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Abstract

A framework is presented which distinguishes the conceptually separate decisions of which

treatment strategy is optimal from the question of whether more information is required to

inform this choice in the future. The authors argue that the choice of treatment strategy

should be based on expected utility and the only valid reason to characterise the uncertainty

surrounding outcomes of interest is to establish the value of acquiring additional information. 

A Bayesian decision theoretic approach is demonstrated though a probabilistic analysis of a

published policy model of Alzheimer’s disease. The expected value of perfect information is

estimated for the decision to adopt a new pharmaceutical for the population of US

Alzheimer’s disease patients. This provides an upper bound on the value of additional

research.  The value of information is also estimated for each of the model inputs. This

analysis can focus future research by identifying those parameters where more precise

estimates would be most valuable, and indicating whether an experimental design would be

required. We also discuss how this type of analysis can also be used to design experimental

research efficiently (identifying optimal sample size and optimal sample allocation) based on

the marginal cost and marginal benefit of sample information. Value-of-information analysis

can provide a measure of the expected payoff from proposed  research, which can be used to

set priorities in research and development. It can also inform an efficient regulatory

framework for new health care technologies: an analysis of the value of information would

define when a claim for a new technology should be deemed "substantiated" and when

evidence should be considered "competent and reliable" when it is not cost-effective to

gather anymore information.



1. Introduction

Bayesian decision theory provides a valuable framework for health care technology

assessment which distinguishes the conceptually separate decisions of whether a new

technology should be adopted from the question of whether more research is required to

inform this choice in the future (5). This type of approach is demonstrated by applying it to a

published policy model of Alzheimer’s disease (27).  A probabilistic analysis of this model is

conducted by assigning prior distributions to characterise the uncertainty surrounding model

inputs and the decision uncertainty is represented in the form of a cost-effectiveness

acceptability curve. However, Bayesian decision theory suggests that the choice of treatment

strategy should be based on expected utility and the only valid reason to characterise the

uncertainty surrounding outcomes of interest is to establish the value of acquiring additional

information. The expected value of perfect information is estimated for the decision to adopt

a new pharmaceutical for the population of US Alzheimer’s disease patients. This provides

an upper bound on the value of additional research.  The value of information is also

estimated for each of the model inputs so that future research may focus on those parameters

where more precise estimates would be most valuable.  

The value of conducting additional research to inform particular clinical decision problems and

the value of acquiring more precise estimates of particular inputs used in a cost-effectiveness

analysis of health care technologies is of general interest. It has implications for the design,

conduct and interpretation of research, as well as the more general policy issue of setting

priorities in clinical research and development.  These issues are also at the heart of the current

international debate about the appropriate regulation of new health care technologies. In the

US this debate has been focused, in part, on the implementation of the Food and Drug



Administration Modernization Act (16).

The FDA Modernization Act  amended the standard for health economic claims from,

“substantial evidence [typically demonstrated] by two adequate and well controlled clinical

trials” (26;15), to “competent and reliable scientific evidence”. What constitutes competent

and reliable evidence is not clear in the legislation, but Bayesian decision theory and an

analysis of the value of information can be used to asses whether input data for cost-

effectiveness analysis are “competent and reliable” and help determine whether an economic

claim for a new technology is “sufficiently substantiated”.

It cannot be efficient to demand the same standard of evidence in all circumstance and across

all technologies irrespective of any evidence already available, the size of the patient

population that could benefit from the new technology and the costs of gathering more

information (4). These issues seem to be recognised in the more recent US legislation (16;17),

which use a definition of competent and reliable evidence from the Federal Trade

Commission’s standards (13):

“...a reasonable basis [for a claim of cost-effectiveness] depends ... on a number

of factors relevant to the benefits and costs of substantiating a particular claim. 

These factors include: the type of product, the consequences of a false claim,

the benefits of a truthful claim, the costs of developing substantiation for the

claim...” (Section 114, FDA Modernization and Accountability Act (16))

This standard of evidence requires explicit consideration of the marginal benefits and costs of

acquiring additional information but no method for estimating these costs and benefits has



been suggested.  The approach outlined in this paper provides a framework which can define a

claim as “substantiated” and evidence as “competent and reliable” such that  it is not efficient

to gather any more information.

Bayesian value-of-information analysis is a useful analytic framework for both analysts,

designing and conducting research, and for policy makers, considering research priorities and

the appropriate regulation of new technologies.  We demonstrate the benefits and the

practicality of this approach by applying it to a published policy model of Alzheimer’s disease

which is introduced in section 3. 

2. Methodological background

Recently a Bayesian decision theoretic framework for the evaluation of health care

programmes has been presented (3;5;7).  This analytic approach has a firm grounding in

statistical decision theory (29;31;32;37), and has been used in other areas of research

including engineering (20) and environmental risk assessment (19;42) The approach suggests

that the choice between mutually exclusive programmes should be distinguished from the

conceptually separate question of whether more information should be acquired to inform

this decision in the future.  Within this framework the choice between programs should be

based on expected utility, and the most important reason to consider the uncertainties

surrounding the outcome of interest is to establish the value of acquiring additional

information by conducting further research.

