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1. Introduction

Econometric theory assures us that agents can make good estimations with large sample

sizes. It can often be shown that the estimates of model parameters converge asymptoti-

cally to the true values. The literature on convergence to rational expectations equilibria

under �learning� dynamics also often assures us that agents� expectations converge to

rational expectations when they have large data sets. Consequently, conventional wisdom

suggests that the use of large amounts of data would be beneÞcial to agents.

This paper, on the contrary, demonstrates that it may be in the agents� interest to

throw away old data to improve their prediction of some relevant variable. Based on a

commonly used �optimality� criterion agents may Þnd it proÞtable to use only �small�

amounts of data to predict future prices. Essentially the problem I have in mind is that

of a true data generating process given by some Markovian process which is assumed

unknown to the economic agent. Agents forecast the next realization of this process

by using the sample (arithmetic) mean of a certain Þxed number of observations of the

process. The justiÞcation for using the sample mean are several fold. For one thing, it is

an unbiased estimator of the (unknown) population mean. For another thing, the law of

large numbers of Markov processes implies that the sample mean is expected to converge

to the mean of the (asymptotic) distribution of the true process with large enough data.

However, while the use of a large amount of data may be good from the point of view

of learning the true population mean, I show that this is not necessarily so if agents are

interested solely in forecasting the realization of this process.

I also show that there are a couple of economic example models which neatly Þt the

framework of the paper. The Þrst model can be interpreted to describe the behavior of

a Þrm producing in a perfectly competitive market. The Þrm chooses output based on

its forecast of the price last period to maximize asymptotic expected proÞts every period.

The Þrm is interested in the amount of data to use to maximize expected proÞts. The

second model follows the permanent income hypothesis considered by Lucas (1976). The

agent here wants to forecast his entire future income stream based on previous data of his

income and wants to minimize the expected squared prediction error made in the forecast.
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The paper is organized as follows. The basic problem is set out and the question of

optimal memory length is studied in Section 2. Section 3 describes some economic models

which Þt the framework of Section 2. Section 4 examines whether agents might detect

some mis-speciÞcation in their model by using the concept of �consistent� expectations

introduced by Hommes and Sorger (1998). The Þnal section discusses why the problem

studied here may be of interest in other economic contexts, particularly in self referential

macroeconomic learning models. Some concluding remarks are also presented here.

2. Optimality of memory length

Assume that a random variable µt evolves according to a Þrst order auto-regressive process

(AR(1)) as speciÞed below

(A.0) µt+1 = λµt + (1− λ)µ̄+ εt; 0 ≤ λ < 1

(A.1) {εt} is an i.i.d sequence with Eεt = 0;Eε2t = σ2ε.

(A.2) µ0 is given.

The unconditional (asymptotic) mean of the µt process is given by the constant µ̄.

The true data generating process for µt is assumed unknown to the agents. On the other

hand, agents need to forecast the current value of µt to make an economic decision. They

forecast the time t realization of the random variable, µt, on the basis of the sample mean

of the previous T data points, {µt−1, µt−2, .., µt−T }. T is called the memory length of the
agent. Call this forecast µet (T ), which by deÞnition is

µet (T ) =

PT
i=1 µt−i
T

(1)

Under rational expectations, agents would be assumed to know the true data gen-

erating process, an assumption which is usually considered implausible. Agents in this

model deal with their lack of knowledge of the true structure by using a simple learning

rule, which is essentially a variant of the least squares forecasting rule. However, even the

simple learning rule considered here has much to be said in its favor. For one thing, (as
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we shall presently show) this forecast is asymptotically unbiased for all memory lengths

T. Secondly, the law of large numbers of Markov processes would imply that with large

enough data the forecast would be expected to converge to the mean of the asymptotic

distribution of the true process. But agents in this model are merely interested in fore-

casting the current realization of µt based on past data. However, even from this point

of view of prediction, the forecast µet (T ) has several attractive properties in the sense

that it encompasses the optimal prediction for the important borderline cases of an i.i.d

sequence (when λ = 0) and a random walk world (when λ = 1). If the true sequence is an

i.i.d process, then T →∞ is optimal for prediction whereas if the true world is a random

walk, then T = 1 is optimal for prediction (the best prediction in this case is given by

the last period�s value). However, in this section, we want to explore whether the choice

of optimal T is affected when the true process is intermediate between these two extreme

versions of the world (that is, when λ is between 0 and 1).

The forecast error made by the agent at any date t is given by µet (T ) −µt. We Þrst
show that this forecast is unbiased for all memory lengths when the process has been in

operation for a long period of time (i.e. asymptotically as t→∞).

Proposition 1. The forecast error, µet(T )−µt, is asymptotically (i.e. as t→∞) unbiased
for all T , that is, limitt→∞E(µet (T )− µt) = 0.

Proof. limitt→∞E(µet (T )− µt) = limitt→∞(T−1
PT
i=1Eµt−i − Eµt) = µ̄− µ̄ = 0.

We now turn towards a characterizaton of the second moment properties of this fore-

cast. A natural optimality criterion seems to be minimization of the mean squared error

(MSE) of µet(T ),E[(µ
e
t (T ) − µt)2]. We assume that the process has been running for a

long period of time so that t → ∞ gives a reasonable approximation of this process. A

natural advantage of this approximation is that it gets rid of the dependence of the op-

timal memory length on the initial condition of the process. This assumption is also in

line with much of what is done in econometrics: one is usually interested in the statistical

properties of estimators or predictors in the long run, that is, once the inßuence of the
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initial conditions has died down. With this in mind, we assume that the agents want to

minimize the asymptotic MSE, that is, want to minimize limitt→∞E[(µet (T )−µt)2].1 The
basic choice problem of the agent is, therefore, to compute the memory length, T, which

minimizes limitt→∞E[(µet (T )− µt)2].
To economize on notation, letE[(µet(T )−µt)2] be denoted byMSEestt (T ) and limitt→∞

MSEestt (T ) be denoted by MSEest∞ (T ). As a preliminary step we prove the following

proposition.

Proposition 2. For any λ ∈ [0, 1), we have

MSEest∞ (T ) = σ2ε[
(1− λ)2T (T + 1) + 2(1− λ)λT+1T − 2λ(1− λT )

(1− λ)3(1 + λ)T 2 ]. (2)

Proof. See Appendix A.

