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1 Introduction

Loan contracts are generally signed in advance of knowledge of the income or wealth of the
borrower at the time that repayment falls due. When the loan is for productive investment and
is made between risk neutral parties, a varying loan size alters the distribution of returns to the
borrower in different states. The first best loan size will then be set so as to equate the expected
marginal product of the loan to the safe interest rate. If there is sufficient income to the borrower
in all states to repay the fair return (the equivalent return to investing at the safe interest rate)
then the contract can stipulate that the borrower should repay this constant amount in all states
of the world. Alternatively if the borrower has insufficient resources in some states to repay this
amount, the contract can allow the repayments of the borrower to vary by state so long as the
realised income/wealth of the debtor at repayment time is commonly observed by both lender and
borrower and the repayments can be enforced. However if either the realised debtor income is
private information to the debtor; or if the state dependent repayments cannot be enforced, then
the borrower has an incentive to cheat on repayments, declaring a low income state and so making
a low repayment when in fact his realised income is high. The contract then has to incorporate the
correct incentives for borrower revelation. The costly state verification literature (Townsend, 1979,
1988; Gale-Hellwig, 1985, 1989; Mookherjee and Png, 1989) allows for the lender to pay a cost to
discover the true realised income of the debtor and finds that either the standard debt contract
or a random monitoring contract is optimal depending on the instruments available. However, as
several writers have pointed out (Moore, 1995; Khalil, 1998; Choe, 1998), these contracts have
commitment problems in a one shot scenario: the contract imposes truthtelling on the debtor
through punishments by the lender following a costly verification by the lender. But if the lender
knows there is truthful reporting there is no incentive for the lender to incur the verification costs.

Jost(1996) overcomes this by imposing sequential rationality in the initial contract that the

principal writes in the context of the standard principal-agent model where the principal pays



the agent for an effort. Sequential rationality requires that the principal should be indifferent
between monitoring and not monitoring the agent following the agents report and adds this as a
constraint on the exante contract Since monitoring involves the state verification cost it means
that the principal pays the agent more when the agent is not monitored than when he is monitored.
From this Jost deduces that as the state verification cost rises, the optimal degree of monitoring
rises and the spread of repayments to the agent between the not monitored and monitored cases
rises. Fudenberg and Tirole(1990) show that imposing the sequential rationality (or renegotiation
proofness condition) to the exante contract is equivalent to renegotiating the contract.

Khalil and Parigi (1998 - hereafter KP) consider a loan contract between two parties; the
contract specifies the loan size and the repayments that should be made in various states at
the date of repayment. A state is defined by the borrowers true income at repayment (which is
privately observed by the borrower) and by the results of a costly audit that the lender can choose
to make. Both parties to the contract are risk neutral and three scenarios are discussed:

(1) first best where the borrowers true income state at the repayment date is common infor-
mation;

(il) a commitment contract where the lender can precommit to carry out an auditing strategy
at repayment;

(iii) a no commitment contract where at the repayment date cheating on the true state by the
borrower and auditing by the lender are determined as a Nash equilibrium conditional on the con-
tract. KP only consider Nash equilibria in which the probabilities of audit and of cheating are each
strictly between zero and one. In contrast to Jost where it as if the lender is acting as a Stackleberg
leader in writing the contract, KP determine monitoring and cheating noncooperatively.

At the repayment stage borrower income can have two values yy > yz where ys = ys(B)
with y,(B) > 0, s = H,L, y, (B) < 0 and B > 0 is the amount of the loan. At this stage the
borrower makes an income report to the lender; if this is H the repayment Ry is made; if it is

L then the lender can choose whether or not to audit the borrower to discover his true state at



a fixed cost of ¢ > 0. If no audit is performed the repayment is Ry ; if an audit is performed but
the borrower’s report is discovered to be truthful a repayment of Ry is made and finally if an
audit is performed and the borrower is found to have cheated a repayment of Rgy, is made. The
contract sets Ky and B; given these, the report the borrower makes and the decision to audit or
not, are determined to ensure truthtelling in the commitment contract and as a Nash equilibrium
in the no commitment contract. KP’s assumptions on revenues imply that it is not possible to
avoid the incentive problems completely by setting Ry = R for all s since they assume that for all

B, yr.(B) < (1 +7)B. Their full set of assumptions on technology are:

yr(B) < (1+7r)B<yu(B) VB (1)
y(B) < (1+7) <yy(B) VB (2)
pyr (B)+ (1 —pyr(B) —(1+7)B—¢ >0 (3)

where p is the probability of occurrence of the high state.

The first best B is determined to maximise Ey;(B) — (1 + r)B; since investment must be
made prior to the state realisation there is still uncertainty but there is symmetric information
at each stage between the two parties. Now if yz(By) > (1 + r)B; where By is the first best
level of investment, then the borrower has sufficient resources to repay the debt even in the low
state. Hence setting Ry = (1 +r)B for all s removes any incentive to cheat and the first best can
be implemented through a single repayment contract that is independent of state. Assumption
(1) implies that the first best is unattainable and state contingent repayments with By, Ry <
Ry, Ry have to be suitably chosen to counteract the incentive problem.

KP show that the commitment contract satisfies:

(i) R = R =y

(i) Ryr =yu

(iii) yr, < Rg <ym



(iv) there is underborrowing compared with the first best.

Under the assumption that pyy + (1 — p)yr, — B — ¢ > 0 they also show that the contract
without commitment has:

(i) Rer = R =yr

(i) Rur =ym

(i) By <yu

(iv) there is more auditing than under commitment;

(iv) there is underborrowing compared with the first best but overborrowing compared with
the commitment case.

In this paper we examine some of KP’s no commitment results. Partly in the interest of clarity
of exposition we divide this into two stages; first taking the case where the level of investment B is
fixed exogenously. Whilst this is mainly a pedagogical device to highlight incentive effects, it also
has some interest in its own right as describing the case in which the investment has the form of a
set-up cost or an access/entry cost to the technology. To ensure that the first best is unattainable
when B is fixed amounts to assuming that yz < (1 + 7)B. In this scenario we show that the
optimal repayments may not involve a subsequent interior mixed strategy Nash equilibrium of the
reporting/auditing game, but, instead, a positive probability of auditing with truthtelling; and
we identify the conditions for this to be true. When B is fixed we have two possible forms for
the optimal state contingent pattern of repayments and for the type of equilibrium which will be
established in the auditing/reporting game.

When B is variable we use slightly more general assumptions on the revenue functions than
KP, which mean that the first best investment level B; is infeasible because yr, (Bl) < (1 + 7“)B17
but nevertheless a single repayment contract is a possibility because there is a range of values of

B for which yr,(B) > (1 4+7)B. Our full set of technological assumptions are:

yu(B) > yi(B); yy(B) >y, (B) = 0; yu(B) <y (B) <0;VB (4)



yr(B1) < (1+71)By where pyp(B1)+(1—plyy(B1) =1+ (5)

pya(B1) +(1—pyr(Bl) —(1+7)B1—$>0 (6)
ys(0) =0,5,(0) > 1+ 7, Blijnooy;(B) <l4r (7)

Here we find that there are three essential contract forms, each corresponding to a different sort
of equilibrium of the audit/reporting game: the single repayment (SR) contract, where R, is state
independent and B is reduced sufficiently to ensure that the borrower can afford the repayment
in the bad state; the interior mized strategy (KP) contract, in which there is some cheating and
some costly monitoring; and what we call a hybrid contract (H) in which there is truthtelling,
state contingent repayments and some costly monitoring. We find sufficient conditions on the
technology and observation cost for each of these forms to be the optimal contract.

Our results in the fixed B case indicate that for relatively high values of B, the H contract
is optimal; for lower values of B the KP contract is optimal. When B is variable, for different
configurations of the technological and observation cost parameters, the optimal contract may
have any of the forms: SR, KP, H. We find that where the observation cost is independent of B,
as this observation cost increases the optimal contract switches from KP to H and then to SR. As
the observation cost increases there are two effects: firstly in regions where KP is the optimal form
of contract the optimal investment level falls, the amount of cheating by the borrower rises and
the amount of monitoring rises as well; while in regions where H is optimal the level of investment
falls. Secondly the contract form itself changes at critical levels of ¢ from KP to H and then
eventually to SR. This switch in the form of the optimal contract from KP to H leads to a jump
in the investment level as the observation cost rises.

We provide various numerical examples of these eflects. From these the dominant impression is

that as the observation cost rises, the level of investment may rise to ensure that there are sufficient



revenues especially in the high state of the world both to finance the monitoring and also to have a
large enough scope for punishing the debtor for cheating to ensure truthtelling. However once the
observation cost has become really very high, monitoring is pointless and investment is sharply
reduced to a level which can sustain a SR contract. Thus in a somewhat counterintuitive way

there is an increasing incentive for truthtelling as the observation cost rises.

2 The No Commitment Contract: the Second Period Game

Whether B is fixed exogenously or determined in the first period contract is immaterial for the
solution of the second period game; however it was initially determined, by the time period 2 is
reached, B is fixed from the past.