Information is valuable because it reduces  the expected costs of uncertainty surrounding a

clinical decision.  The expected costs of uncertainty is determined by the probability that a



treatment decision based on existing (prior) information will be wrong and the consequences if

the wrong decision is made (loss function). The expected costs of uncertainty can also be

interpreted as the expected value of perfect information (EVPI) since perfect information (an

infinite sample) can eliminate the possibility of making the wrong decision.  It is also the

maximum a decision maker should be willing to pay for additional evidence to inform this

decision in the future (3;42). If the EVPI exceeds the expected costs of additional research

then it is potentially cost-effective to acquire more information by conducting additional

research (the maximum benefits exceed the costs of further investigation). It is also possible to

consider the value of information associated with reducing the uncertainty surrounding each of

the parameters in a cost-effectiveness analysis of  alternative strategies of patient management. 

This analysis can focus research priorities by identifying those parameters where more precise

estimates would be most valuable and, in some circumstances, indicating which endpoint

should be included in further experimental research. This type of analysis is applied to a

published model of Alzheimer’s disease in section 4.

However observing an EVPI greater than the cost of additional research  provides only the

necessary but not sufficient condition for deciding to acquire more experimental information

(for example, conducting a clinical trial). It is necessary to estimate the benefits of sampling,

or the expected value of sample information (EVSI) for the patient population, and the cost of

sample information including the additional treatment and reporting cost. The difference

between the EVSI and sampling cost is the expected net benefits of sampling (ENBS), or the

societal pay-off to proposed research. An estimate of the ENBS for every feasible allocation

of each sample size is required to identify the optimal allocation of trial entrants (where ENBS

reaches a maximum for a given sample size) (5). The optimal sample size for the trial is where

ENBS reaches a maximum (given optimal sample allocation). If the maximum ENBS is



greater than the fixed costs of the research, then it will be efficient to conduct further research

at this technically efficient scale and design. Although estimates of ENBS are not presented

here, the application of this type of analysis to Alzheimer’s disease is discussed in section 5. 

3. An application of Bayesian value-of-information analysis

The benefits and practicality of taking a Bayesian decision theoretic approach to the value of

information is demonstrated by applying it to a published policy model of Alzheimer’s disease

(27).  A probabilistic analysis of this model demonstrates that value-of-information analysis

(VOI) can inform important policy issues such as setting research priorities, establishing

technically efficient research design, and informing an efficient regulatory framework.  

3.1 A policy model of Alzheimer’s disease

The purpose of the original (deterministic) model was to evaluate the impact of a new

pharmaceutical (Donepezil) on the costs and outcomes of mild to moderate Alzheimer’s

disease (AD).  Information about the efficacy of this new drug was provided by the results of a

placebo controlled double blind clinical trial (34).  However the follow-up period of the trial

was only 24 weeks and economic and quality of life data were not collected.  To inform the

policy decision of whether to adopt this new technology, an assessment of the costs and health

outcomes for a general population of Alzheimer’s patients must be made over a longer period. 

A state transition model (Markov process) was used to characterise the progression of AD

through different disease states and care settings (38).  States in the model included: three

disease states (mild, moderate and severe) defined by scores on the Clinical Demential Rating

Scale (CDR) (22); death; and two care settings (community and nursing home). Alzheimer’s



disease  is a chronic and progressive illness and as patients enter a more severe disease state

the probability of moving from community to nursing home care increases.  All patients started

in either the mild or moderate disease state (here we consider those starting in the mild state).

The cycle length in the model was six weeks with a time horizon of 6, 12 and 18 months (see

figure 1 for an illustration of the states and possible transitions). 

Figure 1

The underlying disease progression (transition probabilities) was derived using data from the

Consortium to Establish a Registry for Alzheimer’s Disease (CERAD): a longitudinal data

base of 1,145 AD patients (23). Transitions to the two care setting in each disease state were

also based on the CERAD data. Health state utilities were assigned to each of the 7 states

using the Health Utilities Index  Mark II (HUI:2) and the HUI:2 multi-attribute utility function

(28;43).  These measures of health related quality of life were based on a cross sectional study

of  679 AD patient and caregiver pairs (28). Direct medical, non medical and indirect costs

were based on a previously published analysis (33).  In this probabilistic analysis of the model,

costs were based on an analysis of the cross sectional study of patients and care givers (21).

The effectiveness of the new drug was modelled as relative risk ratios which were estimated

using data from the 24 week trial and a Cox proportional hazards regression model. The

natural history transition probabilities, between the mild and moderate health states (based on

CERAD data), where converted into hazard rates.  The estimated relative risk ratios were

applied to natural history hazard rate to provide hazard rates on treatment.  These rates were

converted back to treatment transition probabilities.