When λ = 0, MSEest∞ (T ) clearly decreases monotonically with T. However, when

λ > 0, it is not immediately obvious from (2) as to how the expression behaves with T .

To make this more transparent let us rewrite (2) in the following manner after rearranging

terms

MSEest∞ (T ) =

σ2ε{
1

(1− λ2)(1 +
1

T
) +

2λT+1

(1− λ)2(1 + λ)T +
2λT+1

(1− λ)3(1 + λ)T 2 −
2λ

(1− λ)3(1 + λ)T 2 }

This makes clear that while the Þrst three terms within the curly brackets are indeed

decreasing monotonically with T, the fourth term is increasing with T. Consequently, it

is a question of which effect dominates. As a Þrst step towards this analysis, I prove the

following proposition.

Proposition 3. For any λ ∈ (0, 1), MSEest∞ (T ) decreases monotonically with T for all

T ≥ T (λ) = 4λ

(1− λ)2 .

Proof. See Appendix B.

1 Since the mean prediction error is asymptotically zero, this is also the asymptotic variance of predic-
tion error.
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To get an idea of the magnitude of T (λ) for different λ, note that T (.25) ≈ 2, T (.5) = 8,
T (.9) = 360 and T (.99) = 39, 600. It is easy to check that T (λ) increases monotonically

with λ. It follows from Proposition 3 that MSEest∞ (T ) decreases monotonically with T for

all T ≥ 1 provided λ is small enough. On the other hand, if λ is large, then Proposition 3
only guarantees that MSEest∞ (T ) decreases monotonically with T only for T large enough

(speciÞcally for T ≥ T (λ)).
We sharpen Proposition 3 below.

Proposition 4. For all λ ∈ [0, 0.5], T →∞ minimizes MSEest∞ (T ).

Proof. See Appendix C.

It will presently be shown that Proposition 4 is not true for all λ ∈ [0, 1). In fact, in
the proof of Proposition 4, it was shown that, for λ > .5, T →∞ can no longer be optimal

since T = 2 has a smaller MSE. But can we actually compute the optimal memory length

in this case? In fact we can prove the following:

Proposition 5. For all λ ∈ (.5, .88], T = 1 minimizes MSEest∞ (T ).

Proof. See Appendix D.

The proof of Proposition 5 may lead one to suspect that T = 1 is optimal for all

λ ∈ (.5, 1). One can, in principle, look at values of λ arbitrarily close to 1 and solve

the corresponding polynomial inequalities. However, the computation time increases very

rapidly.2 Instead I resorted to numerical simulations for values of λ close to 1 and found

that the MSE indeed increases with T from T = 1 to T = T (λ). Of course, Proposition 3

proves that the MSE must decrease for all T ≥ T (λ). So one can conjecture the following:

Conjecture: The optimal T is 1 for all λ ∈ (.5, 1).

The broad picture that emerges then is that the optimal memory length is 1 when

λ ≥ .5 whereas it is inÞnity for λ < .5. One can, however, understand to some extent the
intuition of these results. When λ = 0, µt is simply a sequence of i.i.d random variables

2To get an idea, it took a Pentium 233 Mhz PC with 192 MB of SDRAM almost three days to solve
the polynomial inequalities up to T = 250 using Mathematica Version 3.
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with mean µ̄. The MSE of prediction with memory T in this (correctly speciÞed model)

is given by σ2ε(1 + T
−1) which is decreasing in T so that T → ∞ minimizes this. So,

for small λ, it may be reasonable to expect that large T will be optimal. At the other

extreme, when λ = 1, µt follows a random walk so that the best prediction is given by

the last realization, that is, T = 1 is optimal. So, for λ close to 1, it may be reasonable

to expect that small T will be optimal. The striking thing that Propositions 4 and 5 tell

us is that actually much more is true, namely, T →∞ is optimal for all λ ∈ [0, 0.5] and
T = 1 is optimal for all λ ∈ (0.5, 0.88] (and perhaps even for all λ ∈ (0.5, 1)).
A related way to give some intuition for these results is the following. The auto-

regressive parameter of the AR(1) process (λ) may be interpreted to index the degree of

mis-speciÞcation in the model given the agents� beliefs about the data generating mecha-

nism. Suppose, for example, that agents believe they live in an i.i.d world and consequently

use T → ∞. If λ is close to 0, then the model is not too mis-speciÞed and T →∞ con-

tinues to be optimal for prediction. On the other hand, when λ is close to 1, the model

mis-speciÞcation is very severe and the use of more data for prediction is detrimental.

Similarly, suppose that agents believe they live in a random walk world so that the best

prediction of today�s realization is simply the last period�s value which is equivalent to

using T = 1. The results of this section then show that T = 1 continues to be optimal

when λ is close to 1 since the model is not too mis-speciÞed. However, T = 1 is no longer

optimal when λ is close to 0 since the model is heavily mis-speciÞed.

3. Economic example models

I now describe a couple of economic models which Þt the framework of the problem studied

in section 2.3

3.1. ProÞt maximization by the Þrm. In a way this example follows Muth (1961).

Consider the problem of a Þrm choosing output in periods t = 1, 2, 3... based on its forecast

of the market prices for the respective periods. The realized price in period t is denoted

by pt. We assume that the price pt follows an exogenous stochastic process. This would

be appropriate in an open economy or for a monopolist facing inÞnitely elastic demand or
3The two example models are in fact borrowed in its entirety from Evans and Ramey (1998).
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for a Þrm producing in a competitive market. In particular, assume that the price follows

the process pt = µt given by (A.0), (A.1), and (A.2) with the added restriction that εt

has a bounded support to ensure the non-negativity of price. The Þrm chooses output

qt at the end of period t − 1 to maximize expected period t proÞts. Assuming quadratic
costs cq2t /2, proÞts are given by

Πt = ptqt − cq2t /2

so that expected proÞts are maximized by choosing qt = c−1pet where pet is the expectation

of pt held by the Þrm at the end of period t−1. Instead of assuming rational expectations
as Muth (1961) did, we assume that the forecast pet is given by the sample mean of the

previous T prices, i.e. by

pet(T ) =

PT
i=1 pt−i
T

. (3)

By using the optimal choice qt = c−1pet (T ) proÞts may be rewritten as

Πt(T ) = (2c)
−1(2ptpet (T )− pet (T )2)

The Þrm wants to choose the T which maximizes EΠt(T ).

