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1. Introduction

1.1. Overview. Monetary policy rules have been the subject of a good deal of recent

research in the literature on monetary economics and monetary policy.1 While some of this

work has focussed on systems which abstract from or suppress private sector expectations,

many of the more recent papers analyze systems where private sector expectations enter

the model explicitly.2 Most of these models involve small, forward-looking representations

of the macroeconomy, such as those found in Bernanke and Woodford (1997), Clarida, et

al., (1999), Kiley (1998), McCallum and Nelson (1999), and Woodford (1999a). In many

cases the small model is a log-linearized and simpliÞed version of a larger model derived

from optimizing behavior in a dynamic stochastic general equilibrium context.

When private sector expectations enter such models explicitly, recent research has em-

phasized the possibility that certain policy rules may be associated with indeterminacy of

rational expectations equilibrium (REE), and therefore might be viewed as undesirable.

Some of the authors that discuss this issue include Bernanke and Woodford (1997), Carl-

strom and Fuerst (1998), Christiano and Gust (1999), Clarida, et al., (2000), Rotemberg

and Woodford (1998, 1999), and Woodford (1999a). In a typical analysis, the authors

compute the rational expectations solutions of the system with a given monetary policy

rule, and if the rule induces indeterminacy then it is viewed as undesirable. The idea is

that if the monetary authorities actually followed such a rule, the system might be unex-

pectedly volatile as agents are unable to coordinate on a particular equilibrium among the

many that exist.3 In contrast, when equilibrium is determinate, it is normally assumed

that the agents can coordinate on that equilibrium.

It is far from clear, however, exactly how or whether such coordination would arise.

In order to complete such an argument, one needs to show the potential for agents to

learn the equilibrium of the model being analyzed. In this paper, we take on this task.

1 For a sample of the recent work, see the volumes edited by Taylor (1999) and King and Plosser (1999),
and the survey by Clarida, Gali and Gertler (1999).

2 For a discussion of the differences between forward-looking and backward-looking systems from the
perspective of monetary policy rules and optimal control problems, as well as other related issues, see
Svensson (1999) and the associated discussion by Woodford (1999b).

3 Alternatively, the agents may be able to coordinate, but the risk exists that the equilibrium achieved
may be one with undesirable properties, such as a large degree of volatility. See Woodford (1999a, pp.
67-69).
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We assume the agents of the model do not initially have rational expectations, and that

they instead form forecasts by using recursive learning algorithms�such as recursive least

squares�based on the data produced by the economy itself. Our methodology is that of

Evans and Honkapohja (1999, 2000).4 We ask whether the agents in such a world can

learn the equilibrium of the system under a range of possible Taylor-type monetary policy

feedback rules. We use the criterion of expectational stability (a.k.a. E-stability) to calcu-

late whether rational expectations equilibria are stable under real time recursive learning

dynamics or not. The research of Marcet and Sargent (1989a, 1989b) and Evans and

Honkapohja (1994, 1999, 2000) has shown that the expectational stability of rational ex-

pectations equilibrium governs local convergence of real time recursive learning algorithms

in a wide variety of macroeconomic models.5

We think of learnability as a necessary additional criterion for evaluating alternative

monetary policy feedback rules. In particular, in our view economists should only advocate

policy rules which induce learnable rational expectations equilibria. Central banks adopt-

ing monetary policy rules that are not associated with learnable rational expectations

equilibria, under the assumption that private sector agents will coordinate on the equi-

librium they are targeting, are making an important mistake. Our analysis suggests that

such policymakers will encounter difficulties, as the private sector agents instead fail to

coordinate, and the macroeconomic system diverges away from the targeted equilibrium.

Learnable equilibria, on the other hand, do not have such problems. Here, the agents can

indeed coordinate on the equilibrium the policymakers are targeting, so that the learning

dynamics tend toward, and eventually coincide with, the rational expectations dynamics.

Learnable equilibria are therefore to be recommended.6

4 Some of the recent surveys of the literature on learning in macroeconomic models are Evans and
Honkapohja (1999, 2000), Grandmont (1998), Marimon (1997), and Sargent (1993). A small sample
of the literature on learning speciÞcally related to monetary policy includes Howitt (1992), Bertocchi
and Spagat (1993), Ireland (1999), Evans, Honkapohja and Marimon (1998), and Barucci, Bischi, and
Marimon (1998).

5Accordingly, we use the terms �learnability,� �expectational stability,� �E -stability,� and �stability
in the learning dynamics� interchangably in this paper.

6As Taylor (1993, pp. 203-208) has emphasized, it is also important to consider learning during
transitions from one policy rule to a new policy rule.
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1.2. Model environment. We consider monetary policy rules which have been sug-

gested by various authors. All of these rules envision the central bank adjusting a short-

term nominal interest rate in linear response to deviations of inßation from some target

level and to deviations of real output from some target level. We take up four variants of

such rules which we believe are representative of the literature: rules where the nominal

interest rate set by the central bank responds to deviations of current values of inßation

and output (we call this the contemporaneous data speciÞcation); rules where the interest

rate reacts to lagged values of output and inßation deviations (lagged data speciÞcation);

rules where the interest rate responds to future forecasts of inßation and output devia-

tions (forward looking rules); and Þnally, rules which respond to current expectations of

inßation and output deviations (contemporaneous expectations).

The novel contribution of this paper is to evaluate these policy rules based on the

learnability criterion in a standard, small, forward-looking model which is currently the

workhorse for the study of such rules. We analyze the stability of equilibria under learning

dynamics for these monetary policy rules. We also provide conditions for unique equilibria

for these policy rules. Conditions for unique equilibria may be found sporadically for some

of these policy rules in the existing literature, and we put these results into a unifying

framework. Thus, we are able to evaluate monetary policy rules based not only on whether

they induce determinacy but also based on whether they induce learnability.

1.3. Main results. We Þnd that monetary policy rules which react to current values

of inßation and output deviations can easily induce determinate equilibria. Moreover,

when equilibrium is determinate it is also learnable under this speciÞcation. Rules of the

contemporaneous data type, considered by Taylor (1993) and argued to explain well the

observed actions of the Federal Reserve since the mid-1980s, led to widespread interest

in the subject of nominal-interest-rate-based monetary policy rules. However, these rules

have often been criticized because they place unrealistic informational demands on the

central bank, since precise information on current quarter values of inßation and output

is usually not available to policymakers. One of our important Þndings is that rules

which react to contemporaneous expectations of inßation and output deviations lead to
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exactly the same regions of determinate and learnable equilibria. Consequently, our results

suggest that rules where the central bank responds to current expectations of inßation

and output deviations are the most desirable in terms of generating both determinacy and

learnability. Our reading of the policy rules literature is that such rules have not been

given adequate attention7 and our results suggest more emphasis on them may prove

fruitful.

We Þnd that rules which respond to lagged values or to future forecasts of inßation

and output deviations do not have the same desirable properties. Rules which respond

to lagged data can easily fail to generate determinacy, especially when the central bank

responds aggressively to inßation and output. In addition, determinate rational expecta-

tions equilibria are not necessarily learnable under the lagged data speciÞcation. Forward-

looking rules can easily induce equilibrium indeterminacy (see also Bernanke and Wood-

ford (1997)). The danger of indeterminacy rises with more aggressive response to either

inßation or output deviations. We Þnd that determinate equilibria are always learnable

for forward-looking rules. However, when equilibrium is indeterminate, those equilibria

which correspond to the minimum state variable (MSV) solution may also be learnable.8

Several authors, such as Taylor (1999) and Clarida, Gali and Gertler (2000), tend to

favor �leaning against the wind� policy by the central bank. For example, Taylor (1999)

recommends a policy rule which calls for tightening market conditions in response to

higher inßation or to increases in production. This would be ensured by a rule where the

nominal interest rate responds aggressively to inßation with the coefficient on inßation

exceeding one (called active rules in the literature) and the coefficient on the output gap

is positive. The intuition provided by Taylor (1999) in this case is that a rise in inßation

would bring about an increase in the real interest rate which would decrease demand and

thus reduce inßationary pressures, bringing the economy back towards equilibrium. On

the other hand, if the coefficient on inßation is less than one then an increase in inßation

would bring about a decrease in the real interest rate which would increase demand and

7A possible exception is McCallum (1997, p. 358) who does suggest such a policy rule.
8We do not examine the learnability of sunspot equilibria, which exist when the equilibrium is inde-

terminate, in this paper.
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add to upward pressures on inßation, pushing the economy away from equilibrium.

In this paper we support the intuition of these authors based on the additional criterion

of learnability. If agents do not have rational expectations of inßation and output and

instead start with some subjective expectations of these variables, learning recursively

using some version of least squares, then a �leaning against the wind� policy on the

part of the central bank does indeed push the economy toward the rational expectations

equilibrium across the speciÞcations of policy rules we consider. Conversely, a policy rule

in which the coefficient on inßation is less than one is likely to be destabilizing in the

sense that if agents do not start with rational expectations then they are unlikely to be

able to coordinate on the equilibrium induced by the policy rule.