The authors conducted a series of univariate sensitivity analyses on key parameters to account



for the considerable uncertainties in the model, including alternative scenarios of the duration

of efficacy of the new drug beyond the 24 week trial follow-up.  The cost-effectiveness of the

new drug was sensitive to duration of drug effect and the authors emphasise the need for more

precise and direct estimates of key parameters in future research. Neumann et al. (27) provides

a more detailed discussion of the model, data, and results.  

3.2 The policy issues

This application poses two important and conceptually separate policy questions: i) given

existing information should the new drug treatment be adopted; and ii) should more

information be acquired (by conducting additional research) to inform this choice in the

future? 

The first policy question is straightforward. That is, when faced with a choice between

mutually exclusive strategies of patient management, we should simply choose the strategy

with the highest expected utility.  Inference and the distribution of expected utility is irrelevant

to treatment choice (5). Indeed we demonstrate in section 3.3 that the traditional rules of

inference will impose substantial costs on US Alzheimer’s patients which can be measured in

terms of resources or health improvement forgone.

The distribution of expected utility may be irrelevant to treatment choice but it is very relevant

to the second policy question: should more information be acquired to inform this treatment

choice in the future?  We can phrase this second policy decision in terms of the FDA

Modernisation Act: is the economic claim for this new pharmaceutical “substantiated” and can

the evidence be regarded as “competent and reliable”? The framework presented below can



help answer these general questions. We can also address a number of specific questions in the

AD example including: is additional research in AD potentially cost-effective; are the estimates

of the AD model inputs adequate; for which model inputs would more precise estimates be

most valuable; is experimental design required for subsequent research; if so, which endpoints

should be included in any future clinical trial; what is the optimal follow-up period; what is the

optimal sample size; how should trial entrants be allocated between the arms of the trial; and

what is the value of this proposed research?  In short the key questions are: what is a

technically efficient research design and how should research and development resources be

allocated?

3.3 Developing a probabilistic model

Before the value of additional information can be established the existing (prior) information

must be identified, characterised and incorporated in the model. Characterising existing

information and the current uncertainties surrounding this decision problem can be done by

assigning prior distributions to each of the model inputs. These distributions are distributions

of prior means and represent the current second order uncertainty (ie the distribution of the

mean) surrounding the estimates of each of these inputs (8;41;43).  Once existing or prior

information has been characterised in this way these distributions can be propagated through

the model using Monte Carlo simulation (8;11;41;43). The output of this simulation provides a

distribution of the prior incremental net benefit of the new drug which can be expressed in

either health outcome (�) or monetary terms (µ) (3;5;40),  

µ = �.(U2-U1) - (C2-C1) or (�.U2 - C2) - (�.U1 - C1) (1a)

� = (U2-U1) - 1/�.(C2-C1) or (U2 - 1/�.C2) - (U1 - 1/�.C1) (1b)



where U2 and C2 are the health outcome and costs associated with the new drug treatment

respectively and U1 and C1 are the outcomes and costs associated with current practice (in this

case no treatment). Consistent with the original model we take a societal perspective, so the

monetary valuation of health outcome (�) can be interpreted as the marginal societal

willingness to pay for an improvement in health outcome (the budget constraint is

endogenous) (18;30). The value of � is then the normative choice of a social decision maker,

and although an analyst may not know with certainty which value of � will be selected, it will

not be uncertain to the decision maker at the time the choice is made. Therefore it is not

unreasonable to regard � as a constant and conduct analysis conditional on a range of values

of �.  It is then the task of societal decision makers to make a normative choice of which value

of � is acceptable.  In this analysis we use  $50,000 per quality adjusted life year as a central

value but conduct analysis on values ranging from $1,000 to $100,000.

Characterising prior information

The characterisation of prior information surrounding model inputs in the probabilistic model

is summarised in table 1. The base line transition probabilities were characterised as beta

distributions, which seems appropriate for two reasons: the beta distribution takes values

between 0 and 1 and its parameters (., �) represent the number of “successes” and “failures”

which were directly available from the CERAD data base (1;8)1. The prior  mean health state

utility for each state in the model were characterised as normally distributed with standard

deviations based on standard errors from the data in the cross sectional study (28) 2.  Data for

direct and indirect costs for each health state were reported only as means and standard errors.

We characterised their prior distribution as lognormal (with standard deviations equal to the

reported standard errors) because it has some useful characteristics for modelling costs data (it



cannot take values less than zero and it is positively skewed) (11).  For similar reasons we

characterised the relative risk ratios applied to the mild to moderate and moderate to mild

transition as lognormal based on the reported mean and confidence intervals from the Cox

proportional hazards regression (27). Dropout or discontinuation rates were characterised as a

lognormal distributions with mean and standard deviations based on the estimates used in the

original model and limited evidence from an open label follow-up study (35). Additional

utilisation and prices associated with the new drug treatment (conditional on disease state) are

regarded as constants because any differences in utilisation and price across decision

makers/settings represents variability rather than second order uncertainty (see Thompson and

Graham (43) for a discussion of this distinction and the dangers of conflating  the two).

