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Abstract

In this note we derive a general formula useful to express the density of gen-
eralised noncentral quadratic forms (i.e. of a scalar random variable obtained
by contracting non zero mean multivariate normal vectors over multidimen-
sional arrays) in terms of linear combinations of noncentral chi square random
variables.

The formula can be used to obtain explicit expressions for the terms appear-

ing in the asymptotic expansions for test statistics under a local alternative.
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1 Introduction

In their seminal papers on asymptotic expansions of asymptotically equivalent x? test
statistics under a sequence of local alternatives, Peers (1971) and Hayakawa (1975)
propose a method which is based on inverting the approximate characteristic function
of the test under consideration. In order to do so, one has to find a stochastic expan-
sion for the statistic, and then calculates its characteristic function via a multivariate
(type A) Edgeworth expansion. This procedure delivers valid (in the sense of Chan-
dra & Ghosh (1979)) asymptotic expansions, but it becomes extremely complicated
to apply especially when one is considering third order local analysis in a multipara-
meter setting. An alternative approach is to consider the signed square root of the
stochastic expansion of the test statistic and evaluate the approximate multivariate
cumulants (usually up to the fourth). An Edgeworth expansion argument can then
be used to obtain a valid asymptotic expansion for the original test statistic. We
believe that this second approach highlights in a neater way the relevant features of
the higher order asymptotic behaviour of the test statistic under investigation, both
under the null (for example the eventual Bartlett correctability, see Bickel & Ghosh
(1990)), and under the alternative (for example deficiency analysis, see Chandra &
Joshi (1983)). As far as we know, there are no papers which follow the second ap-
proach in a multiparameter setting under a local alternative: the main result of the
note will, hopefully, fill this gap.

In this note we describe a simple method to derive the density of noncentral gener-
alised quadratic forms, such as cubic, quartic forms and more generally the density of
any scalar obtained by repeated contractions between nonzero mean (asymptotically)
normal random vectors with multidimensional arrays of constants (i.e. a noncentral
v form). The method is based on a partial differential operator representation of the
product of the generalised noncentral quadratic form with the a nonzero mean multi-

variate standard normal density in terms of a linear combination of partial derivatives



of an auxiliary function. The resulting formula can be used directly to obtain explicit
expression for the various scalar terms appearing in the asymptotic expansions for
test statistics under a local alternative in terms of linear combinations of noncentral
chi squares random variates with coefficients given by appropriate contractions be-
tween the generalised arrays and the mean vectors. As an application of the formula,
we obtain a third order asymptotic expansion for the local power function of the
general class of test statistic introduced by Chandra & Joshi (1983) which includes
the likelihood ratio, Rao’s efficient score and Wald test.

Notice that throughout the rest of the note we use (unless otherwise stated) tensor
notation and the summation convention (i.e. for any two repeated indices, their sum
is understood), as described for example in McCullagh (1987). Also, each index

7,8, ...in the set R, of indices runs from 1 to q.

2 Main result

Let us introduce some notation. Let w" ~ ¢, (7", 6°) where ¢, (-, ) is the multivariate
q dimensional normal density with mean vector 7" and identity covariance matrix 6™°
(the kronecker delta); let g, (z) be the density of a noncentral chi square random
variate with ¢ degrees of freedom and noncentrality parameter 7 = 4"7" < oo, b™ be
a ¢ dimensional array of constants not depending on n (i.e. " is a vector, b is a
matrix and so on). Finally, let 0¥ () = 9" () /Ot 9t"...0t™ be the (componentwise)
partial derivative operator.

We can now state the following theorem.

Ty

Theorem 1 Let w' = w™w™..w™, and t” be a q¢ X 1 vector of auziliary real vari-
ables. Assume that the function a (x,t): R? — R
(1) belongs to C& (N), the space of k times continuously differentiable functions on

an open set N of t = 0, almost surely dx,



(2) satisfies the following dominance condition

/ sup |0”a (z,t)|dx < oo almost surely dz.
teN

Then for any arbitrary noncentral v form wfbf  the following holds:

wRbey¢q (’YT, 67’5) — ZT bRy’YRngJrQV,T (a:) (1)

where the sum is over T = {p,vy,...,v,} - the number of ways of partitioning a set
of p =11 + 215 + ... + pv, different indices into vy, subsets containing k indices for
k=1,2,...,p, such that the resulting homogeneous polynomial in v is even or odd

according to the number of indices in the set R,,.
Proof. We use the transformation from R? to RI*!
T:w" — (x,0") (2)

