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Higher order asymptotics and the bootstrap for

empirical likelihood J tests*

BY FRANCESCO BRAVO

Abstract

In this paper we obtain a second order Edgeworth approximation to the
density of a likelihood ratio type J test for overidentifying restrictions by em-
bedding the moment conditions into the empirical likelihood framework. The
resulting asymptotic expansion can be used to correct to an order o (n™1) the
critical values of the empirical likelihood ratio J test and to justify the sec-
ond order correctness of an “hybrid” bootstrap procedure which we propose to
bypass the difficult calculation of the cumulants appearing in the Edgeworth
density of the empirical likelihood ratio J test. The resulting bootstrap cal-
ibrated empirical likelihood ratio test seems to perform well, as shown in a
small Monte Carlo study, and suggest that the combination of the empirical
likelihood method together with a suitable bootstvap procedure is an extremely

useful method for estimation/inference in moment based econometric models.

*This paper is based on Chapter 4 of my Ph. D. dissertation at the University of Southampton. I
would like to thank Grant Hillier for valuable conversations. Many thanks also to Andrew Chesher,
Peter Phillips, Jan Podivinsky and partecipants at ESEM99, Santiago de Compostela, Spain for

useful comments. Partial financial support under ESRC grant R00429634019 is gratefully acknowl-

edged. A code in § is available upon request. Any remaining errors are my own responsibility.




1 Introduction

THERE HAS BEEN GROWING INTEREST in the so called information theoretic ap-
proach to inference for semiparametric econometric models. This approach embeds
constraints (such as moment conditions) assumed to contain all the information in
the data in a fully nonparametric (i.e. distribution free) set-up, by adding some ad-
ditional parameters associated with these constraints. The resulting estimators and
test statistics have (to first order) sampling properties similar to their bootstrap ana-
logues, but whereas bootstrap uses resampling, they are all based on reweighting the
data. These weights are the solution of & constrained optimisation problem, which
takes different forms according to the criterion used to measure the closeness of the
empirical to the estimated distribution supported on the data, and therefore can be
interpreted as constrained (or implied, using Back and Brown’s (1993) terminology)
probabilities. Interestingly, all these information theoretic methods are based, at least
asymptotically, on Stein’s (1956) concept of least favourable families: for each fixed
value of the parameter of interest, by maximising a multinomial distribution assumed
to have probability atoms at the data points , one reduces the original nonparamet-
ric problem to a least favourable parametric subfamily’. The resulting subfamily
defines implied probabilities as implicit functions of the Lagrange multiplier arising
from the constrained optimisation. A dual likelihood argument (Mykland, 1995) can
then be advocated to show that inference for the original parameter vector can be
based on the vector of Lagrange multipliers -the dual parameter in dual likelihood’s
terminology- associated with the original constrained optimisation.

In this paper we focus on the empirical likelihood method originally developed
by Owen (1988), which can be thought of as resulting from minimising the forward
Kullback-Liebler (i.e. the likelihood) distance between the empirical measure and
a constrained probability measure. Our main interest is to investigate the higher

order asymptotic behaviour of an empirical likelihood ratio test for overidentifying
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restrictions {often called the .J test) in moments-based econometric models.

We make several contributions: firstly, we derive a stochastic expansion for the
empirical likelihood ratio J (ELJ henceforth) test. The resulting expansion extends
to higher order asymptotics some of the results obtained by Qin and Lawless (1994).
Using Hayakaws’s (1977) technique, this latter expansion is then “transformed” into
a valid (in Sargan’s (1980) sense) Edgeworth expansion for the density of EL.J. The
resulting Edgeworth density can be used to obtain asymptotic refinements to the crit-
ical values of the test and it is of its own interest as it highlights how the introduction
of nuisance parameters (which in our set-up are represented by the overidentifying re-
strictions themselves) complicates dramatically the higher order asymptotic analysis
for empirical likelihood based tests.

Secondly, we introduce a “hybrid” bootstrap procedure which bypasses the no-
toriously difficult problem of calculation the empirical cumulants appearing in the
Edgeworth density of FLJ. This bootstrap approach is based on Owen’s (1988)
original idea of using the bootstrap to calibrate empirical likelihood ratios. It can
be considered as a variant of the (intentionally) biased class of bootstrap procedures
recently introduced by Hall and Presnell (1999). In the biased bootstrap approach,
the observations are resampled according to some weights (probabilities) chosen so
that they satisfy a set of constraints. Indeed, the empirical likelihood method, and
more generally other empirical discrepancy based methods (Corcoran, 1998) are ex-
amples of biased bootstrap procedures. In our approach, the observations are still
resampled uniformly with replacement (as in standard bootstrap theory) but the re-
sulting resample is used in the bootstrap estimation procedure only if it satisfies the
fundamental condition for existence and positiveness of empirical likelihood ratios as
given in assumption AQ in Section 2 below.