In period 2 the debtor chooses an income report. It will be clear that the debtor only has an
incentive to underreport income (since Ry > Ry, Rr1) and will always make truthful reports of
low income. But with true high income the debtor may make a false low income report to the
lender with probability /; while in period 2 the lender will choose the probability m with which
to monitor any low income report by the debtor. Each of these decisions are simultaneous best
responses to the other party’s choice, so that we are in a second period Nash equilibrium. Given
this the monitoring is then implemented: truthful reports result in repayments that are set in the
initial contract; false reports result in repayments that may incorporate some punishment. To

solve this game note that the lender’s expected profit is:

Er=p(1 —=)Ry +plm(Rur — ¢) + (L —p+pl)(1 —m)Ry + (1 —p)m(Rrr — @) — (1 +7)B
(8)
So the lender’s best response to [ is:
m=0if dE7/0m <0
0<m<1ifdEr/om=0

m=1if 9F7/0m > 0 where:



OBm/0m = pl(Rur — ¢) + (1 —p)(Brr — ¢) — (1 —p+pl) Ry
Note that m # 0 only if either Ry > ¢ or R > ¢; otherwise the costs of monitoring cannot
be recouped.

On the other hand we know that the borrowers expected utility is:

BU =p(1=0)(yn — Bu) +plm(yn — Rur) +pl(1 —m)(yn — Rr) (9)
+ (1 =p) (L =m)(yr — R) + (1 = p)m(yr, — Rr1)

So the borrowers best response to m is:
I=0if oFRU/Ol <0
0<I<1ifoEU/Ol=0
I=1ifoFRU/Ol >0

where aEU/QZ = p[RH — mRHL — (1 — m)RL]

2.1 Pure Strategy Equilibria

Depending on the values of the single repayment R there are several possibilities for a Nash
equilibrium in pure strategies. For each candidate we use the definitions of the expected payolls
to the two parties, together with the fact that in any optimal contract written by the debtor, the
repayments must be set so that the lender gets zero expected return (ie the lenders participation
constraint always binds - if this were not so, it would be possible to reduce the repayments in each
state and make the debtor better off ), to derive expressions for the maximal payofl of the debtor.

We can then use these expressions to rank the various forms of contract-game outcome.

()l=m=0 U¢—Rr,+ Ry >0and Ry < Ry, this is a Nash equilibrium. However it is of

little interest since it gives incentives to cheat in the realised low income state.

(ii) l=0m=1 l¢—Ry,+ R;, <0and Ryy, > Ry this is a Nash equilibrium; the lender

knows that there is no lying but can make money by monitoring always since the observation cost



is less than the gain in repayment. This is clearly very ineflicient; observation costs are always
paid although there is known to be no cheating by the lender. Effectively there are two states:
the high income report state (which is never monitored) and the low income report state (which
is always monitored). The expected observation cost with this game outcome is (1 — p)¢ and the

expected returns to the two parties are:

o Em=pRyg+ (1 —p)(Rrr —¢) — (1+7)B

o BU=FEy—pRy —(1-p)Rrr = By — (1+7)B—(1—p)¢
Note that if ¢ = 0 then this contract with a subsequent pure strategy equilibrium actually

is identical to the first best.

(iiif) I=m =1 'This is a Nash equilibrium if p(Ryz — ¢ — Rr)+ (1 —p)(Rrr — ¢ — Rz) > 0 and
Ry, < Ry. Again this is very inefficient: since Ry < Ry the lender has an incentive to always
cheat; but since observation costs are not too high, on average the lender will gain by monitoring
every low income report. Again there are effectively two states in the second period: the high
income state with a false low income report which is monitored and punishment is paid and the
low income state which is truthfully reported but always monitored .

The expected observation cost is ¢ and the expected gains to the two parties are:

o [ :p(RHL —gb) + (1 —p)(RLL - ¢) - (1+T)B

e EU=FEy—pRy, —(1—-p)Rrp =Ey—(14+7r)B—¢

(iv) I=1,m =0 This is a Nash equilibrium if p(Ry; —¢— RBr)+(1—p)(Brr —¢— Rr) < 0 but
Ry > Ry so that the borrower has an incentive to cheat but the lender has no incentive to monitor
since ¢ is too high. Whenever [ = 1 we have a pooling equilibrium with identical repayment offers
R;, from both types of debtor. If ¢ is high enough the pooling equilibrium dominates the first

pure strategy equilibrium.



The expected observation cost is zero and the returns to the two parties are:

e Fr=R;, —(1+r)B

e FU=FEy— R, =FEy—(1+r)B

2.2 Hybrid Equilibria

The second period game may have equilibria in which only one party plays a pure strategy and the
other party randomises. For these equilibria to be mutual best responses the randomising party
must be indifferent between different values of her choice probability whilst the deterministic party

must strictly prefer the corner. The possibilities are:

(i) m =0;0 <l <1 This requires Ry = R and the expected observation cost is zero. The

expected returns to the two parties (see appendix A.1) are:

o Er=p(l—0)Rg+(1—p+p)R;, —(1+7)B

o EU=Fy—p(1-0)Ry —(1—p+pl)Ry =FEy—(1+7r)B

(ii) m=1;0<l<1 Thisrequires Ry = Ry and the expected observation cost is (1 —p-+pl)¢.

The expected returns to the two parties are:

e Fr=p(l—0)Ry +plRyr +(1—p)Rr, —(1—p+phe—(1+7)B

o PU=Fy—p(l-0)Ry —plRyr — (1 —p)Rrr = By — (14+7)B - (1 —p+pl)¢

(iii) 1 = 0;0 < m < 1 'This requires (¢ + B — Rr1) = 0 and the expected observation cost is

(1 — p)m¢. The expected returns to the two parties are:

o [ :pRH —l—(l _p)(l _m)RL +(1 —p)m(RLL — gb) — (1+7")B

o BU = By—pRy — (1= p)(1—m)Ry — (1= p)mRy = By — (1+1)B— (1— p)mo



(iv) I=1;0<m <1 Thisrequires p(Ryr —Rr—¢)—(1—p)(¢+ Bz — Brr) = 0. The expected
observation cost is (1 — p)m¢ and the expected returns to the two parties are:
e Fr=pm(Ryr —¢)+(1—m)Rr + (1 —p)m(Ber —¢) — (1 +7)B

e FU = Ey—pmRyr—p(1—m)Ry —(1—p)(1—m)R, — (1—p)mRBRry = Fy— (14+7r)B—m¢

2.3 Interior Mixed Strategy Equilibrium

A Nash equilibrium in mixed strategies is defined by the equilibrium values of [ and m:

l=(1-p)(¢—Rrr+R)/[p(Rur — ¢ — Rr)] (10)

m=(Ry — Re)/(Rur — Ri) (11)

For an interior intersection of the reaction curves, (10)-(11) imply:
Ry > Ry to give m < 1 and either:
(A): ¢ — R+ Ry, >0 Ryr —o¢— R >0 pRyr +(1—p)Rr, —¢— R >0 or
(B): ¢ — Rrr +Rr <0 Ryrp —¢—Rp <0 pRur +(1—p)Rrp, —¢d— R, <0
togive 0 <1 <1
However, to be in an interior mixed strategy we have to rule out each of the pure strategies so
that in particular to prevent the case I =0,m =1 we must be in (4); ¢ — Ry, + Ry > 0. We can

write the expected payofls to the two parties as:

o i = Ey _pRH — (1 _p)RL — (1 _p)(RLL — RL)(Rh — RL)/(RHL — RL)

o BU =pRy + (1 —p)Ry — LRl Tun) > (1 4 9B

2.4 Dominance Relations between Game Forms

If B is fixed then the revenues of each state are also fixed and we can rank most of the pure and

hybrid strategy outcomes. First, if yz > (1 + r)B the pure strategy outcome [ = 1,m = 0 is

10



feasible and involves no incentive problems: it is the SR contract, which gives the first best and
dominates all the others. But if y, < (14 r)B the SR contract is infeasible. In this case the H
solution with m = 0,0 < I < 1 is also infeasible since it too involves a single repayment Ry, being
made.

We can also rank the other alternatives. Consider the optimal contract problem conditional

on a particular form of outcome of the monitoring/cheating game:

max BT (12)
Rgym,l
st. EFU>0

l,m constrained

The second constraint depicts the case being considered, e.g. the second pure strategy outcome
I = 0,m = 1. The first constraint will always bind: we have already seen that this is so in the
pure strategy cases. It is also true in the hybrid cases. Hence the optimal contract within any
case conditional on the form of subsequent game equilibrium must always give a zero expected
return to the lender. This means we can Pareto rank the contracts by the expected borrowers
payofl. When B is fixed this amounts to comparing the expected observation cost in the different

contracts, which gives:

e the hybrid case I = 0,0 < m < 1 dominates the pure strategy case I = 0,m = 1 because it

has lower observation cost; in turn the latter dominates the hybrid case m = 1,0 <1 < 1;

e the hybrid case I = 0,0 < m < 1 also dominates the hybrid case I = 1,0 < m < 1 for the

Salre reasons;

e the pure strategy case [ = m =1 is dominated by [ = 0,m = 1.