In general, there is no agreement among academicians about the type of policy rules

central banks should use, for example, whether they should base their setting of the

interest rate on lagged data or future forecasts. We Þnd that across all the types of rules we

consider, active rules with little or no reaction to the output gap (or output gap forecasts)

generally induce both determinate and learnable rational expectations equilibria. To the

extent that both determinacy and learnability are desirable criteria, central banks may

want to consider adopting such rules.

1.4. Organization. In the next section we present the model we will analyze through-

out the paper. We also discuss the types of linear policy feedback rules we will use to

organize our analysis, and a calibrated case which we will employ. In the subsequent

sections, we present results on determinacy of equilibrium, and then on learnability of

equilibrium, for each of four different classes of policy rules. We conclude with a sum-

mary of our Þndings.

2. The environment

2.1. A baseline model. We study a simple and small forward-looking macroeconomic

model analyzed by Woodford (1999a). Woodford (1999a) derived his model from a more

elaborate, optimizing framework with sticky prices studied by Rotemberg and Woodford

(1998, 1999), and intended it to be a parsimonious description of the U.S. economy, with
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mechanisms that would remain prominent in nearly any model with complete microfoun-

dations.

We study Woodford�s (1999a) model without making any changes to it, except for

a small notational alteration, namely that we replace Woodford�s x with our z. We

accordingly write Woodford�s (1999a, p. 16) system as

zt = zet+1 − σ−1
¡
rt − rnt − πet+1

¢
(1)

πt = κzt + βπ
e
t+1 (2)

where zt is the output gap, πt is the inßation rate, and rt is the deviation of the short-

term nominal interest rate from the value that would hold in a steady state with a given

target level of inßation and steady state output growth, and a superscript e represents a

(possibly nonrational) expectation. We use this notation for expectations so that we can

be ßexible in describing our systems under both rational expectations and learning, along

with the accompanying informational assumptions in each case. In the nomenclature

of this literature, equation (1) is the intertemporal IS equation whereas equation (2) is

the aggregate supply equation. The parameters σ, κ, and β are structural, arising from

the analysis of the larger dynamic stochastic general equilibrium model, and from the

subsequent approximations to that model that produce these equations. In particular,

β ∈ (0, 1) is the discount factor in the larger model, and β−1 − 1 is the steady state
real rate of interest for the economy. The �natural rate of interest� rnt is an exogenous

stochastic term that follows the process

rnt = ρr
n
t−1 + ²t (3)

where ²t is iid noise with variance σ2² , and 0 ≤ ρ < 1 is a serial correlation parameter.
We supplement equations (1), (2), and (3), which represent the behavior of the private

sector, with a policy rule, which represents the behavior of the monetary authority. We

use

rt = r
? + ϕπ (πt − π?) + ϕz(zt − z?) (4)

where rt is the short-term nominal interest rate, which is set by the monetary authority
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in response to deviations of inßation and output from desired or steady state levels.9 The

inßation target π? is a constant, as is the nominal interest rate target r? and the output

gap target z?. In this paper we will assume that π? = r? = z? = 0, mainly because the

dynamics we study will not depend on the values of these constant terms.10 We will allow

several different parameter conÞgurations for ϕπ and ϕz in order to check the robustness

of our results across various descriptions of policymaker behavior. We will also consider

alternative informational assumptions in the next subsection.

Our complete system for the baseline model is, therefore, given by11

zt = zet+1 − σ−1
¡
rt − rnt − πet+1

¢
, (5)

πt = κzt + βπ
e
t+1, (6)

rt = ϕππt + ϕzzt, (7)

rnt = ρrnt−1 + ²t. (8)

2.2. Alternative speciÞcations for setting interest rates. In the model given by

equations (5)-(8), only the private sector forms expectations about future values of en-

dogenous variables. The policymakers, whose behavior is embodied in equation (7), only

react to information which is observed at time t. In part, this is the nature of systems in

which policy feedback rules describe behavior: Taylor�s (1993) original motivation for con-

sidering such rules was in part that the policymaker respond in a simple and transparent

way to available data. McCallum (1993, 1997, 1999) has often argued that such reaction

functions are unrealistic, since actual policymakers do not have complete information on

variables such as output and inßation in the quarter they must make a decision. We think

it is interesting to consider the systems formed when we use alternative informational

9Versions of Taylor rules with inertia contain a lagged interest rate term on the right hand side. We
analyze only �simple� rules in this paper, and we take up rules with inertia in a companion paper. See
Bullard and Mitra (2000).
10We note that r? = 0 actually allows for a slightly positive nominal interest rate in steady state,

because as Woodford (1999a ) notes, r? = log β, a slightly negative number, corresponds to zero nominal
interest rate in this model. We are not assuming, therefore, that the economy has attained the zero bound
on nominal interest rates.
11Woodford�s model does not have any �cost push� shock as, for example, in Clarida, Gali and Gertler

(1999). We could add such shocks to (6) as well as shocks to the monetary authorities� reaction function
(7) that are autoregressive of order one without affecting our results in the paper. For simplicity, we omit
such shocks from our analysis.
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assumptions. Accordingly, we will call the speciÞcation embodied in equation (7) our

contemporaneous data speciÞcation, and we will consider other possibilities below.12

One alternative is to follow one of McCallum�s suggestions and posit that the monetary

authorities must react to last quarter�s observations on inßation and the output gap, which

could possibly be viewed as closer to the reality of central bank practice. This leads to

our lagged data speciÞcation for our interest rate equation,

rt = ϕππt−1 + ϕzzt−1. (9)

Our complete system for the case of lagged data is, therefore, given by (5), (6), (9), and

(8).

Another method of coping with McCallum�s criticism is to assume that the authorities

set their interest rate instrument in response to their forecasts of output and inßation

deviations, formed using the information available as of either time t−1 or time t, so that
the policy rule itself is forward-looking. Some of the authors discussing forward-looking

rules include Batini and Haldane (1999) and Bernanke and Woodford (1997). In fact,

forward-looking rules have been found to describe the behavior of monetary policy, for

instance, in Germany, Japan, and the US since 1979 as described in Clarida, Gali, and

Gertler (1998); in its quarterly Inßation Report, the Bank of England reports extensively

on forecasts of inßation and output. We consider simple versions of such forward-looking

policy rules, ones in which the monetary authority looks just one quarter ahead when

setting its interest rate instrument. This yields a speciÞcation, which we call the forward

expectations model, in which the interest rate equation is13

rt = ϕππ
e
t+1 + ϕzz

e
t+1. (10)

There are several ways to interpret this equation. When there is learning in the model,
12There is an additional problem with the contemporaneous data speciÞcation. When private sector

expectations are formed using information dated t − 1 and earlier, a tension is introduced, because the
monetary authority is reacting to time t information on inßation and the output gap. Thus the central
bank has �superior information� in this speciÞcation. In our other speciÞcations, this tension is absent,
as the private sector and the central bank use the same information, either for forming expectations or
setting the interest rate instrument, or both.
13 In some recent work on policy rules in this class, the central bank responds to the contemporaneous

output gap instead of the future forecast of the output gap. We will have something to say on this related
speciÞcation in Section 3.3.
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it may be two-sided, as both policymakers and private sector agents form (identical)

expectations of the future. We impute identical learning algorithms to each when we

introduce learning. Alternatively, following Bernanke and Woodford (1997), it may be

that the central bank simply targets the predictions of private sector forecasters, so that

in this interpretation it is only the private sector which is learning. The complete system

for the case of forward expectations model is given by (5), (6), (10), and (8).

Finally, another way to cope with McCallum�s criticism is to assume that the au-

thorities set their interest rate instrument in response to their current expectations (as

opposed to using current data), formed using the information available as of time t − 1,
of the current period output gap and inßation. This also might be viewed as close to the

actual practice of central banks. The interpretations given above for the case when the

central bank targets future forecasts of inßation and output carry over to this case. Thus

we consider versions of our systems where the policy feedback rule is

rt = ϕππ
e
t + ϕzz

e
t . (11)

We refer to this system as our contemporaneous expectations model and the complete

system is given by (5), (6), (11), and (8).

2.3. Methodology. We adapt methods developed by Evans and Honkapohja (1999,

2000) to understand how learning affects these systems. We assume the agents in the

model no longer have rational expectations at the outset. Instead, we replace expected

values with adaptive rules, in which the agents form expectations using the data generated

by the system in which they operate. We imagine that the agents use versions of recursive

least squares updating.

We use theorems due to Evans and Honkapohja (1999, 2000) and calculate the condi-

tions for expectational stability (E -stability). Evans and Honkapohja (2000) have shown

that expectational stability, a notional time concept, corresponds to stability under real-

time adaptive learning under quite general conditions. In particular, under E -stability

recursive least squares learning is locally convergent to the rational expectations equilib-

rium. Moreover, under the assumption that the fundamental disturbances have bounded
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support, it can also be shown that if a rational expectations equilibrium is not E -stable,

then the probability of convergence of the recursive least squares algorithm to the rational

expectations equilibrium is zero.

