷i   + a92 . log pTi + a10,2 . log pNi 

                                                                                                                                             (3.1)

                  + a11,2 .log pKi + ui 2

where we expect a82 > 0, i.e. the teacher-pupil ratio to be an increasing function of the school’s income

per pupil, and a92 < 0, i.e.the teacher-pupil ratio to be a decreasing function of the price it must pay for

teachers, given its total budget.  a10,2 and a11,2 may be positive, negative or zero, depending upon the

relative strength of the income and substitution effects that a rise in the price of these other inputs

produces for the demand for teachers within the school. We would  expect  a32 < 0, so that the school

faces a choice within its total budget between hiring a larger quantity of teachers of a lower quality and

hiring fewer teachers of higher quality who are more in demand elsewhere, and who can command

higher salaries. The random disturbance term, ui 2 , for school i reflects the significant degree of variation

which may still exist across individual schools in their teacher-pupil ratios even after the above

systematic factors are taken into account (see e.g. Audit Commission, 1993 - 1996).

(3.1) may be re-written in the form:

b02   + b22 . logTi + b32 . log Qi  + b82 .log ÷i   + b92 . log pTi + b10,2 . log pNi 

                                                                                                                                               (3.1a)

                  + b11,2 .log pKi = ui 2

where b02/ - a02 , b22 = 1, b32/- a32 > 0, b82 / - a82 < 0,  b92 / - a92 > 0, b10,2 / - a10,2 , b11,2 /-  a11,2.

Again we adopt the convention that the coefficient bk j is used to designate the coefficient on the kth

variable in the j th equation of our model, so that  b32 is here the coefficient in this second equation on

our third variable, log Qi . The fact that not all variables (such as log qi here)  are entering each of the

equations of our model imposes a structure on the model which will assist in overcoming problems of

identifiability of the education production function within our simultaneous equations model.

The quality of teaching staff which the school attracts plays a potentially significant role as a school

resource input in the educational production function (2.1). The importance of teacher quality in

boosting the educational output of schools has been stressed, for instance, by Murdane (1996). It is

important to note that teacher quality is also likely to be a significant additional source of  endogeneity
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in the inter-relationships between the variables involved in (2.3). The ability of an individual school i to

attract teaching staff of high quality is itself likely to depend upon a number of  variables. These may

include the level of the school’s examination success, qi, the nature of its pupil intake, Si , the size of the

school, mi, and its associated scope for specialised teaching and supporting facilities. They may also

include its teacher-pupil ratio, Ti , and the level of its support from non-teaching staff, Ni , and non-

staffing resources per pupil, Ki . Schools which are well endowed in these directions may be better able

to attract higher quality teachers than those schools without these advantages. This itself will, however,

establish an additional inter-relationship between the relevant variables. 

If, other things being equal, higher quality teachers are attracted more to schools with a higher levels of

examination performance, qi ,  a positive correlation will exist between the explanatory variable of

teacher quality, Qi , in the multiple regression equation (2.3) and qi . Since the level of qi  in (2.3)

increases with the value of the disturbance term logåi , this inter-relationship will tend to generate a

positive correlation between the explanatory variable of teacher quality, Qi , in the multiple regression

equation (2.3) and the disturbance term logåi . As noted above, such a non-zero correlation breaches one

of the main assumptions that must be hold for the valid application of  the standard OLS estimation

procedure. This breach will bias the parameter estimates of the impact of Qi in the educational

production function (2.1) away from its true value.

The quality of teaching staff which a school i attracts may also depend upon the level of pay, pTi , for

teachers which is available to its staff. The cost of local housing, as influenced by local house prices, pHi

, may well also influence the quality of staff  which school i can recruit and retain. Schools in central

London may then have more difficulty in attracting high quality staff because of high local house prices

for houses of a given quality. If these schools also have a high intake of disadvantaged and disruptive

pupils, the influence of Si on Qi  may further increase the difficulty of inner city areas in attracting high

quality staff. Even if not all teaching staff live close to the school, high local house prices may necessitate

their commuting from a greater distance to teach in the school, reducing its relative attractions as a

school in which to teach. The above considerations imply an inter-relationship between teacher quality,

Qi , and the other variables of the form:

log Qi = a03 + a13 .log qi + a23 .log Ti  +a43 .log Ni + a53. log Ki  + a63 . log mi 

                                                                                                                                         (3.2)

+ a73.log Si   + a93 .log pTi    + a12,3. log pHi    + ui3 

where  ui3 is a random disturbance term. We would expect that a13 > 0, so that schools with superior
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examination performance and a high rating in school performance tables are better able to attract higher

quality teachers. We would also expect that a23 > 0, a43 > 0, and  a53 > 0, so that  schools with more

favourable teacher-pupil ratios and other supporting resources are better able to attract higher quality

teachers. Larger schools that are able to offer more specialised teaching may also be more able to attract

better quality teachers, implying  a63 > 0. If there is a statistical association between an advantaged socio-

economic background, as measured by Si , and the proportion of pupils who are disruptive, then we may

also have  a73 > 0, so that schools in  tougher inner-city areas may have more difficulty in attracting

higher quality staff.  If higher local house prices also make it more difficult to attract higher quality staff,

then we would expect a12,3 < 0. Higher local salaries for teachers will, however, make it easier to attract

higher quality teachers, with a93 > 0.