On the other hand, consider the MSE of prediction of pet (T ) which is given byE[p
e
t (T )−

pt]2. Suppose now the Þrm instead chooses T to minimize E[pet (T )− pt]2 = E[pet(T )2 −
2ptpet (T )+p

2
t ]. However, since pt is exogenous, this is equivalent to choosing T to minimize

E[pet(T )
2 − 2ptpet (T )]. Consequently, choosing T to minimize the MSE is equivalent to

choosing T to maximize EΠt(T ). We assume that the price process has been running for

a long period of time so that the Þrm can ignore the effect of the initial conditons. The

problem of the Þrm is, therefore, to choose the memory length T which maximizes EΠt(T )

in the long run, that is, as t → ∞. So the results of the previous section are applicable
directly here.

Before proceeding any further I want to clarify some points which may be troubling

the reader at this point. The Þrst question relates to the utility of the results on optimal

memory length in section 2. Given that the true price process is unknown to the Þrm, in

what way are the results on optimal memory length useful to it? My defence here would
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be the following. It may be fair to say that even if the true price process is not known

exactly to the Þrm, it is quite likely to have some idea about the form of this process

(say) after the conduct of some suitable econometric tests. For instance, these tests may

lead the Þrm to entertain the possibility that the true price process is either a random

walk or a process which is close to a random walk. This seems to me to be a particularly

realistic situation given the notorious difficulties of econometric tests in distinguishing

between a random walk world and a near random walk world (see Hamilton (1994) and

also the discussion below on this point). The Þrm may know that T = 1 is optimal if the

true world is a random walk. At the same time, it may conduct the optimality exercise of

section 2 and conclude that even if the true world is only close to a random walk (say, the

true value of λ is .9), it is still optimal to use T = 1 in its prediction. Given that the Þrm

is uncertain about the true price process, the use of T = 1 in prediction can be defended

on this ground (alone).

A related point can also be made here. The argument in the previous paragraph

presupposes that the Þrm uses the forecast (3) in its prediction. An issue here may be the

choice of the predictor (estimator) used by the Þrm. In section 2, I had presented several

arguments as to why a priori, the Þrm may Þnd the forecast (3) desirable to use on several

grounds. These reasons ranged from (3) being an unbiased estimator of the true mean for

all memory lengths to being expected to converge to the (true) mean for a large enough

memory length for all values of λ. Even from the point of view of prediction, which is

after all the main focus of the paper, this forecast encompasses the optimal prediction for

the important borderline cases of an i.i.d sequence and a random walk world. However,

more pertinently, a further case can be made here in its favor. In general, a predictor

may function very well if the model is correctly speciÞed whereas it may perform poorly

if it is incorrectly speciÞed. Arguably, the Þrm is unlikely ever to feel fully conÞdent that

it has the correct description of the real world. In these situations, the Þrm may prefer

a simple predictor which performs (reasonably) well in a variety of circumstances rather

than a predictor which performs extremely well in a correctly speciÞed model but performs

rather poorly in a mis-speciÞed model. This provides an additional reason for the Þrm to
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prefer the forecast (3). Perhaps a concrete example here will help to Þx ideas. If the Þrm

has rational expectations (RE), i.e. it knows the true form of the price process as well as

the (correct) values of λ, µ̄ (and the variance of the unknown error term), then it has a

MSE of σ2ε. Assume, without any loss of generality, that the true value of µ̄ is 0. The use of

T = 1 in the forecast (3) yields an (asymptotic, i.e., as t→∞) MSE of 2(1+λ)−1σ2ε which
equals the MSE under RE if the true world is a random walk; otherwise it yields a higher

MSE. For the purposes of comparison, we now consider another (plausible) predictor.

Assume that the Þrm knows the true mean µ̄ and that price follows an AR(1) process. It,

therefore, uses the predictor

part (λ) = λµt−1 (4)

which depends on λ, assumed unknown to the Þrm. If the Þrm knew the true value of λ

(say λ̄) also (i.e. has RE), then it will attain higher expected proÞts than a Þrm using

T = 1 in the forecast (3). However, if the Þrm incorrectly infers some value λ 6= λ̄ on

the basis of some statistical tests, then it may just as easily earn smaller expected proÞts

with the use of the predictor (4) than with the use of (3) for a very wide range of values

of λ. It is easy to check that if the Þrm infers (guesses) some value λ for the AR(1)

parameter (possibly different from λ̄), then the corresponding asymptotic (as t → ∞)
MSE associated with the predictor part (λ), (4), is

MSE(part (λ)) = [1 +
(λ− λ̄)2
1− λ̄2

]σ2ε.

Obviously, MSE(part (λ)) = σ
2
ε if λ = λ̄. But MSE(p

ar
t (λ)) will be more than the MSE

for the forecast (3) with T = 1, MSEest∞ (1), for a wide range of values of λ. For example,

one can check thatMSE(part (λ)) > MSE
est
∞ (1) for all λ < .98 if λ̄ = .99; as well as for all

λ < .9 if λ̄ = .95, and for all λ < .8 if λ̄ = .9. Thus, if λ̄ = .99, then the predictor (4) fares

worse than (3) for all λ < .98 and only performs better otherwise. The Þrm can, therefore,

earn higher expected proÞts with the use of the simple predictor (3) than with the use of

the predictor (4) if it incorrectly infers the value of the AR(1) parameter (even though

it knows the true mean µ̄) for a wide range of λ. The obvious question which arises now

is how likely is it that the Þrm may incorrectly infer the value of the AR(1) parameter



Is more data better? 10

λ on the basis of statistical tests? The answer is that this is very likely for values of λ

close to or equal to 1. There is an extensive literature in econometrics that discusses the

difficulties in making a correct inference in this situation.4 For example, Evans and Savin

(1981) provide the power functions for a test of the (null) hypothesis of λ = 1 for various

sample sizes for the AR(1) process considered here with µ̄ = 0, which is assumed known

to the investigator (Þrm). At λ = .9, a sample of size 100 only achieves a power of 56%

whereas at λ = .99, a sample as large as 400 merely achieves a power of 12.8%.5 The

situation is similar for a test of the hypothesis of stationarity. For instance, Evans and

Savin (1981) Þnd that the power functions for testing the hypothesis of λ = .95 continues

to be poor. With a sample of size 100, the power is 13% at λ = .9 and only 60% at λ = 1.