Table 1

The duration of drug effect was found to be the most important uncertainty by Neumann et al.

(27), but clearly some assessment of effect beyond the 24 week follow-up is required when

making the policy decision of whether to adopt the new treatment. The evidence from an open

label follow-up study suggested that there may be a longer term effect but it was of limited use

due to the absence of a control group (35). Neumann et al. (27) conducted a survey of clinical

experts and elicited judgements about the expected efficacy duration from 13 respondents.  A

lognormal distribution with mean duration of 78 weeks and standard deviation of 47.3 weeks

was fitted to these data 3. This approach assumes that responses were not independent: all

responses were observations from the same (common) prior distribution.  This is the most

conservative interpretation of the information provided by these judgements because it implies

that the second and subsequent responses do not provide additional information.  The

alternative view would be to assume that the judgements were independent, in which case they



would be exchangeable with sample information (the variance of the prior would be much

smaller). This interpretation was rejected as far too optimistic.

3.5 The results of probabilistic analysis

Monte Carlo simulation (10,000 iterations) was used to propagate these prior distributions

through the model.  The prior distribution of incremental net benefit are illustrated in figure 2a

for time horizons of 24, and 210 weeks for patients starting in the mild/community state and

using �=$50,000. As the time horizon is extended the expected incremental net benefit

increases and the new treatment becomes cost-effective (µ0>0) when costs and outcomes are

considered beyond 54 weeks. However the uncertainty surrounding these estimates of net

benefit is also increasing as the model extrapolated beyond the trial period.  So although the

mean incremental net benefit is positive at 210 weeks ($1,220) the uncertainty surrounding

this estimate is substantial. It is also clear from figure 2a that evaluating this new treatment at

24 weeks would seriously underestimate the expected health outcomes and overestimate costs

(and uncertainty) in this chronic disease because the benefits of an effective treatment can be

expected to accumulate over a much longer period of time.  

Figure 2a

The uncertainty surrounding the cost-effectiveness of Donepezil at 4 years for a range of

values of � can be represented as an acceptability curve in figure 2b (2). The probability that

Donepezil is cost-effective (P[µ0�0]) is 0.6796 (µ0=$1,220) when �=$50,000 in figure 2b.

However the uncertainty surrounding µ0 is substantial (standard deviation (10) of $2,168) and

the error probability (.=1-P[µ0�0]) that the new treatment is not cost-effective is 0.3204



which is greater than the conventional benchmarks of 0.05 or 0.025 used in both Bayesian

inference (39) and traditional frequentist statistics.  Equivalently µ0  is within a Bayesian range

of equivalence (39) or the lower 95% confidence limit includes zero in a frequentist

framework. 

Figure 2b

According to the rules of inference (whether Bayesian or frequentist) the apparent cost-

effectiveness of the new drug treatment is not statistically significant,  we cannot reject the null

hypothesis, and the result is indeterminate. In these circumstances the new treatment will be

rejected in favour of current practice. However these rules lead to the rejection of the

alternative with the highest probability of being optimal: the probability that the new treatment

will provide greater net benefits than current practice (based on the information  currently

available) is 1-.=0.6798 in figure 2b.  Failure to adopt the new treatment simply because the

difference in net benefit is not regarded as statistically significant will impose unnecessary

costs. For an individual AD patient these costs can be valued at $1,220 (the additional net

benefit forgone) or 0.0244 quality adjusted life years forgone. The costs imposed on the US

population of current and future AD patients over the effective lifetime of this new technology

can be valued at $1,064 million or 21,279 quality adjusted life years forgone (see section 4.1

for estimates of the effective US AD patient population). 

If the societal objective is to maximise health gain subject to a budget constraint, then (in the

absence of substantial sunk costs or irreversibilities) 4 alternative strategies of patient 

management should be selected based on expected net benefit, irrespective of whether any

differences are regarded as statistically significant or fall outside a Bayesian range of



equivalence 5. This is because one of these two mutually exclusive alternatives must be chosen

and this decision simply cannot be deferred. The opportunity costs of failing to make the

correct decision based on expected net benefit are symmetrical and the historical accident that

dictates which of the alternatives is regarded as current practice is irrelevant. The measure of

net benefit used in this analysis is based on a particular objective (or social welfare function)

which may be judged inappropriate. If the decision maker has other legitimate concerns (for

example, equity issues, a concern for rare but catastrophic events, or preferences towards risk)

then the measure of net benefit may be regarded as incomplete. However these arguments

(which imply a different social welfare function) could be incorporated in the analysis by

amending the measure of outcome and they do not change the fundamental point that

inference is irrelevant to treatment choice (5).