Equation (3.2) may be written in the form:

b03 + b13 .log qi + b23 .log Ti  + b33. log Qi + b43 .log Ni + b53. log Ki  + b63 . log mi 

                                                                                                                                              (3.2a)

             + b73.log Si   +  b93 .log pTi    + b12,3. log pHi     = ui3 

where b03/ - a03 , b13/ - a13 < 0, b23 / - a23 < 0 ,  b33 = 1, b43/- a43 < 0, b53 / - a53 < 0,  b63 / - a63 <0,  b73

/ - a73 <0, b93 / - a93 < 0, b12,3 /-  a12,3 > 0.

The demand of school i for non-teaching staff per pupil, Ni, is likely to depend upon its available income

per pupil,  ÷i , upon the local price, pNi , of non-teaching staff , and on the prices which it must pay for

teaching staff and non-staff expenditure out of its overall expenditure per pupil budget.  In log-linear

form, this implies an inter-relationship between Ni   and the other variables of  the form: 

log  Ni   = a04 + a84 .log ÷i   + a94 . log PTi + a10,4 . log pNi   + a11,4 .log pKi + ui 4                          (3.3)

where ui 4 is the disturbance term for school i in this inter-relationship, and where we expect a84 > 0 and

a10,4 < 0, so that the school’s demand for non-teaching staff per pupil is an increasing function of its

income per pupil and a decreasing function of the price that it must pay for non-teaching staff.

We may re-write (3.3) in the form:

 b04 + b44 . log  Ni   + b84 .log ÷i   + b94 . log pTi + b10,4 . log pNi   + b11,4 .log pKi = ui 4                (3.3a)
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 where b04/ - a04 ,  b44 = 1, b84/- a84 < 0, b94 / - a94 ,  b10,4 / - a10,4 > 0,b11,4 / - a11,4 .

 

Similarly, the demand of school i for non-staff inputs  per pupil, Ki, is likely to depend upon its available

income per pupil,  ÷i , upon the local price, pKi , of non-staff inputs, such as premises, and on the prices

which it must pay for teaching staff and non-teaching staff expenditure out of its overall expenditure per

pupil budget.  In log-linear form, this implies an inter-relationship between Ki   and the other variables

of  the form: 

  log Ki    = a05 + a85 .log ÷i   + a95 . log pTi + a10,5 . log pNi   +a11,5 .log pKi + ui 5                         (3.4)

where ui 5 is the disturbance term for school i in this inter-relationship. We expect a85 > 0 and a11,5 < 0,

so that the school’s demand for non-staff inputs per pupil is an increasing function of its income per

pupil, and a decreasing function of their price.

Equation (3.4) may be re-written in the form:

 b05 + b55. log Ki   + b85 .log ÷i   + b95 . log pTi + b10,5 . log pNi   + b11,5 .log pKi = ui 5                  (3.4a)

where b05/ - a05 ,  b55 = 1, b85/- a85 < 0, b95 / - a95 ,  b10,5 / - a10,5 ,b11,5 / - a11,5 > 0 .

4. THE DEMAND FOR SCHOOL PLACES 

If there are significant economies of scale in the educational production function (2.1) that links school

inputs with school output, there will be a positive contribution indicated by the logarithmic coefficient

â6 in (2.1) in the educational production function on the school’s total size in terms of pupil numbers in

contributing towards the school’s educational output, qi . An important further source of endogeneity

then arises if the school’s  pupil numbers, mi , themselves depend in part  upon the school’s level of

educational attainment, qi . The publication of school league tables and OFSTED reports, and

competition between schools for pupil numbers, will place schools with more favourable examination

results in a stronger position to attract increased pupil numbers. Conversely, schools with low

examination results are in a weaker competitive position to increase or maintain their pupil numbers. 

Such a demand-side inter-relationship arises from the desire by parents to send their children to more
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successful schools. The funding formulae which Local Education Authorities (LEAs) use in England to

allocate  resources to individual schools under the Local Management of Schools (LMS) initiative and

its Fair Funding successor have been required to have a substantial element which depends upon the

school’s (age-weighted) pupil numbers. This itself provides a strong incentive for each schools to

accept more pupil numbers when it has the physical capacity to do so. The resulting link on the demand

side between pupil numbers, mi , and qi , and hence log åi , in (2.3) will again tend to undermine the

assumption for the valid use of  the OLS estimation technique,  of  zero correlation between the

explanatory variables in (2.3) and the disturbance term logåi.

The pupil numbers for school i will also depend upon its capacity, though the latter may itself change

over time in response to demand pressures from local parents. It may also depend upon the local

population  of children of the relevant age group in the catchment area of the school. This variable  may

also be to some extent endogenous, reflecting in part the demand by parents for education from the

school.  

The demand from parents to send their children to school i may depend also upon the quality of teachers,

Qi , of the school, and its level of resourcing, as reflected in its teacher-pupil ratio, Ti , its level of non-

teaching staff per pupil, Ni , its non-staff inputs per pupil, Ki , and on the general characteristics of its

pupil intake, Si . A further variable which may limit the ability of some parents to send their children to

schools which are most favourably endowed with these factors is that of local house prices, pHi . If these

are high, the economic ability of some parents to move into the catchment area of school i is reduced,

exerting some degree of downward pressure on pupil numbers.

  

The inter-relationship on the demand side between pupil numbers, mi , for school i and these other

variables may then be of the form:

 log mi = a06 + a16 . log qi   + a26 .log Ti   + a36 .log Qi + a46. log Ni   + a56 .log Ki  

                                                                                                                                                (4.1)

               + a76 . log Si  + a12,6 .log pHi   + a13,6 . log ø i + u i 6

where ui 6 is the disturbance term for school i in this inter-relationship. We expect that a16 > 0, so that

schools with superior examination performance tend to attract more pupils. Similarly we expect that a26

> 0,  a36 > 0, a46 > 0, a56 > 0,  a76 > 0, so that schools with more resources per pupil, higher quality

teachers, and a more advantaged pupil intake tend to attract more pupils.  We would also expect that
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a12,6 < 0, so that higher local house prices act as an economic deterrent to locate in the local school

catchment area, and that a13,6 > 0, so that the school’s  pupil numbers are an increasing function of the

local child population density. 