Given this situation, the Þrm may be quite content to use the forecast (3) since, in a sense,

this protects it from a range of model mis-speciÞcation which the more (sophisticated!)

predictor (4) is unable to. Furthermore, in conclusion, one can add that the forecast (3)

has the advantage that the optimal memory length is invariant to a range of values of λ-

for example, the optimal memory length is 1 for all λ > .5. Consequently, the Þrm need

not worry too much about the inadequacy of econometric tests in distinguishing between

random walk and near random walk processes if it uses the forecast (3) in its prediction.6

3.2. Permanent Income Hypothesis. This corresponds to the Þrst example in Lu-

cas (1976). Consumption is given by

ct = cpt + ut

cpt = kypt

ypt = (1− δ)
∞X
i=0

δiyet+i, 0 < δ < 1.

Here ut is a white noise process denoting transitory consumption. cpt denotes permanent

consumption, ypt denotes permanent income, δ is the household�s discount factor and yet+i
4 For a sample of this literature, see Evans and Savin (1981, 1984) and Dickey and Fuller (1979, 1981).
5 See their Table 4, p. 771, for the details. The situation is (obviously) worse if the Þrm does not even

know the true mean µ̄. For a sample of the power functions of the random walk hypothesis in the latter
case, see Table 6, p. 1260, of Evans and Savin (1984).

6Needless to say, most of these arguments are also valid for a Þrm uncertain about the price process
for values of λ equal to or close to zero.
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is the household�s time t forecast of income at time t + i, yt+i. The income process yt is

now assumed to follow an AR(1) process ( yt = µt here). While Lucas (1976) assumed

rational expectations, we instead assume that yet+i = y
e
t (T ) for all i = 0, ..∞ so that ypt

= yet (T ) and ct = ky
e
t (T ) + ut. y

e
t (T ) is given the sample mean of the last T realizations,

that is,

yet (T ) =

PT
i=1 yt−i
T

The agent�s problem now is to choose the memory T which minimizes the MSE of

prediction, E[yet (T )−yt]2.We again assume that the income process yt has been evolving
for a long period of time so that the appropriate problem of the agent is to choose the

memory length which minimizes E[yet (T )− yt]2 in the long run, that is, as t → ∞. Our
results in section 2 then suggest that if λ < 0.5, the agent should use as much data as

possible to minimize the MSE whereas he should use T = 1 if λ > 0.5. Moreover, an

accurate forecast of yet (T ) provides him with an accurate forecast of permanent income

(ypt) and, therefore, of (permanent) consumption (cpt or ct). Note that agents are using

the same forecast, yet (T ), for making predictions over longer horizons. This is fully rational

if the true process, yt, is given by a constant (unknown to the agent) plus some i.i.d

noise. In this case, the l− step ahead forecast (yet+l) from time origin t would be given by
yet (T ) (see Abraham and Ledolter (1983)). This forecast is unbiased and has mean squared

prediction error σ2ε(1+
1
T
) which is obviously decreasing in T. Consequently, the use of this

forecast on the part of agents can be rationalized by assuming that they underparametrize

the true Markovian process to be an i.i.d sequence. Another way to rationalize the choice

of the same forecast, yet (T ), for making predictions over longer horizons is to assume that

agents believe they live in a random walk world and, therefore, use T = 1. In this case,

the optimal l− step ahead linear forecast (yet+l) would be given by y
e
t (1) (see Hamilton

(1994)).

4. Consistency of expectations

In this section, I study, through an illustrative example, whether an examination of fore-

cast errors made by agents when they use the forecast (1) would cause them to suspect

a mis-speciÞcation in their model. When agents are using a mis-speciÞed model, it may
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not be possible for them to learn the rational expectations equilibrium (REE). Then the

question is whether the persistent prediction errors they make (errors which do not van-

ish asymptotically) show any kind of systematic pattern. For concreteness, I take the

example of the producer forecasting prices. I assume that the price process is given by

pt+1 = µtpt(1 − pt) where µt is AR(1) with the noise having bounded support.7 The

producer, on the other hand, assumes that the price process is pt+1 = (µ+ vt+1)pt(1−pt)
with {vt} being an i.i.d sequence and forecasts this price by µetpt(1−pt) where µet is given
by (1). The producer uses data on prices to test for mis-speciÞcation.

There are various ways to test for mis-speciÞcations. The most obvious one (often

suggested by econometricians as a Þrst step) is a plot of the residuals over time. An-

other step which Harvey (1989) advocates is a plot of the residuals against one of the

explanatory variables (here price) which may be done if agents suspect some functional

mis-speciÞcation. Simulations indicate that such a plot of the residuals in this model does

not reveal any mis-speciÞcation. This should not seem that surprising since after all the

producer has the correct functional form of the evolution of prices. On the other hand,

Bray and Savin (1986) in their analysis of learning in a cobweb model checked whether

agents would detect any mis-speciÞcation in their model through some diagnostic checks.

For instance, they conducted tests for parameter constancy. For this example, however,

since the producer does assume a moving parameter there is no reason for him to conduct

tests to check for parameter constancy.

I will instead take a different route which has recently been advocated by Hommes

(1998) and Hommes and Sorger (1998). They propose the concept of consistent expecta-

tions equilibria (CEE) which requires that agents correctly perceive all autocorrelations

of the process. As Evans and Honkapohja (1999) note, this makes it a very stringent

criteria. I will now examine whether the expectations of the producers are consistent or

not. Hommes (1998) deÞnes consistency of expectations in terms of the autocorrelation

function (ACF) of the expectational errors. In our case these will be the prediction errors

7Note that the price process being given by the logistic map could potentially be complicated. However,
in my simulations, I let the initial condition of µt be in the region where the steady state is the global
attractor. Consequently, the failure of agents to detect any mis-speciÞcation is not due to any chaotic
pattern in the prediction errors.
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denoted by et(T ). The (empirical) ACF ρk of et(T ) is deÞned as

ρk =
ck
c0
; −1≤ ρk ≤ 1

ck = limN→∞ 1
N

PN−k
t=1 (et(T )− e−(T ))(et+k(T )− e−(T ))

with e−(T ) = limN→∞ 1
N

PN
t=1 et(T )

Hommes (1998) deÞnes expectations to be consistent if the autocorrelation coefficients

ρk of the expectational errors are zero for all k ≥ 1. He deÞnes expectations to be weakly
consistent if there exists a K ≥ 2 such that the autocorrelation coefficients ρk of the

expectational errors are zero for all k ≥ K. Expectations are deÞned to be inconsistent

if they are not weakly consistent. Agents having inconsistent expectations would have

ample cause to believe that their model is mis-speciÞed.