We now deÞne precisely the concept of E -stability. Following Evans and Honkapohja

(2000), consider a general class of models14

yt = α+BEtyt+1 + δyt−1 + κwt (12)

wt = φwt−1 + et (13)

where yt is an n × 1 vector of endogenous variables, α is an n × 1 vector of constants,
B, δ, κ, and φ are n× n matrices of coefficients, and wt is an n× 1 vector of exogenous
variables which is assumed to follow a stationary VAR, so that et is an n × 1 vector of
white noise terms. Following McCallum (1983), we focus on the so-called MSV (minimal

state variable) solutions which are of the following form

yt = a+ byt−1 + cwt (14)

where a, b, and c are conformable and are to be calculated by the method of undetermined

coefficients to compute the MSV solution. The corresponding expectations are

Etyt+1 = a+ byt + cφwt. (15)

The MSV solutions consequently satisfy

(I −Bb−B)a = α, (16)

Bb2 − b+ δ = 0, (17)

and

(I −Bb)c−Bcφ = κ. (18)

For E -stability we regard equation (14) as the perceived law of motion (PLM) of the

agents and using (15) one obtains the actual law of motion (ALM) of yt as

yt = (I −Bb)−1[α+Ba+ δyt−1 + (Bcφ+ κ)wt−1]. (19)
14The class of models discussed in the previous section are special cases of this general class. A similar

analysis can also be carried out when expectations are dated time t−1 (see Evans and Honkapohja (2000,
p. 237)).
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Thus the mapping from the PLM to the ALM takes the form

T (a, b, c) =
¡
(I −Bb)−1(α+ βa¢ , (I −Bb)−1δ, (I −Bb)−1(Bcφ+κ)). (20)

Expectational stability is determined by the following matrix differential equation

d

dτ
(a, b, c) = T (a, b, c)− (a, b, c) . (21)

The Þxed points of equation (21) give us the MSV solution. We say that a particular MSV

solution
¡
ā, b̄, c̄

¢
is E -stable if equation (21) is locally asymptotically stable at that point.

The conditions for E -stability of the MSV solution
¡
ā, b̄, c̄

¢
are given in Proposition 10.3 of

Evans and Honkapohja (2000, p. 246). Equation (21) describes a stylized learning process

in notional time τ , in which the PLM is partially adjusted towards the ALM generated

by the perceptions.

Under real time learning, the PLM is time dependent and takes the form

yt = at−1 + bt−1yt−1 + ct−1wt (22)

where the coefficients at, bt, ct are updated by running recursive least squares on actual

data, x0t = (1, y0t−1, wt). This generates a corresponding ALM for yt (which is also obvi-

ously time dependent). However, as shown in Proposition 10.4 of Evans and Honkapohja

(2000, p. 246), the E -stability conditions derived from equation (21) actually govern sta-

bility under such adaptive learning. It can also be shown that the recursive least squares

algorithm will converge to an E -unstable solution with probability zero (under some reg-

ularity conditions). This is the reason why we focus on E -stability conditions throughout

the paper.

In the learning literature, an important issue is the so-called �dating of expectations.�

That is, when an expectation term enters the model, there is a question of what informa-

tion the agent is able to incorporate when forming expectations. Expectational stability

conditions, in general, are inßuenced by the exact dating of expectations. The conven-

tion in the learning literature is to assume all expectations are formed at time t using

information available as of time t− 1. Evans and Honkapohja (1999a) comment that this
assumption �... seems more natural in a learning environment.� If one assumes instead
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that time t observations are in the information set, then a simultaneity problem is intro-

duced, where the system is determining time t variables at the same time that agents are

using time t variables to form expectations. The problem can usually be handled at the

cost of additional complexity. In this paper we generally work out results for both t and

t− 1 dating of expectations and where appropriate report on any differences we Þnd.
We stress that the methodology we employ to analyze the effects of learning imparts a

lot of information to the agents in our model. By endowing the agents with a perceived law

of motion that coincides with the MSV solution of the system, we are in effect giving the

agents the correct speciÞcation of the vector autoregression they need to estimate in order

to learn the rational expectations equilibrium. The local nature of the analysis further

imparts initial expectations which are in the immediate neighborhood of the equilibrium.

If, under these circumstances, the system is nevertheless driven away from the rational

expectations equilibrium, then we do not hold out too much hope that the system can

be rendered stable under some other plausible learning mechanism (although of course

that remains an open question). For this reason we think of our learnability criterion as

a minimal requirement for a policy rule to meet.15

2.4. Parameters. Woodford (1999a) calibrated the parameters σ and κ based on

econometric estimates from a larger model contained in Rotemberg and Woodford (1998,

1999); we use these estimated values throughout the paper to illustrate our results. The

value of β, which corresponds to the representative household�s discount factor in the more

general model, is set throughout, following Woodford (1999a), to a value such that β−1−1
corresponds to the average quarterly real interest rate. Rotemberg and Woodford (1999)

respond to the Lucas critique by arguing that the equations describing their economy

15Many papers in the learning literature have employed simple overlapping generations models with
money as a laboratory for studying learning dynamics. These models have two steady state equilibria,
one characterized by low inßation, and another characterized by high inßation. Under least squares
learning, the steady state with low inßation can sometimes be stable, but the steady state with high
inßation is never stable. Arifovic (1995) showed that learning via an evolutionary dynamic (genetic
algorithm learning) could render the low inßation equilibrium stable in some situations in which it was
unstable under least squares. But the unstable high inßation equilibrium remained unstable under the
evolutionary learning dynamic. Laboratory experiments with human subjects conducted by Marimon
and Sunder (1993) conÞrmed much of thrust of the Þndings in the theoretical learning literature in this
model. Based in part on this experience, we do not think expectational instability is easily reversed with
alternative plausible learning models.
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Table 1. Parameter conÞgurations.

Parameter Controls Value or range

σ Intertemporal substitution .157
κ Price stickiness .024
β Discount factor .99
ρ Serial correlation of shock .35
σ² Variance of shock 3.72
ϕπ Policymakers� reaction to inßation 0 ≤ ϕπ ≤ 4
ϕz Policymakers� reaction to the output gap 0 ≤ ϕz ≤ 4

Table 1: Parameter conÞgurations. We illustrate our analytical Þndings using this calibration
from Woodford (1999a).

have coefficients which are not dependent on the parameters in the monetary authority�s

policy rule; accordingly they study a number of possible policy rules in their paper. We

similarly take policy rules as exogenous descriptions of Federal Reserve behavior for our

purposes in the present paper, and we study different rules in an effort to understand the

robustness of our results to different policy rule speciÞcations. Calibrations of these rules

correspond to values for the parameters ϕπ and ϕz. For the stochastic process describing

the natural rate of interest, we use the serial correlation and the variance suggested by

Woodford (1999a). Table 1 summarizes our calibration scenarios.

We organize our analysis as follows. We essentially consider four cases correspond-

ing to four different information structures (contemporaneous data, lagged data, forward

expectations and contemporaneous expectations) for the policy authority. For later refer-

ence, we call rules with ϕπ > 1 active rules and those with ϕπ ≤ 1 passive rules. In each
case, we begin by considering the determinacy of rational expectations equilibrium. We

then consider the systems when agents try to learn the MSV solution by calculating the

conditions for expectational stability. We maintain the following assumptions on our pol-

icy and structural parameters for all speciÞcations of monetary policy rules we consider
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in the paper:16

ϕπ ≥ 0, ϕz ≥ 0 with at least one strictly positive, (23)

and

κ > 0; σ > 0; and 0 < β < 1. (24)

3. Policy rules and the equilibria they induce

3.1. Contemporaneous data in the policy rule.

Determinacy. In this subsection, we consider the version of the model represented

by equations (5)-(8)- this version serves as a baseline for the subsequent analysis. In

this case the policy authorities use contemporaneous data in their interest rate rule. We

can then substitute the policy rule (7) into (5), and put our system involving the two

endogenous variables zt and πt (given by equations (5) and (6)) in the following form17·
1 + σ−1ϕz σ−1ϕπ

−κ 1

¸ ·
zt
πt

¸
=

·
1 σ−1

0 β

¸ ·
zet+1
πet+1

¸
+

·
σ−1

0

¸
rnt . (25)

The matrix which is crucial for determining uniqueness of rational expectations equilib-

rium is obtained by pre-multiplying the right hand side matrix associated with the expec-

tations variables with the inverse of the 2× 2 left hand matrix. This matrix, denoted B,
is given by

B =
1

σ + ϕz + κϕπ

·
σ 1− βϕπ
κσ κ+ β (σ + ϕz)

¸
(26)

Following Farmer (1991, 1999), in order to determine uniqueness, we have to classify

the system in terms of free and predetermined endogenous variables and the exogenous

variables. Since neither variable, zt or πt, in the system (25) is predetermined we need

both of the eigenvalues of B to be inside the unit circle for determinacy; otherwise the

equilibrium will be indeterminate. We provide a characterization of the necessary and

sufficient condition for determinacy in the following proposition.
16While it is possible to obtain analytical conditions for uniqueness and E -stability for negative values of

policy and/or structural parameters, we restrict ourselves to what seems to be the economically plausible
case.
17One obtains a similar system whether expectations are dated time t or time t − 1.
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Proposition 1. Let κ(ϕπ − 1) + (1− β)ϕz 6= 0.18 Under contemporaneous data interest
rate rules the necessary and sufficient condition for a rational expectations equilibrium to

be unique is that

κ(ϕπ − 1) + (1− β)ϕz > 0. (27)

Proof. See Appendix A.