Equation (4.1) may be re-written in the form:

 b06 + b16 . log qi   + b26 .log Ti   + b36 .log Qi + b46. log Ni   + b56 .log Ki   +b66 . log mi 

                                                                                                                                                   (4.1a)

+ b76 . log Si  + b12,6 .log pHi   + b13,6 . log ø i   = u i 6

where b06/ - a06 ,  b16/ - a16 < 0, b26/ - a26 < 0, b36/ - a36 < 0, b46/ - a46 < 0, b56/ - a56 < 0, b66 = 1, b76/-

a76 < 0, b12,6 / - a12,6 > 0 ,b13,6 / - a13,6 < 0 .

There may also be demand-side influences which establish a relationship between the background

characteristics of the pupil intake, Si , which a school attracts and its level of examination results, qi , and

its level of resources. Middle-class parents may be more conscious of the examination results of different

schools in published school performance tables and OFSTED reports, and place greater importance on

a school’s examination performance and level of resources, than parents in  less favourable socio-

economic circumstances. They will also tend to have a greater economic ability to compete in the

housing market  to  locate in the catchment areas of the schools with superior levels of examination

performance and resourcing. Schools in a strong relative position in their examination results and their

levels of resources may also tend to discriminate in favour of admitting pupils from more advantaged

backgrounds in their pursuit of  higher positions in published league tables of examination results.  

The local nature of the public good which education typically provides implies here that demand side

relationships resulting from the mobility of consumers between different local public good providers

must be taken into account alongside the supply-side educational production function in the

determination of equilibrium outcomes. Whilst there may not be a simple direct fiscal mechanism at work

which matches local willingness to pay for the local public good to local revenue to fund provision of

the public good, as in Tiebout (1956), there still nevertheless exist in the UK the intermediary

mechanisms of local house prices, and school funding formulae which make school revenue  dependent

in large part upon pupil demand. These mechanisms will themselves ensure that demand-side factors,

related in part to a school’s existing level of examination performance, are likely to have an important

influence upon equilibrium outcomes in the production of the local public good of education.
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Links from examination results and resourcing levels to the socio-economic background of the pupil

intake will establish a  further source of endogeneity in the variables, here the characteristics of the pupil

background, which enter the educational production function (2.1). Again the result is likely to be a

breach of the  key assumption of zero correlation between these variables and the level of qi , and hence

of  the disturbance term logåi  in (2.3).

The dependence of the background characteristics of the pupil intake, Si , which school i attracts  upon

these other factors may take on the form:

log Si   = a07 + a17 . log qi   + a27.log Ti   + a37 .log Qi + a47. log Ni   + a57 .log Ki 
                                                                                                                                                          
                                                                                                                                                      (4.2)
               + a67 . log mi + a12,7 .log pHi    + u i 7

where ui 7 is the disturbance term for school i in this inter-relationship. We expect that a17 > 0,  a27 > 0,

a37 > 0, a47 > 0, a57 > 0, a67 > 0, so that superior examination performance by a school, more favourable

school resourcing, and the more specialised facilities which a larger school can offer, all tend to attract

more advantaged pupils. We also expect that a12,7 > 0, so that higher local house prices tend to

discourage parents with lower incomes from locating in the local catchment area of the school, and tend

to encourage a more advantaged pupil intake into the school.

Equation (4.2) may be re-written in the form:

b07 + b17 . log qi   + b27.log Ti   + b37 .log Qi + b47. log Ni   + b57 .log Ki   + b67 . log mi 

                                                                                                                                                  (4.2a)

+ b77 . log Si  + b12,7 .log pHi      = u i 7

where b07 / - a07 ,  b17/ - a17 < 0, b37/ - a37 < 0, b47/ - a47 < 0, b57/ - a57 < 0, b67/ - a67 < 0, b77 = 1,  b12,7

/ - a12,7 < 0 .
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5. THE DETERMINATION OF SCHOOL INCOME

A further important inter-relationship between the variables arises through the process which determines

each school’s income. This resource allocation process involves firstly the Standard Spending

Assessment (SSA) allocation from central government to local authorities, and secondly what is now

the Fair Funding formulae for allocating resources from Local Education Authorities (LEAs) to

individual schools (see Mayston and Jesson, 1999). For earlier years, it was the Local Management of

Schools (LMS) formulae that were used to allocate resources from Local Education Authorities (LEAs)

to individual schools. For schools that were Grant Maintained (GM) in these earlier years, the Funding

Agency for Schools (FAS) that allocated funds directly to GM schools used a funding formulae that

paralleled that of the local LEA in whose area the GM school was located. Each school’s income will

also include the receipt of resources via specific grants, such as through the Standards Fund. 