4. The decision to acquire more information 

Although the distribution of net benefit may not be relevant to the choice between treatment

strategies for AD, it is relevant to the decision of whether to collect more information to

inform treatment choice now and in the future. This decision theoretic approach distinguishes

the simultaneous but conceptually separate steps of deciding which treatment should be

adopted, given existing (prior) information, from the question of whether more information

should be acquired.

Information is valuable because it reduces the expected costs of uncertainty surrounding

clinical decisions. The expected cost of this uncertainty will be determined by the probability

that a decision based on expected net benefit will be wrong (see figure 2a) and the size of the

opportunity loss if the wrong decision is made (these costs include resource savings and health



EVPI 
 �.10.L(D0), where D0 

|�0	�b|

10

outcome forgone). The expected cost of uncertainty surrounding the treatment decision when

it is based on existing (prior) information can also be interpreted as the expected value of

perfect information (EVPI), since perfect information (an infinite sample) would eliminate the

possibility of making the wrong decision (20;31;32;35;37) 6:

2a

L(D0) = unit normal loss integral for standardised distance D0.

�0 = prior mean incremental net benefit of the new treatment (in health outcome) 

�b = point of indifference between the two alternatives (�b = 0)

The probability that a treatment decision based on prior expected net benefits will be wrong is

determined by the distance �0 from �b and the uncertainty surrounding �0 which is measured

by the prior standard deviation (10) and represents the amount and quality of prior information

available. The opportunity losses if the wrong decision is made is simply the difference in net

benefit between what would have been the optimal treatment choice and the choice actually

made based on prior information (|�0-�b|). These losses can be expressed in money terms as

�.|�0-�b|, so the slope of the loss function is simply � or the monetary value placed on

opportunity losses when they occur.

4.1 EVPI for the choice between strategies

The EVPI in 2a is the maximum value that can be placed on acquiring additional information

to inform treatment choice for an individual AD patient. Figure 3a illustrates the relationship

between the EVPI and the time horizon when � = $50,000. Evaluating this problem at a time



horizon of only 24 weeks will seriously underestimate the EVPI (as well as �0)  because the

prior decision is to choose current practice (�0<0) and the uncertainty is relatively small. As

the time horizon is extended �0 increases and becomes positive after 54 weeks, also the

uncertainty surrounding �0  increases. The probability of making the wrong decision (and the

EVPI) unambiguously increases as time horizon is extended from 24 to 54 weeks because 10

increases and |�0 - �b| falls. Beyond 54 weeks 10 increases but |�0 - �b| also increases and the

impact on EVPI is ambiguous.

Figure 3a

The information generated by research is non-rival and has public good characteristics (10;36).

Once it is produced it can be used to inform the treatment decisions for all eligible patients at

no additional cost.  The EVPI for the population of current and future AD patients over the

effective lifetime of this new technology (T) can be established based on estimates of the

incidence of AD patients (I) in each period  (t) discounted at rate r.

2bPopulation EVPI
 EVPI.M
T

t
1

It

(1�r)t

The discounted effective US population of AD patients was estimated to be 872,087  This

estimate was based on reported incidence rates of AD by age and gender, US census

projections by age and gender, and an effective life time of the new technology ranging from 2

to 8 years 7.  It is worth noting that the effective population (and therefore EVPI) will be finite

if either T is finite and or r>0. 



Figure 3b

The EVPI for the US population of AD patients over a range of values of � is illustrated in

figure 3b. At a time horizon of 210 weeks and �=$50,000 the EVPI is $339 million.  This

represents the maximum value of acquiring additional information and suggests that proposed

research will be potentially cost-effective (the fixed costs of research are likely to be less than

the EVPI).  The value of information is closely related to the monetary valuation of health

outcome.  At 210 weeks as � increases the EVPI falls (when �>$12,000).  This is because �0 >

0 so as � increases |�0 - �b| also increases and the probability of making the wrong decision

falls. However the value placed on opportunity losses when they occur is increasing.  In this

case the former off sets the latter 8 (EVPI falls). At a time horizon of 54 weeks the EVPI

reaches a maximum at �=$51,000 where �0 =�b. At this point the decision maker is indifferent

between the treatment alternatives and the probability that a decision based on �0 will be

wrong reaches a maximum. At a time horizon of only 24 weeks the new treatment is not cost

effective even at �=$100,000. The EVPI is underestimated and only rises to $4.6 million at

�=$100,000.

The results in figure 3b demonstrate that the explicit monetary valuation of health outcome is

an essential and unavoidable issue in the decision to acquire additional information to inform

treatment choice.  It cannot be avoided because any decisions which are made about further

research implicity assign such a value. The results also demonstrate that evaluating the

treatment at 24 weeks will underestimate the value of additional information as well as

underestimating health outcome and overestimating costs (also see figure 2a).

