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ABSTRACT. We evaluate Taylor-type monetary policy rules from the perspec-
tive of which classes of rules most reliably induce determinacy and learnability of a
rational expectations equilibrium. The context is a simple, forward-looking model of
the macroeconomy widely used in the rapidly expanding literature in this area. The
policy rules we consider have an inertial component, whereby the central bank can
respond cautiously to economic events. We document that policy inertia can help
alleviate problems of indeterminacy and explosive instability of equilibrium in this
model, and that learnability of equilibrium is not impaired by policymaker caution.
We conclude that this might be an important reason why central banks in the in-
dustrialized economies display considerable inertia when adjusting monetary policy
in response to changing economic conditions.
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1. MONETARY POLICY ADVICE

1.1. Determinacy. A fundamental issue in the evaluation of alternative monetary
policy rules, especially when the structural model has forward-looking elements, is the
question of whether a proposed policy rule is associated with a determinate equilibrium
or not. Starting with the work of Sargent and Wallace (1975), it has been shown that
certain types of policy rules may be associated with very large sets of rational expectations
equilibria, and this problem of indeterminacy has been seen as an important reason for
excluding certain categories of rules.! Perhaps disconcertingly, this problem appears to
be particularly acute for policy rules which may otherwise seem to be fairly realistic in
terms of actual central bank behavior. For example, Clarida, Gali and Gertler (1998)
have provided evidence which suggests that monetary policy for the major industrialized
countries since 1979 has been forward-looking: Nominal interest rates are adjusted in
response to anticipated inflation. This empirical finding is somewhat puzzling in light of
the fact that such forward-looking rules are associated with equilibrium indeterminacy
in many models (see, in particular, Bernanke and Woodford (1997)). Similarly, in many
models policy rules which call for the monetary authority to respond aggressively to past
values of endogenous variables (such as the previous quarter’s deviations of inflation from
a target level, or the output gap) can be associated with explosive instability of rational
expectations equilibrium. Yet at the same time, such policy rules might also be thought
of as fairly realistic in terms of actual central bank behavior in some contexts. Thus, at
least two empirically relevant and seemingly ordinary-looking classes of policy rules seem
to be associated with important theoretical problems, problems which might cause one to
hesitate before recommending such rules to policymakers.

Christiano and Gust (1999), among others, have stressed the seriousness of these
theoretical concerns for the design of stabilization policy. Even aside from broad modeling
uncertainty, there is considerable sampling variability about the estimated parameters of a
given model of the macroeconomy. When a candidate class of policy rules may or may not
generate indeterminacy, or explosive instability, depending on the particular parameter
values of the structural model and of the policy rule, it creates something of a minefield

for policy design. One might, for instance, recommend a particular rule on the basis

1Some of the authors that discuss this issue most recently include Bernanke and Woodford (1997),
Carlstrom and Fuerst (1999, 2000), Christiano and Gust (1999), Clarida, Gali and Gertler (2000), Mc-
Callum and Nelson (1999), Rotemberg and Woodford (1998, 1999), and Woodford (1999a).
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that it would generate a determinate rational expectations equilibrium (REE), and that
the targeted equilibrium would have desirable properties based on other criteria, such
as utility of the representative household in the model. And yet, in reality, important
parameters may lie (because of sampling variability alone) in a region associated with
indeterminacy of equilibrium, or with explosive instability. Actually implementing the
proposed rule could then lead to disastrous consequences. Thus, from the perspective
of the design of stabilization policy, one would greatly prefer to recommend policy rules
such that, even if the structural parameters actually take on values somewhat different
from those that might be estimated, a determinate rational expectations equilibrium is

produced.

1.2. Learnability. Even when a determinate equilibrium exists, however, the achieve-
ment of that equilibrium cannot be assured if agents do not possess rational expectations
(RE) at every point in time. The notion that the REE should be robust to expectational
errors is potentially important from the applied viewpoint, since such errors can naturally
arise in practice. For example, the economy might be subject to changes in its basic
structure or in the practices and rules of policymakers, and the assumption that agents
somehow have RE immediately after such changes is clearly strong and indeed may not
be correct empirically. Instead, it seems realistic to assume that agents must form ex-
pectations concerning economic events using the actual data produced by the economy.
In general terms, the learning approach admits the possibility that expectations might
not initially be fully rational, and that, if economic agents make forecast errors and try
to correct them over time, the economy may or may not reach the REE asymptotically.
Thus, beyond showing that a particular policy rule reliably induces a determinate REE,
one needs to show the potential for agents to learn that equilibrium. In this paper,
we assume the agents of the model do not initially have rational expectations, and that
they instead form forecasts by using recursive learning algorithms—such as recursive least
squares—based on the data produced by the economy itself. Our methodology is that of
Evans and Honkapohja (1999, 2001). We ask whether the agents in such a world can learn
the equilibria of the system induced by several classes of possible Taylor-type monetary
policy feedback rules. We use the criterion of expectational stability (a.k.a. E-stability)
to calculate whether rational expectations equilibria are stable under real time recursive

learning dynamics or not. The research of Marcet and Sargent (19894, 1989b) and Evans
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and Honkapohja (1999, 2001) has shown that the expectational stability of rational expec-
tations equilibrium governs local convergence of real time recursive learning algorithms
in a wide variety of macroeconomic models.?

We proposed learnability as a necessary additional criterion for evaluating alternative
monetary policy feedback rules in Bullard and Mitra (2000). We suggested there that
economists should only advocate policy rules which induce learnable REE. A monetary
authority that adopts a particular monetary policy rule that is not associated with a
learnable REE, simply assuming that private sector agents will coordinate on the equilib-
rium they are targeting, would encounter an unexpected surprise. Our analysis suggests
that the private sector agents attempting to learn the equilibrium might in fact cause the
macroeconomic system to diverge away from the targeted equilibrium. Learnable equi-
libria, on the other hand, do not have such problems, because in this case the learning
dynamics tend toward, and eventually coincide with, the rational expectations dynamics.

We therefore recommend learnable equilibria.

1.3. Monetary policy inertia. In this paper, we consider the effects of monetary
policy inertia—the use of policy rules in which the authorities can move cautiously in
response to unfolding events—on the determinacy and learnability of equilibrium. Inertia
is one of the well-documented features of central bank behavior in industrialized countries:
Policymakers show a clear tendency to smooth out changes in nominal interest rates in
response to changes in economic conditions. Rudebusch (1995) has provided one statistical
analysis of this fact. More casually, actual policy moves are discussed among central
bankers and in the business press in industrialized countries as occurring as sequences of
adjustments in nominal interest rates in the same direction. This is so much the case, in
fact, that policy inertia has been the source of criticism of the efforts of central bankers,
as suggestions are sometimes made that policymakers have been unwilling to move far
enough or fast enough to respond effectively to incoming information about the economy.

Our purpose in this paper is to provide an analysis of the effects of monetary policy
inertia on equilibrium determinacy and learnability in the context of a standard, small,
forward-looking model which is currently the workhorse for the study of monetary policy

rules.

I

2In this paper, we will use the terms “learnability,” “expectational stability,” “E-stability,” and “sta-

bility in the learning dynamics” interchangably.
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1.4. Model environment. We close our structural model using a variety of linear
monetary policy feedback rules made famous by the seminal work of Taylor (1993, 1999a,
1999b). In each case, the central bank is viewed as adjusting a short-term nominal in-
terest rate in response to deviations of inflation from some target level, to deviations of
real output from some natural or long-run level, and, in order to capture interest rate
smoothing, we also include a response to the deviation of the lagged interest rate from
a long run value consistent with the steady state of the model. Importantly, we require
that all of our rules are operational in the sense of McCallum (1999), who argues that
central banks cannot react to contemporaneous data on output and inflation deviations
because such information is not available to policymakers at the time decisions must be
made. Accordingly, our classes of rules are as follows: (1) Policymakers react to lagged
values of inflation deviations from target, the output gap, and interest rate deviations
(the lagged data specification); (2) Policymakers respond to their expectations of current
quarter values of inflation deviations and the output gap, in addition to lagged interest
rate deviations (the contemporaneous expectations specification); and finally, (3) Policy-
makers react to future forecasts of inflation deviations, the output gap, as well as lagged
interest rate deviations (the forward-looking specification).> We stress that all of these

possibilities are operational in McCallum’s sense.