We will assume here that the  income per pupil, ÷i , of each individual school i is determined to be at

some constant level plus  adjustments that depends upon the characteristics of  its pupil intake, Si , upon

the size, mi , of its pupil intake, upon the education achievement, qi , of the school and upon the local

prices, pTi , pNi   and pKi which school i faces for its resource inputs. For the sake of concreteness, we will

assume that the income per pupil for school i is determined by the relationship:

  log ÷i   = a08 + a18.log qi + a68 . log mi   + a78 . log Si + a98 . log pTi  + a10,8 . log pNi 

                                                                                                                                                (5.1)

                  + a11,8 .log pKi + ui 8

where  ui 8 is a random disturbance term for school i. If schools with smaller pupil intakes, with more

disadvantaged pupil intakes, with relatively low examination performances, or facing higher local prices,

receive more favourable resourcing for their expenditure per pupil, either through the resource allocation

formulae or through the allocation of specific grants, or both, we would expect a18, a68 and a78 to be

negative, and a98, a10,8 and a11,8 to be positive.

 Equation (5.1) may be written in the form:

 b08 + b18.log qi   + b68 . log mi   + b78 . log Si + b88 . log ÷i   + b98 . log pTi 

                                                                                                                                               (5.1a)

                 + b10,8 . log pNi +  b11,8 .log pKi = ui 8
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where b08 / - a08 ,  b18/ - a18 > 0, b68/ - a68 > 0, b78/ - a78 > 0,  b88 = 1, b98/ -a98 < 0, b10,8/ - a10,8 < 0, b11,8

/ - a11,8 < 0 .

6. THE DETERMINATION OF LOCAL PRICES

There may also be further links between the above variables because of a dependency of the local salaries

which are required to attract teaching staff  and non-teaching staff to school i upon local house prices.

Similarly premises costs that enter into non-staff costs, pKi , may be dependent to some extent upon local

property prices. This may imply relationships of the form:

       log pTi  = a09   + a12,9 .log pHi    + u i 9                                                                                                                                         (6.1)

       log pNi  = a0,10 + a12,10 .log pHi    + a14,10 . log Øi  +  u i, 10                                                                                             (6.2)

       log pKi = a0,11 + a12,11 .log pHi   + u i, 11                                                                                                                                        (6.3)

where u i 9 , u i, 10 , and u i ,11 are the relevant disturbance terms for school i, and where we expect  a12,9

> 0, a12,10 > 0, and a12,11 > 0. Øi is here the local unemployment rate, which may have a negative influence

on non-teaching staff costs, with a14,10 < 0.

Equations (6.1) - (6.3) may be re-written in the form:

b09 + log pTi   + b12,9 .log pHi      = u i 9                                                                                                                                                  (6.1a)

b0,10 + log pNi   + b12,10 .log pHi       + b14,10 . log Øi  = u i, 10                                                                                                (6.2a)

b0,11 + log pKi   + b12,11 .log pHi      = u i, 11                                                                                                                                   (6.3a)

where b0, 9 / - a0, 9 , b12,9/ - a12, 9 < 0, b0, 10 / - a0, 10 ,  b12,10/ - a12, 10 < 0,     b14,10/ - a14 ,10 > 0, b0, 11 / - a0,

11 ,  b12,11/ - a12, 11 < 0.

Finally, local house prices, pHi , may be higher than otherwise for schools with higher levels of resources

and superior examination results, because of demand pressures from parents seeking to move into the

catchment area of such schools pushing up house prices. They may also be influenced by the local socio-

economic background characteristics. High levels of unemployment, housing density, crime and other
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social problems may tend to depress local house prices. House prices may also be affected by other local

factors, such as the distance of the school from central London, di , and the distance of the school, ëi ,

from the nearest city other than London (normalising on ëi = 1 for cases where the nearest city is

London). These distance variables will be assumed here not to form part of the local pupil background

characteristics which are relevant to the educational production function (2.1). 

The overall influences on local house prices, pHi , may then be of the form:

 log pHi    = a0,12 + a1,12 . log qi   + a2,12 .log Ti   + a3,12 .log Qi + a4,12. log Ni   + a5,12 .log Ki  
                                                                                                                                               (6.4)
       + a6,12.log mi + a7,12 . log Si  + a13,12. log Øi   + a15,12. log di   +  a16,12. log ëi + u i,12    

where ui 12 is the disturbance term for school i in this relationship, and we expect a1,12 > 0, a2,12 > 0, a3,12

> 0, a4,12 > 0, a5,12 > 0, a6,12 > 0, a7,12 > 0, a13,12 < 0 and a15,12 < 0, a16,12 < 0.

Equation (6.4) may be re-written in the form:

b0,12 + b1,12 . log qi   + b2,12 .log Ti   + b3,12 .log Qi + b4,12. log Ni   + b5,12 .log Ki   + b6,12.log mi 

                                                                                                                                             (6.4a)
+ b7,12 . log Si  + b12,12 .log pHi + b13,12. log Øi   + b15,12. log di +  b16,12. log ëi   =  u i,12    

where b0, 12 / - a0, 12 , b1,12/ - a1,12 < 0, b2, 12 / - a2, 12 < 0 ,  b3,12/ - a3,12, < 0,    b4,12/ -a4,12, < 0, b5,12/ - a5,12,

< 0,  b6,12/ - a6,12, < 0,  b7,12/ - a7,12, < 0, b12,12 = 1,  b13,12/ - a13 ,12 > 0, b15,12/ - a15 ,12 > 0, b16,12/ - a16 ,12 >

0.