Now let us turn to the question of testing this deÞnition on our producers. I Þrst

consider small values of λ. Since for small values of λ (precisely for λ ≤ .5) the MSE

is decreasing in T, it is optimal to use as much data as possible for predicton. So let

us examine whether the autocorrelations in prediction errors are signiÞcantly different

from zero for large T in this case. Simulations indicate that the ACFs are insigniÞcantly

different from zero for values of λ close to zero; so expectations are consistent. Figure 1a

plots the (normalized) least squares prediction residuals for 80 observations after dropping

the Þrst 300 transients when λ = .1, µ̄ = 2, T = 50 and the noise is uniform with support

[−10−3, 10−3]. The residuals do not seem to have any systematic pattern. Figure 1b plots
the corresponding sample ACFs at the Þrst 20 lags in the above case. The straight lines

have a height of ± 2√
M
whereM is the sample size. Only ACFs above or below the straight

lines would be considered insigniÞcantly different from zero at the 5% level. As is clear

from the Þgure, all ACFs are insigniÞcantly different from zero so that expectations are

consistent. A similar picture emerges for a lot of values of λ less than 0.5. The results

also do not seem to be sensitive to the distribution of the noise or to its magnitude.

For λ > .5, we have seen that T = 1 is optimal. The relevant question now is whether

agents using the optimal memory will suspect some mis-speciÞcation in their model. As an
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illustration, Figure 2a plots the (normalized) least squares residuals for 35 observations

after dropping the Þrst 300 transients when λ = .6, µ̄ = 2, T = 1 and the noise is

uniform with support [−10−3, 10−3]. The residuals look quite random. Figure 2b plots
the corresponding sample ACFs at the Þrst 20 lags in the above case. Expectations are

again consistent.

As another example, Figure 3a plots the (normalized) least squares residuals for 35 ob-

servations when λ = .8, µ̄ = 2, T = 1 and the noise is uniform with support [−10−3, 10−3].
The residuals are again seemingly random. Figure 3b plots the corresponding sample ACFs

at the Þrst 20 lags in the above case. None of the autocorrelation coefficiants differ from

zero signiÞcantly. More generally, the same type of picture emerges if agents are using a

T which is close to (but not necessarily) 1. However, the picture changes if agents use a

large T in this case. For example, Þgures 4a and 4b plots the (normalized) residuals and

the sample ACFs when λ = .6 and T = 50 for 100 observations. Note that the ACFs at

the Þrst 2 lags are signiÞcant with the one at the Þrst lag strongly so.

Collecting these observations together, the broad theme that emerges is the following.

If agents use the optimal T, expectations are in most cases consistent. If they use a T which

is reasonably close to the optimal T, then expectations are at least weakly consistent. If

they use a T which is far from the optimal T, then even if expectations are weakly

consistent, the ACF at the Þrst lag is often rejected strongly so that they may suspect a

mis-speciÞcation in their model. This may in turn lead them to conduct more sophisticated

econometric tests to detect the source of the mis-speciÞcation.

5. Discussion and Concluding Remarks

The paper has considered scenarios where the exogenous variable follows a stochastic

process unknown to the agent. If the true data generating process is unknown (and

potentially complex), economic agents may be expected to use simple underparametrized

representations of the process to make their forecasts. They can then obtain the best

forecast within this class. An appropriate bounded rationality assumption seems to be

that agents, in the terminology of Sargent (1999, Ch. 6), have �optimal misspeciÞed

beliefs�. A similar idea has been explored in this paper where agents forecast the current
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value by using a version of the least squares forecast with a Þxed amount of data. This

forecast embodies the optimal forecast for two extreme versions of the world (that is, when

the true world is i.i.d and when it is a random walk). Agents would prefer a forecasting

rule which is robust to a mis-speciÞcation in the model. It has been found that such a

robust choice of the memory length does exist for the class of models explored here.

The basic idea explored in the paper is related to some recent studies in the macroeco-

nomic learning literature in a stochastic setup. Broadly speaking, the question analyzed

here falls within the spectrum of learning in mis-speciÞed models. Recent studies which

explore similar ideas include Sargent (1999), Evans and Honkapohja (1999, 2000), and

Hommes and Sorger (1998). As an illustration, let us consider Evans and Honkapohja

(2000). The idea they discuss is the following. In the literature the speciÞcation of the

agents� learning rule comes (usually) from the underlying rational expectations equilib-

rium (REE) of the economy. Thus, for example, if the macroeconomic model has a REE

which takes the form of an i.i.d sequence, then the agents� learning rule (the perceived law

of motion or PLM for short) would also be an i.i.d sequence with unknown parameter.

Thus, in a certain sense, the PLM of agents who are learning and the actual law of mo-

tion (ALM) sit in the same functional space so that with right parameter values the PLM

coincides with the REE of interest. Consequently, even though the model of the agents

is mis-speciÞed while they are learning, there is a possibility of learning being complete

in the sense that the economy settles to an REE if the learning dynamics converges. In

general, however, there is no reason why this should be the case. As emphasized by Evans

and Honkapohja (2000), economic agents, like econometricians, may fail to correctly spec-

ify the ALM even asymptotically. They show that such mis-speciÞcations can radically

alter both the nature of the equilibria as well as the stability conditions for convergence

to such equilibria. For example, they examine a version of the Cagan inßation model with

lagged endogenous variables which has two minimal state variable solutions of the AR(1)

form under rational expectations. If the agents� PLM takes the form of an i.i.d process,

then the equilibrium under such dynamics (termed restricted perceptions equilibrium by
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them8) becomes unique. In general, therefore, the form of the PLM could crucially affect

the nature and stability of equilibria.9

Hommes and Sorger (1998), on the other hand, consider models where the PLM is

linear but the ALM is nonlinear. They introduce the concept of consistent expectations

equilibrium (CEE) by the property that the PLM and ALM are indistinguishable in

terms of the sample average and sample autocorrelations of the observed variable. Their

emphasis is on the fact that agents should not be able to detect any mis-speciÞcation

in their model on the basis of simple statistical tests. This point is particularly relevant

for macroeconomic learning models since the model agents use is mis-speciÞed during the

transition to REE even though asymptotically it may be correctly speciÞed.