So when B is fixed with y; < (1 + r)B there are two possible candidates for an optimal

contract-game form: the H case Il = 0,0 < m < 1 and the KP case.

11



Now suppose that B is variable: under our technological assumptions (5) and (7) whilst the
first best cannot be implemented, nevertheless, either the hybrid form m = 0,0 < I < 1 or
the pure strategy case m = 0,I = 1 can be made feasible by reducing B to the level satisfying
y(B) = (14 r)B and are then indifferent to each other.

Take any other pair of hybrid or pure strategy cases; at any fixed level of B we know the
above rankings hold. So for example E{U(B)|l =0,0 < m < 1} > F{U(B)|l =0, m = 1} for any

B. Letting By = argmax E{U(B)|l =0, m = 1}, it follows that:
max E{U(B)ll = 0,0 < m < 1} > E{U(Boy)|i = 0,0 < m < 1} > BE{U(Boy)|t = 0,m = 1} (13)

So also in the variable B case it follows that the optimal contract/game form must be one of the

SR, KP or H cases with [ = 0,0 < 'm < 1.

3 The Optimal No Commitment Contract Repayments with

Fixed B

We start with the case in which the size of the investment is exogenously fixed; this is primarily
for presentation reasons so that we can highlight the differences between the forms of repayment
contracts that may be optimal. It can also be interpreted as the case in which the investment has
the form of a setup cost or entry fee to access the technology. Once we have characterised the
optimal repayment structures as a function of B and the other exogenous parameters, we move
on to examine the case in which B is endogenously determined.

The critical possibilities are that either the optimal contract involves a subsequent interior
mixed strategy (0 < { < 1;0 < m < 1) or a hybrid equilibrium of type { = 0;0 < m < 1.
Looking at the reaction curves for the two parties at the repayment stage, as ¢ increases, the
lenders reaction curve moves vertically upwards whilst the borrowers reaction curve is unchanged;

the rise in the lenders reaction curve and the equilibrium tendency to cheat can be offset by

12



Figure 1:

raising Ry;, — Ry, or raising Ry, — Ry, — ¢ and both of these exert downward pressure on Ry, (see
Figure 1). These offsetting possibilities are limited by the conditions Ry < yg,Rrr < yr; the
possibility of reducing Ry, is limited by the participation constraint of the lender (see below); so
for high enough ¢ we would expect the optimal contract to involve pooling. At the other limit if
the reaction curves have an interior intersection then by raising Ry (when this is feasible) the
reaction curve of the lender shifts vertically downwards whilst that of the borrower is unchanged.
This will not change the equilibrium amount of auditing but will reduce the equilibrium amount
of cheating and we might expect this to raise the efficiency of the contract. Hence there should
be a range of low values of ¢ where the optimal contract has [ = 0;0 < m < 1.

We calculate the optimal repayments for each subsequent possible game equilibrium; then,
still for an exogenously fixed level of B, we determine which of these repayment contract-game
equilibrium pairs is optimal for given configurations of the exogenous parameters.

When B is fixed, revenues have a fixed relation to the loan cost: to match KP we assume that

13



yr < (1+7)B < yg and also that

pyr (B)+ (1 —pyr(B) —(1+7)B—¢ >0 (14)

3.1 The Optimal Repayments Conditional on the Hybrid Solution

Knowing that | =0, ¢ + R, — R, =0 and m > (Ry — R.)/(Rur — RL), the optimal contract

problem has the form:

max By —pRy — (1 —p)Ry — (1 —p)(Rrr — Rp)m (15)

pRy+(1—p)Ry > (1+7)B (16)

m> (Ry — R)/(Rur — Ry)

The zero profit constraint must bind; otherwise raising B will raise By = pyy + (1 —p)yr without
affecting feasibility, which then raises borrower expected returns. Similarly the constraint on m
must bind; otherwise reducing m marginally reduces monitoring costs, directly raising debtor
expected utility (since we know Rr; = Ry + ¢ > Ry) without making I > 0. Substituting out m
and then Ry from the constraints m = (Ry — R.)/(Rur — Rp); Ry =[(1+7r)B — (1 —p)R1]/p

the problem reduces to:

(1-p)p(1+7)B—-Rg
P Ryr, — Ry,

max By — (17)

There are also feasibility constraints: yy > Ryr,Rp;yr, > Rp,Rpr. We can replace the
second of these by Ry, < yr, — ¢ since we know that Ry ;, = Ry, + ¢. Since (17) is increasing in Ry,
(to avoid the first best being feasible (14 7)B — Ry, > 0), there must be maximum punishment in

a H contract i.e. RE, =yy. Similarly (17) is increasing in Ry, since yy = Ry > (1+7)B; hence

in the H contract Rg is set at its maximum value of y;, — ¢. Consequently RgL = yr.. Knowing

14



this we can also calculate the optimal levels of Ry and m in the H contract as:

Rif = [(1+7r)B—(1~p)yr —¢)l/p (18)

i — (1+r)B—yL+¢ (19)
plyg —yr + )

which then gives maximal expected utility of:

(plyr —yr) +¢)B(1 +7) — dlyr, — ¢)(1 —p)
pya —yL + o)

EUy = By — (20)

H

The H solution requires 0 < m“ < 1 which automatically holds: to have sufficient expected

revenue to pay for the investment requires (1 + 7)B < yy since yg > yr, and (1 +7)B > yr,.

3.2 The Optimal Repayments Conditional on the Interior Mixed Strat-

egy Solution

The contract problem has the form:

max By —pRy — (1 —p)Rr, — (1 —p)(Rrr — Re)(Ry — Rr)/(Rur — Ri) (21)

(1—p)¢+ R —Rrr)
Ry — R — ¢

pRy +(1—p)Ry, — > (1+r)B (22)

where we have used m = (Rg — Ryr,) /(R —Rr); 1= (1-p)(¢+ R, —Rrr)/(p(Byr — R —¢))
and know that ¢ + R, — Rrp, > 0; pRyr + (1 —p)Rrr — B — ¢ > 0 and R, < y, for the relevant
states.

KP show that the zero profit constraint must bind; Ry = yr, and Ry = yy (see appendix
A.2). Notice that the constraints ¢ + Ry, — Ry, > 0; pRyr + (1 — p)Rrr — R, — ¢ > 0 do not
affect this solution and that the second requires that p(yg —yr,) — ¢ + (yr, — Rr) > 0.

Putting Rrr = yr and Ry = yg in (58) yields:

15



(By —Rp)(yn — Bp — ¢)(1 +7)B — ¢Rr(1 — p)(ym — yr)

FEU = FEy — 23
(pymw + (1 —p)yr — ¢ — R )(yn — Rr) (2)

The problem is then to choose Ry to minimise:
(By — Ri)(yn — R — ¢)(1 +7)B — ¢RL(1 — p)(yn —y1) (24)

(pyn + (1 —p)yr — ¢ — Ri)(yn — Ri)

subject to By, >y — ¢; B, < min{Fy — ¢,yz }.

The objective function (24) is concave in Ry, (see appendix A.3).

Under the feasibility condition (14) and the assumption that the first best is unattainable so
that y, — (1+7r)B < 0, plyg — y) — ¢ > 0 which in turn implies min{Ey — ¢,y.} = yr.
Hence the problem is to minimise (24) subject to y, — ¢ < Ry < y1. To satisly the constraints
yr, — ¢ < Rp < yr; but EU() is convex in Ry, so the optimum value of R; must be either
arbitrarily close to R, = y;, — ¢ or at Ry, = yr.. In the former case there is no optimal solution
in KP form because of the open set restriction y;, — ¢ < Rp; but as we have seen instead the H
form involves Ry, =y, — ¢.

Putting each of these values of Ry, in (61) in turn, we find that By = yy, is optimal as in KP
if B(1+7)(1+p) < pyg +yr — ¢; otherwise Ry, =y, — ¢ is optimal with the H solution. This
also gives us the switch point between the KP and H cases in terms of the value of B or ¢.