Using fairly standard arguments, we show that the resulting bootstrap calibrated
empirical likelihood ratio J test provides higher order asymptotic refinements up to

the 0(n"") order and seems to work extremely well in finite samples {at least in the
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small Monte Carlo experiment carried out in Section 4).

The paper is organised as follows: in Section 2, after briefly reviewing the empirical
likelihood theory, we introduce the notion of quasi-dual likelihood, which is a simple
extension of the dual likelihood concept and it is necessary to deal with the fact that
the ELJ test is not only a function of the dual parameter but also of the underlying
parameters of interest. Since the estimation of these latter parameters can be seen as
a saddlepoint type of problem, we introduce a saddlepoint estimator which shares the
same first order asymptotic properties of the efficient Generalised Method of Moment
(GMM) estimator originally developed by Hansen (1982) and can be used to obtain
a simple asymptotically x? test for overidentifying restrictions. In Section 3 we first
develop a stochastic expansion for the ELJ test, and then obtain a valid Edgeworth
approximation for its density. In Section 4 we introduce the bootstrap calibration
approach, discuss some related resampling procedure and justify its second order
correctness. We also present a small Monte Carlo experiment which is carried out to
assess the finite sample properties of the bootstrap calibrated ELJ . Finally, Section
5 contains some concluding remarks. All the proofs and derivations of the asymptotic
expansions presented in the paper are reported in Appendices A-E. Unless otherwise

stated the sum Y is always intended as Y 1 ;.

2 Empirical likelihood J test and quasi-dual like-
lihood

Consider the following moment condition model, as in Hansen (1982)

where {z;}._, is a sequence of independent mX 1 random vectors distributed according

an unknown distribution Fp, fp is a p X 1 vector of unknown parameters and % (2;, 0)




Is a known Borel measurable function with r components (r > p). Notice that we
are assuming that the dimension of the vector of estimating equations ¥ (z,00) is
strictly bigger than the dimension of the parameter vector §. The case r = p (ie.
just identified econometric models) is fully analysed in Bravo (1999). Let ¥ denote
transpose.

Following Stein’s (1956) seminal idea (see also Chamberlain (1987)) the unknown
distribution Fy can be (arbitrarily well) approximated by a multinomial distribution,
with probability atoms p; = dF (z;) = Pr(Z = z). By profiling the empirical likeli-
hood function ﬁ p; over the simplex 55p; = 1 and the empirical counterpart of (1)
(le. Tt (2, é;)l = 0), we have by a Lagrange multiplier argument that the resulting

implied probabilities are given by:
) -1
(2 P = (1 + A (00)" ¥ (Zi,é’o)) /n,

with the 7 X 1 vector of Lagrange multipliers A (fy) depending implicitly on the origi-
nal parameter 6y, because of the restriction 3" pab (z;,00) = 1. As shown in Appendix
A, when the overidentifying restrictions (2.1) hold, the probability limit of the es-
timator :\(90) of A () is 0, implying that the implied probabilities (2) correspond
to the empirical measure p; = n~! , i.e. the nonparametric (unrestricted) maximum
likelihood estimate of Fy. Therefore, we can think of testing the validity of the overi-
dentified model (1), as testing for the parametric restriction Hp : ) (6p) = 0. Asin
a fully parametric context, we can then define a classical likelihood ratic test, which
amounts to comparing the unrestricted probabilities 5, = n~! with the constrained
probabilities p; given in (2). Simple algebra shows that (twice) the resulting (convex

dual) empirical likelihood ratio function is:
(3) W02 (0) = = Y log (1+ X7 (8) 9 (,6))

which depends on the 7 X 1 vector of Lagrange multipliers and on the p x 1 vector of

unknown parameters §. We can interpret the criterion function (3) as a quasi-dual
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likelihood, in the sense that we are still associating the vector of Lagrange multipliers
A () with the sample version of the moment conditions (2.1), as implicitly assumed
by the "standard” Mykland’s (1995) dual likelihood based test Hy : A (o) = O (see
Bravo (1999) for more details), but theve is an essential difference when working with

overidentified models such as (1). To see this latter point, let
(@ X (8o) =arg min W~ (6, A (o))
A

be the unique (given the convex dual formulation of the criterion function (3) in A (9))
minimiser of the quasi-dual likelihood (3). It is easy to see that when the moment

model (2.1) is correct,
Ep, exp {—I/V* (90, X (90))} -1

(because X (60) 2 0 under the null hypothesis, see Proposition 2.1 below), yet, be-
cause the moment restrictions are not satisfied in the sample for overidentified models,
we need also an estimate § of the parameter 8. Such an estimator can be obtained by
maximising the profiled quasi-dual likelihood W~ (0 A (9)) with respect to 8, which
implies that we need to solve the following (well-posed, given the convex dual formu-

lation in (3)) saddlepoint problem:
(5) § = arg maxmin W™ (8,2(6)).