The prevailing literature has not emphasized the size of memory to be an important

issue for learning models. However, the current paper shows that this could potentially be

important. In reality, the form of the PLM and the size of the memory could be intimately

related which in turn can affect the nature and stability of equilibria. I now want to add

some of my thoughts on this subject by means of a simple illustrative example. Consider

the class of models given by

yt = α+ βE
∗
t−1yt + vt

with β 6= 1, which could describe, for example, the Lucas (1973) �island� model combining
a �surprise� aggregate supply function and a �quantity theory� demand equation with yt

being interpreted as the price and vt being an i.i.d noise.10 We use the same notation

E∗t−1yt to denote the expectations of agents under both rational expectations and learning.

This model has a unique REE given by

yt = ā+ vt

where ā = α/(1− β). Under learning, agents are assumed not to know ā but have a PLM
which corresponds to the REE. Therefore, they estimate ā by the sample mean of the

8The restricted perceptions equilibrium concept is also closely related to the notion of reduced order
limited information rational expectations equilibria (REE) introduced in Sargent (1991).

9An application of this idea is in Sargent (1999) where he suggests that a similar form of incomplete
learning may be an essential ingredient in the rise and decline of inßation in post-war America.
10 See Evans and Honkapohja (1999) for a more detailed explanation as to how this reduced form arises.
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data (given by at = t−1
Pt−1

i=0 yi) which also happens to be their forecast, E
∗
t−1yt, in this

case. This means that the ALM followed by yt will actually be

yt = α+ βat + vt.

Asymptotically, with large enough data, the forecasts of agents can be shown to converge

to the REE if β < 1. On the other hand, the agents� forecasting model is mis-speciÞed dur-

ing the transition to REE and (as should be evident from the ALM) this mis-speciÞcation

could potentially be quite severe. Consequently, it is possible that agents might abandon

their PLM during the transition process in which case convergence to the REE may not

take place. However, I think that the analysis of the paper provides an added justiÞcation

as to why agents might stick with their learning rule in such a scenario. The learning

rule with inÞnite data can be optimal not only when the process is i.i.d but also when the

process is auto-correlated. The robustness of this rule to mis-speciÞcations in the agents�

model make it more likely for agents to stick with it.11

Now suppose, for whatever reason, the PLM of agents is a random walk (without

drift). In the spirit of the learning literature, agents assume the actual process followed

by the economy to be time invariant and choose a learning procedure which is consistent

with their PLM. In this case, the optimal forecast would be to use the last period�s value,

that is, E∗t−1yt = yt−1 (this is equivalent to using T = 1). Now the ALM becomes

yt = α+ βyt−1 + vt (5)

which is an AR(1) process. To draw a parallel with the process discussed in the paper,

let us assume, without any loss of generality, that α = (1−λ)µ̄ and β = λ. λ can now be
interpreted to index the inßuence of expectations in the model. If expectations matter a lot

(that is, λ is close to 1), then the PLM and the ALMmay not be distinguishable based on a

Þnite number of observations.12 Thus, this may be considered a more plausible description

of the world where agents are learning since any mis-speciÞcation may be hard to detect.

This would also be more in the spirit of the ideas discussed by Hommes and Sorger (1998)

11Of course, more work needs to be done to complete the argument since the ALM is not AR(1) in this
case.
12 See the discussion in Section 3.1 above and Hamilton (1994).
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through their idea of consistent expectations. Again, even if agents are unsure about their

exact model or suspect some slight mis-speciÞcation in their model, they are more likely

to stick with the choice of T = 1 since this choice has been demostrated to be robust to

a mis-speciÞcation in the agents� model.13 Therefore, this provides an added justiÞcation

as to why (5) will provide a more plausible description of the �learning� economy. Of

course, convergence to the unique REE does not take place in this case since the ALM is

AR(1). In this way, the size of the memory may affect the stability of REE.

The question of optimality of memory length which was the main thrust of this paper

is, however, somewhat related to the ideas explored in Evans and Honkapohja (1993) and

Sargent (1999). In Evans and Honkapohja (1993), and more generally in the statistical

and engineering literature, when agents suspect some structural change (or time varying

parameter) the advice given to them is to use a �constant gain� instead of �decreasing

gain� in their learning algorithm. This essentially means that instead of putting decreasing

weight to current observations (so that asymptotically the weight vanishes as in least

squares estimation, for example), one puts some constant weight to current data. This

procedure of constant gain involves a trade-off between bias and variance when used

to adapt to an exogenous time-varying process. A larger value of the gain reduces the

bias but increases the variance of the forecast. Evans and Honkapohja (1993) examine

the question of the optimal gain parameter to use for an agent in the context of an

overlapping generations economy. They furthermore examine whether there exists an

equilibria in learning rules in the sense that no agent has an incentive to deviate from his

choice of the gain (parameter) given the gain (parameter) of all other agents. A similar

idea is explored in Sargent (1999 Ch. 6) where he takes Bray�s (1982) model and instead of

assuming that the forecast is given by the sample mean of the observations (as Bray did),

he assumes that forecasts are formed adaptively with a Þxed gain parameter C. The agent

then chooses C to minimize the one-step ahead forecasting error. Such speciÞcations can

alter the nature of equilibria in interesting ways.