/

where z = ww", v" = w"/ (w*w®)""” and the following identity

i—0 221 2,...,]/

I

wRbey¢q (’YT; 67’5) = ZRV bRyazx <¢q (’YT; 67’5) exp {wr6r5t5}>

where Y 5 indicates summation over the superscripts of b (i.e. the components
of the b array) with the correspondent components of the various ¢). Using T, the
density for x is obtained by integrating out the vector v" € V;, (i.e. over the unit

sphere v"v" =1 in R?), that is:

(2m) % ZRV /U

b exp {— (x + 1) /2} |J]| 0¥ (exp {a:l/QvT(STStS})

i =0 (dUT)
(3)

for all the i = 1,2,...,v, where |J| = 2%271/2 is the Jacobian of the transfor-

=1

mation T and (dvr) denotes the unnormalised Haar measure on the Stiefel man-
ifold V1, Upon normalising the measure on Vi, by the constant 27TQ/2/F (q/2)

and interchanging differentiation and integration which is permissible under (1) for
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a(z,t) :=exp {371/21)7’67’5755} (note also that the transformation 7 is essentially a polar
coordinate type transformation), we can then use Theorem 7.4.1 in Muirhead (1982),
to get:

K (2,7) 3, b oy (q/22 (T + U1 +29717) /4)

t"i =0

with

o0

K(z,7) = 29 Yexp{—(x+7)/2} /29T (q/2), oFi(;¢;2) = > 2/ (e), kY,

(@) = Tle+k)/T(). :

Let [k] denote the k different ways a contraction between indices belonging to a
given set can be performed. Differentiating now ¢F} (;-; ) and evaluating the resulting
derivatives at " = 0, we obtain:

SO0 () leom U 0B (/2 + T /4) /2 (g/2)

r=1

q
meaQOFl(;';') ’ t:o:bMﬂ?oFl(3Q/2+13377/4>/2<Q/2)+

r,s=1

by e oFy (/2 + 2 w7 /4) [4(a/2),

q

S VIO () | o= BV a0 (a/2 + ZaT/4) [4(g/2), +

r,8,t=1

brst,yr,ysfyta??’ 0F1 (, Q/Q + 3, 377—/4) /8 (q/2)3 ’

q
Z VU0 (G50) | o = [B]0 2 0y (q/2 + 2527 /4) /4 (q/2), +

r,8,t,u—1
[6] brstt,yr,ysaj?’ OFl (7 q/2 + 3, 377—/4) /8 (q/2)3 +
brstu,yr,ysfytfyua?4 ol (, Q/Q + 47 $T/4) /16 (q/2)4 ’
where for example [3] b™**y" = b5y 4+ b7 y® + DS
On inspecting these first four terms, a clear pattern for the number [k] of con-

tractions between the components of the b’ and v arrays emerges, and it can be
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expressed using standard results in combinatorial analysis. Specifically, Let #, de-
note the number of different indices in the set R, (strictly) less than the dimension
of v (i.e. #, << 1), and let

To= 1" 2% v v=1v1 421+ ...+ Py

ko = VD" 0l (20wl ) 1,

Then we can conclude that for v odd, say v°,

bRyayo ()Fl (7 .; .) ’ —o = |:k'l,p1:| bTSVpl ,yra,/.#l’pl OFl (7 q/2 —I— #Up1 7 a’,’T/4) /2#1’?1 <q/2)#1’p1 ‘I‘
[k;ypg} T N N s L R E N ) (; q/2 + #o,, + LT /4) J28 1 (q/2),,
|:k;yp5:| bT’StuUWVp5 ,YT“‘,yUaj#Vp5 +2 OFl (7 q/2 + #Up5 + 2, $T/4) /2#1/1’5 +2 (q/2)#up5