1.5. Main results. We find that by placing a sufficiently large weight on lagged in-
terest rate deviations in each of these classes of policy rules, the policy authorities can
mitigate the threats of indeterminacy or explosive instability, and that this is one of the
primary benefits of monetary policy inertia. We also argue that policy inertia does not
hinder the learnability of rational expectations equilibrium. A key aspect of our argument
is that we work in the context of forward-looking models motivated by microfoundations—
the expectations of the private sector enter the model explicitly and do have an important
impact on the results. Combining our results on determinacy and learnability with the
Christiano-Gust caution leads us to recommend inertial policy rules as the most promis-
ing from the perspective of both generating determinacy and learnability of a rational

expectations equilibrium.

3Bullard and Mitra (2000) studied the learnability of simple monetary policy rules, that is, of policy
rules which only responded to inflation and output deviations, but not to lagged interest rate deviations.
Thus, this paper complements our earlier analysis by evaluating the learnability of generalized policy
rules, that is, those with inertia included.
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As in Bullard and Mitra (2000), we find that active, Taylor-type rules (i.e., rules
where the interest rate responds to inflation with a coefficient larger than one) can induce
learnable equilibria in the systems we analyze. We also comment on superinertial policy
rules—rules in which the reaction of the policy authorities to the lagged interest rate is
described by a coefficient greater than one. Policy rules in this class have been explored
by Rotemberg and Woodford (1999) and Woodford (1999a), among others, and have
been found to induce equilibria which possess desirable qualities in terms of the long-run
volatility of output and inflation. Rotemberg and Woodford (1999, p. 51) remark, “...
our conclusion [is] that short-term interest rates should depend ... also upon their own
past values—ideally, with a coefficient greater than one .... It is interesting to note that

[such superinertial rules] ... do not lead to instrument instability.” By instrument
instability, Rotemberg and Woodford meant the non-existence of a stationary rational
expectations equilibrium. We are able to show that operational, superinertial rules can
induce determinate equilibria not only when these rules respond to lagged data (as exam-
ined by Rotemberg and Woodford (1999)) but also when these rules react to current or
future forecasts of inflation and output deviations. We believe that this is an important
finding. We also find that superinertial rules suffer no particular problem with respect
to expectational stability. Thus there appears to be no “instrument instability” problem

from the perspective of the learning dynamics with rules in this class.

1.6. Recent related literature. One could interpret our findings as a theory of why
monetary policy inertia is observed in industrialized economies. In particular, our results
suggest why other, non-inertial types of policies might leave the economy vulnerable
to unexpected dynamics, and hence why central banks might willingly adopt inertial
behavior. Recently, several very different theories have been proposed as to why policy
inertia might be observed, for instance Woodford (1999a), Caplin and Leahy (1996), and
Sack (1998). Our results are probably best viewed as complementary to these theories.
Evans and Honkapohja (2000) analyze learning in a model like the one analyzed in
this paper, but where the monetary policy rule is derived from an optimal control ex-
ercise and is, consequently, non-inertial. They show that if the optimal control policy
of the central bank assumes rational expectations (RE) on the part of private agents,
then the rational expectations equilibrium (REE) is invariably rendered unstable when

agents follow standard adaptive learning rules. On the other hand, if the optimal control
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policy is conditioned directly on the observed (subjective) private expectations, then the
REE becomes stable under learning dynamics. In this paper, the forward-looking or the
contemporaneous expectations Taylor-type rules are also based directly on the observed
(subjective) future forecasts of inflation and output deviations of the private sector or
their contemporaneous forecasts, respectively. We too find that the Taylor-type rules an-
alyzed in this paper can induce learnability of equilibrium, and this is especially so when
there is a sufficient degree of policy inertia. This shows the importance of appropriately
conditioning monetary policy directly on the observed expectations of the private sector
both in the context of optimal policies and Taylor-type rules.

With regard to recent empirical literature concerning policy rules, our results are
comforting since actual interest rates are often modeled by a reaction rule where the
change in the funds rate responds to deviations of inflation and output from their typical
values (for an example in the U.S. case see Fuhrer and Moore (1995)). This means that the
coefficient on the lagged interest rate in the policy rule is one. The same type of policy
rules are also found to have desirable properties in terms of low output and inflation
volatility across four different structural macroeconometric models of the U.S. economy
in the study of Levin, Wieland, and Williams (1999). They report that (p. 264), “Our
analysis provides strong support for rules in which the first difference of the federal funds
rate responds to the current output gap and the deviation of the one-year inflation rate

from a specified target.”

1.7. Organization. In the next section we present the model we will analyze through-
out the paper. We also discuss the types of linear policy feedback rules we will use to
organize our analysis, and a calibrated case which we will employ. In the subsequent
sections, we present conditions for determinacy of equilibrium for each of the different
classes of policy rules. We then turn to the question of learnability of rational expecta-
tions equilibrium under our various specifications. We conclude with a summary of our

findings.

2. ENVIRONMENT

2.1. A baseline model. We study a simple and small forward-looking macroeconomic
model. This model has been developed by Woodford (1999a), based on some earlier work
in a more elaborate, optimizing framework by Rotemberg and Woodford (1998, 1999). The
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model is intended to be a parsimonious description of the U.S. economy, with mechanisms
that would remain prominent in nearly any model with complete microfoundations. We

write Woodford’s (1999a, p. 16) system as

Ty = Et.’lft+1 — 0 (’I"t - ’I"g - EAtWt+1) (1)

T = K$t+5EtWt+1 (2)

where x; is the output gap, m; is the period ¢ inflation rate defined as the percentage
change in the price level from ¢ — 1 to ¢, and r; is the nominal interest rate; each variable
is expressed as a deviation from its long run level. We normalize the targeted values
of inflation, the output gap, and the interest rate to be zero since the values of these
constants do not affect our analysis of determinacy and learnability. Since we will focus
on learning we use the notation Etﬂt+1 and Etxt+1 to denote the possibly nonrational
private sector expectations of inflation and output gap next period, respectively, whereas
the same notation without the hat symbol will denote rational expectations (RE) values.
In the nomenclature of the literature, equation (1) is sometimes called the intertemporal
IS equation whereas equation (2) is sometimes called the aggregate supply equation or the
new Phillips curve.* Equation (1) can be derived from log-linearizing the Euler equation
associated with a representative household’s saving decision. Equation (2) can be derived
from optimal pricing decisions of monopolistically competitive firms facing constraints on
the frequency of future price changes. The parameters o, k, and @ are structural and
are assumed to be positive on economic grounds. In particular, 5 € (0,1) is the discount
factor of the representative household and 7! — 1 is the steady state real rate of interest
for the economy. The interest elasticity of output, ¢, corresponds to the intertemporal
elasticity of substitution of consumption in the representative household’s utility function.
The parameter x depends on the average frequency of price changes and the elasticity of
demand faced by suppliers of goods. Prices are more nearly flexible the higher is k. The

“natural rate of interest” r* is an exogenous stochastic term that follows the process
T =iy e )

where €; is 7¢d noise with variance (rf, and 0 < p < 1 is a serial correlation parameter.

4Woodford’s model does not have any “cost push” shock as, for example, in Clarida, Gali and Gertler
(1999). We could add such shocks to (2) as well as shocks to the monetary authorities’ reaction function
that are auto-regressive of order one without affecting the results in the paper.
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2.2. Alternative specifications for setting interest rates. We close the system
by supplementing equations (1), (2), and (3), which represent the behavior of the private
sector, with a policy rule, which represents the behavior of the monetary authority. For
our purposes, the policy instrument for the monetary authority is the nominal interest rate
deviation. Our intention is to produce results across a variety of linear policy feedback
rules that have been analyzed in the literature. Once we isolate the characteristics of rules
that reliably produce both determinacy and learnability, then one could go about finding
an optimal or best-performing rule from among the ones in this set.

Taylor (1993) popularized the use of interest rate rules which reacted to information on
output and inflation observed at time ¢. Taylor’s (1993) original motivation for considering
such rules was in part that the policymaker respond in a simple and transparent way
to available data. McCallum (1993, 1997, 1999) has often argued that such reaction
functions are unrealistic, since actual policymakers do not have complete information on
variables such as output and inflation in the quarter they must make a decision. We
take McCallum’s criticism seriously, and so we do not consider the contemporaneous data
specification. Instead, we use several operational policy rules as described below.