This latter equation defines what Qin and Lawless (1994) call the maximum empirical
likelihood estimator for 8. As the two estimators A (6) and § (solution of (5)) are
consistent for 0 and 8y (i.e. the optimal value for A(f) and the true value of ),
this implies that the expectation of the quasi-dual likelihood function W~ (8o, A (00))
is characterised by a unique saddlepoint at A(6) = 0 and § = 6. This justifies
asymptotically the quasi-dual likelihood approach in overidentified models.

This notion of quasi-dual likelihood is a straightforward extension of Mylkland’s

(1995) dual likelihood which is used in Bravo (1999) to characterise the higher order
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asymptotic behaviour of empirical likelihood (i.e. dual likelthood) ratios for exactly
identified econometric models, by making heavy use of Bartlett type identities as
described in Mykland (1994). These identities characterise uniquely a dual likelihood
as an artificial likelihood but do not hold in full generality in the present context,
because of the presence of the maximum empirical likelthood estimator. Hence, since
the criterion function (3} does not satisfy them, we prefer to use the term quasi-
dual likelihood (in analogy with White’s (1982) quasi-maximum likelihood approach,
where the standard Bartlett identities do not hold in misspecified models).
Let 1% (2, §) denote the ath component of the 7x 1 vector 4 (2;,6) (@ = 1,2,...,7 > p),

[l-]] be the Euclidean (or matrix) norm, and I' (8, 7) be an open sphere with center
8 and radius 7, int {S} be the interior of a set S C RP, and ch {S} the convex hull
for the set § C RP.

Assume that with probability 1 (w.p.1 henceforth):
A0 0 € ch {1 (1, 0) 1 (,6) , o (20,0)} 35 1 = 00,

Al The parameter space © C RP is compact, Ev(z;,0) = 0 for a unique 6y €

int {®}, and the distribution of ¥ (z1,60) is non-lattice,

A2 For sufficiently small 7 > 0, and n > 0, sup |¢ (zi7¢9)[|2(1+") is bounded by
ger{6,t)

some integrable funciton ¥y () Y0,
A3 *(z,0) is continuous in 8 for almost every z;,

Ad (i) B (z,00) % (25, 00)T is positive definite, (i) B | (z;, 00) | < oo, for some
§>1,

A5 01 (2;,0) /00 and 8%w* (2;,0) /0086T are continuous at Oq,

AB EW (z;,80) /807 is of full column rank,




AT For sufficiently smallT >0, sup [|0¥(2;,0%) /00)], sup !ir?zzbo‘ (2:,6%) /8989TH
6+ el{09,7) 6*el{fo,7)
are bounded by some integrable functions U (2;), U3 (%) respectively.

REMARK T Assumption AQ is standard (although crucial) in empirical likeli-
hood theory, as it implies that Pr{ﬁ 11 + 20T W (2,0) > 1/n} — 1 asn — oo for
some fixed 6 (i.e. the empirical likelihood ratio exists and it is positive); Assumptions
Al- A7 are standard in GMM literature: in particular, Al-A4(i) are sufficient to es-
tablish the consistency of the estimators, X (@) and 0 say, of A () snd 0 respectively,
while the remaining assumptions are used to obtain their joint asymptotic normality
(see (7) below). Assumption A4 (ii) is used to characterise the rate of convergence of
the empirical likelihood ratio test (see Theorem 4 in Appendix A); 6 =1 is enough
to obtain weak convergence of the test statistic under the null hypothesis; to obtain

the rate O (n‘lﬂ), we need to strengthen A4(il) to § = 2.

For notational convenience, we drop the functional dependence of the Lagrange
multiplier A (6) on the underlying parameter characterising the expectation of model

(1); hence let A := A(f); also let W~ := W~ (6,A(d)) and O denote the partial

derivative operator with respect to the vector parameter 7.
The saddlepoint problem (3) suggests that a natural estimator for A and 0 is based

on the following (7 + p) x 1 first order conditions:
(6) ENG —n 7S (12T (zi,ﬁ))—lqp (2,8) =0,
W= = —n 'Y (14 X7 (2,0)) 7 (00 (2,8) /06) K =0

which can be solved by the multivariate Newton’s algorithm, and whose solution gives
T
for

the saddlepoint estimate associated with the saddlepoint estimator (= [ X G

the parameters A and §. Notice also that from a computational point of view, the
original overidentified moment model becomes simply a just identified moment model

which is easier to estimate by any numerical optimisation routines.
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In Appendix A we prove consistency and asymptotic normality for n'/2¢. In

particular we show that

R 0| | = -z pyv-iDTe! O
~ o IV 3
6 — 0, 0 0 v

(7 n
where O is a matrix of 0 of appropriate dimension, D = E&y (2:,0) /80T, & =
B (2,0) % (2,0)T, and V = DTS1D.