e F O O F) (Gq/2 + vy 2T /4) /2Y (9/2),
and for v even, say ¢

RO oL () | im0 = [k, | Do S0 atir o Fy (/2 + #hy,,s 27 /4) /2% (¢/2),,,  +
[km] b Tops Ty ttom 4L (; q/2 + #o,, + 1; a:T/4) [ty 11 (4/2)4,, 11+
(R | O iy e OBy (50/2 4+ 4, + Zam/4) (2P0t (g)2),,
e RO O F (G q/2 + vy T /4) /2Y (¢/2),
where each free index in the b arrays is contracted with each others. Expression (1)
follows immediately. B
As an illustration of (1), consider a 5 and a 6 noncentral form. For Ry =
{r,s,t,u,v} we have
DR G Fy () JOU O | g = [k, | U7 Py (q/2 4 307 /4) /2% (q/2), +
(s, | Ot O Fy (/2 + 4307 /4) 2" (/2), +
by Y e 0Py (3 q/2 4 By T /4) /2° (a/2)s
with {k,‘%l] = [15] because we have one contraction with the vector 4" and 4 indices

ss and {t, {k,‘%g] = [10] as we have 3 contractions over ", 7*, 4" and 2 indices uu.
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For Rg = {r,s,t,u,v,w} we have:

B Oy (s50) [T O | mo = [k | BT 0 FY (/2 + a7 /4) /2% (g/2), +
[k‘%?] preta TSt 0By (5 q)2 4 4,7 /4) /24 (q/2), +
b, | VY 0By (/2 + By er/4) /2° (a/2); +

bT’StuU’lU,y ,ysfytfyufyvfyw OFl ( q/2 + 67 $T/4) /26 (q/2)6 ’

where {k,‘y%] = [15] because we have 2° repeated indices r, s,t, {k,‘%?] = [45] because
we have 2 contractions with the vectors 7", ~® and 4 indices ¢ and wu, and finally
{k,‘%g] = [15] as we have 4 contractions over the indices 4", y*,v*,+* and 2 indices vuv.

AS G (2) = exp {— (2 +7) /2 a9/ oy (/25 07 /4) /29T (/2), we easily ob-

tain

brwr¢q i o) = bT’YquJrZT (a:) ) (4)

( )
W wi e, (7, 67) = By geran (2) + U7 geran (1),
O awlgy (Y, 67) = VY Y garer () + [B]1 077 0004, (),
( )
( )

br stt

brstuwr W ¢q ’}/T,(STS brstu brrss

VoY gy () + [6] YV Ggrer () + [3] Jorar (7)),

brstuv

pretuv, T ¢q y ,(STS ’}/T.--’ngq+10ﬂ' (aj) + [10] bTStuu’YT’}/S’ytgq+8:T (a?) +

[15] brsstt,yrgq+6ﬂ_ (a:) 7
brstuvwwr'”ww¢q (’YT, 67’5) — brstuvw,yr'”,ngq+12ﬂ_ (a:) ‘I‘ [15] brstuvv,yr,ys,yt,y gq+107_ ( ) ‘I‘

[45] bTSttuu’YT’Yqu+8,T (a:) ‘I‘ [15] bTTSSttgq+6,T (a:) .

For third order asymptotic expansions based on the Edgeworth series the first
six generalised noncentral forms are enough, however we report in the Appendix the
densities for generalised noncentral quadratic forms up to v = 10.

We consider now the very general class of test statistics 7, as in Chandra & Joshi
(1983). Let f(-,0") denote the common density of a sequence of IID vector valued
random variables X;, Xy, ..., X,,, with a ¢ dimensional vector parameter " € © C RY.

Chandra & Joshi (1983) consider the problem of testing Hy : 0" = 0} against a
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sequence of local alternatives of the form 07 = 05 +n~/2~" where 0 < 4"7" < 0o and

n is the sample size. Let

lyyows = B, (877 log f(X4,00) /007 ...00™) (5)
Ty = 02X [0 Mog f (X5, 05) OO ...00™ — 1, .,
=1

denote Q;_, ¢"* dimensional arrays of expectations and standardised random varables,
respectively. Under the general assumptions of Chandra & Ghosh (1980), there exists
a set K, with Pry- -probability 1+o0 (n~1) uniformly over compact subsets of 4", such

that over K, the any test statistic belonging to W,, admits a stochastic expansion of

the form W,, = W/W' + o (n™!), where

Wr = (") Zot 0 (AL 02+ ALy Z20) + (6)
0t (BhuZes 77 + Bl Zes oo + Bl Zis ZuZow + Bl Zvst Zus 7o)

is the signed square root of W, and [™ = — (lrs)*1 is the inverse of the Fisher
information per observations. The constants A and B are free from n and depend on
the particular test statistic under consideration; for example for Rao’s score test we
have Ay = A2y, = By, = By = Blgu = Bouw = 0.