One reaction to McCallum’s criticism is to posit that the monetary authorities must
react to last quarter’s observations on inflation and the output gap, which could possibly
be viewed as closer to the reality of central bank practice. This leads to our lagged data

specification for our interest rate equation,
Tt = PrTi—1 + PpTi—1 + @pre—1. (4)

Our complete system for the case of lagged data is, therefore, given by (1), (2), (4), and
(3).

Another way of coping with McCallum’s criticism is to assume that the authorities have
to set their interest rate instrument in response to their current ezpectations of output
gap and inflation, formed using information on output gap and inflation last period. This
may also be viewed as close to the actual practice of central banks. Thus we consider

versions of our systems where the policy feedback rule is
e = n By + 0, By + 0,1 (5)

We refer to this system as our contemporaneous expectations model and the complete

system is given by (1), (2), (5), and (3). Note that in this formulation we may assume
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that E‘tﬂt, E,x; denote the expectations of the central bank. Under learning, we will
assume that both the private sector and the bank use identical learning algorithms to form
their forecasts. This would be a reasonable first assumption and puts both the private
sector and the central bank in a symmetric position. Alternatively, following Bernanke
and Woodford (1997), it may be that the central bank simply targets the predictions of
private sector forecasters so that Etwt, E,z; will denote the expectations of the private
sector. In the latter interpretation it will only be the private sector which is learning.

A final method of coping with McCallum’s criticism is to assume that the authorities
set their interest rate instrument in response to their forecasts of output gap and inflation,
so that the policy rule itself is forward-looking. Some of the authors discussing forward-
looking rules include Batini and Haldane (1999) and Bernanke and Woodford (1997). In
fact, forward-looking rules have been found to describe the behavior of monetary policy,
for instance, in Germany, Japan, and the US since 1979 as described in Clarida, Gali, and
Gertler (1998). We consider simple versions of such forward-looking policy rules, ones in
which the monetary authority looks just one quarter ahead when setting its interest rate
instrument. This yields a specification, which we call the forward expectations model, in

which the interest rate equation is

e = BT + 0 B + ooreo. (6)

We can again interpret the above equation in two ways. It may be that both policymakers
and private agents have homogeneous expectations of the future, and in the analysis of
learning we impute identical learning algorithms to both. Alternately, it may be that the
central bank simply targets the predictions of private sector forecasters. The complete

system for the case of forward expectations model is given by (1), (2), (6), and (3).

2.3. Methodology. Our determinacy analysis follows conventional practice. For the
analysis of the model under learning, we assume the agents in the model do not have ra-
tional expectations at the outset, and instead, we replace rationally expected values with
versions of least squares learning rules. Thus, the agents form expectations using the data
actually generated by the economy. We think of the agents as using versions of recursive
least squares learning rules. We use the results of Evans and Honkapohja (1999, 2001) and
calculate the conditions for expectational stability (E-stability). Expectational stability
is a notional time concept, but Evans and Honkapohja (1999, 2001) have shown that it
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Table 1. Parameter configurations.
Parameter Controls Value or range
o ! Intertemporal substitution 157
K Price stickiness .024
Jé] Household’s discount factor .99
O Coefficient on inflation 0<p, <4
@y Coefficient on lagged interest rate 0,.65,5
o Coefficient on output gap 0<¢p, <25
P Serial correlation of shock .35

Table 1: Parameter configurations. We illustrate our analytical findings using these parameter
values from Woodford (1999a).

is very closely associated with stability under real time adaptive learning. In particular,
under quite general conditions, when E-stability holds recursive least squares learning is
locally convergent to the rational expectations equilibrium. Evans and Honkapohja (1999,
2001) have also shown that, under the assumption that the fundamental disturbances have
bounded support, if a rational expectations equilibrium is not E-stable, then the proba-
bility of convergence of the recursive least squares algorithm to the rational expectations

equilibrium is zero. We define E-stability precisely later in the paper.

2.4. Parameters. Woodford (1999a) calibrated the parameters ¢ and x of a similar
model based on econometric estimates from Rotemberg and Woodford (1998, 1999). We
use these values throughout the paper to illustrate our analytical findings. The value
of 3, which corresponds to the representative household’s discount factor in the more
general model, is set to .99 throughout, also following Woodford (1999a). Rotemberg and
Woodford (1999) argue that the coefficients in the equations describing their economy
are not dependent on parameters in the monetary authority’s policy rule. This is their
response to the Lucas critique. We follow their analysis and accordingly we study a
number of possible policy rules. Calibrations of these rules correspond to values for the
parameters ¢, ¢,., and ¢,. Table 1 summarizes our calibration scenarios.

We organize our analysis as follows. We essentially consider three cases corresponding

to the three different information structures (lagged data, contemporaneous expectations,
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and forward expectations) for the policy authority. For later reference, we call rules with
¢r > 1 activist rules and those with ¢ < 1 passive rules. We also call rules with
@, > 1 super-inertial rules. In the next section, we consider the determinacy of rational
expectations equilibrium, and then we follow that with a section analyzing the learnability
of equilibrium. We maintain the following assumptions throughout the paper: ¢, > 0

and ¢, > 0, with at least one strictly positive, ¢, >0,k > 0,0 >0,and 0 < § < 1.

3. INERTIA AND DETERMINACY

3.1. Lagged data in the policy rule. We start by considering the system with
Taylor-type monetary policy feedback rules in which policymakers react to lagged values
of inflation, output and interest rate deviations. Simple (no lagged interest rate) lagged
data rules can easily lead to (locally) explosive situations—a phenomenon sometimes de-
scribed as instrument-induced instability.> Indeed, Bullard and Mitra (2000) note that
a sufficiently aggressive response to inflation and output deviations invariably leads to
explosiveness, rendering quantitatively important portions of the parameter space dy-
namically unstable, as shown in their Figure 2, or similarly in Figure 2.15 of Rotemberg
and Woodford (1999). We now show that this problem need not arise if the central bank
displays sufficient inertia in setting its interest rate.

In this case, our policy rule is given by equation (4), so that the complete system
becomes equations (1), (2), (4), and (3). We can iterate the equation (4) one time period

forward and rewrite our system of three equations as

1 0 o o 1 0 0 Eixiyq o
—K 1 0 T = 0 6 0 Et7Tt+1 + 0 ’I".?. (7)
Yr Px Pr T 0 0 1 T4l 0

The matrix which is relevant for uniqueness is obtained by multiplying the inverse of the
3 x 3 left hand matrix with the right hand side matrix associated with the expectations
variables. Since 14 is pre-determined, we need exactly two of the eigenvalues of this matrix
to be inside the unit circle for determinacy. However, it is easier to work with the inverse
of this relevant matrix given by

1+k8 10 -8 lo o

B, = —kB71 gt 0 |. (8)
Py Cr Py

58ee, for example, McCallum (1999). We ask the reader to keep in mind that instability in this sense
is distinct from the possibility of instability in the learning dynamics which we will discuss later in the

paper.
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We need exactly one eigenvalue of B; to be inside the unit circle for uniqueness. It is easy
to show that with small values of ¢ and ¢,, a value of ¢, > 1 guarantees uniqueness of
equilibria, whereas ¢, < 1 causes indeterminacy.® More generally, we can provide some
intuition for the finding in Rotemberg and Woodford (1999) that large values of ¢, lead

to a unique equilibrium with the following proposition.

Proposition 1. A set of sufficient conditions for unique equilibria are

H(¢w+¢7’71)+(1716)90m >0’ (9)

and

¢, > Max{l—ro,0(p, + Kke.)}. (10)

Proof. See Appendix A. l

In particular, a sufficiently aggressive response to the lagged interest rate guarantees
uniqueness. For example, values of ¢, > 1 combined with small values of k, such as
the one employed by Rotemberg and Woodford (1999), help to satisfy this condition,
and create a relatively large region of determinate equilibria. We can also explain the
finding in McCallum and Nelson (1999, pp. 34-35) that rules with large values of ¢ or
¢, still deliver dynamically stable results, so long as there is a sufficient level of policy
inertia. Their first explanation for this surprising finding can be understood from our
condition (10). One of the sufficient conditions for uniqueness is for ¢, > o(p, + K¢, ),
so consequently, this depends on the structural parameters o and k. Relatively small
values of ¢ (that is, the slope of the intertemporal IS function with respect to the interest
rate) and k (the slope of the price adjustment equation) means that this condition is
likely to be easily satisfied. The intuition of McCallum and Nelson (1999) is, therefore,
verified here to this extent: Small values of these two parameters, which are crucial for the
transmission of policy actions to inflation, reduce the possibility of explosive instrument
instability. On the other hand, we also see (from conditions (9) and (10)) that for any
given values of structural parameters, if policy is sufficiently inertial then the model always

delivers dynamically stable results.” This is in striking contrast to the case when there

81f ¢,. = ¢, = 0, then one of the eigenvalues of B is ¢,., whereas of the other two positive eigenvalues,
one is less than 1 and the other is greater than 1. By continuity, the same is true for values of ¢, and
¢, in a neighborhood of zero.