From (7) , it is evident the first order equivalence between the maximum empirical
likelihood estimator, nl/2 (5 - 90) , and the (efficient) GM M estimator (i.e. they have
the same asymptotic covariance matrix V). Notice also that the two estimators
are asymptotically independent (Qin and Lawless, 1994). This latter property will
be exploited to derive a valid Edgeworth type expansion of Section 3 for ELJ.

As in standard dual likelihood theory we can now build a likelihood ratio (a
quasi-dual likelihood ratio in the present context) which can be used directly to test
whether the overidentifying restrictions in model (1) hold; specifically, in Appendix
A (see Theorem 6) we show that

(8) W; =3 log (1 + 2Ty (z.”@” LxX*r—p) asn— co.

One of the most interesting feature of the empirical likelihood (and more generally
other empirical discrepancy based test statistic) is that the information implied in the
moment condition Ev (z;,09) = 0 can be used to provide a more efficient estimator of
the distribution p; than the nonparametric maximum likelihood estimator pi=1/n.

Recall that the constrained probabilities 7; are given by: (1 + AT (zi,a)_l /n
(with { N gT }T solution of the saddlepoint problem (5)) and hence an estimator
of the unknown distribution function Fy can be based on Fy = 3" p;J {m<z}(I{}is
the indicator function). In particular Theorem 7 in Appendix A shows that estimator

s has limiting distribution given by:

O] n? 3 (i~ p) I (2 < 2) 5 N (0,9%)
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where n? = 02 — BT% ! (I - DV‘lDTE‘l) B,o?=p;(1—-p;)I[{z <z}, and B=

E (¥ (2:,00) I {2; < z}) for some fixed z. It is well-known that the maximum non-

parametric likelihood estimator P; has limiting distribution:

1/22@ —m) I( ngz)—w\’(O O’)

hence, it is evident that the probability estimator p; based on the empirical likelihood
approach is more efficient than the empirical probabilities p; = 1/n.
Notwithstanding all these nice first order asymptotic properties characterising
the empirical likelihood approach to inference for overidentified econometric models,
a simple simulation study shows that the limiting x? distribution, despite improving
upon both recently developed (Hansen, Heaton, and Yaron, 1996) GMM tests and
standard bootstrap based tests (see Section 4 below), gives still a relatively poor
approximation for small sample sizes (see in particular Table II). To illustrate this,

we consider the overidentified model:
T T
(10) E| z—6 z2—5(9)1 ={0 0] ;

with the following two specifications: z ~ N (6,6% + 1) with s (f) = 26>+ 1 (Qin and
Lawless, 1994) and z ~ x? (1) with s(f) = 6% + 20 (Imbens, Spady, and Johnson,
1998). Tables I and II report the simulations result for sample sizes n = 50 and
n = 100. newline

TABLES I and II approxamately here

This simple Monte Carlo experiment suggests that higher order expansions might
be helpful in order to obtain asymptotic refinements to the limiting x? distribution.
Interestingly, the least favourable construction allows us to use the higher order as-
ymptotics machinery developed for standard parametric statistical theory, despite the
fact that the class of models under investigation in the present paper are genuinely

semiparametric.

10




3 An Edgeworth approximation to the distribu-
tion of the empirical likelihood ratio J Test

In this section we first develop a stochastic expansions for the ELJ ; we then use
Hayakawa (1977) technique to obtain an Edgeworth approximation to the distribution
of the ELJ test obtained in the previous section.

In addition to Assumptions AQ to A7, we assume also the following holds with

probability 1,

A8 The function 1 (z;,6) is five times continuously differentiable in a nesghbourhood
of o,
A9 For some ¢ > 0, sup |l (2, 0" < W4(z) with Uy (z) a bounded
8+ (00,7)
mtegrable function,
A0 For sufficiently small T, and some € > 0 any j1+ jo + ... +h=7(=12,3,4)
,osup |09 (2:,0%) [0710,0936, - - - 970, < W (2;) with Us (2) a bounded

8=elNbg,7)
integrable function forv =1, ..., 4.

A1l For sufficiently small 7, and some ¢ > 0,

sup
0*€T(fo,7)

O (2:,07) /676,878, - aj”'@pivﬂ < W ()
with We (2;) a bounded integrable function for any ji -+ jo + ... + Jpr = 5.