Using the formal delta method as in Bhattacharya & Ghosh (1978), it is then
possible to evaluate the cumulants of (6) under the local alternative 0. Let k™72

denote the approximate joint kth order cumulant of W/; under IID sampling, it is

possible to show that, in general, the asymptotic order of the cumulants is

KT = A"+ nfl/Qk‘{l +n Yk, 4+ O <n73/2) ,
S = 67 4 nfl/Qk:;’,ls + nilk‘;’; +0 <n73/2) 7
Erst nfl/Qk;’,ls,t I SOy <n73/2) 7
Erstu nilk‘z’f’t’u +0 <n73/2) 7

Erieetk = O (7173/2) k> 5.



Let h be the R,th multivariate Hermite tensor (see for example McCullagh
(1987, Ch. 5))

R .= h (wR”) = (=1)" 0" ¢, (v, 6) JOw™ Ow™...0w™

and V*G,, (-) be the kth (double) forward difference operator applied to the dis-
tribution function of a noncentral chi square distribution G, (-) with noncentrality

parameter 7 (i.e. VFG,, (:) = Z?:o (—1)j (k)GqH(k,j),T (). We can then prove the

J

following theorem:

Theorem 2 The power function of T,, under a sequence of local alternatives 0] =

0o + n~ 24" has (third order) asymptotic expansion
Pren (Tn Z Z) =1- Gq,T (Z) + nil/QPI (Zufyr) + n71P2 (Zufyr) ) (7)

where P;(z,7) i = 1,2 are linear combinations of noncentral chi square distribu-
tions with coefficients given by odd or even, respectively, polynomials in v obtained
by appropriate contractions between the approzimate cumulants (6) and ~", whose

expressians are.

Pi(2,") = (K57/2+ Ky — BIRY /6 — K5iv /2 + sy v /6) Gar (2) +
(—k57 /2 = Ry + BIRES Y /3 + iy = K52y /2) Gayar (2) —

(BTR55Y" /6 + k59" /2 = K52 v*Y' /2) Garar (2) = K5y v Y Gayar (2) /6,

By (2,77) = [(k‘ﬁk‘ﬁ +kyy) /2 — [3] (KT, K577 /6 + ki kiy /8 + K™ /24) — [15] ki *ksy"" 72+
Koy — 18] (KTik3y' /2 + ki /6) v + [13] kksi ™y /12 +
6] (Kiakii /6 -+ KRS8 + K™ 24) vy — (KLt + KE5) v /2 +
(KTykst /2 + k5 16) 7y — [10) kSRS v vy /12 —
(Kpi k3" /6 + ks ki /8 + RGP /24) 7"y y'y" + (1] k5 ks "' /72 +
KSRSY YYY 12 = KSR Y Y 0y 72] G (2) +
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Proof. Let

= (7RG, Kg5) /2 4+ 2 [3] (R, K506 + KTy kTS /8 + KD /24) — [15] kgT ks /24
KTy 2[3) (BT kst /2 + ki ® /6) 4" — [15] ki k'™ /4 +

(k5 1k5 + kg ) vy — 3[6] (ki kst /6 + Klskis /8 + kap™ /24) vy +

5] kLS RTS8 — 3 (k;g’lk:;’f 12+ kgt /6) it [10] KGR /3 4
4] (K5 K5 16 4 Kkl /8 4+ Kt 124) 77"y — 5 (18] K55 ki ™y 72 —
SRR Y Y YY" 12 4 R Y Y 18] Gy (2) +

([18] k5 k5 /24 — [3] (K] k377" /6 + Kiy iy /8 + ki ™" 24) +

[15] k5y'kay ™'y /4 — (8] (ki kst /2 + K3y /6) 7" — (KTikS) + ki) Yy /2 +

316 (5 ki /6 4 Kkt /8 + K /24) 77" — [45] Ky 18 +

3 (ks /2 + kg5 /6) 77y — [LO kR y 2 /2 =

[6] (kf;lk‘;’f’u/G + kT kD /8 + ki’ls’t’“/%) AP 5 [L5] RS AT Ay Ay /36
BRETRE Y " /6 — SRR Y Y YY" [24] Garar (2) +