A sufficiently aggressive response to inßation and output on the part of the central

bank leads to determinacy. In particular, it is easily seen that a sufficient condition for

uniqueness is ϕπ > 1, corresponding to the activist rule.

Learning. After multiplying equation (25) by the inverse of the left hand matrix,

we can write our model in the form

yt = α+By
e
t+1 +κrnt (28)

where yt = [zt,πt]
0
, α = 0, B is as deÞned in equation (26), and

κ = 1

σ + ϕz + κϕπ

·
1
κ

¸
. (29)

For the moment, we assume t dating of expectations in equation (28), and we will discuss

the reason for introducing the constant term α shortly. The MSV solution in this case,

therefore, takes the simple form yt = ā + c̄rnt with ā = 0 and c̄ = (I − ρB)−1κ.19 For
the study of learning, we endow agents with a perceived law of motion (PLM) which

corresponds to the MSV solution. Agents are assumed to have a PLM of the form

yt = a+ cr
n
t . (30)

with their time t information set being (1, y0t, rnt )0. Using this, we compute Etyt+1 =

a + cρrnt and substituting this into equation (28), we obtain the actual law of motion

(ALM) which is followed by yt as

yt = Ba+ (Bcρ+ κ)rnt . (31)

18The condition rules out non-generic cases and is ensured, for example, by ignoring the point (ϕπ,ϕz) =
(1, 0) (see also the proof of the proposition). In general, we will ignore such non-generic cases.
19 The solution for c̄ is generically unique. We use I to denote a conformable identity matrix throughout

the paper.
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Using (30) and (31), we can deÞne a map, T, from the PLM to the ALM as

T (a, c) = (Ba,Bcρ+ κ). (32)

Expectational stability is then determined by the matrix differential equation

d

dτ
(a, c) = T (a, c)− (a, c) . (33)

The Þxed points of equation (33) give us the MSV solution (ā, c̄).

We say that a particular MSV solution (ā, c̄) is expectationally stable if equation (33)

is locally asymptotically stable at that point. Thus, our system is merely a special case

of the system treated in Evans and Honkapohja (2000, p. 244) since there are no lagged

endogenous variables. We can, therefore, apply their results directly to our system.

Before turning to the main result of this section, we emphasize a point which may

be of some relevance. In our model (25) or (28) we have suppressed all constant terms

normalizing all relevant steady state values to be zero (α = 0). However, this is merely

a technical (notational) simpliÞcation since in reality the model will have constant terms.

The model will then take the form yt = α+By
e
t+1 + κrnt with α 6= 0. The MSV solution

would then be of the form yt = �a+ �cr
n
t . We could then endow the agents with a PLM of

the form yt = a+ crnt and obtain a map from the PLM to the ALM as before and analyze

the E -stability of this system. However, formally the E -stability conditions obtained in

this way would be identical to the ones we would obtain by allowing the agents to have a

constant term in their PLM (as we have done in (30)) although the original model (25) or

(28) does not have constant terms. Consequently, our analysis of E -stability is without

any loss of generality and covers the case when the original model contains constant

terms.20

We now compute the necessary and sufficient condition for a MSV solution to equation

(28) to be E -stable using the framework spelled out above. This yields an important base-

line result, which is that the condition that guarantees E -stability turns out to be identical

to the condition which guarantees uniqueness of rational expectations equilibrium.
20 Similar reasoning holds for all speciÞcations of monetary policy rules considered in later sections.

Moreover, even if the original model does not have a constant term, it is quite natural to assume that
agents allow for a constant term in their PLM.
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Proposition 2. Let κ(ϕπ − 1) + (1− β)ϕz 6= 0.21 Suppose the time t information set is
(1, y0t, rnt )0. Under contemporaneous data interest rate rules, the necessary and sufficient

condition for an MSV solution (0, c̄) of (28) to be E-stable is that

κ(ϕπ − 1) + (1− β)ϕz > 0. (34)

Proof. See Appendix B.

If the expectations in equation (28) are instead dated t − 1, then the MSV solution

takes the form yt = �a+ �cr
n
t−1 with �a = 0, �c = ρ(I − ρB)−1κ. Agents are then assumed

to have a PLM of the form yt = a+ cr
n
t−1 + κ²t which in turn leads to an ALM of the

form yt = Ba+ (Bcρ + κρ)rnt−1 + κ²t and E -stability of the MSV solution (0, �c) can be

analyzed as before. Using Proposition 10.1 of Evans and Honkapohja (2000, p. 240) it can

be shown that the necessary and sufficient condition for E -stability would be the same as

in Proposition 2.

We now show that the expectational stability of the MSV solution is robust to some

overparameterizations in the PLM of the agents. For this assume, say with t dating of

expectations in equation (28), that agents have a PLM of the form

yt = a+ byt−1 + crnt (35)

and substitute this into equation (28) to derive the corresponding ALM which then takes

the form

yt = (I −Bb)−1[Ba− (ρBc+κ)rnt ]. (36)

As before we can deÞne a map from the PLM to the ALM as

T (a, b, c) = ((I −Bb)−1Ba, 0, (I −Bb)−1(Bcρ+κ)). (37)

Expectational stability is then determined by the matrix differential equation

d

dτ
(a, b, c) = T (a, b, c)− (a, b, c) . (38)

The Þxed points of the above equation give us the MSV solution which can be written as

yt = ā+ b̄yt−1+ c̄rnt with ā = b̄ = 0, c̄ = (I−ρB)−1κ. One can analyze E -stability of this
21Again this condition rules out non-generic cases. Henceforth, we ignore such non-generic conditions

(see also the proof of this proposition).
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MSV solution (0, 0, c̄) as before. The necessary and sufficient condition for E -stability

would again be the same as in Proposition 2.22 Consequently, we see that E -stability of

the MSV solution of equation (28) is governed by the same condition as in Proposition 2

even when agents allow for a lag in the endogenous variables in their PLM. In this sense,

the expectational stability of the MSV solution is robust to some overparameterizations

in the PLM of the agents.

Propositions 1 and 2 in conjunction show that under contemporaneous data policy

rules, the set of parameter values consistent with determinate equilibria are exactly the

same as the set consistent with expectational stability. Since all determinate REE are

E -stable, one could view this as justifying the focus on determinate equilibria in previous

studies of policy rules, for the case in which the policy rule reacts to contemporaneous

data. We also note that passive rules may lead to instability of equilibria under the

learning dynamics�this provides an additional reason for avoiding such rules quite apart

from the indeterminacy problems they may cause.

Figure 1 plots the region of determinacy and expectational stability of the MSV solu-

tion as a function of ϕπ and ϕz, when all other parameters are set at the values given in

Table 1. Much of the parameter space is associated with a determinate REE. Our result

under learning shows that this entire region is also associated with expectational stabil-

ity. On the other hand, in the indeterminate region of the parameter space, equilibria

corresponding to the MSV solution are always expectationally unstable when agents have

a PLM corresponding to the relevant MSV solution.

3.2. Lagged data in the policy rule.

Determinacy. The case of a policy rule with contemporaneous data is probably the

least realistic in terms of what policymakers actually know when decisions about interest

rates are made. In this subsection, we follow McCallum�s (1999) recommendation and

consider rules with lagged data, so that policymakers are, in the current quarter, reacting

22This result again follows from applying Proposition 10.3 of Evans and Honkapohja (2000, p. 246).
The extra matrix that needs to be checked for E -stability of this solution is the null matrix which has
eigenvalues zero. A similar result also holds for t − 1 dating of expectations in the model.
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Policy rules with contemporaneous data

Figure 1: Regions of determinacy and expectational stability for the class of policy rules using
contemporaneous data. Parameters other than ϕπ (PHIPI) and ϕz (PHIZ) are set at baseline
values.

to information about the previous quarter�s output gap and inßation rate. The policy

rule is, therefore, given by (9) and our complete system is given by (5), (6), (9), and (8).