"We can also give some intuition for the phenomenon McCallum and Nelson describe in their footnote
32 (p. 36). If ¢, is made very large without correspondingly increasing ,. or if o is “increased sharply”
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is no inertia (p, = 0), because, as we have stressed, it is relatively easy to get explosive
situations in that case. Inertial behavior on the part of the central bank appears, from this
perspective, to be quite desirable—instead of being the cause of instrument instability, it

actually works toward defusing this tendency.

3.2. Contemporaneous expectations in the policy rule. Under contemporane-
ous expectations, the system is given by equations (1), (2), (5), and (3). We first define

the vector of endogenous variables, y; = (z, 7, 7¢), and put our system in the following

form
Y = BoErys + B1Eyeqr + 6ys—1 + sery, (11)
where
—0P, —0Px 0
Bo=| —kop, —kop, 0 |, (12)
P ¢r 0
1 o 0
Bi=|w B4ro 0|, (13)
0 0 0
and
0 0 —op,
5=10 0 —kop, |. (14)
0 0 ®,

Note that it may perhaps be more natural to assume, as is done in Bullard and Mitra
(2000), that expectations of both the private sector and the bank are formed at time ¢ — 1
in equation (11). However, the conditions for determinacy and (later on) learnability of
equilibrium for the formulation given by equation (11) can be shown to be the same as
for the case with ¢ — 1 dating of expectations. We maintain this since most of the related
papers on monetary policy assume t dating of expectations.

It is easiest to obtain the conditions for determinacy in this case by using the Blanchard-
Kahn technique, as exposited in Evans and Honkapohja (2001, ch. 10).8 For the free
variables we again have x; = y;, and for the pre-determined variables, x? = {ri* r;_;}.

We start with the formulation

x{ = BoEwx} + B1Eyxy, | + Caf, (15)

(even with moderate values of ¢, ) then the sufficiency condition is likely to be violated. As an aside
we note that with contemporaneous data in the policy rule, the sufficiency conditions do not involve the
structural parameters, and hence one would not expect instability to arise in these cases.

8The slight difference is the changed dating of expectations which, as mentioned before, is not impor-
tant for our purposes.
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22 = Ra} | + Sx? | 4 white noise terms. (16)

It is easy to check that By = 8, B = 34,

o —p,0
C=| ko —krp.0o |, (17)
0 @
0 0O
R= [ 00 1 } , (18)
and
_| P 0
5— [ p 0 } | (19)
The matrix J corresponding to Evans and Honkapohja (2001, ch. 10) is defined by
-1
| I-By —-C By 0
=S )
1 o 0 plo -0
K B+ ko 0 wplo —KO
— 0 0 0 0 1
0 0 0 pt 0
_$utRer  _gut(sdBe Ve g _eotrer o e tRe,
@, oo, po—lo,. oy,

For a unique equilibrium we need three eigenvalues of J to be inside the unit circle. It is
easy to see, from the structure of J, that two of its eigenvalues are 0 and p~! and that

the remaining three eigenvalues of J are those of the matrix

1 o -0
A= K B+ ko —KOo ) (21)
—(ppthor)  =lp,H(stBoerlo [0 4o trelo
@ P P

Consequently, for uniqueness under contemporaneous expectations, we need exactly two
eigenvalues of A to be inside the unit circle. As it turns out, it is easier to prove our
results by working with the inverse of this matrix which is given by
L+ ko +op, (e, —F7") op,
e —3 'k gt 0 |. (22)
Pa Pr Pr

We need exactly one eigenvalue of A~! to be inside the unit circle for determinacy.?

9We note here that the same condition would determine determinacy if the central bank used con-
temporaneous data in its policy rule as in Taylor (1993). In this sense, we can make the assumption
of contemporaneous data in the policy rule operational by assuming that the central bank responds to
contemporanous forecasts when setting the nominal interest rate, and that, from the point of view of
determinacy, the conditions would be unchanged.
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It is again easy to show that with small values of ¢ and ¢_, ¢, > 1 guarantees the
uniqueness of equilibrium whereas ¢, < 1 causes indeterminacy. More generally, we can
show that sufficiently inertial policy is enough to guarantee the existence of a unique

stationary rational expectations equilibrium.

Proposition 2. Under contemporaneous expectations policy rules, ¢, > 1 guarantees

uniqueness of equilibrium.
Proof. See Appendix B. l

3.3. Forward expectations in the policy rule. The final information structure we
consider is to assume that policymakers respond to forecasts of inflation and output devia-
tions. This type of policy rule seems to describe well the monetary policy rules adopted by
major industrialized countries. Clarida, Gali and Gertler (1998) present evidence which
suggests that these central banks have in fact been forward looking since 1979: they re-
spond to anticipated inflation instead of lagged inflation. However, as we have stressed,
Bernanke and Woodford (1997) have argued that such rules can easily lead to problems of
indeterminacy. Similarly, Bullard and Mitra (2000) verified that a sufficiently aggressive
response to inflation and output deviations is associated with indeterminacy in this case.
However, in this section we show that this problem can be circumvented by assuming
a sufficiently aggressive response to the lagged interest rate on the part of the central
bank. Consequently, our results suggest that central banks employing forward-looking
policy rules need not encounter indeterminacy so long as their behavior displays sufficient
interest rate smoothing.

With forward expectations the complete system is given by equations (1), (2), (6), and
(3). We again have two free endogenous variables (x;, 7;) and one predetermined variable,

r:_1, and our system is

1 0 O Ty 1 o —0 Eixiiq o
-k 1 0 Tt = 0 6 0 Et7Tt+1 + 0 T?. (23)
0 0 ¢, || ra —py —pp 1 Tt 0

This time the matrix that determines uniqueness is given by

1 o —0

B= K B+ ko —ko (24)
—o0rt —prrt ot
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and we need exactly two eigenvalues of B to be inside the unit circle for determinacy. We
first note that with small values of ¢ and ¢, ¢, > 1 guarantees uniqueness of equilibrium
whereas ¢,. < 1 causes indeterminacy. This is the same condition that governs uniqueness
(or indeterminacy) of equilibrium in the case of contemporaneous expectations and lagged
data policy rules. We are, however, able to give more general conditions for determinacy

of equilibrium.
Proposition 3. A set of sufficient conditions for unique equilibria are
e 21 (25)
[k + 20711+ B)I(1 +¢,) > kg + (1+ ), (26)

Proof. See Appendix C. B
For given values of ¢, and ¢, a large enough value of ¢, invariably leads to uniqueness.

In particular, for all ¢ and ¢,, any value of ¢, such that
¢ > Max{l,[5+ 207 (1 + B)] 7 [se, + (1+ B)e,] — 1}

always leads to a unique equilibrium. In particular, as long as the response to inflation and
output deviations are not overly aggressive, any value of ¢, > 1 suffices for uniqueness.
We can also have unique equilibria with passive rules as long as the central bank reacts
aggressively to the lagged interest rate. As mentioned before, in earlier work it has
been observed that forward-looking rules easily lead to indeterminacy. In particular, an
aggressive response to inflation and/or output invariably causes this problem. For baseline
values of the structural parameters such as those suggested by Woodford (1999a) this
renders a quantitatively important part of the parameter space in (., ¢,) indeterminate
(see Figure 3 in Bullard and Mitra (2000)). However, inertial behavior on the part of the

monetary authority defuses this tendency.

3.4. Summary of the results on determinacy. We have argued that a sufficient
degree of monetary policy inertia will always be associated with determinacy of rational
expectations equilibrium in our systems. This is true across three types of operational,
Taylor-type policy feedback rules—ones where the policy authorities respond to lagged
data, to contemporaneous expectations, or to forward expectations of macroeconomic

conditions. In each case, a sufficiently high degree of policy inertia renders equilibrium
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determinate, while the same cannot be said for the response to inflation or the response
to output in the policy rule. For those parameters, a response which is too aggressive can,
in some situations, lead to explosive instability or to indeterminacy.