| (18] k5 ki 72 — [1B) K551y /12 + (48] ki ki "y y* /18—

6] (KTuk5i /6 + KTy ki /8 + kit /24) 7y — (KTuksi /2 + k5 /6) 7y +

[10] k5 k51" 7" /3 + 4 (KT k50 /6 + kiskis /8 + k™ /24) ¥ y* o'y —

5 [15] k3 ks oy Y 136 — BRITKST A Y Y Yy /6 +

BREC RS Y 18] G (2) + [ (48] g Ry T2

[10] k5 k51"y vy 12 = (KT k51 /6 + kiskip /8 + k™ 24) ¥ y*y'y" +

+5 [15] ki kU " /T2 + Bk ks Y /12 —

DR R Y Y " /24] Gia s (2) + | (18] K5 Ry vy /6

RSRG  YY RR  | Garo (2) /12 —

kot ks Y G (2) /T2

Buo= L4 (KR RGERT (24 R /31) /2 4 (Rh + (Rkty + k) 17824
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(k‘{lk‘ /2 + kj’st/G) hrst + (k‘i{lk‘i;’lt’u/G + k‘;’;k‘ /8 + krstU/24) hrstu +

RSPRGIT 12 4 R R f72] (8)

where the various k’s are the approximate cumulants defined in (6). A formal Edge-
worth expansion for the local power for the family W), of tests as given in (5) can
be obtained by exponentiating and successive inversion of the approximate cumulant

generating function implied by (6), which gives:
Pr (W, < 2) = / Euy (v,87°) + 0 (n%2).

We can now use Theorem 1 to evaluate the above integral, by considering each of the

terms appearing in (8) as generalised noncentral quadratic forms, i.e.

Pr (W, > z) = /w D T (90 (7 ) exp (0TS ] du”,

where k7 denotes all the different cumulants appearing in (6); after some lengthy

but straightforward algebra, using repeatedly (4), we get

Pi(z,7) = = (K VGar (2) + K5 VGyr (2) /2 + K5y Y V2Gyr (2) 2+
(8] K5y V2 Gyr (2) /6 + ki Y 4"y VPG s (2) /6)

Py (z,7) = — (kY VG (2) + (k11 k] + k3 ) VGyr (2) /2+
(KTikiy + Kk35) V'Y VPG (2) 2+ (3] (KT 1k /2 + k337 /6) /" VPGl r (2) +
(kriksi /2 + k5 [6) V"Y' VPG (2) +
3] (k7 k577 /6 + Ky Ky /8 + Ky ™" [24) V2 Gy 1 (2) +
(6] (K51 kst" /6 + kiskis /8 + k™ /24) 4"y VP Gyr (2) +
(FTu3" /6 + KSR /8 4+ K" /24) 77947V G (2) +
[15) k5 kst 'y V3G 7 (2) /12 +

([10] ko kst Y VYV AG s (2) + kRS Y Y YN YV G (Z)) /12 +
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([15] kg{’skg’lt’tvz;(;qﬁ (Z) + [45] kg’lsytkzt’,’f’ufynysvéleﬁ (Z) +
[15] kg ks "y Y VP Gy (2) +
kg ks Y Y Y VO Gy (Z)) / 72) :

q
and (7.1) and (7.2) follows after some simplifications and noting that [, -, ]:[1
d(V, dw =1—-G,r(2). W
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APPENDIX

Densities for noncentral quadratic forms

Let gyt () := ggy. . Then

b7’1...7’7w7’1”‘w7’7¢q (77’7 67’5)

b7’1...7’8w7’1”‘w7’8¢q (77’7 67’5)

brl...rgwr1”‘w7’g¢q (’YT; 67’5)

bT1...7’10w7’1”‘w7’10¢q (’YT; 67’5)

BT AT ey, + [21] DTITRTRTATS SN TIAT2ATEATANTS o7
[105] b1 r2mssstiamigraamsg o o 4 [105] BT g 6 -
BT A Ggr1ar + [28] TN AT g0 s +

[210] 7174550071 ATag. 0y [490] BrTsStuaATg

[105] rrssttug, o

BTN A g6, + [36] 07T AT g 1ar +

[378] 17355t TS gy [1960] BITRSSI T
[045] prosttuuwe g o

BTN A0 G g+ [45] BT TEATL AT g 16 +

[630] b7 T05 A AT go 1, [B150] b AT g 19 - +

[4725] brsttuuvvww,yr,ysgq+10ﬁ ‘I‘ [945] brrssttuuvvgq+8’7‘
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