7. THE EXTENT OF THE ENDOGENEITY BIAS

The equations (2.3a) - (6.4a) form  a  simultaneous equations model, here with twelve structural

equations to the model involving twelve endogenous variables and four exogenous variables. The twelve

endogenous variables are the logarithms of the following variables:

 

1.  qi = school i’s educational output, as reflected in the examination performance of its pupils 

2.  Ti = school i’s teacher-pupil ratio

3.  Qi = a measure of teacher quality for school i

4.  Ni = non-teaching staff per pupil in school i
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5.  Ki = non-staff expenditure in volume terms in school i

6.  mi = total pupil numbers for school i

7.  Si = a measure of the socio-economic background of the pupil intake into school i

8.  ÷i = school i’s income per pupil

9.  pTi = the local pay level for teachers of a standard quality facing school i

10.  pNi =  the local pay level for non-teaching staff facing school i

11.  pKi = the local level of non-staff costs facing school i

12.  pHi = the local level of house prices in the catchment area of school i.

The four exogenous variables are the logarithms of the following variables:

13.  ø i = the local population density of children in the relevant age groups

14.  Øi = the local unemployment rate in the catchment area of school i

15.  di = the distance of  school i from central London 

16.  ëi = the distance of the school from the nearest city other than London (normalising on ëi =        

     1 for cases where the nearest city is London).

The resulting simultaneous equations model is of the general form:

           (7.1)

where yi k denotes the ith observation on the kth endogenous variable for each of the n’ endogenous

variables, and zi h  denotes the ith observation on the hth pre-determined variable for each of the n” pre-

determined variables, which may include exogenous and lagged endogenous 

variables. The bkj and ôhj  are the corresponding structural parameters in the jth structural relation of the

above simultaneous equations model.  uij is the random disturbance term for the ith observation in the

jth structural relation in the model (7.1) for each of v observations. In matrix form, (7.1) may be written

as:

                  Y.B + Z.Ã = U                                                                                                  (7.1a)

where Y/ [yik] , B/[bkj] , Z/[zih], Ã/[ôhj] and U/[uij].

In the model (2.3a) - (6.4a), we have n’ = 12 endogenous variables,  with the yi k given by the logarithms
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of the variables 1 - 12 listed above. We also have n” = 4 exogenous variables, with the zi h given by the

logarithms of the variables 13,..., 16 listed above. 

We will assume that the disturbance terms uij in the structural equations are  independently and

identically multi-variate normally distributed for each observation i=1,....,v, with zero means and a

diagonal covariance matrix V. The covariance matrix is assumed to have positive diagonal elements ój
2

for j=1,...,n’ and zero off-diagonal terms, reflecting uncorrelated disturbances across the different

structural relations within the model. The disturbance terms in each individual structural equation within

the complete model are also assumed to be uncorrelated with the values of each of the observed

explanatory variables in (7.1).

The bias that results from neglecting the simultaneous equations nature of the problem and applying the

standard Ordinary Least Squares (OLS) multivariate regression technique to directly to estimating the

parameters â2 , ...., â7 of  the educational production function equation (1.3) is shown in the Appendix

to be of the form: 

                       ^plim è1k / plimâk  - âk  for k =2,..., n’                                                                                              (7.2)    
                  

                                                (7.3)

                                         (7.4)

       ^ plimâk  here denotes the estimated coefficient which the application of OLS will achieve for the

coefficient âk as the number of observations increases to infinity. This means that it excludes biases which

are due simply to a small sample size. As in equation (2.1) above, each âk denotes the (logarithmic)

contribution of the each relevant school input variable  to the school’s educational output, qi . We expect

the âk to be positive in value.  From our above discussion, we expect that:

b12 = 0, b13 < 0, b14 = 0, b15 = 0, b16 < 0, b17 < 0, b18 > 0, b19 = 0, b1,10 = 0, b1,11 = 0, b1,12 < 0     (7.5)

b22 = 1, b23 < 0, b24 = 0, b25 = 0, b26 < 0, b27 = 0 , b28 =0, b29 = 0, b2,10 = 0 , b2,11 = 0, b2,12 < 0    (7.6)

The signs of the coefficients in (7.5) and (7.6), together with (7.3) and (7.4), imply that
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                              ^       plim è12 / plimâ2  - â2   < 0                                                                                                        (7.7)

                                              ^so that the OLS estimator, â2, under-estimates the true value of â2 , the proportionate contribution which

the teacher-pupil  ratio makes to school output. From (7.3), the extent of the under-estimate is,

moreover, the sum of the endogeneity biases which arise from all those equations in the model for which

the relevant b1j coefficients on the school’s educational performance, qi , in (7.5) are non-zero. 

These additive sources of endogeneity  include not only the eighth equation in (5.1) that links school

funding through the resource allocation process to the  school’s level of examination success. They also

include the third equation that links the ability of a school to attract teachers of higher quality to the level

of its examination performance, the sixth equation that links the demand for school places by parents and

pupils to the school’s examination performance, the seventh equation that links the socio-economic

background of the pupils that the school attracts to the level of the school’s examination performance,

and the twelfth equation that links local house prices to the  level of the school’s examination

performance. 

All of these additional inter-relationships will add to the extent of the downward endogeneity bias

which result in OLS under-estimating the logarithmic coefficient, â2 , of the proportionate contribution

which the teacher-pupil teacher ratio makes to school output. The sixth, seventh and twelfth equations,

moreover, reflect  demand-side factors from parents boosting demand for those schools with high levels

of school educational output, in addition to the demand-side factors which arise from the school funding

mechanisms. As noted below, it is possible that these latter sources of endogeneity bias in estimating the

contributions of school resource variables to school output will be at least as great as that from the

funding mechanisms.