Summarising, when B(1 +7)(1 + p) < pyg + ¥, — ¢, maximal expected utility becomes:

plyn —yr —¢)(1 +7)B — ¢yr(1 —p)

EUKP = Ey — 25
plym —yr) — ¢ (29)
Then the optimal repayment contract will have the KP form and involve:
1—
Py —yr — P)
REV =y, (27)
REf =1 (28)
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REL =yn (29)

(1+7)Blyg —yr —¢) —yr(yx —yr)(1 —p)

REP _
a Py —yr) — ¢

kp _ [(L+7)B —yrllyn —yr — ¢]
" T T lum — ) — Allum — w1 (31)

If B is fixed, (14) coincide with (1-9) so we have shown that there may be examples in
which the revenues and debt satisfy all KP’s assumptions but the optimal contract form un-
der no commitment actually involves truthtelling. Now, KP assume Fy — (1 + r)B — ¢ > 0;
however (pyy +yr. — ¢)/(1+p) < By — ¢ and so if (pyy +yr —¢)/(1+p) < (1+r)B< Fy—¢
then KP’s feasibility assumption is satisfied but the optimal no commitment contract involves
R;, =y, — ¢ < Rrr = yr. In this case there is a cost to truthtelling borne by the borrower; it
is as if he is sharing in the observation cost.It is possible that the KP feasibility condition does
not hold but the above analysis of the KP repayments is still valid, e.g. if yr < (1 + r)B but

p(yr —yr) — ¢ > 0. In this case min{Fy — ¢,y } =y and so the above argument applies.

3.3 The Optimal Repayment Structure in a Fixed B World

We can rewrite the two possible maximal expected utility levels as:

¢ —p)((L+7)B —yr)

EUrp = Ey — (1+7)B —
KP ( ) p(yg —yr) — ¢

(32)

o(1=p)(L+7)B+¢—yr)
Py —yr + @)

EUy=FEy—(1+7r)B— (33)

We know that EUy > FUkp iff ¢ > pyy +yr — B(1+7)(1+p). Given that the KP solution with

fixed B is feasible only if p(yy —y1,) — ¢ > 0 we can write the following:

Proposition 1 Given yr, < (1+7r)B:
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(a) If either plyy —yr) — ¢ >0 or By — (1 +7)B — ¢ > 0 then the optimal contract has:
the KP form if ¢ < pyu +yr, — B(1+7)(1 + p);
the H form if ¢ > pyg +yr, — B(1+7r)(1 +p).

() If p(ynr — yr) — ¢ < O then the optimal contract has the H form.

Comparing the high state repayment in the two contract forms gives:

¢(1—p)(By —(1+71)B—¢)

REP _ pH _ _
" a p(p(yu —yz) — &)

<0 (34)

but since pr — Rg = ¢ > 0 we find that the repayments resulting when monitoring is not

actually carried out are more spread out in the H contract than in the KP contract:
REP — REF <« R RE (35)

so that there is a higher incentive to cheat in the hybrid case. On the other hand this is negated

by the monitoring strategies of the two contracts; we have:

kp_ BT —uyL < REY —yr+ ¢ RZ_yL+¢:mH

m = 36
Y — YL YH — YL + ¢ YH — YL + ¢ (36)

The interpretation is that for sufficiently high B the revenues in each state are high enough to be

able to deter cheating through an aggressive auditing policy.

4 The Optimal Choice of B

Here we use the technological assumptions (5)-(7); the first best is still unattainable but there
will typically exist a value Bgp, at which y1(Bsr) = (1 + r)Bsg so that, so long as B is at or
below Bgg, a SR contract is feasible in which Ry = Ry, = Ry, = Rpr. So we start by outlining
the form of the optimal SR contract and then move on to determine conditions under which the

optimal contract is SR, KP or H in form.

4.1 The Single Repayment Contract
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The only undominated pure strategy has m = 0 and [ = 1; we call this a SR contract since there

is always a low report which results in a single repayment of Ry,. In this case the contract problem

has the form:

max Fy — R, (37)

Ry > (1+r)B

RL S Ys
The constraint must bind since otherwise R, could be reduced raising debtor expected utility. So:

max By — Ry, (38)

(I1+7)B<yL

Since ¥ (.) is increasing and concave, the solution for B in the SR contract will be at Bgp, yielding

a maximal expected utility of:

EUsg = pyn —yr) (39)

We have to contrast this payofl with those arising from either a KP solution or a H solution

in which { = 0.

4.2 The Optimal Level of B

Expected utility of each contract with optimal repayments will be given by:

EUsgr(B) = FEy(B)— (1+7r)B (40)

EUy(B) = Ey-— (plym —yr) + zsz(l—ijz);j)(yL —¢)(1—p)
= o1 =p)[(1+7)B—(yr — ¢)]
= FEUsgr(B)  Tr— )
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plyn —yr —$)B +7) — ¢yr(l —p)

EUxp(B) = Fy— plyn —yr) — ¢
B (1= p)(1+7)B —yi]
= EUsr(B) P (42)

To determine the relationships between these contract forms, there are four questions: firstly
for what range of values of B is each contract form defined? Secondly, for a given investment level,
how do the welfare levels of the alternative contracts compare? Thirdly, how do optimal values of
investment and monitoring compare within a given contract form? And, fourthly, which contract

form is globally optimal, allowing for the optimal investment level to differ by contract?

4.2,1 Feasibility of the Contracts

(40) is feasible only for B < Bgp defined by:

yr.(Bsr) = (1 +7)Bsr (43)

since only for this range of investments are there sufficient resources to repay the debt in the
low state. Note that at Bgr, FUxp = EUgr > EUg so long as Uk p is well defined. And
for B > Bggr, FUsr > EUkp again so long as EUgkp is well defined. We also know that by
assumption By > Bgg.

(42) is only valid for 0 < IX¥ < 1 and 0 < m®&¥ < 1, which require B > By p and B > Bgp

and m%& ¥ < 1 where Bip is defined by:

p(yu(Bkp) —yr(Bkp)) = ¢ (44)

The condition m% ¥ < 1 can be expressed as:

(yu —yp)[(1+7)B —pyy — (1 —p)yr + 8] < [(1+7)B —yr]o (45)

which we assume to hold at the optimum investment level in the KP contract! ; certainly it is

valid in each numerical simulation below.

I Note that the KP feasibility condition (9) is a sufficient condition for this.
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(41) is only well defined when 0 < m*! < 1; this requires (1+r)B—yr+¢ > 0 and (1+r)B < yy.
Generally there may exist two values of B, Bggs; and Bygo, at which (1 + T)B + ¢ = yr. For
Bpse < B < Bysi, (14+7r)B+¢ <y, although for sufficiently high ¢ there will be no solutions to
this equation. Moreover, where the roots exist, Byg, < Bggr (¢ = 1,2). Note that the H contract
is feasible at any B > Bggr. From the form of (41) it follows that below Bgp the SR contract
dominates the H contract in regions where the latter is defined. However since we are concerned
with situations where the first best level of investment cannot be implemented by a SR contract,
our second best optima will be above Bgg.

4.2.2 Welfare Levels of the Contracts at Common B
At any value of By defined by:
(14+p)(1+7)By =pyu(By) +yr(Bg) — ¢ (46)

we have FUy = FEUk p so long as both expected utilities are well defined (i.e. B > max(Bsg, Bxp)).

Let:

F(B,¢) = (1+p)(1+7)B—pyu(B)—yr(B)+¢

(1 +p)[(1+7)B —yu(B)] = [p(yn(B) —yi(B)) — 9] (47)

So By is defined by F(Bpy,¢) = 0. Then F"(B) > 0 and, under our assumptions on revenues,
F(0) = ¢; F(00) = 0o. When F(B) > 0 we have EUy > EUkp. Define (¢4, Bf) by F(By,¢;) =
0= F/(Bf,gbf) so that there is a single root By to the equation F(B,¢;) = 0 and for ¢ > ¢
there are no roots.

For ¢ < gbf there are two roots By, satisfying F(BHZ-7 gb) = 0; we label them as Bpyo < Bp1.
Then for By < B < Bpys, EUy < EUgk p. Also if there are two roots then the lower root satisfies

Bpe < Bj since we have F' (Bp2) < 0 but:
F'(B) =p(l+7—yL(B1)) >0 (18)
while By can be either >< Bj.
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Figure 2:

4.2,.3 Optimal Investment and Monitoring under Hybrid and Mixed Strategy Con-
tracts

Let Bj; solve EUI/{(B) = 0; and B} p solve EUI/(P(B) = 0. If each expected utility is strictly
concave these conditions define the relevant optimal investment levels. If we can show that
EUI/{(B}}P) > 0, so that KUy is still rising when EUgkp attains a maximum, then we know
that By, > Bj.p. Now, since F(.) is strictly convex with at most one turning point, we can
divide up the range of B into three subregions in which B}, may exist. It may be that at
B p, F'(Bjp) < 0; or F'(Bjp) > 0 but F(Bjp) < 0; or it may be that F'(Bj;p) > 0 and

F(Bj:p) > 0. In appendices A.4-A.5-A.6 we show that:

Proposition 2 If EUy and EUgk are strictly concave then the optimal investment level in each
case is below the first best By. Moreover in each case optimally investment is higher in the H
contract than in the KP conlract.

One way of understanding this is that in the H contract there is truthtelling; this requires
a relatively high level of monitoring to police the debtor. But then since the monitoring costs
are high, the contract has to ensure that there is sufficient revenue to cover these costs. This is
achieved by having a high investment level.