We think the tendency of policy inertia to help generate determinacy may be an
important reason why so much inertia is observed in the actual monetary policies of
industrialized countries. However, too much policy inertia may cause another type of

instability—that of the learning dynamics. We now turn to this topic.

4. INERTIA AND LEARNABILITY
4.1. Lagged data in the policy rule. We now consider learning, beginning with
the case in which the policy authority responds to lagged data. In this case, the complete
system is given by equations (1), (2), (4), and (3). We analyze the expectational stability
of the unique stationary minimum state variable (MSV) solution (see McCallum (1983)).
For the analysis of learning, we need to compute the MSV solution and for this we need to
obtain a relationship between the current endogenous variables (and their lags) and future
expectations. This relationship is now obtained by first defining the vector of endogenous
variables, y; = (x4, m¢,7¢), and by putting our system in the form y, = 3, Etyt+1 + 6y 1+

»ry where 3, and ¢ are given by

1 o 0
Bi=| Kk B+ro 0|, (27)
0 0 0
and
—0Py —0Pr —0P,
b= | —Kop, —kKop, —KOP, |. (28)
Pu Pr Pr

The MSV solutions for this model take the form
Y =a+ by, 1+ o) (29)
and the MSV solutions for @, b and ¢ are given by
a=0, (30)

b= (I—B,b)'6, (31)

and

&= (I = B1b) " (5 + pBy0). (32)
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Because equation (31) is a matrix quadratic, there are potentially multiple solutions for
b. The determinate case corresponds to the situation when there is a unique solution for b
with all its eigenvalues inside the unit circle. The condition for this is that one eigenvalue
of (8) be inside the unit circle as shown in Section 3.1. For the analysis of learning, we

assume that agents have a perceived law of motion (PLM) of the form
Y =a+by1+cry (33)

corresponding to the MSV solution. We then compute the following expectation (assuming

that the time ¢ information set does not include y;)

Etyt+1 = a-+ bEtyt + cpry

= a+bla+by 1 +cry)+copry

(I +b)a+b"y1 + (be+ cp)ry.

Inserting the above computed expectations into the actual model one obtains the following

actual law of motion (ALM) of y; as

ye = (81 + Bib)a + (B16° + 8)yi—1 + (B1be + Bycp + )y (34)
The mapping from the PLM to the ALM takes the form
T(a,b,¢) = ((B1 + B1b)a, B16* + 6, Brbe + Byep + 5). (35)
Expectational stability is then determined by the matrix differential equation

di; (a,b,¢) =T (a,b,c) — (a,b,c). (36)

The fixed points of equation (36) give us the MSV solution (a, b, ¢). We say that a particu-
lar MSV solution (@, b, €) is expectationally stable if equation (36) is locally asymptotically
stable at that point. Our system is in a form where we can apply the results of Evans
and Honkapohja (2001, ch. 10). We assume that the private sector only has access to
information on the previous period’s values of output, inflation and interest rate in form-
ing its forecasts. We believe this assumption to be realistic since contemporaneous values
of these variables are rarely available in practice.'® It can then be shown that for E-

stability of any MSV solution with ¢-dating of expectations (and assuming that the time ¢

10We assume that the agents use information on the contemporaneous natural interest rate, Ty, in
forming their forecasts; however, note that the results on FE-stability are unaffected even if we assume
that they only observe the last quarter’s natural interest rate in forming their forecasts.
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FIGURE 1. Lagged Data
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Figure 1: With ¢,. = 0, the region of the parameter space associated with both determinate
and learnable rational exepectations equilibria involves relatively small values for ¢, and
generally ¢ > 1. In the blank region, determinacy does not hold. When ¢, = .65,
which is close to empirical estimates in the literature, the region of the parameter space
associated with determinacy and learnability expands, relative to the no inertia case. For
a large value of ¢, such as ¢, = 5 as shown here, much of the pictured (¢, ¢,) space is
associated with both determinacy and learnability.

information set is (1, y;_q,75")’) we require the eigenvalues of the following three matrices:

b By + 1w (B1D), (37)
PB4 +/61Z_77 (38)
By + B1b (39)

to have real parts less than one. If any eigenvalue of the above matrices has a real part
larger than one, then the MSV solution is not E-stable, and hence it cannot be learned
by boundedly rational agents using recursive least squares in their estimation exercise.
We illustrate regions of determinacy and FE-stability for the case when the policy
authorities react to lagged data in Figure 1. In this figure, we have employed the baseline
parameter values described in Table 1. Figure 1 contains three panels, the first of which
corresponds to the case where there is no policy inertia, so that ¢, = 0. This case was
analyzed in Bullard and Mitra (2000). The figure is drawn in (¢, ¢, ) space, holding all

other parameters at their baseline values. Vertical lines in the figure denote parameter
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combinations that generate determinacy, and that also generate local stability in the
learning dynamics. Horizontal lines, on the other hand, indicate parameter combinations
that generate determinacy, but where the unique equilibrium is unstable in the learning
dynamics. In this and all figures, the blank region is not associated with determinacy.
The ¢, = 0 portion of this figure illustrates that determinacy does not always imply
learnability. It also illustrates that active Taylor-type rules with little or no reaction to
other variables (either the output gap or the lagged interest rate) tend to be associated
with both determinacy and learnability. However, one judgement concerning this panel
might be that of Christiano and Gust (1999), since parameter values within an empirically
relevant range are sometimes associated with equilibria which are not determinate, or
which are determinate but not learnable.

The second panel of Figure 1 illustrates how the situation in is improved when the
degree of monetary policy inertia is increased from zero to ¢, = .65. This value is close to
estimates of the degree of policy inertia based on U.S. postwar data. In this case, the region
of the (p,.,¢,) space associated with both determinacy and learnability of equilibrium
has been enlarged. The region associated with determinate, but unlearnable, rational
expectations equilibria has been eliminated. This effect becomes even more pronounced
in the third panel, where a very large value of ¢, is employed, specifically, ¢, = 5. In
this case, a much larger portion of the space is determinate and learnable. Thus, we see
that larger degrees of policy inertia enhance the prospects for determinacy considerably,
relative to the case where there is no policy inertia at all. In addition, learnability does not
appear to be jeopardized by large degrees of policy inertia, as the determinate equilibria
are also learnable, even when ¢, is large.

These themes also carry over to other specifications for the policy rule, as we now

show.

4.2. Contemporaneous expectations in the policy rule. When policymakers em-
ploy a rule in which they react to their expectations of current economic conditions, the
complete model is given by equations (1), (2), (5), and (3) which can be rewritten in the

form of equation (11) as shown in Section 3.2. The MSV solutions then take the form

ye = a+ by +ery
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with @ = 0,
b=(I— By~ 5,076, (40)
and
¢ = BoC + By (be+ ep) + k. (41)

In general b will have multiple solutions because equation (40) is a matrix quadratic. In
the case when there exists a unique stationary solution, however, only one solution for b
will have all its eigenvalues less than one in absolute value. The condition for a unique
stationary solution is that one eigenvalue of (22) be less than one in modulus, as shown
in Section 3.2.

For the analysis of learning, we assume that agents have a PLM of the form
ye = a+ byr—1 + ery (42)
We then compute the expectation

Etyt+1 = a+ bEtyt +cry!

a+bla+byi_1+cry)+orp

(I +b)a+ b*yi—1 + (be + cp)ry.