As I have tried to indicate, this paper opens up further avenues of research. One

13 In fact, in this case, T = 1 will be optimal both with respect to the PLM and the ALM if λ > 0.5.
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would expect Þnite memory learning rules to alter the nature of equilibria in stochastic

self-referential models. As part of an ongoing project, I am studying this question in

collaboration with Seppo Honkapohja (see Honkapohja and Mitra (1999)). One can also

try to analyze questions of equilibria in learning rules (in terms of T ) in the sense discussed

in the previous paragraph for self-referential models.
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A. Proof of Proposition 2

First, recall that

µet (T ) =

PT
i=1 µt−i
T

Next observe that for all i, 1 ≤ i ≤ T − 2, we can write

µt−i = λ
T−iµt−T + µ−(1− λ)(1 + λ+ λ2 + ...+ λT−i−1)+

εt−i−1 + λεt−i−2 + ....+ λT−i−2εt−T+1 + λT−i−1εt−T

The previous line simply involves writing µt−i in terms of µt−T and the intermediate

error terms. Using this fact we can show that

PT
i=1 µt−i =

µt−T + {λµt−T + µ−(1− λ) + εt−T }+

{λ2µt−T + µ−(1− λ)(1 + λ) + εt−T+1 + λεt−T }+

{λ3µt−T + µ−(1− λ)(1 + λ+ λ2) + εt−T+2 + λεt−T+1 + λ2εt−T }+ ..+

{λT−1µt−T + µ−(1− λ)(1 + λ+ λ2 + ..+ λT−2)+

εt−2 + ..+ λT−3εt−T+1 + λT−2εt−T }

= µt−T (1 + λ+ λ
2 + ..+ λT−1)+
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µ−(1− λ){1 + (1 + λ) + (1 + λ+ λ2) + ..+ (1 + λ+ λ2 + ..+ λT−2)}+

εt−T { (1− λ
T−1)

(1− λ) }+ εt−T+1{ (1− λ
T−2)

(1− λ) }+ .. + εt−3{(1− λ
2)

(1− λ) }+ {
(1− λ)
(1− λ)}εt−2

= µt−T (
1− λT
1− λ )+µ

−(1−λ)((1− λ)T − 1+ λ
T

(1− λ)2 )+εt−T {(1− λ
T−1)

(1− λ) }+εt−T+1{ (1− λ
T−2)

(1− λ) }+

...... + εt−3{ (1− λ
2)

(1− λ) } +εt−2{
(1− λ)
(1− λ)}

Moreover since

µt = λ
Tµt−T + µ

−(1− λT ) + εt−1 + λεt−2 + ....+ λT−1εt−T

the error made in prediction is eventually given by

µet(T )− µt = (µt−T − µ−){
1− λT − (1− λ)λTT

(1− λ)T }+ εt−T { (1− λ
T−1)

(1− λ)T − λT−1}+

εt−T+1{ (1− λ
T−2)

(1− λ)T − λT−2}+ ....+ εt−2{ (1− λ)
(1− λ)T − λ}− εt−1

The MSE of the predictor (MSEestt (T )) is, therefore, given by

MSEestt (T ) := E[(µet (T )− µt)2] = {
1− λT − (1− λ)λTT

(1− λ)T }2E[(µt−T − µ−)2]+

σ2ε[{
(1− λT−1)
(1− λ)T − λT−1}2 + {(1− λ

T−2)
(1− λ)T − λT−2}2 + ....+ { (1− λ)

(1− λ)T − λ}
2 + 1)]

µt, being an AR(1) process, has a stationary distribution asymptotically (i.e. as t→∞)
with variance σ2ε

(1−λ2) , that is, limitt→∞E[(µt−T−µ−)2] = σ2ε
(1−λ2) . Consequently, as t→∞,

the expression for the MSE simpliÞes further to

MSEest∞ (T ) =
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σ2ε
(1− λ2){

1− λT − (1− λ)λTT
(1− λ)T }2 +

σ2ε[{
(1− λT−1)
(1− λ)T − λT−1}2 + { (1− λ

T−2)
(1− λ)T − λT−2}2 +....+ { (1− λ)

(1− λ)T − λ}
2 +1]

= σ2ε[
(1− λ)2T (T + 1) + 2(1− λ)λT+1T − 2λ(1− λT )

(1− λ)3(1 + λ)T 2 ].

In the Þnal line above I have simply noted the end result which follows after sim-

pliÞcation of the expression in the previous line and collecting all the terms involving

σ2ε.

B. Proof of Proposition 3

Differentiating MSEest∞ (T ) with respect to T , we get

d[MSEest∞ (T )]

dT
=

Aσ2ε
(1− λ)3(1 + λ)T 3 where

A := −2λ(1− λ− lnλ)λTT − (1− λ)2T + 2λ(1− λ)(lnλ)λTT 2 + 4λ(1− λT )

The sign of A, which depends on both T and λ, determines whether MSE is increasing

or decreasing with T. Observe that

A = −2(1− λ− lnλ)λT+1T − (1− λ)2T + 2(1− λ)(lnλ)λT+1T 2 + 4λ(1− λT )
< 4λ(1− λT ) − (1− λ)2T

The strict inequality follows since the Þrst and third terms are negative for all T and

λ. So continuing

A < 4λ(1− λT ) − (1− λ)2T < 4λ − (1− λ)2T

DeÞne T (λ) =
4λ

(1− λ)2 .
Then, from the above string of inequalities, it follows that A < 0 for all T > T (λ).

When T = T (λ), it is also easy to check that A < 0. This proves the proposition.
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C. Proof of Proposition 4

First let λ∗ =
√
37−1
12

≈ .424.14 λ∗ is the (unique) value of λ at which MSEest∞ (2) =

MSEest∞ (3) . Then T (λ∗) ≈ 5.1. By Proposition 3, we know that MSEest∞ (T ) decreases

with T for all T ≥ 6. The question is what happens for T ≤ 5. To answer this, Þrst observe
the following:

MSEest∞ ( T + 1) > MSEest∞ ( T ) if and only if (iff)

(1− λ)2(T + 1)(T + 2) + 2(1− λ)λT+2(T + 1) − 2λ(1− λT+1)
(T + 1)2

>

(1− λ)2T (T + 1) + 2(1− λ)λT+1T − 2λ(1− λT )
T 2

iff

(1−λ)2( 1

T + 1
− 1
T
)+2(1−λ)(λ

T+1

T
)(
λT

T + 1
−1)−2λ( 1

(T + 1)2
− 1

T 2
)+
2λT+1

T 2
(
λT 2

(T + 1)2
−1) > 0

The last line shows that, for given T, the above inequality is a polynomial in λ. One

can verify that for all λ ≤ λ∗, 15

MSEest∞ (6) < MSEest∞ (5) < MSEest∞ (4) <MSEest∞ (3) ≤MSEest∞ (2) < MSEest∞ (1).