From this as expected it follows that there is more monitoring in the H than in the KP contract,

as shown in appendix A.7:
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Proposition 3 If EUy and EUyk are strictly concave, the optimal level of monitoring in the H
contract is higher than the optimal level of monitoring in the KP contract.

4.2.4 The Globally Optimal Contract Form

We can use the structure of the function F(B, ¢) together with knowledge of the interval in which
the optimal investment level for a given contract lies to characterise which form of contract is
globally optimal.

To proceed we first have to determine the relationship between various critical levels of B.
Given y,(B),r, ¢, p, recall that Bgg solves (1 +7)B = y1(B). Note that Bsr depends on 7, but is
independent of p and ¢.

We can use the expression for marginal utility:

BUep = By — (1) =2l 40) vl (0= )l +1)B —yilplyy — v

Py —yr)— ¢ Py —yr) — 9J?
= -G - (P @

to see how the sign of EU[/(P(BSR) varies with ¢ : when ¢ = O,EUI/(P(BSR) > 0 since Bgr < B

and at ¢ = ¢*, EUy p(Bsr) < 0. Also: EU p(Bsg) /96 = —(1—p)[1+r—y; (v —yz)/ [p(ys —

y10 — ¢]2 <0, hence there is a ¢** at which EUy p(Bsg) = 0. At ¢** :
Py —y1) — ¢ 1[By —(1+7)) = (1—p)o™ [L+7 —y] >0 (50)

which implies p(yy —yr) — ¢** > 0.

Then recall that B p(¢) solves p(yy — yr) = ¢ and ¢* solve p(yu (Bsr) — yr(Bsr)) = ¢".
Hence ¢ < ¢*.

Any two of the three conditions F(.) =0,p(yy —yr) = ¢, (1 +r)B = yz, imply the third. At
¢" all three conditions hold and Bg p(¢*) = Bsg and, writing F'(.) = 8F/3B, if F'(Bsgr,¢") <0
then Bpa(¢*) = Bsg whilst if F'(Bgg,¢") > 0 then By(¢") = Bgr.

We can use the relationships between the expected utilities of the different contracts at these

critical levels of B together with knowledge of where the optimal investment level corresponding
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to a particular contract lies to determine the globally optimal form of contract. The detailed proof

is in appendix A.8.

Proposition 4 (i) If ¢* > ¢ and Bsr < Bj; < By the globally optimal contract cannot be H;

(ii) If " > ¢ and if By, < Bip < By the globally optimal contract cannot be KP;

(iii) If > ¢* and if F' (Bsg,®") > 0 the globally optimal contract cannot be KP;

() If $ > ¢ and if F'(Bsg,¢") <0 and if Bya < B}, < B the globally optimal contract
cannot be H;

(v) If ¢ > ¢" and if F (Bsgr,¢") < 0 and if either Bxkp < Bj;p < Bmg or, when Byy < By,
B < By p < By the globally optimal contract cannot be KP.

However this requires knowledge of the position of the optimal investment level within a con-
tract and in most cases there are still two possible candidates for optimality: the SR contract and
either H or KP; in general to compare these requires a global comparison of utilities.

If the expected utility of the H and KP contracts is strictly concave in B (when feasible) then
we can identify the range in which the optimal investment level of the different contracts lies by
knowing the sign of EU/(B) at the roots of F(B,¢) = 0. The details of the argument differ by
case but the essential intuition is that between the roots By, we know that EUgk p (B) > KUy (B)
whereas outside this region, FUgp (B) < BUg (B) wherever both roots and both contracts are
well defined. Then if EUI/(P(BHI) > 0, it must be that By p > By, and so EUkp(B}) <
EUy(B}). Similarly if BU,(By,) > 0 but EUy(By,) < 0, then By, < Bl < By, and so

EUgkp(Bj;) > EUg(Bj;). This forms the basis for comparing the welfare levels of the optimal

KP and H contracts.
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To determine the relationship between these welfare levels and that of the optimal SR contract
we use the facts that, at Bsg, EUsr(Bggr) > FUg(Bsgr) and EUI/{(BSR) >0,and, if 0 < ¢ < ¢*

so that Bxp < Bsr and the KP contract is defined at Bsr, EUsr(Bsr) = FUkp(Bsr)-

Proposition 5 If EUy and EUgp are each strictly concave then:

(a) If F'(Bsg,¢") <0

and (a.1) b > ¢ > @" and Bgy > By the globally optimal contract depends on a global
comparison of KP and SR;

and (a.2) ¢y > ¢ > ¢" and By < By and EUy(Bi1) < O;the globally optimal contract
depends on a global comparison of KP and SR;

and (a.3) ¢y > ¢ > ¢* and Bgx < By and EUI/(P(BHl) > O;the globally optimal contract
depends on a global comparison of H and SR;

and (a.4) ¢; > ¢ > ¢" and Byy < By and EU(B1) > 0 and EUy p(Bi1) < O;the globally
optimal contract is single repayment if depends on a global comparison of KP, H and SR.

(b) If F'(Bsg,¢*) > 0 and ¢y > ¢ > ¢" the globally optimal contract is single repayment if
EUy (Bsg) < 0 depends on a global comparison of H and SR if EUy(Bgg) > 0.

(c) If 9" > ¢ > ¢*" the globally optimal contract is single repayment z'fEUI/{ (Bsr) <0 depends
on a global comparison of H and SR if EUy (Bsg) > 0.
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(d) ¢** > ¢ and By < By the globally optimal contract is KP.

(e) $** > ¢ and By > By the globally optimal contract is KP if EU(B) < 0.

(f) ¢** > & and By > By the globally optimal contract is H if EUy p(B1) > 0;

(g) ¢** > ¢ and By > By the globally optimal contract depends on a global comparison of
KP and H if EU,(By1) > 0 and EUg p(Bm) <O0.

(h) If ¢ > ¢ the globally optimal conlract depends on a global comparison of SR and H.

The assumption that expected utilities are concave is somewhat delicate. Assuming that each
revenue function y,(B) is increasing and concave in B and that y};(B) < yZ(B)7 a sufficient

condition for EUgk p(B) to be concave (see appendix A.4) is that:

pyr —yr) — AL+ —y] < pyy —y)(1+7)B -y (51)

and for EUg(B) to be concave that:

yrr —yr + Al +7—yp] < (g —y)(L+7)B —yr + 9] (52)

These conditions cannot hold globally; for example at any stationary point of the H contract:

vz —yr + AL +7 —yr) — (g — )L +7)B —yr + 9] (53)

= [By —(1+0)plys — v + )2/ (¢(1 —p)) > 0 (54)

if there is underinvestment at the stationary point (see below). Nevertheless the simulations
that we present do have concave expected utilities within the whole range where the respective
contracts are feasible.

It would be possible to assume that just one of the two expected utilities is concave and combine
this with information about the location of the optimal investment level in the nonconcave contract
to get similar characterisations of the possible global comparisons. Generally what comes out of
these comparisons is that the higher the spread between yg and y;, the less likely is the SR, contract
to be optimal. On the other hand the higher is ¢ the more likely is the SR contract to be optimal.
For a given high spread between yg and yr,, the higher is ¢ the more likely is the optimum to be

H rather than KP - at first sight this is counterintuitive.
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5 Numerical illustrations

To illustrate the various possibilities we provide some numerical solutions for three basic scenarios
that have varying levels of the observation cost. In both scenarios we take isoelastic revenue

functions with multiplicative uncertainty:
ys = asVB (55)

In every case the expected utility of each type of game/contract turns out to be concave in B
where it is defined; and the feasibility condition is satisfied everywhere above maz(Bxp, Bsr).

In our first scenario we take the parameters to have values:
p=05r=0.1,ar =1l,ag =20 (56)

and then let ¢ vary. In this case the first best level of investment is By = 91.12 and the optimal
pooling repayment contract satisfying yr(B) = (1 + r)B has investment of Bsr = 3.31 which
generates expected utility for the debtor of EU(Bgsgr) = 34.54. Then for varying ¢ we get the

following:
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o B m EU Ry Bk Bpgs | Ba
10 277 222 | 1654
KP | 88.60 0288 | 453 | 97.879 | 180.75

H 88.87 A82 | 97.80 186.671

20 1.11 .96 152.
KP | 86.102 | .060 459 | 95.277 | 180.612

H 88.875 518 | 94.991 | 193.040

40 4.43 4.72 | 124.57
KP | 81.465 | .132 A81 | 89.046 | 182.940

H 84.930 .590 | 88.320 | 208.414

50 6.92 8.4 108.
KP | 79.622 | .173 A79 | 85.216 | 186.492

H 84.336 624 | 84.479 | 217.171

60 9.97 14.6 | 90.4
KP | 78477 | .217 .520 | 80.706 | 192.937

H 84.009 .656 | 80.365 | 226.489

65 11.7 19.5 | 79.4
KP | 78.311 | .240 535 | 78.127 | 197.720

H 83.932 672 | 78.195 | 231.327

70 13.57 | 27.5 | 654
KP | 78.512 | .262 553 | 75.284 | 203.859

H 83.904 688 | 75.960 | 236.270

80 17.7

KP | 80.325 | .307 .600 | 68.649 | 221.200

H 83.980 720 | T1.289 | 246.429
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Our second scenario has the same parameter values except that p rises to 0.7. In this case the
first best level of investment is By = 169.00 and the first best utility level is EU(B;) = 185.90,
whilst the optimal investment in the SR contract is still 3.305 but the corresponding expected

utility is EU(Bgr) = 48.36. For varying ¢ we get:

¢ B l m EU Ry Bgp B Bm
100 14.133 | 22.325 | 128.94
KP | 156 114 ) 498 | 166.67 | 261.498

H 160.854 617 | 167.262 | 284.757

80 9.045 11.410 | 160.399

KP | 157.918 | .086 A86 | 171.669 | 257.419

H 161.676 590 | 171.661 | 277.450

60 5.09 5.48 187.7

KP | 160.395 | .061 A78 | 175.953 | 255.228

H 162.824 560 | 175.757 | 270.643

40 2.261 | 2.154 | 212.436

KP | 163.165 | .0385 | .472 | 179.682 | 254.256

H 164.368 529 | 179.518 | 264.446

150 31.799 | - -

KP | 157.180 | .197 [ .552 | 149410

H 159.849 681 [ 155.113 | 304.640

Our third scenario has p = 0.5; » = 0.1; a, = 1; ayg = 5 with a first best investment level of

By = 7.438 and EU(B;) = 8.182; Bsr = 3.306; EU(Bsgr) = 7.273 and gives the results in the

table below:
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gb B l m EU RH BKP BH2 BH1

6.25 2.441 | 1.632 | 8.790

KP | 3.305 | .753 | .192 | 7.270 | 3.636

H 6.76 627 | 6.203 | 15.923

7.0 3.062 | 2.605 | 6.908

KP | 3.306 | 928 | O 7.273 | 3.636

H 6.785 | O .665 | 5.838 | 16.718

6 Conclusions

Because of the lack of devices to ensure that contracted auditing will actually be carried out
in a two party, one shot loan contract scenario (Hart, 1995), there is recognition that analysing
contracts without commitment is a valuable contribution. The existing wisdom in this area is that
such contracts which fix loan size and the state dependent pattern of repayments must recognise
that, at the repayment stage, there will be a noncooperative game to determine the auditing
and cheating strategies. The literature also generally claims that the outcome of this game is an
interior mixed strategy (Khalil and Parigi, 1998; Choe, 1998); the effect of this is that under risk
neutrality, the optimal contract involves repayments following a low report of the state that are
independent of the act of auditing ( ie Bz, = Rrr). That is, there is no reward/punishment on
the debtor for truthfully declaring a low state. In this paper we show that the optimal contract
may not induce an interior mixed strategy of the reporting/auditing game but that for particular
properties of the revenue functions, the best contract may either lead to certain cheating and zero
auditing (a single repayment/pooling contract); or to zero cheating but positive auditing; or to
the interior mixed strategy. We also delineate the regions within which each of these contract
forms is the optimum. When the no committment contract involves truthtelling, it also involves

a higher investment level and a higher probability of monitoring than the mixed strategy solution
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that allows for some randomised cheating. In the hybrid truthtelling but random monitoring
scenario there is a ”punishment” on the debtor for truthfully reporting a low state in the sense
that Rpy > Rr; an alternative way of interpreting this is that it is optimal to require the borrower
to take on some share of the monitoring costs to encourage sufficient monitoring to keep the debtor
truthful in his reports. Yet another way of looking at the possibility of having truthtelling in the
Nash equilibrium is to regard it as a case in which the second best sequentially rational contract
of Jost (1996) emerges as a non-cooperative outcome.

All of this no committment analysis is predicated on the assumption that the endogenous
probabilities of cheating and monitoring are determined in a noncooperative Nash equilibrium.
Most of the renegotiation literature instead sees the renegotiation stage as being in the form of
a leadership game: one party suggests a renegotiation to the other that both can accept. If the
debtor actually writes the original contract (which has some efficiency features to recommend it,
Choe), then, as an alternative at the repayment stage, we could have a Stackleberg setup with
either the lender or the debtor as the leader. Suppose the lender is the leader; they can choose any
point on the debtors reaction curve and presumably will want to ensure low monitoring (to avoid
monitoring costs) and low incidence of cheating (to extract rent from the debtor). It is then quite
plausible that what we have called the hybrid equilibrium - which emerges as a noncooperative
Nash equilibrium in our setting - is actually also the Stackleberg equilibrium of the game when the
lender is the leader. Or if the monitoring costs are very high then the lender as leader may actually
prefer the single repayment scenario where [ = 1,m = 0. Thus either the single repayment contract
investment and repayment levels may emerge from a contract in which the second renegotiation
stage has the lender as Stackleberg leader. If instead at the renegotiation stage the debtor is
the leader then they can choose any point on the lenders reaction curve and presumably prefer
outcomes with a low probability of monitoring and a high probability of cheating. This is likely to
lead to the outcome in which m = 0,0 < ! < 1. In the noncooperative Nash scenario we rule this

out because it requires Ry = Ry, to give debtor indifference between truthtelling and cheating;
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but in a Stackleberg scenario it is quite possible since it gives the highest level of cheating that is

consistent with no monitoring.
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A Appendix

A.1 Conditions for Hybrid Equilibria

A1l I1=0m=1

This requires dE7/om|l = pl(Ryr, — R, — ¢) — (1 — p)(¢ + R — Rrr) < 0 and OEU/dlm =
(Ry — Rp)—m(Ryr— Rr) = (Ry — Rr) =0 at m = 0. Taken together these yield Ry = Ry, and
(so long as Ry, — Ry, —¢ > 0) any nonnegative value of | < (1—p)(¢p+R;—Rrr)/p(Ryr—Rr—¢).
Alternatively if Ryy, — Ry, — ¢ < 0 any value of { > (1 —p)(¢+ Rp — Brp)/p(Bur — Rr — ¢) but
less than unity will suffice.

Al2 m=10<i<1

This requires Ew/dm|l = pl(Ryr, — R —¢) — (1—p)(¢p+ R — RBrr) > 0and dEU/3lm = (Ry —
Rp)— (Ryr— Rr) = 0. Taken together these yield Ry, = Ry and (so long as Ry, — R —¢ > 0)
any value of I > (1—p)(¢+Rr—Ryrr)/p(Ry— R, —¢) which does not exceed unity. Alternatively
if Ry, — Rr, — ¢ < 0 any nonnegative value of [ < (1 —p)(¢+ Ry, — Rp1)/p(Rur — Rr — ¢) but
less than unity will suffice (note this then requires ¢ + R, — Ry < 0).

Al13 1=00<m<1

This requires EU/dllm = (Ry — Ry) — m(Rpr — Rr) <0 and 9E7w/dm|l = (1 — p)(¢p + Br —
Rp1) =0 when [ = 0. Taken together these yield (¢ + R, — Br) = 0 and (so long as Ry > Ry,
which is an innocuous assumption) any value of m > (Ry — Rr)/(Rur — Rz) which does not

exceed unity.

Al4 1=10<m<1

This requires dEU/dl|lm = (Ry — Rr) — m(Ryr — Rr) > 0 and 8E7/dm|l = p(Ryr — Rp —
¢) — (1 —p)(¢ + B — Rrr) = 0 when ! = 1. This requires any nonnegative value of m <

(Ry — Rr)/(Ryr — Ry) which does not exceed unity.
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A.2 Repayments Conditional on an Interior Mixed Strategy

The zero profit constraint must bind; otherwise raising B will raise Ey without affecting feasibility
which then raises borrower expected returns. But since it binds we can follow KP and solve out
RH .

ry - (QHnB(Ruy =Ry =)= Ri(Ruw— Rp)(1—p) (A.57)
pRur + (1 —p)Rrr — ¢ — Rg

and replacing this in the borrowers expected return gives:

EU = Ey (A.58)

(1+7)B(Rur, — Ry — ¢) — R (Rur, — Rr)(1 — p)l[pRur + (1 —p)Rrr, — Ry
(pPRurL+ (1 —p)Rrr — ¢ — Rp)(Rur — Ryp)

(Ryr — Rrr)

(Rur — Rr)

—(1=p)Ry

Then exactly as in KP:

oOFEU _ (1 —p)gb(RHL — RL — gb)((l +7")B — RL) > 0
ORLL (pRur + (1 —p)Rrr — ¢ — R)?(Rur — Rr)
(A.59)
so that Rr; = yr,. Using this:
oLuU - _ ¢(1 —p)((L +7)B — Rr)[p(Rur —yr)? — (yr — Rp)? + (yr — R)9) (A.60)
ORpyy, (pPRur + (1 —p)yr, — ¢ — R)?*(Ryr — Ry )? '

¢(1 =p)(1+7)B — Rr)[p(Rur —yr)* — (yr — Ro){yr — R — ¢}]
(pRur + (1 —p)yr, — ¢ — Rr)?*(Rur — Ry )?