For the analysis of uniquenes, we move equation (9) one time period forward and

rewrite the system of equations (5), (6), and (9) as 1 0 σ−1

−κ 1 0
ϕz ϕπ 0

 zt
πt
rt

 =
 1 σ−1 0
0 β 0
0 0 1

 zet+1
πet+1
rt+1

+
 σ−1

0
0

 rnt . (39)

The matrix which is relevant for uniqueness is obtained by pre-multiplying the matrix

associated with the expectational variables with the inverse of the left hand matrix. This

matrix is given by

B =
1

(ϕz + κϕπ)

 0 −βϕπ 1
0 βϕz κ

σ(ϕz + κϕπ) ϕz + (κ+ βσ)ϕπ −σ

 . (40)

We now have two free endogenous variables, zt and πt, and one predetermined endogenous

variable, rt. Consequently, following Farmer (1991, 1999), we need exactly two of the
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eigenvalues of B to be inside the unit circle for uniqueness.

In this case it can be shown that a sufficiently aggressive response to inßation and

output will necessarily lead to local explosiveness, that is, paths that are locally diverging

away from the steady state.23 This has also been observed in the (larger) model of

Rotemberg and Woodford (1999). In order to have unique equilibria, we must rule out

aggressive response to either inßation or output as is shown in the proposition below.

Proposition 3. Under lagged data interest rate rules a set of sufficient conditions for

unique equilibria are

κ(ϕπ − 1) + (1− β)ϕz > 0, (41)

and

κ(ϕπ − 1) + ϕz < 2σ(1 + β). (42)

Proof. See Appendix C.

Proposition 3 shows that active rules with a small response to output can lead to unique

equilibria. In the Rotemberg and Woodford (1999) analysis, no further consideration was

given to either the explosive region or the region of indeterminacy. Instead, they searched

the portion of the parameter space associated with determinate equilibria for optimal

policy rules�values of ϕπ and ϕz�in an effort to identify an optimal policy rule in this

class according to a number of criteria. One way to justify this focus is to argue that the

determinate equilibria are the only learnable ones, as Proposition 2 established for the

case of contemporaneous data policy rules. This baseline result does not carry over to the

case of lagged data interest rate rules, however, as we now show.

Learning. For the analysis of learning, we substitute equation (9) into equation (5)

and reduce the system to two equations involving the endogenous variables zt and πt.

DeÞning yt = [zt, πt]
0
, this system can be written as

yt = β1y
e
t+1 + δyt−1 + κrnt (43)

23 It is easy to obtain the necessary and sufficient conditions for local explosiveness- for this we need
all the eigenvalues of B to be inside the unit circle. The conditions are somewhat messy but a casual
observation shows that an aggressive response of the interest rate to lagged inßation and output will
necessarily cause explosiveness.



Learning About Monetary Policy Rules 21

with

β1 =

·
1 σ−1

κ κσ−1 + β

¸
, (44)

δ =

· −ϕzσ−1 −ϕπσ−1
−κϕzσ−1 −κϕπσ−1

¸
, (45)

and

κ =
·
σ−1

κσ−1

¸
. (46)

In this formulation, we assume that expectations of inßation and output of the private

sector are formed at time t − 1. Since the central bank is using last quarter�s values of
inßation and output in setting the current interest rate, assuming that the private sector

has access to current quarter values of inßation and output in forming its expectations is

tantamount to assuming that the public has superior information. Assuming t− 1 dating
of expectations removes this tension and puts the monetary authority and the public in

a symmetric position. The MSV solution of (43) takes the form

yt = ā+ b̄yt−1 + c̄rnt−1 + κ²t (47)

with the solutions for ā, b̄ and c̄ being given by

ā = 0,

b̄ = (I − β1b̄)−1δ, (48)

and

c̄ = ρ(I − β1b̄− ρβ1)−1κ.

Because equation (48) is a matrix quadratic, there are potentially multiple solutions for

b̄. The determinate case corresponds to the situation when there is a unique solution for b̄

with both its eigenvalues inside the unit circle.24 For the analysis of learning, we assume

that agents have a PLM of the form

yt = a+ byt−1 + crnt−1 + κ²t
24 See also Evans and Honkapohja (2000 p. 261) on this point.
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corresponding to the MSV solution which leads to an ALM of the form

yt = (β1 + β1b)a+ (β1b
2 + δ)yt−1 + (β1bc + ρβ1c+ ρκ)rnt−1 + κ²t.

The mapping from the PLM to the ALM takes the form

T (a, b, c) = ((β1 + β1b)a, β1b
2 + δ,β1bc+ ρβ1c+ ρκ)

Expectational stability is then determined by the matrix differential equation

d

dτ
(a, b, c) = T (a, b, c)− (a, b, c) . (49)

The Þxed points of equation (49) give us the MSV solution (ā, b̄, c̄) of equation (47). We

say that a particular MSV solution (ā, b̄, c̄) is expectationally stable if equation (49) is

locally asymptotically stable at that point.

Our system is in a form where we can apply Proposition 10.1 of Evans and Honkapohja

(2000, p. 240).25 For E -stability of any MSV solution (ā, b̄, c̄) with t − 1 dating of
expectations, we need the eigenvalues of the following three matrices:

b̄0 ⊗ β1 + I ⊗ β1b̄, (50)

ρβ1 + β1b̄, (51)

and

β1 + β1b̄ (52)

to have real parts less than one. On the other hand, the MSV solution is not E -stable if

any eigenvalue of the matrices (50), (51) or (52) has a real part more than one.

We are unable to obtain analytical results in this case. However, we can illustrate our

Þndings with Figure 2 which depicts determinacy and learnability of the MSV solution

for lagged data rules, when all parameters other than ϕπ and ϕz are set at the baseline

values outlined in Table 1. The determinate case corresponds to the situation when there

is a unique solution for b̄ in the MSV solution (47) with both its eigenvalues inside the

unit circle. We Þrst note that only a subset of the parameter space that is consistent with
25Proposition 10.2 of Evans and Honkapohja (2000, p. 243) shows that under recursive least squares

learning, the learning algorithm converges locally to a stationary E -stable MSV solution
¡
ā, b̄, c̄

¢
.
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determinacy is also consistent with learnability in the lagged data case. Passive rules

combined with a relatively aggressive response to the output gap may lead to determinate

equilibria that are unstable under learning dynamics. While passive rules do not necessar-

ily lead to problems of non-uniqueness of equilibria, they continue to cause instability of

equilibria in the learning dynamics.26 In the indeterminate region of the parameter space

we Þnd that there are two stationary solutions which take the form of the MSV solution

(47). However, both of these stationary solutions always turn out to be E -unstable.27

We Þnd that there continues to be a close connection between active rules and learn-

ability of REE, as an aggressive response to lagged values of inßation deviations leads

to learnability. Moreover, a theme that is particularly apparent in this case, and that

we will come back to throughout the paper, is that activist rules (ϕπ > 1) with little or

no reaction to the output gap tend to be associated with rational expectations equilibria

which are both determinate and E -stable across all the speciÞcations of monetary policy

rules we consider.

3.3. Forward expectations in the policy rule.

Determinacy. With forward expectations in the policy rule, the monetary authority

sets its nominal interest rate instrument in response to the forecasts of inßation deviations

and the output gap, that is, according to the policy rule (10), and our complete model is

given by (5), (6), (10), and (8).

There are several ways to interpret the policy rule (10). In practice, following Bernanke

and Woodford (1997), there are at least three types of approaches to implement this

proposal. First, the central bank could try to �target� the predictions of private sector

26 In view of Propositions 1 and 3, there may seem to be a contradiction in the statement that passive
rules with relatively aggressive response to output lead to indeterminacy under contemporaneous data
rules (as illustrated in Figure 1) whereas they lead to determinate equlibria under lagged data rules (as
illustrated in Figure 2). However, the contradiction is resolved by noting that Proposition 3 merely gives
sufficient conditions for unique equlibria in the lagged data case. In particular, inequality (41) is violated
in this region so that equlibrium is necessarily indeterminate under contemporaneous data rules (in view
of Proposition 1) whereas they could still be determinate (and obviously are as illustrated in Figure 2) in
the lagged data case (since this situation is not covered in Proposition 3).
27 There are no results for the connection between E -stability and convergence of actual real time

learning algorithms in explosive cases. Consequently, we do not analyze the expectational stability of
explosive situations. We also do not analyze E -stability of sunspot equilibria in the indeterminate region
of the parameter space.
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Policy rules with lagged data

The region without any symbols is explosive.

Figure 2: Determinacy and learnability for rules responding to lagged data, with parameters
other than ϕπ and ϕz set at baseline values. Determinate equilibria may or may not be E -
stable. The region of active rules associated with small coefficients on the output gap remains
expectationally stable.

forecasters (see Hall and Mankiw (1994)). Second, the central bank could try to target the

forecast of inßation implicit in various asset prices. Finally, the monetary authority might

try to target its own internal forecasts of inßation (see Svensson (1997)).28 In the latter

two proposals there will be two-sided learning, with both the policymaker and the private

sector taking actions based on (identical) expectations of the future path of the output

gap and inßation in our scenario. In the Þrst proposal, it will be only the private sector

which is learning with the central bank merely reacting to the private sector forecasts. In

the case when there is two-sided learning, we assume that both the policymakers and the

private agents use identical recursive least squares algorithms to update their expectations.