  

We also have:

b42 = 0, b43 < 0, b44 = 1, b45 = 0, b46 < 0, b47 < 0 , b48 =0, b49 = 0, b4,10 = 0 , b4,11 = 0, b4,12 < 0  (7.8)

b52 = 0, b53 < 0, b54 = 0, b55  = 1, b56 < 0, b57 < 0, b58 =0, b59 = 0, b5,10 = 0 , b5,11 = 0, b5,12 < 0   (7.9)

which together with (7.2) - (7.4) can be shown to imply that:

                              ^                                                      ^      plim è14 / plimâ4  - â4   < 0    and      plim è15 / plimâ5  - â5   < 0                               (7.10)
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i.e. downward bias in the OLS estimate of the contribution of the other two resource inputs to the

educational production function of non-teaching staff per pupil, Ni , and non-staff inputs per pupil, Ki.

In the case of the quality of teachers variable, Qi , we have:

b32 > 0, b33 = 1, b34 = 0, b35 = 0, b36 < 0, b37 < 0 , b38 =0, b39 = 0, b3,10 = 0 , b3,11 = 0, b3,12 < 0 (7.11)

Again downward bias in the OLS estimate of the contribution of the quality of teachers variable, Qi , in

the educational production function is indicated by all terms in (7.3), given (7.4) , (7.5) and (7.11),

except for the term involving the third equation j = 3. Here we have  b13 < 0 and b33 = 1, making this term

of uncertain sign for â3 > 0. Since in equations (2.1) and (3.2a) respectively:

                 â3 = M log qi / M log Qi      and - b13  = M log Qi / M log qi                                       (7.12)

stability requires that:

                          - â3 .b13     < 1                                                                                        (7.13)

If condition (7.13) does not hold, there will be a positive feedback effect of  schools with higher

examination results attracting better quality teachers which in turn contribute towards higher

examination results in the educational production function. This will tend to lead to an unstable

cumulative advantage for schools with initially higher examination results. If  (7.13) holds, the term

involving the third equation j = 3 in (7.3) will offset to some extent the downward bias in the OLS

estimate of â3 that otherwise prevails. If (7.13) does not hold, and a process of unstable cumulative

advantage does potentially exist, then the  term involving the third equation j = 3 in (7.3) will reinforce

the overall downward bias in the OLS estimate of â3 that the other terms of (7.3) imply.  

For the remaining variables of pupil numbers, mi , and socio-economic background, Si , that also enter

the educational production function, we have:

   
b62 = 0, b63 < 0, b64 = 0, b65  = 0, b66 = 1, b67 < 0, b68 > 0, b69 = 0, b6,10 = 0, b6,11 = 0, b6,12 < 0 (7.14)

b72 = 0, b73 < 0, b74 = 0, b75  = 0, b76 < 0, b77 =1, b78 > 0, b79 = 0, b7,10 = 0, b7,11 = 0, b7,12 < 0  (7.15)

so that similar remarks apply as for teacher quality. There will in general be a downward bias in the

estimates which OLS achieves for the contribution which pupil numbers, mi , and socio-economic

background, Si ,  make to the educational production function. However, when the stability conditions

        - â6 .b16     < 1        and             - â7 .b17     < 1                                                           (7.16)
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hold, this downward bias will be reduced to some extent by  some degree of positive offset from the

terms in (7.3) corresponding to j = 6 and j = 7 respectively. 

If (7.16) does not hold, an unstable cumulative advantage potentially exists from schools with better

examination results attracting greater demand from parents, in terms of pupil numbers and pupils with

more advantaged pupil backgrounds, which in turn boost examination performance in an unstable way.

In such a case, there will be no positive offset to the downward bias in the estimates which OLS achieves

here. The potential instability of cumulative advantage may also be offset in practice by the funding

mechanism for schools protecting to some extent the expenditure per pupil of schools with lower pupil

intakes and with more disadvantaged pupil intakes.

8. CONCLUSIONS

There are several important additional possible inter-relationships between the variables which enter into

the school-level educational production function which are likely to result in the standard Ordinary Least

Squares estimation technique under-estimating the true influence of  school resourcing variables on

pupil educational outcomes. The inter-relationships include  demand-side relationships that make  the

demand for school places by parents and pupils, the socio-economic background of the pupils that the

school attracts, and local house prices, themselves functions of  the school’s degree of  examination

success. In addition, they include the inter-relationship between the ability of a school to attract teachers

of higher quality in the labour market and  the school’s standing in school league tables of  examination

performance. They also include possible links between the level of  school funding through the resource

allocation process and the existing level of the school’s examination success. 

Under reasonable assumptions, the effect of these additional inter-relationships will be to bias

downwards the estimates which OLS makes of the influence of school resource variables on pupils’

educational outcomes in a cumulative way. Little faith can then be placed upon conclusions based upon

the OLS estimations contained in many existing studies of the educational production function that the

underlying influence of school resource variables on pupil educational outcomes are not significantly

positive. 

While we have analysed the associated endogeneity problem in terms of the OLS estimation of what

will be a ‘statistically average’ educational production function, similar conclusions are likely to hold for

the estimation of stochastic frontier production function models (see Aigner et al, 1997; Forsund et al,
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1980) in the presence of the additional inter-relationships between the underlying variables which we

have analysed above. Similarly, the use of multilevel, or error component, models (see Goldstein, 1987)

that would recognise the contributions of  variables at different levels of the education process, such as

the LEA, school and pupil levels, represents a variation on the basic single-equation multivariate

regression model that is unlikely to escape  the biases that are introduced by the additional inter-

relationships we have discussed above. The estimation problems which arise in the context of non-

parametric models of the educational production frontier, such as those of  Data Envelopment Analysis

(DEA), are discussed in Mayston (2000b), and are compounded by the existence of additional inter-

relationships between the variables beyond that described by the underlying production frontier. 