> 0

so Ryy, = yu. Notice that the constraints ¢+ Ry, — By, > 0;pRuyr+(1—p)Brr, — B —¢ >0

do not affect this solution.

Putting Rrr = yr and Ry = yg in (58) yields:

By —Ri)(yn— R — ¢)(1+7)B = ¢R(1 — p)(yn —yr)

o
EU = By (pyr + (1 — p)yr — ¢ — Ri)(ym — Ry)

(A.61)
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The objective function (24) is concave in Ry,

ORU  _ ¢(1—p)(yn —yo)(By — ¢)yw — (1 +7)B) — (1 +7)Bym + 2R, (1 +7)B — R]

ORL (pyr + (1 —plyr — ¢ — Rp)?(yaw — R1)?

(A.62)

From this it follows that EU is convex in Ry: since (1 + 7)B > Ry the numerator of (62) is
increasing in Ry; on the other hand each term in the denominator is decreasing in Ry since

pyr +(1—plyr —¢— R >0and yy — Ry, > 0. Hence 82 EU/ORZ > 0. But (24) has a derivative

OEU
ORp "

of —
A.3 Concavity of Expected Utilities in B
Second derivatives of expected utilities are given by:

yr(1=p)¢ (=P A+ —y)yu —vu)

BU = pyu+ (=P + Py —yr + ¢) p (yir —yr + ¢)2 (4.63)
LU=po [0 +n)B -y + 6l —yp)® | (=P [(L+7)B —yr + llyy — 1)
p (yu —yr +¢)3 p (yu —yrL + ¢)?
p ey (1L—p)o =)y —vr)
EUgp = pyy+(1—-py,+ Y e — +2(1-p)p o — 1) — (A.64)
o o By —vn)? 0 +7)B —yrlp(yy —vp)
=P i) - T Gl — ) - o2

Since y;/ < 0, y}; —yg < 0and (147)B > yy, since we are above Bgg; the only terms of ambiguous

. . H
sign in BEU, are:

(L+r—y)wr —yp) _ [(L+7)B—yr + ¢y —y)* (A.65)

(yg —yr +¢)? (Yo —yr + ¢)3

and:

(+r—y )y —y)  [(1L+7)B—yrl(yy —y.)?
Py —yr) — ¢ Py —yr) — o

(A.66)
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Soif (147 =y )y —yr+¢) < [(1+7)B—yr +¢l(yy —y;) and (L+7—y;)plys —yr) —¢] <
[(1+7r)B — yL](ylH — y/L) then we would know expected utilities are globally concave. However

these conditions cannot hold globally: consider for example EUI:, at Bj;. At EUI/{ = 0 we have:

(1=p)gl(1+7) —yy]
plys —yr + o)

(1= p)o[(L+7)B —yr + dllyy — ;]
plyr —yr + ¢

= —FBy'+(1+4+7)+

(A.67)

o A+ r)B -y ey —y)
(Ltr—vr) = (yr —yz +0) B

i — gz + SlEY — (14 1)] — [(1+7) - y;])

(1+r—y;)+<(1_pp)¢

P '
=|=7—— g —yr+o|llLy —(L+r >>0
if B}; < By so that optimal H investment is below the first best level.

A.4 The Optimal H and KP Investment is below the First Best:B};, B}, <
By

For the H contract since Uy (B) is concave, this is true if EUI/{ (Bl) < 0. However:

(1—p)p(l+7—y,]
P2y —yr + ¢)?

EUy(By) = [(1+7)B —pyu — (L—plyr +é(1 —p)]  (A.68)

which under the feasibility condition is negative.

Similarly for the KP contract:

—[(1+7) =y llpvr —yi) — 8l + Py — v ) (L +7)B1 — yi]

EUgp(B1) = P —yi) — o) (A.69)
_ 0+ -y By -l - 0+nBi} _
Py —yr) — ¢J?

because of the first best condition that p(y}{ — y/L) =(1+r)— y/L and the feasibility condition

which gives the sign.

A.5 Optimally B}, < B}
First suppose that the optimal investment in KP occurs when F'(.) <0 :
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(i) F'(Bj;p) <0 We can rewrite the derivatives of expected utility with respect to B as:

EUgp(B) = By —(1+7)—Px(1—p)o

EUL(B) = Ey' —(1+47)—Py(1—p)o

where:
Pop - A= v, g —y )l +7)B -y
pyg —yr) — ¢ [p(ye —yr) — ¢J?
py o~ Dy Py —y )+ 7)B =y 4 d]
Py —yL +¢) p(ye —yr + ¢)1?
So for any B :
EUy —EUxp = (1—p)é(Pxp— Pu)
(1—p)o

Pyr —yi) — 2Pl —yr + )2
{[(L+7) =y llpwn — yi) — dllplys — i, + 6]

—p(r —yp) (L +7)B —yr] - [y —yr + o) —
(1 +7) =y ]y —yi) — APpyn — yr + ¢)]]
+P(y}{ — y/L)[(l +7)B —yrllp(ynr —yr) — 8]

+p(yy —y)Slplyr — o) — ¢}
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Define Q = {.}; then using p(ygx —yr +¢) = [plyr —yz) — |+ (1 +p)d :

Q = {0+ —yllplyn —yr) — ¢l - plyrr —yp) (1 +7)B —ysl} - (A.75)
{(1+9)%6" +2(p(yn —y1) — &) (1 +p)o} —
[y —yr) = P01 +p) (1 +7) —yr] = p(y — )]
= Pxplplyr —yr) — P11+ )0 +2(0(yrr —y1) — &)(L +p)¢] —

Py — 5 )olp(ye —yr) — o2

Hence:
‘ b (1-—p)o .
BUn =BUkp = i —yn) = oPlolyn — vz + P (A-76)
{Pxplpyr —yr) — ¢1*[(1L +p)*¢6” +2(p(yrr — y1) — ¢)(1 +p)g]
—p(yr —yp)op(yn —yi) — ¢°F'}
and:

EUy —EU, > 0 if F' <0 and Pxp>0 (A.77)

Now when EUI/(P =0 Pkp > 0 since then Pk p is equal to the net benefit Ey' — (147) > 0; it
follows that at B such that EUI/( =0 (i.e. at By p) if F' <0 then EUI/{ > 0. From this we know
that whenever By, p < Bpa then EUI/{ (Bip) > 0.

If the optimal investment in KP occurs above the upper root of F(.), then:
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(ii) F'(Bj;p) >0 and F(Bj.p) >0 In this case we can derive an alternative expression for

Q = [(1+7) —yrllplyr —yr) — Gl +)°6" + (plyr —yz) — $)(L+p)¢] — (A7)

Py =)L+ 1) B —y)(1+9)*¢° +2(p(yn —y1) — &) (1 +p)] +
P —yr)olp(ymr —yr) — o)

= {l0+7) = yllplym —yz) — ¢ =Py —y)[(1+7)B - 1]} -
[(14p)°6” + (plyrr —y1) — D)1 +p)g] +
P —y1)olpyn —yr) — ¢]* —
—p(yy — y) (1 +7)B —yrl(plys —yi) — #)(1+p)¢

= Prplplyn —yr) — ¢I’[(1+p)*¢” + (p(yrr — yr) — ¢)(1 +p)¢] +
Py —y1)olp(ys —y) — elplys —yr) — ¢ — (L+p)[(1+7)B —yrl}

= Prplplyn —yr) — ¢I[(1+0)*¢” + (p(yrr — yz) — ¢)(L+p)e] +

Py —yp)olp(yn —yr) — ¢JF

Then since EUI/{ — EUI/(P = [p(yH7yL)f(a15];$(q;H7yL+¢)]2Q’ when EUI/(P = 0 we know that

Prp > 0; hence if F(B}p) > 0 then EUy (B} p) — BUg (B p) > 0.