We can again reduce the system of equations (5), (6), and (10) to two equations

28 See Bernanke and Woodford (1997) for a more detailed discussion of these various proposals.
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involving the endogenous variables (zt,πt) by substituting equation (10) into equation

(5). The reduced system is then given by·
1 0
−κ 1

¸ ·
zt
πt

¸
=

·
1− σ−1ϕz σ−1(1− ϕπ)

0 β

¸ ·
zet+1
πet+1

¸
+

·
σ−1

0

¸
rnt . (53)

The relevant matrix for calculating determinacy (obtained by pre-multiplying the Þrst

matrix on the right hand side with the inverse of the matrix on the left hand side),

denoted B, is given by

B =

·
1− σ−1ϕz σ−1(1− ϕπ)
κ(1− σ−1ϕz) β + κσ−1(1− ϕπ)

¸
. (54)

Since the variables zt and πt are free, we need both the eigenvalues of B to be inside the

unit circle for uniqueness. In this case we are again able to provide a characterization

of the necessary and sufficient conditions for determinacy. This is given in the following

proposition.

Proposition 4. Under interest rate rules with forward expectations the necessary and

sufficient conditions for a rational expectations equilibrium to be unique are that

ϕz < σ(1 + β
−1), (55)

κ(ϕπ − 1) + (1 + β)ϕz < 2σ(1 + β), (56)

and

κ(ϕπ − 1) + (1− β)ϕz > 0. (57)

Proof. See Appendix D.

We Þrst note that, unlike the other speciÞcations, values assigned to ϕz are of primary

importance for determining uniqueness. In particular, an aggressive response to output

leads to indeterminacy, quite independently of ϕπ. Even if the response to output is

modest, a sufficiently aggressive response to inßation again leads to indeterminacy. In

this respect the picture that emerges from here is akin to the one involving lagged data

policy rules. A sufficiently aggressive response to both inßation and output leads to non-

unique equilibria for interest rate rules that respond either to lagged values or to future
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forecasts of output and inßation. However, in the case of forward looking rules it is

possible to have unique equilibria with active rules coupled with a modest response to

output.

In the literature, as for example in Clarida, Gali and Gertler (2000), a forward-looking

rule sometimes reacts to the future inßation forecast and the contemporaneous output

gap, unlike the speciÞcation (10). If the interest rate rule takes this form, that is, of the

form

rt = ϕππ
e
t+1 + ϕzzt, (58)

then the problem of indeterminacy is somewhat lessened. In this case, it can be shown

that the necessary and sufficient conditions for determinacy are (only) condition (57) and

κ(ϕπ − 1)− (1 + β)ϕz < 2σ(1 + β). (59)

Note that now an aggressive response towards output promotes determinacy. However, a

very aggressive response towards inßation still leads to indeterminacy. Consequently, the

message we get from forward-looking rules is that greater the forward looking elements

in the monetary authority�s policy rule, greater is the problem of indeterminacy. In

particular, if the monetary authority has a rule of the form of equation (10) then an

aggressive response to either inßation or output leads to indeterminacy whereas if the

bank sets the interest rate according to a rule of the form (58), then it is only an aggressive

response to inßation which leads to indeterminacy. Consequently, a central bank which

sets interest rates according to a forward-looking rule may want to reduce the number of

forward-looking elements in such a rule if it wants to reduce the possibility of self-fulÞlling

bursts in inßation and output.

Learning. The analysis of E -stability here is akin to the case of rules with con-

temporaneous data. Equation (53) can be written in the form (after multiplying by the

inverse of the left hand matrix)

yt = α+By
e
t+1 +κrnt (60)

where yt = [zt,πt]
0, α = 0, B is as deÞned in equation (54), and κ = [σ−1, κσ−1]0. For

t-dating of expectations, the MSV solution takes the form yt = ā + c̄rnt with ā = 0,
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c̄ = (I − ρB)−1κ. The PLM of agents again takes the form of equation (30) and the

rest of the analysis proceeds as in Section 3.1. We obtain a complete characterization for

E -stability of the MSV solution in the following proposition.

Proposition 5. Suppose the time t information set is (1, y0t, r
n
t )
0.Under interest rate rules

with forward expectations, the necessary and sufficient condition for an MSV solution

(0, c̄) of (60) to be E-stable is that

κ(ϕπ − 1) + (1− β)ϕz > 0 (61)

Proof. See Appendix E.

We again obtain an identical stability condition for t− 1 dating of expectations. The
solution is also stable under some overparametrizations in the PLM of the agents. If

agents allow for a PLM of the form of equation (35), the conditions for E -stability of the

MSV solution (0, 0, c̄) would be identical to the one in Proposition 5. Consequently the

MSV solution is stable even when agents allow for a lag in the endogenous variables in

their PLM.

Propositions 4 and 5 in conjunction show that under policy rules with forward ex-

pectations, if an MSV solution is unique, then it must be expectationally stable. In this

case, the converse does not hold, as satisfaction of the expectational stability conditions

does not imply satisfaction of the determinacy conditions. Consequently, when equilibria

are (potentially) indeterminate, as long as agents do not allow for any sunspot variable in

their PLM (for example), they may still converge to equilibria which correspond to the

MSV solution.

We continue to Þnd an intimate connection between active rules and E -stability. In

particular, active rules guarantee E -stability. More generally, an aggressive response to

both the future forecasts of inßation and output is conducive to learnability.

Figure 3 illustrates the intersections of the regions of determinacy and learnability

of the MSV solution at baseline parameter values. Determinate equilibria are always

expectationally stable, and again these cases involve active rules with zero or relatively

small positive coefficients on ϕz. On the other hand, in the indeterminate region of
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Figure 3: Learnability with forward expectations monetary policy rules, at baseline parameter
values. Determinate equilibria are always expectationally stable.

the parameter space, equilibria corresponding to the MSV solution may or may not be

learnable when agents have a PLM corresponding to the relevant MSV solution.

3.4. Contemporaneous expectations in the policy rule.

Determinacy. With contemporaneous expectations, the policy rule is given by (11).

In this case we assume t − 1 dating of expectations for the central bank and the private
sector so as to put both of them in a symmetric position as far as their information is

concerned. Our complete model is given by (5), (6), (11), and (8). We can reduce our

system of equations (5), (6), and (11) to two equations by substituting equation (11) into

equation (5) and write this system in the following form·
1 0
−κ 1

¸ ·
zt
πt

¸
=

·
1 σ−1

0 β

¸ ·
zet+1
πet+1

¸
+

· −σ−1ϕz −σ−1ϕπ
0 0

¸·
zet
πet

¸
(62)

+

·
σ−1

0

¸
rnt .



Learning About Monetary Policy Rules 29

DeÞning the vector of endogenous variables by yt = [zt,πt]
0 and after pre-multiplying both

sides by the inverse of the matrix on the left hand side, we can write the above system in

the form

yt = B0y
e
t +B1y

e
t+1 + κrnt (63)

where κ = [σ−1,κσ−1]0,

B0 =

· −ϕzσ−1 −ϕπσ−1
−κϕzσ−1 −κϕπσ−1

¸
, (64)

and

B1 =

·
1 σ−1

κ β + κσ−1

¸
. (65)

The situation with contemporaneous expectations is similar to the situation with contem-

poraneous data at least as far as determinacy is concerned. In particular, the necessary

and sufficient condition for a unique REE is given by condition (27) of Proposition 1 (and

as portrayed in Figure 1 for baseline parameter values). The easiest way to see this is

by replacing the expectations with the actual values (which is required for determining

uniqueness following Farmer (1999) or Evans and Honkapohja (2000)) and observing that

this yields the matrix, (I − B0)−1B1, for determining uniqueness which is exactly the
same as the one obtained for contemporaneous data, namely, the matrix given in (26).

Furthermore, since the variables zt and πt are free, we need both eigenvalues of (26) to

be inside the unit circle for uniqueness, as in the case of contemporaneous data.

Learning. Given our model of the form of equation (63), the MSV solution takes

the form yt = ā+ c̄rnt−1 + κ²t with ā = 0 and c̄ = ρ(I −B0 − ρB1)−1κ. We assume that
agents have the PLM

yt = a+ cr
n
t−1 + κ²t (66)

from which we compute the expectationsEt−1yt = a+crnt−1 and Et−1yt+1 = a+cEt−1rnt =

a+ cρrnt−1. Substituting this into our model (63) yields the ALM

yt = (B0 +B1)a+ (B0c +B1cρ+κρ)rnt−1 + κ²t. (67)

The map from the PLM to the ALM takes the form

T (a, c) = ((B0 +B1)a, (B0c+B1cρ+ κρ)). (68)
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Expectational stability is then determined by the matrix differential equation

d

dτ
(a, c) = T (a, c)− (a, c) . (69)

We are now in a position to prove the following proposition.