The policy importance of correctly estimating the educational production function underlines the  need

for improvements in the database of comparative information between schools, including resource

variables, that are advocated in Mayston and Jesson (1999). The scope for making progress in the

empirical estimation of the educational production function based upon our above model of the inter-

relationships that are likely to exist between the key variables will be discussed in detail in a later paper.
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APPENDIX

Our system of structural equations is of the form:

   

where yik denotes the ith observation on the kth endogenous variable for each of the n’ endogenous

variables, and zig  denotes the ith observation on the hth predetermined variable for each of the n”

predetermined variables, which may include exogenous and lagged endogenous variables. The bkj and

ôhj  are the corresponding structural parameters in the jth structural relation of the above structural model.

uij is the random disturbance term for the ith observation in the jth structural relation in the model (A.1).

The uij are assumed to be independently and identically multi-variate normally distributed for each

observation i=1,....,v, with zero means and a diagonal covariance matrix V, with positive diagonal

elements ój
2 for j=1,...,n’ and uncorrelated disturbances across different structural relations within the

model. The disturbance terms are also assumed to be uncorrelated with the values of each of the

observed explanatory variables in (A.1). 

The model (A.1) may be written in matrix form as:

                     YB + ZÃ = U                                                                                            (A.2)

where Y is the v x n’ matrix with elements  yik , B is the n’ x n’ matrix with elements bkj , Z is the  v x

n” matrix with elements  zi h , Ã is the n” x n’ matrix with elements ôhj . We will assume that B is a non-

singular matrix. We may write:

             Y = [ y  Y0] where y / [yi1] and Y0 / [yik] for i=1,..., v and k = 2,...,n’               (A.3) 

             X  / [Y  Z] / [xik] for i=1,..., v and k = 1,...,n  where n/ n’ + n”                        (A.4)

             X0 / [Y0  Z]    and A’ / [B’   Ã’]                                                                        (A.5)

(A.2) may then be written:

            XA = U                                                                                                              (A.6)

If we normalise the structural equations by setting b11 = 1, we may write:
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                             1   a
       B =   T          \   where B0 / [ bkj ] for k = 2,...,n’ ; j = 2,...,n’                                     (A.7)                          
                 c   B0                             J          N
  
      a / [b1j ] for j = 2,...,n’                                                                                               (A.8)

      c / [bk1 ] = - [âk] for k = 2,...,n’                                                                                 (A.9)

when we set:

    âk / - bk1    for k = 2,...,n’                                                                                              (A.10)

Setting:

   ân’ + h  / - ôh1    for h = 1,....,n”                                                                                     (A.11)

yields from (A.2) - (A.11), the first structural relation of the equation written in the form:

         y = X0 â + u                                                                                                          (A.12)

where â / [ âk ] for k = 2, ..., n   and u / [ ui1 ] for i =1,..., v.

We have the OLS estimator of the coefficients of (A.12) given by:

         â̂ = (X0' X0) 
-1 X0' y                                                                                             (A.13)

as in Johnston (1984, p. 171). From (A.12):

         â̂ = (X0' X0) 
-1 X0' X0â + (X0' X0) 

-1 X0' u                                                             (A.14)

               =  â + (X0' X0) 
-1 X0' u                                                                                     (A.15)

The extent of the bias which the use of Ordinary Least Squares (OLS) produces in its estimates of the

coefficients of the first structural relation (A.12), away from their true underlying values given by the

vector â, is then given by:

                 ^           è / â  - â = (X0' X0) 
-1 X0' u                                                                                           (A.16)                                                              

 

From (A.5), we have:

                                   Y0' Y0      Y0' Z            X0' X0   =     T                              \                                                                         (A.17)
                                   Z’ Y0       Z’Z
                                J                             N
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Let

                                     P   Q
           ( X0' X0 ) 

-1  /   T          Z                                                                                          (A.18)                            
                                   G R   S M                                    

where P is (n’ -1) x (n’ -1 ), Q is (n’ - 1) x n”, R is n” x (n’ - 1), and S is n” x n”. From Hadley (1961,

p. 109), we have:

       P = H-1   where H /Y0'Y0   - Y0' Z (Z’Z)-1Z’Y0                                                          (A.19)

      Q = - PY0' Z (Z’Z)-1                                                                                                                                                               (A.20)

      R = - (Z’Z)-1 Z’Y0 P                                                                                                 (A.21)

      S = (Z’Z)-1  - (Z’Z)-1 Z’Y0 Q                                                                                              (A.22)
 

                                          

From (A.2):

     Y = UB-1   - ZÃ B-1                                                                                                                   (A.23)
 

                         ç   g Let    B -1  /  T           Z                                                                                                     (A.24)
                         ö   F
                      J           N                                   

where ç is 1 x 1, g is 1 x (n’ - 1), ö is  (n’ - 1) x 1 , and F is (n’ - 1) x (n’ - 1). From (A.7) and Hadley

(1961, p. 109), we have:

  
          F = (B0 - ca)-1    , ö = - Fc ,      g = -aF ,     ç = 1 - aö                                         (A.25) 

Let   G’/ [ g’  F’ ] = F’ [-a’   I]                                                                                     (A.26) 

Then from (A.3), (A.23) - (A.24):

        Y0 = UG - ZÃG                                                                                                      (A.27)

        Y0' Z = G’U’Z - G’Ã’Z’Z                                                                                       (A.28)

        Y0' Z (Z’Z)-1 = G’U’Z (Z’Z)-1  - G’Ã’                                                                     (A.29)

         Z’Y0 = Z’UG - Z’ZÃG                                                                                          (A.30)