    

The population EVPI for the choice between these strategies measures the maximum possible



payoff to additional research.  It provides a first hurdle for proposed research (3) or in the

terms of FDAMA further research will not be efficient and a claim can be regarded as

“substantiated” and evidence as “competent and reliable” if the EVPI is less than the fixed

costs of additional research.  Alternatively further research is potentially cost-effective and a

claim may not be “substantiated” if the EVPI exceeds the fixed costs of research. In this

example the EVPI does exceed the fixed cost of further research and the economic claim for

the pharmaceutical may not be regarded as “substantiated”. However observing EVPI greater

than the fixed costs of research is only a necessary but not sufficient condition for demanding

more information. The sufficient condition requires estimates of the marginal benefits and

marginal costs of additional information (see section 5).

4.2 EVPI for model inputs 

The analysis in section 4.1 established the EVPI for the clinical decision problem as a whole,

however it is also useful to consider the value-of-information associated with each of the

uncertain parameters in the model. This type of analysis is the VOI equivalent to conditional

probabilistic analysis (8;11;14) where the Monte Carlo simulation is run holding the parameter

of interest constant at its expected value 9.  For example in the AD model the EVPI associated

with efficacy duration (EVPIED) is the difference between the EVPI when all parameters are

allowed to vary and the EVPI conditional on efficacy duration taking its expected value

(EVPI|ED=78 weeks).

EVPIED = EVPI - EVPI|ED=78 weeks  2c

This analysis can help to focus research priorities in AD by identifying those model inputs



where more precise estimates would be most valuable (where EVPI is high). In some

circumstances this can indicate whether an experimental or an observational study may be

required.  Those parameters which are vulnerable to selection bias, such as measures of

efficacy and the duration of efficacy, will  require experimental design. However other inputs,

such as health state costs and health state utilities, may not be so vulnerable (particularly if

they are conditional on clinical events within the model) and a clinical trial my not be required.

This type of analysis can also start to address the questions of whether an experimental design

will require a longer follow up than previous clinical trials and which endpoints may be worth

considering.

Figure 4

The EVPI associated with the AD model inputs at 210 weeks (�=$50,000) are illustrated in

figure 4. These results suggest that longer follow up may be worth while because the EVPI

associated with efficacy duration (ED) and with the relative risk ratio beyond 24 weeks,

conditional on efficacy being durable (RRR>24), are substantial ($270 million and $93 million

respectively). However a more precise  estimate of efficacy within the existing trial period

(RRR<24) is still valuable ($84 million).  Each of these inputs, as well as the dropout rate

($39 million), are particularly vulnerable to selection bias so either experimental design, or

possibly econometric solutions to selection bias in observational data (24;25), would be

required. 

The EVPIs associated with the other groups of inputs 10 can be obtained by holding each of

the inputs constant at their expected value. These include: baseline transitions; direct costs;

utilities; and indirect costs.  The EVPIs for these groups of inputs are much lower ($49, $38,



$36, $35, million respectively).  However at the margin this does not necessarily mean that

additional research about these parameters should take a lower priority because the costs of

including these endpoint in further experimental research, both in terms of resources and the

health gains forgone of those patients enrolled and awaiting the results of the research, may

also be lower.  Similarly, the costs of obtaining additional information about efficacy and

duration may be high, so that high EVPI may not necessarily indicate high priority at the

margin. 

Despite this, these estimates do give some indication of the value of including economic as

well as clinical endpoints in a proposed trial and the value of different design options. For

example, if the fixed costs of including health state utilities in a trial exceed the EVPI then it

will not be efficient to include them as endpoints. It is also important to note that the value of

information for a group of model inputs is not the simple addition of the value of information

of each separately since this excludes the joint effects within the model.  The  EVPI associated

with costs, utilities and baseline transitions jointly was established by running the simulation

while holding them all constant at their expected values. The EVPI or the maximum value of

including these other endpoints was $64.4 million which is substantially less than the sum of

the EVPI for each of these parameters. 

Although observing an EVPI for a model input which is greater than the fixed costs of

research is only a necessary condition for demanding more information it does start to address

the question: are the model inputs adequate?  In the terms of FDAMA the evidence for a

model input can be regarded as “competent and reliable” (or adequate) if the EVPI is less than

the fixed costs of additional research.  However if the EVPI is greater than the fixed costs of

research then the evidence may not be regarded as “competent and reliable” (or inadequate)



once the marginal benefits and costs of acquiring a more precise estimate have been

established. 

5. Discussion

The framework presented above distinguishes the question of which strategy of patient

management should be chosen, given existing information, from the conceptually separate

decision of whether more information should be acquired to inform this choice in the future.