Al12 For sufficiently small 7', some & > 0 and 8,

sup |0PW, /85085, - AL < 0y (2)
A*er(o,r)
with W7 (2;) a bounded integrable function for any j1 + jp + ... + jp =

11




REMARK II Assumptions A8-A11 ensure that the derivatives arrays involv-
ing the maximum erﬁpil‘ical likelihood estimator in the stochastic expansion (C'1)
in Appendix C are “well behaved”; in particular it follows that Pr {5 € I' (6, 7’)} >
1—0(n™") by applying a fixed point argument as in Bhattacharya and Ghosh (1978)
to the extremum estimator § := OW™/80 |0= 0, and that the remainder 5th or-
der array 9%y (Z.;, O +¢ (5-. 90)) /070,090, . . . &% 9, for any ¢ € [0,1] is bounded.
Assumption A12 is standard in dual likelihood theory, implying the existence of a sto-
chastic expansion for the quasi-maximum dua] likelihood estimator A := AW~ JOX lpmgy=

0, such that Pr {X eI (0, T’)} > 1—0(n"") by von Bahr’s inequality. Hence by the as-

ymptotic independence of we can deduce that the following: Pr {7\, 0 €6, )T (©, T’)} >

1—o(n71),

Throughout the rest of the paper, we use the tensor summation convention (i.e. for
any two repeated indices, their sum is understood) and the notation ['] denotes initial
summation over repeated indices within the parenthesis -see Hayakawa (1977) for
more deteils. We are also using the following alphabetic conventions: Greek alphabet
indices range from 1 to 7 (i.e. the number of restrictions), the letters a,b,..., h go
from 1 to 7 +p (corresponding therefore to the dimension of the saddlepoint estimator
¢ = [ X G0, JT) and letters starting from s onwards run from 1 to p (ie. the
dimension of the parameter §).

Recalling from Section 2 that ¢® = ¢ (2:,0) is the ath component of the vector
W (2;,0), let & = Gy [06° 9% = 3™/ 96990" etc. denote the partial derivatives with
respect to the sth component of the parameter vector 6% let (* = [ e (5 - HO)S }
be the componentwise expression for the saddlepoint estimator ¢ defined in Section 2.
Finally, we consider the arrays of derivatives of W 7 With respect to A* and 6° scaled

by powers of n™%2 as in Hayakawa (1977); let the scaled arrays of derivatives be:

11 Unagea, =0 2P W/OC0¢C2,.0¢% k=1, 4,
102 k
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so that

Us=n"""1 8, aoswl

is the vector defining the saddlepoint equations (6), and so on for higher order arrays
(see Appendix B for details). Any array of derivatives defined in (11) evaluated at
the saddlepoint is distinguished by the addition of a tilde.

Using Chandra and Ghosh (1979) general result, it can be shown that under the

additional assumptions A8-A12, on a compact set K, such that
Pr{Ka}=1+0(n7),
there exists a stochastic expansion for W, under the null hypothesis whose form is

(12) Wi = UUUp ~ Une [U*Ua) [U%U,] [U°°UL) /3 —
Uate [U*“Ua] [UPU] U U0, ] [U90s] Unap /4 +
Unbea [U%U,) {U“Ua] U, (Udf‘Ua} /1240, (n71).

H
where the matrix inverse U in the leading term of the expansion is the sample

version of k% = 77! (I - DV“lDTZ‘1> (see (7) above). (see Appendix C for the

derivation).
Let:
(1?’) kab = F (Uab) ;ka.,b =K (Uan> Jgabc = nl/ZE (Uabc) )
ka,bc = 77/1/2E (Uanc) ;k/a,b,c = nl/ZE (UanUc) >kabcd =nk (Uabcd) ;

kavea = nE(UwUea) , kapea = nE (UslsUsa) , kapea = nE (UUpUcUs)

be the (multivariate) joint moments and cumulants of the arrays defined in (11) (see
for example (McCullagh, 1987, Ch. 3)).

In order to obtain an asymptotic expansion for the density of W, we follow an
approach similar to the one developed by Peers (1971) and Hayakawa (1977). Using

a multivariate Edgeworth Type A expansion to an order o (n™!) for the three arrays
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Us, Uaby, Ugse, we are able to derive an asymptotic expansion for the characteristic
function (C'F) of W,. By a formal Fourier inversion of this latter expansion, we get
the required Edgeworth expansion.

Notice that, under the null hypothesis Hy : A = 0, the vector U, has dimension
7 X 1, while the arrays Uy and Uy, are (7~+p)2 and ('r—!—p)3, respectively. This
is not a serious problem in terms of obtaining a valid Edgeworth expansion for W
in decreasing powers of n™7 (j = 0,2,4,...}, given the asymptotic independence of
the two estimators A and § (see Remark I1I below, for more details). It does imply,
though, that the O (n™!) term in the expansion is not just a finite linear combination
of x* (r — p+7) densities (as it is typically the case in the asymptotic expansion of
a likelihood ratic in the parametric case, see for example Chandra (1983)). Indeed,
as shown below (cf. (16)), the resulting expansion mvolves also the first derivative of
a x* {r — p) density, with coefficients given by mixed cumulants related to the p x 1
maximum empirical likelihood estimator 4.

Let k (-,+,-) denote the various cumulants associated to the U’s as described in
(13).