        Y0' Z (Z’Z)-1 Z’Y0 = G’U’Z (Z’Z)-1 Z’UG - G’U’ZÃG
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                                         - G’Ã’ Z’UG’ + G’Ã’Z’ZÃG                                                 (A.31)

         Y0' Y0 = G’U’UG - G’Ã’Z’UG - G’U’ZÃG + G’Ã’Z’ZÃG                                     (A.32)

Hence from (A.19), (A.31) - (A.32):

          H = G’U’UG - G’U’Z (Z’Z)-1Z’UG                                                                     (A.33)

Since the disturbance terms are assumed to be uncorrelated with the explanatory variables in (A.1), we

have:

          plim U’Z = 0, plim Z’U = 0 and  plimZ’u = 0                                                      (A.34)

where plim denotes the value of the term as the number of observations, m, goes to infinity. Hence from

Johnston (1984, pp. 269 - 271):

  plim H = G’VG   where V / [ ój
2.äj k] for j,k =1,..., n’                                                  (A.35) 

and where äj k = 1 for j = k and äj k = 0 for j…k. Hence from (A.26):

  plim H = F’(a’ó1
2 a  + V0 ) F where V0 / [ ój

2.äj k] for j,k =2,..., n’                                           (A.36)
    

From (A.19), (A.36) and Johnston (1984, p. 271), we have:

   P*/ plim P = plim H-1 = F-1 (a’ó1
2 a  + V0 )

-1 (F’)-1                                                      (A.37)
                                                        

From (A.21) and (A.30), we have:

   R = - (Z’Z)-1 Z’UGP + ÃGP                                                                                        (A.38)

Hence from (A.34) and (A.37):

 R*/ plim R = ÃGP* = ÃGF-1 (a’ó1
2 a  + V0 )

-1 (F’)-1                                                      (A.39)

From (A.5), (A.16), (A.18) and (A.27):

          ^
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 è1 / [âk  - âk ] for k =2,..., n’                                                                                         (A.40)

      = PY0' u + QZ’u                                                                                                                 (A.41)

      = P (G’U’u - G’Ã’Z’u) + QZ’u                                                                                (A.42)

          ^ è2 / [âk  - âk ] for k = n’+1,..., n                                                                                      (A.43) 

      = RY0' u + S Z’u                                                                                                      (A.44)

      = R (G’U’u - G’Ã’Z’u) + S Z’u                                                                                (A.45)
    

Since the uij are assumed to be uncorrelated across the different structural relations:

        plim U’u = w       where w’ / (ó1
2 , 0, 0, ...,0)                                                       (A.46)

Hence from (A.25) - (A.26),  (A.34), (A.37) - (A.45):

                               ^         plim è1 = [plimâk  - âk ] for k =2,..., n’                                                                                 (A.47)
                                                         
            = P*G’w                                                                                                          (A.48)

            = F-1 (a’ó1
2 a  + V0 )

-1 (F’)-1 G’w                                                                       (A.49)

            = (B0 - ca)(a’ó1
2 a  + V0 )

-1 (F’)-1 F’ [-a’   I] w                                                   (A.50)

            = (ca - B0)Ka’ó1
2    where K / (a’ó1

2 a  + V0 )
-1                                                                                (A.51)

We may show that: 

        K = [ (äjk/ ók
2 ) - ((b1j .b1k .ó1

2 / (ój
2 .ók

2 . î  ))]                                                       (A.52)

                                             (A.53)

with K (a’ó1
2 a  + V0 ) = I, using (A.8). From (A.8), (A.52) - (A.53):

         K a’ = [ bik / (î . ók
2 )]   for k = 2,...,n’                                                                   (A.54)

Hence from (A.8),  (A.47) and (A.51):

                       ^plim è1 = [plimâk  - âk ] for k =2,..., n’                                                                            (A.55)
   
         = (ca - B0) [ bik / (î . ók

2 )] ó1
2                                                                                 (A.56)
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b1j (âk.b1j % bkj) / ó2
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' &
ó2

1

î
( j

n )

j'2

b1j

ó2
j

(ân )%hb1j % ôhj))

         = (-âk . b1j  - bkj )[ bik / (î . ók
2 )]ó1

2                                                                        (A.57)

                                                                                                                                    ^Hence from (A.57) the extent of the asymptotic bias between the OLS estimator âk for the kth

endogenous variable in the structural equation (A.12) and its true underlying value âk that remains when

the number of observations increases to infinity is given by:

                       ^plim è1k / plimâk  - âk  for k =2,..., n’                                                                             (A.58)  
                  

                                                    (A.59)

From (A.26), (A.34), (A.39), (A.43) - (A.46), and (A.51):

                         ^ plimè2 / [plim âk  - âk]  for k = n’+1,..., n                                                                                       
(A.60)                                                                                  
             = R*G’w                                                                                                           (A.61)

         = Ã G F-1 K (F’)-1 F’ [-a’   I]                                                                                  (A.62)

         = Ã  [-a’   I]’ K a’ó1
2                                                                                             (A.63)

         = [ôh1 b1j  - ôhj ] [ bik / (î . ók
2 )] ó1

2                                                                                                                       (A.64)

using (A.2), (A.8) and (A.54).

Hence from (A.64) the extent of the asymptotic bias between the OLS estimator âk for the kth

predetermined variable in the structural equation (A.12) and its true underlying value âk that remains

when the number of observations increases to infinity is given by:

                         ^ plimè2 / plim âk  - âk  for k = n’+1,..., n                                                                                     (A.65)                                                                                                                                        

                                                                                                                                                      (A.66)

using (A.11).
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