Note that if we interpret this model as one where the central bank is also learning, then
we are effectively imputing identical learning algorithms to both the bank and the private
sector. This seems to be reasonable first approximation. Inserting these computed expec-
tations into the actual model one obtains the following actual law of motion (ALM) of y,

as

ye = (B + By + B1b)a + (Bob + B,6% + 8)ys—1 + (Byc + Bybe + Byep + »)rf. (43)

Thus the mapping from the PLM to the ALM takes the form

T(a,b,c) = ((Bg + By + B1b)a, Byb+ ,Ble + 6, Boc+ Bibe+ Bicp + ). (44)

Finally, expectational stability is determined by the following matrix differential equation

diT (a,b,¢) =T (a,b,c) — (a,b,c). (45)

The fixed points of equation (45) give us the REE solution. We say that a particular REE

(d,B,E) is E-stable if equation (45) is locally asymptotically stable at the point. Our
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FIGURE 2. Contemporaneous Expectations
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Figure 2: Under contemporaneous expectations Taylor-type rules, much of the pictured
(¢., ¢, ) space is associated with determinate and learnable rational expectations equi-
libria. With ¢, = .65, more of the pictured (¢,,¢,) space is determinate and learnable,
relative to the case with ¢, = 0. With large values of ¢,, the entire pictured (¢.,¢,)
space is associated with equilibria which are both determinate and learnable.

system is again in a form where we can apply the results of Evans and Honkapohja (2001,
ch. 10). We again assume that the private sector only has access to information on the
previous period’s values of output, inflation and the interest rate in forming its forecasts.
It can then be shown that for E-stability of any MSV solution (assuming that the time
t information set for both the private sector and the central bank is (1,y; ;,7})’), we

require the eigenvalues of the three matrices

VB, +1®(8y+5,b), (46)
P61 + 60 + 611_% (47)

and
Bo+ By + Byb (48)

to have real parts less than 1. Otherwise, the solution is not E-stable.

Figure 2 illustrates determinacy and learnability in the contemporaneous expectations
case using the baseline parameter values presented in Table 1. The first panel of the figure
shows that a large portion of the (¢, ¢, ) space is associated with both determinacy and

learnability even when policy is noninertial, that is, with ¢, = 0 (again this case was
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analyzed in Bullard and Mitra (2000)). Nevertheless, the Christiano and Gust (1999)
warning would still apply here.

The second and third panels show how the prospects for determinacy and learnability
are enhanced by increased monetary policy inertia, first for an empirically relevant value
of ¢, = .65, and then for a much larger, superinertial value of ¢, = 5. In the latter case,

the entire pictured region becomes associated with both determinacy and learnability.

4.3. Forward expectations in the policy rule. With forward expectations the
complete system is given by equations (1), (2), (6), and (3). We analyze the E-stability of
the unique stationary MSV solution, under the assumption that both the private sector
and the monetary policymakers have homogenous expectations, and that they are learning
using identical versions of recursive least squares. For the analysis of learning, we need
to find the MSV solution. Before doing so, we need to obtain a relationship between the
current endogenous variables and their lags and future expectations. This relationship is
now obtained by first defining the vector of endogenous variables, y; = (z, 7, r¢), and by

putting our system in the form
Yo = BrEyer + Sye 1 + sy, (49)

where 6, and ¢ are now given by

U((T_l - 50:(;) (7(1 - 5077) 0
ﬁl = HU(O—_l - 50:1:) O—(H + /80—_1 - F‘:SDW) 0 ) (50)
P P 0
and
0 0 —op,
5=10 0 —kop, |. (51)
0 0 ®,

As in the case of lagged data, the MSV solutions take the form (29) and the MSV solutions
for @,b and ¢ are given by (30), (31) and (32). The determinate case corresponds to the
situation when there is a unique solution for b with all its eigenvalues inside the unit circle.
The condition for this is given in Section 3.3. For the analysis of learning, we assume that
agents have a PLM of the form of equation (33) corresponding to the MSV solution. We
then compute the required expectations as in the case of lagged data (assuming that the
time ¢ information set does not include y;) and arrive at the actual law of motion (34).

Note that again if we interpret this model as one where the central bank is also learning,
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FIGURE 3. Forward Expectations
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Figure 3: For small values of ¢,., forward-looking policy rules generate determinacy and
learnability provided ¢, > 1 and ¢,, is sufficiently small. For ¢, = .65, a larger region of
the (¢,,%,) space pictured is associated with both determinacy and learnability. Large
values of ¢, generate relatively large regions of determinacy and learnability in (¢, ¢,)
space.

then we effectively assume that both the policy authorities and the private sector use
identical learning algorithms. The corresponding 7" map in this case is still given by
equation (35). The fixed points of equation (36) give us the MSV solution (EL,Z_), E) . We
say that a particular MSV solution (C_L,l_), E) is expectationally stable if equation (36) is
locally asymptotically stable at that point. For E-stability of any MSV solution with ¢
dating of expectations (and assuming that the time ¢ information set is (1,y; ;,7r})’) we
require the eigenvalues of the matrices (37), (38) and (39) have real parts less than one.
If any eigenvalue of the above matrices has a real part larger than one, then the MSV
solution is not E-stable.

Figure 3 illustrates how, even for this case where the policymakers are reacting to
expectations of future inflation deviations and output gaps, policy inertia tends to enhance
the prospects for determinacy and learnability of a rational expectations equilibrium. For
very low values of ,., such as the value ¢, = 0.1 in the first panel, we again find that
active Taylor-type rules with little or no reaction to other variables are associated with
both determinacy and learnability of equilibrium (a similar figure obtains for ¢, = 0; see

Figure 3 of Bullard and Mitra (2000)). However, the large region in the figure which is
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not associated with determinacy might be enough to limit recommendations of such rules
via arguments such as those of Christiano and Gust (1999). However, the second and
third panels of Figure 3 show that increased policy inertia can mitigate such concerns,
creating a larger region of determinacy, and in addition, that in these cases determinate

equilibria are also learnable.

4.4. Summary of the results under learning. In Figure 1, we illustrated a sit-
uation where a region of the parameter space that generated determinacy of rational
expectations equilibrium failed to generate learnability. Significantly, that region was as-
sociated with a passive Taylor-type rule (¢, < 1) as well as no inertial element of monetary
policy. An active Taylor-type rule was found to often be associated with expectational
stability in Bullard and Mitra (2000). Increasing the degree of monetary policy inertia
appears to also be associated with learnability of rational expectations equilibrium in our
setting. Even very large values of the policy inertia parameter do not disturb the stability
of the learning dynamics according to these calculations.

We stress that the learnability criterion we employ is a minimal one in the following
sense. We are giving the agents in the model the correct specification of the vector autore-
gression they need to estimate recursively in order to learn the equilibrium of the system
in which they operate. We are also giving the agents initial conditions in the neighbor-
hood of this equilibrium. Our view is that, if the agents cannot learn the equilibrium
under such favorable circumstances, then the equilibrium seems to us to be a suspect for
general instability in actual economies.

Evans and Honkapohja (2000) had found in the context of a similar model that the
stability of optimal monetary policies is guaranteed if policy is based directly on the
observed expectations of private agents. We too find that it is desirable to base the
Taylor-type rules directly on these expectations. We note here that Hall and Mankiw
(1994) had similarly emphasized the importance of targeting the predictions of private
sector forecasters on the part of the central bank in the context of targeting a given growth
rate of nominal GDP.!!

Before concluding this section, we also remark that the sensitivity of aggregate de-

11T here is a question of how to implement such a proposal. In fact, there are several ways of doing so.
One may view the commercial forecasts published by various agencies as being the expectations of the
private sector. In the U.S., for instance, there is a published consensus of respected private forecasters
(Blue Chip Economic Indicators). See Romer and Romer (2000) for an extensive discussion of this issue.
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mand to changes in interest rates, as measured by o, is important for determinacy and
learnability, at least for the class of rules based on lagged data and forward expectations.
This is obvious from the conditions in Propositions 1 and 3 which show that relatively
small values of o promote determinacy of equilibrium. Typically, the values used for this
parameter are much smaller than the one used in Woodford (1999a). For example, Clar-
ida, Gali, and Gertler (2000) use a value of o = 1 whereas McCallum and Nelson (1999)
estimate a still smaller value of o for the U.S. economy. If we plot the figures for rules
based on lagged data and forward expectations with the parameter values used in Clarida,
Gali, and Gertler (2000), for instance, then a much larger portion of the parameter space

can be shown to be determinate and stable under learning dynamics.

5. CONCLUSIONS

One of the key issues when evaluating monetary policy rules since the work of Sargent and
Wallace (1975) is whether they lead to a determinate outcome or not. Simple interest
rate rules have been evaluated under this criterion in Bullard and Mitra (2000). The
current paper can be taken to be a further step in evaluating generalized policy rules—
rules in which the nominal interest rate instrument is also adjusted in response to the
lagged interest rate. We provide analytical results which indicate how increased degrees of
interest rate smoothing can contribute to a determinate equilibrium outcome across all of
our specifications of monetary policy rules—a finding which we believe substantially alters
their evaluation. For example, one of the main weaknesses of backward-looking policy rules
(that is, rules which respond to lagged data) and of forward-looking rules is believed to
be the fact that they easily lead to explosive instability or indeterminacy, respectively—a
tendency which we found to be defused by interest rate smoothing. Consequently, both
these types of policy rules—which are considered particularly realistic in terms of actual
central bank behavior—should not be deemed undesirable on account of their determinacy
properties, once policy inertia is taken into account.