Finally if the optimal investment in KP is between these levels then:
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(iii) F(Bjp) <0and F'(Bjp) >0

EUy — EUgp

But:

So:

, ¢(1+p)
O =y Ol ) 9

[(1+7)B —yrl(yy —y)o(L +p)2p(ya — yr) — (L —p)g]
plyn —yr + )2 (plyn —yr) — ¢)*
Yy —yr) \
pyr —yr + ¢)*
14+7r— y/L

(L=l +p){P(yH —yr +o)plyn —yr) — o
[(1+7)B — yu](wy —vp)2pys —yi) — (1= p)g]
Py —yr +0)2(plyn —yr) — ¢)?
= \
(1+p)p(ya —yr + ¢)?
(1—p)¢” (
pyr —yr + &) (plyr —yr) — )2(1+p)

147 =y )+ ) (ym —yr + ) (plys —yr) — ¢)

(A.79)

—~(L+p)[(L+7)B —yrl(yy —y)20(wr —yr) — (1 —p)g]

Hyy —yp)p(ye — ) — ¢)?}

F=(1+p)(1+7)B—pyg —yr + ¢

F'=(1+p)(1+7r)—pyy —yp

[(L+7) —y)1+p) = F +plyg —yy) (A.80)
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/ o (1-p)o°
By = EUxp = plyr —yr + )2 (plyn —yr) — ¢)2(1 +p){ (A-81)

(v —yr + )Py —yr) — O)(F +plyg —vr))

—(1+p)[(1+7)B —yil(yy —y1)[20(r —yr) — (1 —p)g]

yy — )l — ) — )%}

_ (1-p)o* Yy — Y1) (

plyr —yr + ) (plye —yz) — ¢)*(1 +p)

plyr —yr + ) (p(yr —yr) — ¢) + (plyr —yr) — ¢)°

—(1+p)[(1+7)B —ycl2p(yr —yz) — (1 —p)ol}
N (1-p)¢°F
pyr —yr + ) (plye —yr) — ¢)(1 +p)
(1-p)¢" Wy —vp)

= (

plyr —yr + ) (plye —yz) — ¢)*(1 +p)

(plyr —yr) — o) 20(yrr —yr) — (1 —p)¢| —

—(1+p)[(1+7)B—yz]l2p(yr —yz) — (1 —p)ol}
N (1—p)o*F

pyr —yr +¢)(plyr —yr) — ¢)(1 +p)
(1—p)¢” (v — ) 2p(ys —yr) — (1L — p)¢]

 plyr —yr +0)2(plyr —yL) — ¢)*(1+p) =
N (1—p)o°F
p(yr —yr + o) (plyr —yr) — ¢)(1+p)
_ (1—p)¢*
plyn —yr + &) (plyn —yr) — o)(L +p)
- (e —yp)2plym —yr) = (1 = p)d] )

(yr —yr +¢)(plye —yr) — ¢)

In this case F' < 0 and F' > 0; hence EUI/{ — EUI/( > 0.

A.6 There is less monitoring in KP than in H

Now myp > 0 for B> Bjp.
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‘We have:

/ U+r—y)yu—yr—9) | (L+7)B—yi)ly —vr)

TP lym —yr) — Dum —vz) | plum —yz) — 0)(ym —ur)
((1+7)B —y)yn —yr — O)pyn — Y1)
(plyr —yr) — )% (yu —yr)
(A +7)B —yr)(ysw —yr — &) (e — i)
(plyr —yr) — &)y —yr)?
i = ATy s~y =)

(plyr —yr) — &) (yu —yr)
(L+7)B —y) gy —v)lplyr —yi)? — o{2p(ysr — y1) — 6}

p(yr —yr) — o%lyn — y]?

On the other hand using Ey' = p(y;L — y/L) + ylL :

’ _ P(y}{ - y/L) . 2 _ _
EUpp = Plon — 1) — oF [P(ye —yr)” — ¢2p(ye —yr) — ¢}
+(1 =p)p{(1+7)B —yr}]
[(L+7) —y] o
~on — 1) — o ¢p[yH yr — ¢

Substituting the second into the first:

’

EU,,
plyr —yr) *
(v —y)lpyr —yr)® — o{20(yr —y1) — o}llys — (L +r)B]
Py —yr) — & lye — yi)?
(Wu —y) (L —p)e((L+7)B —y1)
Py —yr) — o lve — vil

!
Mgp = —

+

(A.82)

(A.83)

(A.84)

(A.85)

Now since EU[/(P(B}}) =0 and Bj; p is a maximum then for B > B} p, EU[/((B) < 0. The other

two terms in m/; p are positive so long as p(yg —yr.)? —¢{2p(yxr —yr.) — ¢} > 0. But this expression

is:

plyn —yr) — ¢)* +p(L —p)yn —yr)* > O

(A.86)

Since B p < Bl we have mE¥(Bip) < m&P(By) < m#(B};) as m& Y < m* in the fixed B

case (see section 2.3).
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A.7 Proof of Proposition 4

(i) F'(Bsg, ¢*) <0

Here we know that Bya(¢") = Bsr = Brp(¢") < Bu1(¢") and that Bsp < By. Ilf ¢ < ¢" then
Bir2(6) < Bya(¢") and By p(¢) < By p(¢%). But F(By p(6), ) = (149)(14+) B p(6)—yz) < 0
since B p(¢) < Bsgr. As F'(Bsr,¢) < 0 and F(.) is convex in B it follows that Bpa(¢) <
Bip(¢). So for ¢ < ¢* we have Bya(¢) < Bxp(¢) < Bsr < Bi.

If ¢ > ¢" then by an analogous argument we have Bpy(¢) > Bya(¢) > Brp(¢) > Bsr and
again By > Bpa(d).

As ¢ continues to increase above ¢* the two roots of F(.) converge at Pg- At a suitably high
¢, Bri(ds) = Brz2(¢;) and for ¢ > ¢, there are no roots to F(B,$) = 0.

(i) F'(B,,¢") > 0

If ¢ < ¢" then Bi(¢) < Bys < Bgr < Bp1(¢); the first of these follows since F(Bpya,¢) =
0 whilst since Bxp < Bgsg we know that F(Bgp,¢) = (1 +p)((1 + r)Bgp —yr) > 0 but
because F(.) is linear in ¢, F'(Bgp,¢) > 0. The second follows since Bxp < Bpye implies that
Py (Bre) — yr.(Byz2)) > ¢ which implies (since F(Bpya,¢) =0), (1 +7)Bge —yr, > 0 meaning
that By < Bgg.

If ¢ > ¢" then Bya(¢p) > Bu1(¢) < Bsr < Bxp(¢) < By At a suitably high b, BHl(gbf) =
Bpz2(¢s) and for ¢ > ¢; there are again no roots to F(B,¢) = 0.

We can put together the above knowledge of the regions in which each contract form is feasible

with the location of Bj; and Bj,p to derive:

A.8 Proof of Proposition 5

Recall the expressions for the expected marginal utility:

EUg=FEy — (1+7) (87)
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/ (1 —p)el(L+7) —y;] L A =p)ll+7)B — yelplyy — v

BUxp = By =(1+7)- plyr —yr) — ¢ p(yer —yr) — ¢J2
by — (1 LRl 4T) ]
= B—(ltr) plyn —yr) — ¢ (A.88)
U By ) =D =] | Q=0+ 0B olly — 1] g,

pyn —yr +¢) plyr —yr + ¢

Case (a): F'(Bgr,¢*) <0 and by > ¢ > 9"

If By > By then EUL(Bpy) < 0 and EUg p(Bi1) < 0; and we also know that EUy, (Bgs) >
0. Hence the optimal contract cannot be H. Since Bgxp > Bgg, the globally optimal contract
involves a comparison between Sr contract and KP.

If By1 < By the outcome depends on the signs of EUI/{ (Bp1) and EUI/(P (Bg1)-1f EUI/{ (Bu1) <
0 the global optimum cannot be H and so will be the result of a global comparison of KP and
SR. If EUI/(P (Bg1) > 0 the global optimum cannot be KP and so will be the result of a global
comparison of H and SR. Finally if EUI/{ (Bg1) > 0 and EUI/(P (Bp1) < 0 the global optimum is
the result of a comparison of all three contracts SR, H, KP. This covers case (a).

Case (b): F/(BSR,QS*) >0and ¢; > ¢ > o

Here By < Bgp < By and so By p > By so the globally optimal contract cannot be KP.
Then if EUI/{(BSR) < 0 the global optimum is the SR contract; whilst if EUI/{ (Bsr) > 0, the
globally optimal form depends on a comparison of H and SR.

Case (c): ¢" > ¢ > ¢*"

For ¢ > ¢™* we know EU[/(P(BSR) < 0 and so EUI/(P(BKP) < 0. which implies that the
solution cannot be KP. On the other hand FUggr(Bsr) > FUgn(Bsr) so that if EUI/{ (Bsr) <0
the solution cannot be hybrid either and so must be SR. Instead if EUI/{ (Bsr) > 0 a global
comparison of the hybrid and SR contract are necessary.

Cases (d)-(g): ¢ < @™

If ¢ < ¢* then the outcome depends on whether By <> Bgy. If By < By, we know that

EU[/(P(BHl) < 0 and EUI/{ (BHl) < 0 since there is underinvestment relative to the first best.
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From EUI/{ (Br1) < 01t follows that KP dominates H. But since ¢ < ¢™* EUI/(P (Bsgr) > 0 and so
KP dominates the SR contract. If instead By > By it is more complex. If EUI/(P (Bg1) > 0 then
Bj;p > Bp1 and so H dominates KP. On the other hand if EUI/{ (Bm1) < 0 then B}, < Byiwhich
implies that KP dominates H. Finally if EUy p(Br1) < 0 but EUg (Bgi) > 0 then Bip < By
but B}, > By so that a global comparison of utilities is necessary.

For ¢ > ¢ the optimum again involves a comparison between the SR contract at Bsr and

the maximum value of the H contract.
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