The rules of classical statistical inference and their Bayesian counterparts (ranges of

equivalence) appear to be inconsistent with the objectives of a coherent health care system,

impose unnecessary costs and could be rejected in favour of maximising expected utility (net

benefit) and establishing the value of information. Others have made similar arguments:

“It must be recognised that clinical trials are not there for inference but to reach

a decision, and the omission of their raison d’etre is serious. In the long term

utility is realistic and, indeed necessary. ... It is only by using expected utility

that we can be sure that our actions fit together sensibly.  I suspect that the

procedure of continuing with a trial until a tail area probability in the posterior

is small is just as incoherent as a belief based on the tail area p-value. Or if it is

coherent, it implies an inept utility, such as one taking only values of 0 and l.”

(Lindley, discussion of Spiegelhalter, Freedman and Parmar, 1994 page 393)    

The possibility of abandoning inference (based on either a frequentist or Bayesian view of

probability) and taking a decision theoretic  approach has been discussed for some time but

has often been rejected because,



“the consequences  of any particular course of action are so uncertain that they make

the meaningful specification of utilities rather speculative. ...” (Spiegelhalter,

Freedman, and Parmar 1994, page 360) 

It is certainly true that, when attempting to fully characterise the uncertainties in a decision

problem when there is a lack (or absence) of good quality data for key clinical events,

speculation and judgement is inevitable.  There are a number of possible responses to this

situation: ignore the events for which evidence of an “acceptable quality” is unavailable (in

which case the analysis will be partial and biased); only analyse decision problems where

complete and good quality evidence has already been produced (in which case research will

focus on relatively simple  questions where we already have solutions); or address complex

and uncertain problems in an explicit way, using the best evidence when it is available, but

accept speculation and judgement when it is not.  The choice is not between “speculation or

evidence” but between methods that expose the lack of evidence and make judgements and

speculation explicit or those which leave the judgements and speculation for individuals to

make implicity and possibly inconsistently. Making judgement and speculation explicit has a

number of advantages because only then are the key uncertainties exposed to debate,

alternative formulation, and an analysis that can indicate where more evidence should be

acquired through further research.

For example, in the AD model there is no experimental evidence for efficacy duration beyond

24 weeks and clinical judgements were used to form a diffuse prior distribution for this key

parameter.  An alternative is to assume (as the FDA implicity does for purposes of allowing

promotional claims) that the drug becomes totally ineffective after 24 weeks.  This assumption

is no more grounded in experimental evidence and many clinical experts would argue that this



would not be credible (we show in section 3 that it will underestimate outcomes and

overestimate costs). We extrapolated from the trial using an explicit model of the disease

process, combining informed “speculation” about possible efficacy duration. The considerable

uncertainty, due to the poor quality of evidence on efficacy duration, was incorporated in the

analysis by assuming that the clinical judgements were not independent (which generated a

diffuse prior).  The results showed that the value of acquiring further information about this

uncertain but key parameter is substantial (EVPIED = $270 million) and that additional

experimental research is potentially cost-effective.

The same type of analytical framework can be used to establish the expected benefits and the

costs of sample information. It is then possible to answer questions such as: is an additional

clinical trial required before an economic claim for Donepezil can be “substantiated”; if so,

should an economic evaluation be conducted alongside the new trial; and what is the optimal

follow-up, sample size and patient allocation?

The societal payoff to proposed research, or the expected net benefits of sampling (ENBS), is

simply the difference between the expected benefits and expected cost of sampling (3,5). If the

ENBS>0 for any sample size then further experimental research will be efficient and an

economic claim for Donepezil cannot be regarded as “substantiated” until additional research

has been conducted 11.   The optimal sample size for this proposed research will be where

ENBS reaches a maximum, given that the trial entrants are allocated optimally between the

two arms of the trial (5;6).  

This framework can also be used to decide which endpoints should be included in a proposed

trial.  For example, excluding direct and indirect costs and heath state utilities will mean that



even very large samples cannot resolve all the uncertainty surrounding � and the expected

benefits of sampling will be reduced.  However, the fixed and marginal reporting costs of

sampling will also be reduced and economic evaluation alongside a trial will be efficient if the

former offsets the latter. In some circumstances large and simple clinical trials may well be

efficient but for other clinical decision problems trials with economic endpoints will be

required (9;12). 

A similar approach can also be used to establish the optimal follow-up for any future trial. For

example, a proposed trial with a 36 week follow-up cannot fully resolve the uncertainties

about effectiveness and cost beyond 36 weeks (even when sample size is very large) so the

expected benefits of sampling will always be lower than with a longer follow-up period. 

However, the fixed and marginal costs of research will also be lower and the societal payoff

may increase or fall.  The technically efficient follow-up for a trial will be where the ENBS

reaches a maximum over a range of possible follow-up periods.  