Proposition 6. The necessary and sufficient condition for the MSV solution (0, c̄) of (63)

to be E-stable under interest rate rules with contemporaneous expectations, is given by

inequality (61).

Proof. See Appendix F.

This shows that under condition (61), the MSV solution is E-stable if agents allow

for a PLM which corresponds to this solution. In addition, the solution is also E-stable

under some overparametrizations (as in the case of contemporaneous data) in the PLM

of the agents. For example, if agents allow for a PLM of the form (35), then the MSV

solution
¡
ā, b̄, c̄

¢
of equation (63) with ā = b̄ = 0 will be E -stable under condition (61).

In this case one needs to check further that the eigenvalues of I ⊗ B0 have real parts
less than one for E -stability (see Evans and Honkapohja (2000, p. 240)). This condition

is satisÞed since the eigenvalues of B0, being given by 0 and −σ−1(κϕπ + ϕz), are non-
positive. Consequently, condition (61) is also the necessary and sufficient condition for

E -stability of the MSV solution when agents allow for a PLM of the form of equation

(35), that is, when agents allow for a lag in the endogenous variables in their PLM.

Condition (61) is also the necessary and sufficient condition for uniqueness of equi-

libria under contemporaneous expectations. Hence, Proposition 6 shows that the set of

parameters consistent with both unique and E -stable equilibria are exactly the same�a

conclusion which we also obtained for the speciÞcation of contemporaneous data policy

rules.

Following our analysis in the previous section, we again obtain the intimate connection

between active rules and E -stability, namely, that such rules guarantee E -stability. The

situation for the case of baseline parameter values is again summarized in Figure 1, where

the determinate region is also the expectationally stable region.
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3.5. Remarks and relation to some recent literature. We have noted that the

contemporaneous data class of policy rules has been criticized because central banks do

not actually have very good current quarter information on the output gap and inßa-

tion during the current quarter. The other three classes of policy rules�those involving

lagged data, forward expectations, and contemporaneous expectations�all respond to

this criticism. Of these, the contemporaneous expectations speciÞcation provides the best

response according to our analysis. First, the lagged data and forward expectations classes

altered the equilibrium conÞgurations dramatically, while the contemporaneous expecta-

tions speciÞcation left it intact. In particular, with lagged data or forward looking rules, a

large portion of the parameter space is associated with either explosiveness or indetermi-

nacy, whereas with contemporaneous expectations a large portion of the parameter space

is associated with unique REE. Second, the conditions for expectational stability are such

that determinate equilibria are expectationally stable and vice versa for the contempo-

raneous expectations speciÞcation, and the condition under which this is true is also the

same as with contemporaneous data. This result does not hold for the lagged data or for-

ward expectations speciÞcations: For lagged data only a portion of the parameter space

consistent with determinacy is also consistent with learnability, while for forward-looking

rules determinate equilibria are always learnable, but in addition equilibria corresponding

to the MSV solution may be stable under learning as well in the indeterminate region of

the parameter space. Finally, the contemporaneous expectations speciÞcation is probably

fairly realistic in terms of actual central bank behavior, as policymakers surely compute

their expectations of current quarter macroeconomic data when making policy decisions.

For these reasons, if we view determinacy and learnability as desirable criteria for a mon-

etary policy rule then the contemporaneous expectations speciÞcation seems to be the

most desirable.

As mentioned in the introduction, several authors, such as Taylor (1999) and Clarida,

Gali and Gertler (2000), tend to favor a �leaning against the wind� policy by the central

bank. For example, Taylor (1999) recommends a policy rule which calls for tightening

market conditions in response to higher inßation or to increases in production. This
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would be ensured by an interest rate rule with ϕπ > 1 and ϕz > 0. Taylor (1999) used

contemporaneous data in his policy rule. Clarida, Gali and Gertler (2000) reach similar

conclusions on the desirability of an aggressive response of the interest rate to inßation

with a forward-looking rule.

In this paper we support the recommendations of these authors based on the criterion

of learnability. If agents do not have rational expectations of inßation and output and

instead start with some subjective expectations of these variables, then a �leaning against

the wind� policy on the part of the central bank pushes the economy towards the rational

expectations equilibrium. This is true not only when the policy rule reacts to contempo-

raneous data or to forward-looking variables but also when it reacts to lagged data or to

contemporaneous expectations of these variables.29 For example, a deviation of private

sector expected inßation from the rational expectations value leads to an increase in the

real interest rate since ϕπ > 1. This reduces the output gap through the IS curve which

in turn reduces inßation through the aggregate supply equation. The policy, therefore,

succeeds in guiding initially nonrational private sector expectations towards the rational

expectations value. On the other hand, a policy rule in which ϕπ < 1 may be destabilizing

in the sense that if agents do not start with rational expectations then they are unlikely

to be able to coordinate on the particular equilibrium the policy authorities are targeting.

In this case, a deviation of private sector expected inßation from the rational expectations

value leads to a decrease in the real interest rate. This increases the output gap through

the IS curve which in turn increases inßation through the aggregate supply equation. Over

time, this leads to upward revisions of both expected inßation and expected output gap.

The interest rate rule is unable to offset this tendency and the economy moves further

away from the rational expectations equilibrium. While the literature has already warned

against the use of passive rules owing to the indeterminacy problems they easily cause,

we Þnd an additional reason for avoiding such rules�namely, that passive rules may lead

to unlearnability of rational expectations equilibria.

Because there is no general agreement among authors as to the type of policy rules

29 For the lagged data case, we saw this numerically in Figure 2.
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central banks should follow, we Þnd it useful to recommend a policy rule which responds

aggressively to inßation (with a coefficient bigger than one) and mildly to output. Such

rules are often associated with rational expectations equilibria which are both determinate

and stable under the learning dynamics across all the speciÞcations we consider.30 We

think that this provides an important reason for central banks to consider rules of this type,

irrespective of the exact policy rule they want to use. It also provides some foundation

for a positive theory of observed monetary policy rules based on interest rate targeting,

because estimated policy rules (at least using data since the mid-1980s) tend to have this

character.

4. Summary and conclusion

We have studied the stability of macroeconomic systems under learning for various mon-

etary policy rules using methods developed by Evans and Honkapohja (1999, 2000). The

systems we study are among those being used to give advice on what central banks might

reasonably expect should they adopt certain types of monetary policy rules. A key feature

of these economies under rational expectations is that a determinate equilibrium may not

exist. However, in virtually all analyses of which we are aware, the agents in the model

are simply assumed to be able to coordinate on determinate equilibria when they do exist.

In this paper we provide an analysis of this assumption.

In general determinacy alone is insufficient to induce learnability of a rational expecta-

tions equilibrium. We conclude that it may be unwise to simply assume that coordination

on a unique equilibrium can occur under a reasonable description of agent learning.

We have argued that policy rules which lead to unlearnable equilibria are to be avoided.

We think this is reasonable, in part because in the formulation of adaptive learning we

have used, we already endowed agents with quite a bit of information about the economy

in the sense that the perceived law of motion of the agents corresponds to the MSV

solution. The agents, in other words, have the right variables and the right relationship

between the variables, as well as initial conditions in the neighborhood of the equilibrium.

30However, the degree of activism to inßation should not be too large as that may lead to non-unique
equilibria under policy rules which respond to lagged values of inßation and output or to future forecasts
of these variables.
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If agents are unable to learn the MSV solution even under this very favorable assumption,

then they are unlikely to learn the equilibrium under more general assumptions.31 We

have also shown that some of our results are robust to certain overparameterizations in

the perceived law of motion of the agents.

In this paper, we have only considered �simple� policy rules, in which policymakers do

not respond to the lagged interest rate. In part this was because this is the type of policy

rule studied by Taylor (1993) which fueled the current wave of interest in monetary policy

rules. However, estimated policy rules usually include a lagged interest rate in order to

better capture the interest rate smoothing observed in actual central bank behavior. We

expect our results to be valid even when we allow for mild interest rate smoothing on

the part of the central bank. We are currently conducting a systematic study of the four

variants of policy rules considered here when the central bank also reacts to a lagged

interest rate in a companion paper.32
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A. Proof of Proposition 1

The characteristic polynomial of B, deÞned by (26), can be shown to be given by

p(λ) = λ2 + a1λ+ a0 (70)

where

a0 =
βσ

σ + ϕz + κϕπ
(71)

and

a1 =
−(κ+ σ + βσ + βϕz)

σ + ϕz + κϕπ
. (72)

Since the variables zt and πt are free, equilibrium is determinate if and only if both

eigenvalues of B are inside the unit circle. The necessary and sufficient conditions for this

are (i) |a0| < 1 and (ii) |a1| < 1+ a0.33 Condition (i) implies (after some simpliÞcation)

ϕz + κϕπ > −(1− β)σ. (73)

Since 0 < β < 1, this condition is trivially satisÞed for all ϕπ ≥ 0,ϕz ≥ 0. Condition (ii)
on the other hand, implies (again after some simpliÞcation)

κ(ϕπ − 1) + (1− β)ϕz > 0 (74)

which is the required condition in the proposition. In addition, note that by Descartes�

rule of signs (see, for example, Barbeau (1989, p. 171)) the eigenvalues are either both

33 See J.P. LaSalle (1986, p. 28).
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positive or they are a pair of complex conjugates. If the roots are positive, then κ(ϕπ −
1) + (1 − β)ϕz 6= 0 rules out an eigenvalue equal to 1 whereas if the eigenvalues are

complex, then their product a0 is not equal to 1, so that we can rule out the case when

they are on the unit circle.