Thus, a central message of this paper is that interest rate smoothing can substitute for
the aggressive response of the interest rate to inflation in pushing the economy towards to
an unique equilibrium. The intuition behind this phenomenon is provided in Rotemberg
and Woodford (1999) and Woodford (1999a, 1999b). While it is true that for arbitrary
paths of endogenous variables like inflation and output, “explosive” monetary policy rules

would cause explosive paths of endogenous variables, in equilibrium the only paths that
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are possible are the ones which do not cause these variables to be non-stationary. A
commitment to raise interest rates later, after inflation increases, is sufficient to cause
an immediate contraction of aggregate demand in response to a shock that is expected
to give rise to inflationary pressures. The reasons for this are two fold: firstly, aggregate
demand is affected by expectations of future interest rates (or equivalently long rates) and
not simply by current short rates and, secondly, the private sector is forward looking (has
rational expectations). Persistent changes in the short term rates permit a large effect on
long term rates and, therefore, a large effect of monetary policy on aggregate demand,
pushing the economy back towards the equilibrium.

However, if we abstract from rational expectations on the part of private sector agents,
then there could be a problem with such rules. For example, if agents try to learn the
underlying model parameters through some version of adaptive learning, then they may
not be able to coordinate on the unique equilibrium. Somewhat surprisingly, this type of
instrument instability does not seem to plague even the superinertial class of policy rules
we analyzed, regardless of the nature of the information set that policymakers employ.

We think this is an interesting finding worthy of further analysis.
REFERENCES

[1] Barbeau E.J. 1989. Polynomials. Springer Verlag.

[2] Batini, N., and A. Haldane 1999. “Forward-looking Rules for Monetary Policy.” In
J. Taylor, ed. 1999. Monetary Policy Rules.

[3] Bernanke, B., and M. Woodford. 1997. “Inflation Forecasts and Monetary Policy.”
Journal of Money, Credit, and Banking 24: 653-684.

[4] Blanchard, O., and C. Khan. 1980. “The Solution of Linear Difference Equations
Under Rational Expectations.” Econometrica 48: 1305-1311.

[5] Bullard, J., and K. Mitra. 2000. “Learning about Monetary Policy Rules.” Working
paper, Federal Reserve Bank of St. Louis.

[6] Caplin, A., and J. Leahy. 1996. “Monetary Policy as a Process of Search.” American
Economic Review 86: 689-702.

[7] Carlstrom, C., and T. Fuerst. 1999. “Real Indeterminacy in Monetary Models with



[15]

[16]

[17]

18]

DETERMINACY, LEARNABILITY, AND MONETARY POLICY INERTIA 28

Nominal Interest Rate Distortions.” Working paper, Federal Reserve Bank of Cleve-

land.

Carlstrom, C., and T. Fuerst. 2000. “Forward-Looking versus Backward-Looking Tay-
lor Rules.” Working paper, Federal Reserve Bank of Cleveland, August.

Christiano, L., and C. Gust. 1999. “Comment.” (on ‘Robustness of Simple Monetary
Policy Rules under Model Uncertainty,” by Levin, A., V. Wieland and J. Williams.).
In J. Taylor, ed., Monetary Policy Rules, Chicago: University of Chicago Press.

Clarida, R., J. Gali, and M. Gertler. 1998. “Monetary Policy Rules in Practice: Some
International Evidence.” European Economic Review 42: 1033-1067.

Clarida, R., J. Gali, and M. Gertler. 1999. “The Science of Monetary Policy: A New
Keynesian Perspective.” Journal of Economic Literature XXXVII(4): 1661-1707.

Clarida, R., J. Gali, and M. Gertler. 2000. “Monetary Policy Rules and Macroe-
conomic Stability: Evidence and Some Theory.” Quarterly Journal of FEconomics,

February, p. 147-180.

Evans, G., and S. Honkapohja. 1999. “Learning Dynamics.” In J. Taylor and M.
Woodford, eds., Handbook of Macroeconomics. Amsterdam: North-Holland.

Evans, G. and S. Honkapohja. 2000. “Expectations and the Stability Problem for
Optimal Monetary Policies.” Manuscript, University of Oregon and University of

Helsinki.

Evans, G., and S. Honkapohja. 2001. Learning and Expectations in Macroeconomics.

Princeton, New Jersey: Princeton University Press, forthcoming.

Farmer, R. 1991. “The Lucas Critique, Policy Invariance and Multiple Equilibria.”
Review of Economic Studies 58: 321-332.

Farmer, R.. 1999. The Macroeconomics of Self-Fulfilling Prophecies. MIT Press.

Fuhrer, J., and G. Moore. 1995. “Monetary Policy Trade-offs and the Correlation
Between Nominal Interest Rates and Real Output.” American Economic Review 85

(March): 219-239.



[19]

[20]

[26]

[27]

DETERMINACY, LEARNABILITY, AND MONETARY POLICY INERTIA 29

Hall, R. and Mankiw G. 1994. “Nominal Income Targeting.” In G. Mankiw, ed.,
Monetary Policy. Chicago: University of Chicago Press for the NBER.

Levin, A., V. Wieland and J. Williams. 1999. “Robustness of Simple Monetary Policy
Rules under Model Uncertainty.” In J. Taylor, ed., Monetary Policy Rules, Chicago:
University of Chicago Press.

Marcet, A., and T. Sargent. 1989a. “Convergence of Least Squares Learning Mech-
anisms in Self-referential Linear Stochastic Models.” Journal of Economic Theory

48(2): 337-68.

Marcet, A., and T. Sargent. 19895b. “Convergence of Least-Squares Learning in Envi-
ronments with Hidden State Variables and Private Information.” Journal of Political

Economy 97(6): 1306-22.

McCallum, B. 1983. “On Non-Uniqueness in Rational Expectations Models: An At-

tempt at Perspective.” Journal of Monetary Economics 11: 134-168.

McCallum, B. 1993. “Discretion Versus Policy Rules in Practice: Two Critical Points.
A Comment.” Carnegie-Rochester Conference Series on Public Policy 39: 215-220.

McCallum, B. 1997. “Comments.” (on ‘An Optimization-Based Econometric Frame-
work for the Evaluation of Monetary Policy,” by J. Rotemberg and M. Woodford.)
NBER Macroeconomics Annual 1997. Cambridge, MA: MIT Press.

McCallum, B. 1999. “Issues in the Design of Monetary Policy Rules.” In J. Taylor
and M. Woodford, eds., Handbook of Macroeconomics, Amsterdam: North-Holland.

McCallum, B., and E. Nelson. 1999. “Performance of Operational Policy Rules in
an Estimated Semi-Classical Structural Model.” In J. Taylor, ed., Monetary Policy
Rules. Chicago: University of Chicago Press.

Romer, C. and D. Romer 2000, “Federal Reserve Information and the Behavior of

Interest Rates.” American Economic Review 90(3): 429-457.

Rotemberg, J., and M. Woodford. 1998. “An Optimization-Based Framework for the
Evaluation of Monetary Policy.” NBER Technical Working Paper #233, May.



[30]

[31]

[32]

[36]

[37]

[38]

DETERMINACY, LEARNABILITY, AND MONETARY POLICY INERTIA 30

Rotemberg, J., and M. Woodford. 1999. “Interest-Rate Rules in an Estimated Sticky-
Price Model.” In J. Taylor, ed., Monetary Policy Rules. Chicago: University of
Chicago Press.

Rudebusch, G. 1995. “Federal Reserve Interest Rate Targeting, Rational Expecta-
tions, and the Term Structure.” Journal of Monetary Economics 35: 245-274.

Sack, B. 1998. “Uncertainty, Learning, and Gradual Monetary Policy.” FEDS Dis-
cussion Paper no. 1998-34, Federal Reserve Board, July.

Sargent, T. J. and N. Wallace. 1975. “Rational Expectations, the Optimal Monetary
Instrument, and the Optimal Money Supply Rule.” Journal of Political Economy 83:
241-254.

Taylor, J. 1993. “Discretion Versus Policy Rules in Practice.” Carnegie-Rochester
Conference Series on Public Policy 39: 195-214.