This discussion suggests that technically efficient design can be established based on estimates

of ENBS for each combination of alternative endpoints, follow-up periods, sample size and

sample allocation

6. Conclusions

Once a Bayesian decision theoretic approach is adopted, the two conceptually separate policy

questions (should the new drug treatment be adopted and should more information be

acquired) can be addressed. We can phrase this second policy question in terms of the FDA

Modernisation Act: is the economic claim for this new pharmaceutical “substantiated” and can



the evidence be regarded as “competent and reliable”? The analysis presented above shows

that this framework can inform these general policy issues and address a number of specific

questions in AD research including: is additional research in AD potentially cost-effective; are

the estimates of the AD model inputs adequate; for which model inputs would more precise

estimates be most valuable; is experimental design required for subsequent research; if so,

which endpoints should be included in any future clinical trial; what is the optimal follow-up

period; what is the optimal sample size; how should trial entrants be allocated between the

arms of the trial; and what is the value of this proposed research?  In short this approach can

establish technically efficient research design and provide a societal value of proposed research

which can be used to allocate research and development resources efficiently. This type of

analysis also informs an efficient regulatory framework for new health care technologies: an

analysis of the value of information defines a claim for a new technology as "substantiated"

and evidence as "competent and reliable" when it is not efficient to gather anymore

information.



Foot Notes

1. Multiple transitions were restructured into a number of conditional probabilities so that

each set of transitions are a series of binary events.  This ensures that probabilities less

than zero or greater than one cannot occur during simulation.

2. Although we did have access to the individual observations, which were  not normally

distributed, here we are only concerned with the second order uncertainty (the

distribution of the mean) so it is not unreasonable to use the normal distribution when

sample size range from 55 to 191. 

3. Conditional on efficacy being durable the RRRs for the 24 week trial were applied to

the base line transition probabilities using a prior distribution based on the standard

errors from the Cox regression.  If efficacy is not durable then baseline transitions are

used.  This is only one way to incorporate efficacy duration and the uncertainties

introduced as the results of the trial are extrapolated. 

4. If the adoption decision will result in sunk costs or irreversibilities then maximising

expected net benefit can be amended.  Either the cost that will be sunk can be

compared to the benefits of adoption (5) or option prices can be used to adjust the

estimates of net benefit. However these issues do not lead back to traditional rules of

inference. 

5. There may be other arguments in a societal decision makers utility function such as

equity, access and concern for catastrophic events.  The appropriate response would

be to incorporate these arguments in a measure of net benefit rather than use tradition

rules of inference.

6. This parametric approach requires the prior net benefit to be normally distributed

(31;32).  Although EVPI can be established using a non parametric approach directly

from the Monte Carlo simulation (14;42;43) we take the parametric approach for ease



of exposition and so that the marginal benefits of sampling can be more easily

considered in section 5.

7. Where the probability of obsolescence rises from 2 to 8 years.  The effective lifetime of

the new technology is uncertain but it is only expectation of T that is relevant because

it is only the expected value of information (not its distribution) that is important for

policy decisions.

8. This need not be the case and EVPI may rise or fall with � depending on the strength

of prior information. 

9. We should only be concerned with the expected value of information because a societal

decision maker should be risk neutral with respect to the payoff from additional

research. Therefore if the relationship between a parameter is not markedly non linear

it may be reasonable to conduct analysis conditional on the expected value of the

parameter. 

10. We could also establish VOI for the costs, utilities and baseline transition probabilities 

each heath state.

11. There is a tension between the societal benefits of research (expressed as ENBS) and

ethical concerns for those enrolled in the trial.  We do not attempt to incorporate

important and legitimate concerns for those enrolled, which is the responsibility of

ethics and data monitoring committees.  However the ENBS does provide an estimate

of the opportunity costs to society (collective ethics) of stopping a trial or failing to

approve a trial on individual ethical grounds. Establishing the opportunity cost of

holding ethical concerns can help to achieve some consistency in the inevitable trade

off between collective and individual ethics. 
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Table 1 Characterising prior information

Parameter Prior distribution Source

Baseline transition
probabilities

Beta CERAD longditudinal data 
(n = 1745, 1320)

Health state utilities
(HUI.2, n=191, 55)

Normal Cross sectional study 
(HUI.2, n=191, 55)

Direct costs Lognormal Cross sectional study (n=191, 10)

Indirect costs Lognormal Cross sectional study (n=191, 10)

Relative risk ratios
- mild to moderate
- moderate to mild

Lognormal
(0.5, SD=0.188)
(2.65, SD=1.56

24 week double blind placebo
controlled clinical trial

Efficacy duration Lognormal
(78 weeks, SD=47.3)

Pannel of clinical experts
(n=13, assumed not independent)

Dropout rate Lognormal 
(0.04, SD=0.0128)

Open label follow-up



MildMild

(com/NH)(com/NH)
ModerateModerate

(com/NH)(com/NH)

SevereSevere

(com/NH)(com/NH)

DeadDead

Figure 1  AFigure 1  A Markov Markov model of disease progression model of disease progression



Figure 2a  Prior distribution of incremental net benefitFigure 2a  Prior distribution of incremental net benefit
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