In general, the requisite Edgeworth series & (U,, Uny, Ugpe) = A () can be informally

expressed using the following compact operator representation:

! zty+z Damaayaacz7 ’
(14) h() =exp (Z (1) %3—( yi) ( Zb!) ﬁ(x,y,2)>gkUa,Uab,Uabc)

where the sum 3 is over z - 2y + 32 > 3, (5.):5”3 are partial derivative operators
applied 3 = z,y,z times (i.e. for example 82- = (9,-)(8,)) to the function g (-),

which is a degenerate multivariate normal distribution representing the O (1) (joint)

distribution of the components of U, Uy, and Uy,

(15) g (Ua; Ua(h Uabc) - (27[-,)-’/2 E‘li;,ii/z

exp (wkc“'ﬁUQU‘@/2> X

H(S{Uab - kub} H 8 {Uabc - nﬁllzkabc} .
a,b

ab,e




The functions & {-} in (13) are Dirac’s delta functions whose properties are described
in Hayakawa (1977, p. 363).

As shown in Appendix D, the resulting Clw, is, up to the order o(n~1),

3 .
(16)  CF, (t) = (1 — 2u) 212 (1 +n7t (Péuﬁ +5 P/ (1~ my))

=0
where | = (ﬁl)l/ ?, and the various P’s are complicated scalar functions of the cu-
mulants as described in (13) and of some matrices defined in (D3) of Appendix D,
resulting from the integration of the 6 {-} functions. By & formal inversion of (16),

we can prove the following theorem:

Theorem 1 The asymplotic expansion for the density function of the empirical like-
lihood ratio test for overidentifying restrictions under the null hypothesis (1) s, up to

the order o (n™*):

3
(7) w, (2) = fiz (7 — p) +n7" (Péf;z (@7 =p)+ D Pife (mr—p+ 2j))
=0
where fi2 (x;r ~ p) denotes the density of a central chi-squared distribution with r—p

degrees of freedom and Jye (myr — p) ds dits first derivative.

REMARK III In order to justify expansion (17) as a valid Edgeworth expansion,
we may combine the general results of Chandra and Ghosh (1979, Remark 2.7),
Chandra (1985) and Sargan (1980). In particular, by using the delta method, the
odd-even and the modulo 2 properties of the generalised polynomials described in
Chandra (1985, p. 102 and f.) hold, so that the resulting expansion is expressed in
the usual even powers of n? (j =0,1,2...); this fact also implies that the expansions
for the curmulants themselves are decreasing powers of n™! as in ordinary parametric
likelihood calculations. Despite this regular {parametric) behaviour of cumulants, the
expansion features also the first derivative of a 2 (r — p) density. Tts presence is due

essentially to the maximum empirical likelihood estimator which can be thought of as
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& nuisance parameter. Given its asymptotic independence with the quasi maximum
dual likelihood estimator A, we can use Sargan’s (1980) Theorem 1 to provide a formal
Justification to the asymptotic expansion (17). In practice, we consider the quasi-dual
likelihood W~ in (3) as Sargan’s (1980) function e. It is not difficult to check that his
regularity conditions are met for W - (at least to the second order approximation),
including his Lemma 1 which holds for W~ (A (6),06) /06 = 02.

It should be noted that expansion (17) does not contain the second derivative of a

X% (r — p) as we are evaluating the derivative arrays (11) under the null (cf. Appendix
B).

Hence, we may deduce that:

3
sup \Pr {W < €} - / ow, (@) = o (n"?)

—co

under the additional regularity conditions:

Al13 The vector Ut = U, .. (@ > 1,1 < k < 4), containing all the different
elements of the first four U arrays for the ith observation has finite absolute

fourth moments bounded uniformly in & :

Al4 The following Cramér condition holds:

Ui

01a2...0%

4
<co)

lim sup |E' exp (LtTUi) <1

[tl—co

Upon integration of equation (17), we obtain the cumulative distribution function

(cdf) of W up to o(n~1), which is given by:

3
(183dfw, (z) = Fe(z,r—p)+n7! <ZPJFX"’ (x,r—p+2j) + P[;:Efxz (m;r—p))

=0

16




where Fy2 (@;7 — p) is the distribution function of a central chi-squared variate. The
correct (up to order o (n™1)) eritical value cvq, of cdfyw, (z), at the level o, can therefore
be obtained as a solution of:

(19) cdfy, (Tev,) = o

In order to compute the asymptotic refinements in (18}, we need to estimate the
various P’s appearing in (18). This implies that we are effectively approximating the
distribution of FLJ with an empirical Edgeworth distribution. By strengthening the
moments assumption Al3 to:

A1 E (Hm I° < oo),

Q1a...ay

we can get n/? consistent estimates of the relevant cumulants evaluated at the max-
imum empirical likelihood estimator estimator, and hence the resulting empirical
Edgeworth density approximates the density of ELJ through the order O (n™1).