B. Proof of Proposition 2

We have spelled out the PLM, the ALM, and the T map from the PLM to the ALM by

equations (30), (31), and (32), respectively. As we noted, our model is merely a special case

of the one treated in Evans and Honkapohja (2000, p. 246) since we do not have lagged

endogenous variables. Consequently, we can apply their results (in particular Proposition

10.3, p. 246) directly here. We need the eigenvalues of the matrix B (given by (26)) and

ρ ⊗ B ( = ρB) to have real parts less than 1 for E -stability. The eigenvalues of ρB are

given by the product of the eigenvalues of B and ρ, and since 0 ≤ ρ < 1, it suffices to

have only the eigenvalues of B to have real parts less than 1 for E -stability. Consequently,

our E -stability conditions are independent of the parameter ρ. On the other hand, the

MSV solution will not be E -stable if any eigenvalue of B has a real part more than 1. The

characteristic polynomial of B − I is given by λ2 + a1λ+ a2 where

a1 =
κ(2ϕπ − 1) + (2− β)ϕz + σ(1− β)

σ + ϕz + κϕπ
(75)

and

a2 =
κ(ϕπ − 1) + (1− β)ϕz

σ + ϕz + κϕπ
. (76)

Both eigenvalues of B have real parts less than 1 (that is, both eigenvalues of B− I have
negative real parts) if and only if (i) a1 > 0 and (ii) a1a2 > 0.34 Given (i), the latter

condition reduces to a2 > 0. Note that

a1 = a2 +
κϕπ + ϕz + σ(1− β)

σ + ϕz + κϕπ
. (77)

Given our maintained assumptions, a2 > 0 implies a1 > 0. Consequently, the only condi-

tion required is a2 > 0 which reduces to (34). On the other hand, if κ(ϕπ−1)+(1−β)ϕz <
0, then the determinant and trace of B − I is non-zero so that there is no real root equal
34These conditions are obtained by applying the Routh theorem (see Chiang (1984)).
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to zero and in the case of complex eigenvalues, the real parts are non-zero. This shows

that condition (34) is necessary and sufficient for E -stability of the MSV solution. Note

that κ(ϕπ − 1)+ (1− β)ϕz 6= 0 eliminates the possibility that one of the eigenvalues of B
is equal to 1 (recall that for expectational instability we need at least one eigenvalue of B

to have real part more than 1).35

C. Proof of Proposition 3

It is easier to prove our results by working with the inverse of B (where B is given by

equation (40)), namely, by working with

B−1 =

 1 + κβ−1σ−1 −β−1σ−1 σ−1

−κβ−1 β−1 0
ϕz ϕπ 0

 . (78)

An equilibrium will be determinate if and only if exactly one eigenvalue of B−1 is inside

the unit circle. The characteristic polynomial of B−1, p(λ), is given by λ3+a1λ2+a2λ+a3

where

a1 = −(1 + β−1 + κβ−1σ−1), (79)

a2 = β
−1 − σ−1ϕz, (80)

and

a3 =
κϕπ + ϕz
βσ

. (81)

Note that p(0) = a3,

p(1) =
κ(ϕπ − 1) + (1− β)ϕz

βσ
, (82)

and

p(−1) = κ(ϕπ − 1) + (1 + β)ϕz − 2σ(1 + β)
βσ

. (83)

We have by assumption a3 > 0. Irrespective of whether a2 is negative or positive, by

Descartes� rule of signs there is either one negative root and two positive roots or one

negative root and a pair of complex conjugates. We have p(0) > 0 and p(−1) < 0 by

condition (42). So the negative root (λ1) is inside the unit circle. If all the roots are real,

then since
P3

i=1 λi = 1 + β
−1 + κβ−1σ−1 we have

λ2 + λ3 > 1 + β
−1 + κβ−1σ−1 > 2 + κβ−1σ−1. (84)

35Henceforth, we ignore such non-generic cases.
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Consequently, at least one of the positive roots, say λ2,must be more than 1. By condition

(41) we have p(1) > 0. This ensures that the third positive root also exceeds 1 by observing

that p(1) > 0, p(λ2 + ε) < 0 for small positive ε, and that p(∞) = ∞. If the roots are
complex, then again we have

2λr > 2 + κβ−1σ−1 (85)

so that the real part λr > 1.

D. Proof of Proposition 4

The characteristic polynomial of B (given by equation (54)) is λ2 + a1λ+ a0 where

a0 = β(1− σ−1ϕz) (86)

and

a1 = κσ
−1(ϕπ − 1) + σ−1ϕz − 1− β. (87)

Since the variables zt and πt are free, equilibrium is determinate if and only if both

eigenvalues of B are inside the unit circle. The necessary and sufficient conditions for this

are (i) |a0| < 1 and (ii) |a1| < 1 + a0. Condition (i) implies

−1− β−1 < −σ−1ϕz < β−1 − 1. (88)

Since β < 1, the right hand inequality is always satisÞed and the other inequality reduces

to inequality (55). Condition (ii) implies the inequalities

−1− β(1− σ−1ϕz) < κσ−1(ϕπ − 1) + σ−1ϕz − 1− β < 1 + β(1− σ−1ϕz). (89)

The right hand inequality reduces after some simpliÞcation to inequality (56). The left

hand inequality, on the other hand, reduces to

κ(ϕπ − 1) + (1− β)ϕz > 0 (90)

which is inequality (57).

E. Proof of Proposition 5

For the reasons outlined in the proof of Proposition 2, expectational stability holds if the

eigenvalues of B (given by equation (54)) have real parts less than 1 and does not hold if
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any eigenvalue of B has a real part more than 1. The characteristic polynomial of (B−I)
is given by λ2 + a1λ+ a2 where

a1 =
κ(ϕπ − 1) + ϕz + σ(1− β)

σ
(91)

and

a2 =
κ(ϕπ − 1) + (1− β)ϕz

σ
. (92)

Again both eigenvalues of B have real parts less than one if and only if (i) a1 > 0 and

(ii) a2 > 0. It is easy to show that in this case condition (ii) implies condition (i).

Consequently, the only requirement is condition (ii) which implies inequality (61).

F. Proof of Proposition 6

Our system is a special case of the one treated in Evans and Honkapohja (2000, p. 237)

since our model does not have any lagged endogenous variables. We can, therefore, apply

their Proposition 10.1 (p. 240) directly to our setup. For expectational stability we require

the real parts of the eigenvalues of the following matrices to be less than one:36

ρB1 +B0, (93)

and

B0 +B1. (94)

On the other hand, if any eigenvalue of (93) or (94) has real part more than one, then

the equilibria are not E -stable. Note that the matrix B0 +B1 is identical to the matrix

B (given by equation (54)) which was crucial for determining uniqueness and E -stability

under forward expectations and, therefore, the (necessary and sufficient) condition for the

eigenvalues of the real parts of B0 + B1 to be less than one is given by inequality (61).

The matrix ρB1 +B0 − I has the characteristic polynomial λ2 + a1λ+ a0 where

a1 = 2− ρ− βρ+ σ−1ϕz − κσ−1(ρ− ϕπ). (95)

and

a0 = 1− ρ− βρ+ βρ2 + σ−1ϕz(1− βρ)− κσ−1(ρ− ϕπ). (96)

36The matrices B0 and B1 are deÞned in equations (64) and (65), respectively.
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Both eigenvalues of (ρB1 +B0) have real parts less than one if and only if (i) a0 > 0 and

(ii) a1 > 0. Note that

a1 = a0 + 1 + ρ(βρ+ βσ
−1ϕz). (97)

Consequently, a0 > 0 implies that a1 > 0. As a result, both eigenvalues of (ρB1 + B0)

have real parts less than one if and only if a0 > 0. We can write a0 as

a0 = σ
−1[σ(1− ρ)(1− βρ) + (1− βρ)ϕz + κ(ϕπ − ρ)]. (98)

The Þrst term within parentheses is positive. Inequality (61), on the other hand, implies

that (1− βρ)ϕz + κ(ϕπ − ρ) > 0 since

(1− βρ)ϕz + κ(ϕπ − ρ) = κ(ϕπ − 1) + (1− β)ϕz + κ(1− ρ) + β(1− ρ)ϕz. (99)

Inequality (61), therefore, implies a0 > 0. This proves the proposition.