Taylor, J. 1999a. “A Historical Analysis of Monetary Policy Rules.” In J. Taylor, ed.,

Monetary Policy Rules. Chicago: University of Chicago Press.
Taylor, J., ed., 1999b. Monetary Policy Rules. Chicago: University of Chicago Press.

Woodford, M. 1999a. “Optimal Monetary Policy Inertia.” NBER Working Paper
#7261, July.

Woodford, M. 1999b. “Price-Level Determination Under Interest Rate Rules.”

Manuscript, Chapter 2 of Interest and Prices.

A. PROOF OF PROPOSITION 1

The characteristic polynomial of By, p()), is given by

where

p(\) = X+ a1\ + agh + a3 (52)
a] = —(1—&-6_1 +f<cﬁ_1(r+<p,,), (53)
az =B+ 1+ 8+ KB 0)p, —op,, (54)

Ko+, —0 g,
o1 '

az —
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Note that p(0) = ag and

_ K’(SDTF + Pr — 1) + (1 B ﬁ)‘Pz
p(1) = o (56)
k(e — @, — 1)+ (14 B, — 20711+ B)(1 + ¢,
p(—1) = Aen = = 1) H( 6)5{1 (1+6)1+ ) (57)
Bo
Condition (10) implies that ¢, > 0, which in turn implies that
az > T+ (1407 + KT I0)op, — o, (38)

= B 4 (B +rBo)op, > 0.

Since az > 0 and ag < 0 (by condition (10)), Descartes’ Rule of signs implies that there
are either three positive roots or one positive root and a pair of complex conjugates. Since
p(0) < 0 and p(1) > 0 (by 9), there is a positive root, say Aj, such that 0 < \; < 1. We
will now use the theorem of Fourier and Budan to show that Ay is the only root between

0 and 1 when ¢, > 1 — ko (see Barbeau (1989 p. 173)). First using (52) observe that

P'(\) =3\ + 201\ + ay, (59)

"

P (A) = 6)+2ay, (60)

1 7 111

and p (A) = 6. Consequently, the signs of p(0), p’(0), p (0), p (0) are respectively
—,+, —,+ so that the number of sign changes is 3. The signs of p(1) and p " (1) are both
+. On the other hand, we have

p (1) = 2B-(1+"+x670+¢,) (61)
= 22-B""'—kB 70—,
< 22-87'1+ro)— (1 - ko)

= 2[1+wo)(1-871H] <o.

where we have used condition (10), namely ¢, > 1 — ko, in the above inequality. Since
p”(l) < 0, irrespective of the sign of p/(1), the number of sign changes in the sequence
p(1), p'(1), p (1), p" (1) is always 2. By using the theorem of Fourier and Budan, the
number of roots between 0 and 1 cannot be greater than 1. On the other hand, we already
know that A; is in this interval so that it is the only root in (0,1). If all the roots

are real, then it immediately follows that the remaining roots must be greater than 1

ensuring uniqueness. If a pair of the roots are complex conjugates, we will use the fact
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that 2?21 N\ = Trace(By) = 1+ 37" + k87 0 + ¢, to prove our result. Let A" denote

the real part of the complex eigenvalues. Since 0 < A\; < 1 and ¢, > 1 — ko we have

M43 = 2N >B8 ' 4 kfTlote, >1+KT 0+ — Ko = (62)
2+ ko(f7t —1)
This means that A" > 1 so that the complex eigenvalues must be outside the unit circle
ensuring uniqueness.

B. PROOF OF PROPOSITION 2

The characteristic polynomial of A=, (22), is given by

P(N) = A 4+ aa)? + a1\ + ao (63)
where
ag = 7/871507” (64)
ay :6_1(7[(’{_'—071 +6‘771)907’+071 +K‘<)07r +<Pac]7 (65)
ay=—F o+ 07" + B0 + BoT e, + Be,l, (66)

By Descartes’ Rule of signs there are either three positive roots or one positive root
and a pair of complex conjugates (by observing the sign changes in the coefficients of p(\)

and p(—\)). Also p(0) = ao is negative while

is positive when ¢, > 1. This means that there is always a positive root, say A1, such that
0 < A1 < 1 (by using the continuity of p(\) in A). The sum of the eigenvalues is given by

3
Z i =Trace(A™Y) =1+ + ko + ¢, +0p,. (68)
i=1

On the other hand, the product of the eigenvalues is given by ¢,./3 (the determinant of
A~1) which is more than 1 for all ¢, > (3. Consequently, if all the roots are real, there exists
at least one positive root, say A2, which exceeds 1 when ¢, > (. But this automatically
means that the third positive root also exceeds 1 since p(1) > 0, p(Ag + ) < 0 for small

positive ¢ while p(oc0) = oo.
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On the other hand, if a pair of eigenvalues are complex conjugates (denoted by Ay and

A3), then by (68), we have
A+ As> B+ kB0 +op, >2+ k8 0+ op, (69)

where the first inequality uses the fact that 0 < A\; < 1 and the second inequality uses the
assumption that ¢, > 1. The real parts of the (complex) eigenvalues are, therefore, more
than 1 so that they are outside the unit circle.

C. PROOF OF PROPOSITION 3

The characteristic polynomial of B, p()), is given by

p(\) = X+ a1\ + agh + a3 (70)
where
a1 =—(1+ B+ ko + "), (71)
az =B+ (1+ B, — 0w, Hrler — 1) + 9.}, (72)
az = B, —0 ot (73)

We observe that p(0) = a3 and

p(1) = =007 k(pr + ¢, — 1) + (1= B)gal, (74)

p(—-1) = oo k(e — e, — 1)+ 1+ B)e, — 207 (1+8)(1+¢,)] (75)

= oo ke, + (14 B)e, —{k+207(1+8) 1+ ¢,)].

We consider three subcases in turn.

Case 1. ¢, > o~ In this case, we have p(0) > 0. Conditions (25) and (26) ensure
that p(1) < 0 and p(—1) < 0. Consequently, there is root each in the interval (—1,0) and
(0,1). Also, p(1) < 0 implies that the third root is more than 1. So, we have uniqueness
in this case.

Case 2. ¢, < o~'. We first note that az > 0 when

B+ (1+8)e, "t > o0, (e, — 1) + 0.}, (76)

that is, when

Bo o, + (L+B)0 "t > ke, — 1)+, (77)



DETERMINACY, LEARNABILITY, AND MONETARY POLICY INERTIA 34

which is ensured by condition (26). Moreover, since a; and ag are negative, we have by
Descartes’ Rule of signs that there are either three positive roots or there is one positive
root and a pair of complex conjugates.

In this case, condition (25) again ensures that p(1) < 0 so that there is a root more than
1. The product of the eigenvalues, which is B¢, *(1—0c¢, ), is less than 1 by condition (25)
so that there must be at least one eigenvalue with modulus less than 1. If the eigenvalues
are complex, we immediately have uniqueness. On the other hand, if all the roots are
real, then we have at least one root in the interval (0,1). We can now use the theorem of
Fourier and Budan to show that there are exactly two roots in (0, 1). The signs of p(0),
p'(0), p"(0), p"(0) are respectively —, +, —, + so that the number of sign changes is 3.
The signs of p(1) and p (1) are — and + respectively. Consequently, irrespective of the
(1),

P (1) can be either 1 or 3. So the number of roots in (0, 1) is either 0 or 2 by the theorem

77

sign of p/(1) and p" (1), the number of sign changes in the sequence p(1), p'(1), p

of Fourier and Budan. But since we already know that there is 1 root in this interval, the
number of roots between 0 and 1 is exactly 2. So, we again have uniqueness in this case.
Case 3. p, = o~ ' In this case, B becomes singular so that one of the eigenvalues is

0. The remaining two eigenvalues are given by the following characteristic polynomial
a(\) =X+ aiA + a

where a; and ay are given by (71) and (72) after substituting in ¢, = oc~1. We have
q(0) = a9 which was shown to be positive by condition (26) in Case 2. It can also be
easily checked that ¢(1) is identical to the expression for p(1) given in (74) (with ¢, = 0= 1)
so that it is negative by condition (25). It, therefore, follows that there must be one root
in the interval (0,1) and the other root must be greater than 1. So, B again has exactly
2 eigenvalues inside the unit circle.

Having considered all the subcases, the proposition is proved.