The computation of the empirical cumulents is based on the arrays ¢’ for any
set of indices 4y,7s,... in I, and 1 < 41,4y,... < n such that its coefficients satisfy
the criterion of unbiasedness (McCullagh, 1987, p.91) and are given by the general
formula:

(=17 =1 (- 1)V

with v < nand (-1 = (n—1)(n-2)..(n—v+ 1) (more computational
details can be found in Bravo (1999)). This calculation is not only time consuming
but very difficult, see for example McCullagh {1987, Ch. 4)

An alternative way to obtain asymptotic refinements to the empirical likelihood
J test is to use the bootstrap. In the next section we explore such an alternative. We
also provide some numerical evidence of the magnitude of the finite sample errors in
the sizes of the empirical likelihood based J test with asymptotic, Edgeworth based

and bootstrapped critical values.




wﬁ

4 The bootstrap calibrated empirical likelihood ra-
tio J test

As originally pointed out by Hall and Horowitz (1996), bootstrapping overidentified

moment based econometric models does not provide automatic asymptotic refine-
ments for asymptotically pivotal statistics because the population moment condition
does not hold in the sample. As a consequence the standard bootstrap estimator for
the J statistic for overidentifying restrictions is inconsistent (Brown and Newey, 1995).
Hall and Horowitz (1996) suggest to base the bootstrap estimation on the recentered
moment conditions (with respect to the empirical moment condition evaluated at the
GMM estimator). Alternatively, Brown and Newey (1995) suggest using the empiri-
cal likelihood estimator in place of the usual uniform probabilities and to implement
the bootstrap estimation by sampling the observations with weights given by the re-

sulting empirical likelihood based probabilities. This method is an example of a class

of weighted bootstrap techniques, the intentionally biased bootstrap (b-bootstrap
henceforth) introduced by Hall and Presnell (1999). In this latter approach, condi-
tionally on the data, the resampling probabilities are chosen so as to minimise a given
distance of the weighted bootstrap distribution from the usual uniform probabilities
subject to some constraint. In the context of overidentified moment models, the con-
straints are represented by the overidentifying restrictions themselves therefore the
b-bootstrap sample carries out the recentering automatically. With either method of
recentering, the coverage error is o (n‘l)g.

The bootstrap procedure we propose was originally suggested by Owen (1988) in
his seminal paper about empirical likelihood inference. As mentioned in the Intro-
duction, it can be cast in the heuristic behind the b-bootstrap approach, but rather
than biesing the sample so that it fulfils a constraing, we check whether the (uniform)

bootstrap sample itself fulfils assumption AQ. The requirement that 0 is contained
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in the convex hull span by the estimating equations guarantees essentially the exis-
tence and positiveness of the FLJ ratio test; it then follows that if the bootstrap
sample does satisfy this assumption, then the resulting bootstrapped ELJ, say W7,
will have the required asymptotic x? (r — p) calibration, thus the distribution of w3
conditional on the original sample is the bootstrap estimator of the distribution of
W,. In Theorem 3 below we show that if we use the bootstrapped distribution W3 to
obtain the critical value cv, of cdf, () as in (19) above, then the coverage error will
be of order 0{n™1) as the previous two methods, but as opposed to these latter two,
our proposed bootstrap procedure exploits another important feature of empirical
likelihood based inference. It is well known in fact that empirical likelihood carries
out automatically an implicit studentisation of the statistic under investigation. This
property is preserved by our bootstrap methodology, implying that we do not need
to compute any pivotal statistic in order to obtain asymptotic refinements. Secondly,
the estimation of the bootstrap saddlepoint estimator is relatively straightforward to
compute, as the bootstrapped moment condition model is clearly just identified in

the parameters A and @ (as it is in the original model).

n
g=1"

As usual let an asterisks denote quantities based on the bootstrap sample {z}}

Let us assume now that:
BAO Pr{0 € ch{y (#,0),....,1. (5,0)}} — 1 as n — oo;

then under the previous assumptions, we can derive (conditional on the original sam-
ple) a bootstrap based saddlepoint estimator which is consistent and asymptotically
normal, and a stochastic expansion as for the bootstrapped empirical likelihood ratio
J test which is analogous to (12) in Section 3. Hence we can derive the following

theorem:

Theorem 2 (Bootstrapped Likelihood Ratio J Test) The asymptotic ezpansion

Jor the density function of the b-bootstrap test for overidentifying restrictions under
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the null hypothesis (1) is up to the order o (n~1):

3
(20)pw; (2) = fez (w7~ p) + 17! (Pé‘f;z (@7 =p) + 3" P fo (myr — p + 2]'))

=0
where fy2 (2;7 — p) denotes the density of a central chi-squared distribution with r— r

degrees of freedom and Tie (z37 = p) ds its first derivative.