This proves that the MSEest∞ (T ) decreases with T for all λ ≤ λ∗.
Before proceeding, note that

MSEest∞ (1) < MSEest∞ (2) iff
2

(1 + λ)
<

3 + 2λ

2(1 + λ)
which is true iff λ > .5.

Now consider the case when λ ∈ (.424, .428].16 Proposition 3 tells us that the MSE
decreases with T for all T > 5 in this interval of λ. It is also possible to verify that for all

λ ∈ (.424, .428], MSEest∞ (6) < MSEest∞ (5) < MSEest∞ (4) ≤MSEest∞ (3) andMSEest∞ (2) <

14Henceforth, all values of λ will be rounded off to the third decimal place.
15 I used the �Inequality Solve� package in Mathematica Version 3.0 to solve algebraically for these and

all of the succeeding polynomial inequalities which appear in the proofs.
16 The right hand number of this interval, .428, is the (unique) value of λ (rounded off to the third

decimal place) at which MSEest∞ (3) =MSEest∞ (4).
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MSEest∞ (3). Since we already know that MSEest∞ (2) < MSEest∞ (1), the optimal T can be

computed by comparing MSEest∞ (2) and MSEest∞ (T →∞). On comparing we get

MSEest∞ (T →∞) < MSEest∞ (2)

iff
1

(1− λ)(1 + λ) <
3 + 2λ

2(1 + λ)

iff 2λ2 + λ− 1 < 0

iff λ < .5 (the negative root being inadmissible). This proves that the optimal T →∞
when λ ∈ (.424, .428].
At the risk of being repetitious, consider now the interval of λ ∈ (.428, .446].17 In

this case, Proposition 3 tells us that the MSE decreases with T for all T ≥ 6. The

solution of the successive polynomial inequalities show that MSEest∞ (6) < MSEest∞ (5) ≤
MSEest∞ (4) as well as that MSEest∞ (2) < MSEest∞ (3) < MSEest∞ (4). We already know

that MSEest∞ (2) < MSEest∞ (1). This means that the optimal T can again be computed

by comparing MSEest∞ (2) with MSEest∞ (T →∞) which has been done above so that the
optimal T →∞.
In a similar fashion consider neighbouring intervals like (.446, .466], (.466, .486], and

(.486, .5]. Note that all these intervals arise out of comparing the MSE associated with

adjacent memory lengths. For all of these intervals, the optimal T can, as before, be

shown to be T →∞. This proves the proposition.

D. Proof of Proposition 5

When λ > .5, it has been shown thatMSEest∞ (1) < MSEest∞ (2). Consider now the interval

(.5, .504] of λ. In this case one can prove that the MSE increases monotonically with T

from T = 1 to T = 7 andMSEest∞ (8) ≤MSEest∞ (7). On the other hand, using Proposition

3, we know that the MSE decreases with T thereafter. Consequently, the optimal T can

be computed by comparingMSEest∞ (1) withMSEest∞ (T →∞). But we already know that
17Again the right hand number of this interval, .446, is the (unique) value of λ at which MSEest∞ (4) =

MSEest∞ (5). One can now get the ßavor as to how the succeeding intervals arise.
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it can�t be optimal to use T →∞. A more direct way of proving this is by comparing the
two MSE, that is,

MSEest∞ (T →∞) < MSEest∞ (1)

iff
1

(1− λ)(1 + λ) <
2

(1 + λ)

iff λ < .5

This proves that when λ ∈ (.5, .504], the optimal T is 1.

We then consider the interval (.504, .521]. In this case the MSE increases monotonically

from T = 1 to T = 8 and, thereafter, decreases with T. The optimal T is, therefore, again

1. If we similarly consider the interval (.521, .537], the MSE can be shown to increase

monotonically with T from T = 1 to T = 9 and, thereafter, decrease with T so that the

optimal T is again 1.

One can continue in this fashion and look at higher intervals of λ. Thus, when λ = .88,

T (λ) = 250. Proposition 3 already tells us that the MSE decreases for all T ≥ 250. On the
other hand, it is possible to show that the MSE increases with T from T = 1 to T = 250.

Consequently, it is still optimal to use T = 1.



Figure 1 a :
Plot of the HnormalizedL least squares residuals for 80 observations when λ = .1;
T = 50; noise is uniform with support @−10−3, 10−3D . The first 300 transients
have been dropped .
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Figure 1 b :

Autocorrelation of the least squares errors for 80 observations when λ = .1;
T = 50; noise is uniform with support @−10−3, 10−3D . The first 300 transients have
been dropped .Straight lines indicate 9+ 2
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Figure 2 a :
Plot of the HnormalizedL least squares residuals for 35 observations when λ = .6;
T = 1; noise is uniform with support @−10−3, 10−3D . The first 300 transients
have been dropped .
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Figure 2 b :
Autocorrelation of the least squares errors for 35 observations when λ = .6;

T = 1; noise is uniform with support @−10−3, 10−3D . The first 300 transients have
been dropped .Straight lines indicate 9+ 2
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considered significantly different from zero at the 5 % level .
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Figure 3 a :
Plot of the HnormalizedL least squares residuals for 35 observations when λ = .8;
T = 1; noise is uniform with support @−10−3, 10−3D . The first 300 transients
have been dropped .
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Figure 3 b :

Autocorrelation of the least squares errors for 35 observations when λ = .8;
T = 1; noise is uniform with support @−10−3, 10−3D . The first 300 transients have
been dropped .Straight lines indicate 9+ 2
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considered significantly different from zero at the 5 % level .
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Figure 4 a :
Plot of the HnormalizedL least squares residuals for 100 observations when λ = .6;
T = 50; noise is uniform with support @−10−3, 10−3D . The first 300 transients
have been dropped .
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Figure 4 b :

Autocorrelation of the least squares errors for 100 observations when λ = .6;
T = 50; noise is uniform with support @−10−3, 10−3D . The first 300 transients have
been dropped .Straight lines indicate 9+ 2
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considered significantly different from zero at the 5 % level .
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