We can now use the bootstrapped distribution of the ELJ test to obtain asymp-

totic refinements for the original EL.J test: let z3,, be the critical value such that:

(21) Pr{W; > %} =

We can prove the following theorem.

Theorem 3 If the overidentifying restrictions of model (1) hold, then
(22) Pr {WJ > :c:%} =a+to (n‘1> .

To assess the finite sample behaviour of the BL.J with asymptotic, Edgeworth and
bootstrap critical values we carry out a small Monte Carlo experiment. The model
used in the simulation has been analysed by Hall and Horowitz (1996}, and more
recently by Imbens, Spady, and Johnson {1998). Consider the following simplified

version of asset pricing model, defined as:

-6 +3y) -1 0
(23) plg=| PEETDEI -1

Y(exp(p—0(z+y)+3y) - 1) 0|
where 4 is a known normalisation constant set to —0.72, 6y = 3, and the vector
2T = [ z y }5 has a bivariate NV (0,0.16) distribution with 0 correlation coefficient.
After sorr;e painstaking calculations (despite the model being quite simple, with
two moment conditions i.e. & = 2 and dim# = 1), the following Edgeworth based

critical values 2, solution for (19) for the levels o = [0.10,0.05,0.01] are found:

[4.412,8.374, 17.645] for n = 50 and [3.9103,7.096,12.012_} for n = 100 which are
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obviously closer to the “exact” values [5.934,10.674, 23.267] and [4.524,8.299, 15.812]
computed from 5000 Monte Carlo replications than the reference X% (1) asymptotic
distribution. These high values for the upper quantiles of the distribution of the ELJ
test are not surprising though, given that the test is based on the maximum empirical
likelihood estimator 6 whose sampling distribution is characterised by occasional big
outliers. For example, for n = 50 the 0.025 and 0.0975 quantiles for 8 are 2.26 and
4.61, respectively. Comparing these values with those reported in Imbens, Spady, and
Johnson (1998) (2.55 and 6.92 for the continuously updated GMM and 2.35 and 3.93
for the exponential tilting), it seems that the empirical likelihood based estimator is
preferrable to some sophisticated GMM estimators, but it is worse than the one based
on the exponential tilting. However more simulation studies are needed in order to

verify this last assertion.

The bootstrap calibration can be implemented in the following steps:

1) Sample the data-generation process,

2) Verify that condition BAQ is satisfied. A simple way to do so is to check whether
S B; = n, where 7; are the estimated implied probabilities as in (2) and n is the
sample size. In fact, if 57! = m (with m < n) then there are m observations within
the face of the convex hull containing 0, therefore a small m (possibly tending to 0)
provides strong evidence against the assumption BAO,

3) Estimate the bootstrap saddlepoint and construct the bootstrap empirical like-
lihood J test,

4) Repeat step 1-3 B times®,

Table 3 reports the empirical sizes for the test for overidentifying restrictions based
on the asymptotic x? (1) critical values, on the Edgeworth corrected as in (19) and on
the bootstrap critical values as in (21) for 5000 replications using the SPLUS pseudo-
random number generators, and 0.01 and exp {max{z)} as starting values® for A and 0

respectively to initialise Newton-gradient algorithm used to compute the test statistic.
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TABLE III approximately here

Firstly, it is interesting to note the good performance of the ELJ test with asymptotic
x° (1) calibration when compared with the .J test with asymptotic as well as bootstrap
critical values analogue proposed by Hall and Hovowitz (1996, Table 1). This fact is
explained by recalling that the empirical likelihood method takes into account all
the information available in the sample, resulting in estimated probabilities that are
more efficient (see (9)) than the uniform probability used in the standard bootstrap
approach.

In view of the remark that “...[Edgeworth] corrections tend to work well when the
error on the crude asymptotics is small ... and are poor when that error is large...”
made by Phillips and Park (1988), it is perhaps not surprising that the Edgeworth
corrected ELJ test is quite good. The performance of the bootstrapped ELJ is
almost stunning (especially when compared with the standard bootstrapped J statis-
tic), with empirical sizes not statistically different form the nominal sizes at the 0.05
significance level. Figures 1 and 2 show the “exact” and the bootstrapped densities

of the BLJ test and of maximum empirical likelihood estimator , respectiveley.

Figure 1 and 2 approximately here

5 Conclusions

We have developed a valid Edgeworth expansion to the density of the empirical
likelihood ratio test for overidentified moment conditions econometric models. The
approximation, a part from being of its own interest, is used to justify a “hybrid”
bootstrap approach which is in the same spirit of the biased bootstrap method. This

latter method performs extremely well at least in the small Monte Carlo study re-
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ported in this paper. Although more simulations studies are nesded to assess the
finite sample performance of the bootstrap method we are proposing, this paper
shows that the combination of two originally competing resampling methods such as
the empirical likelihood and the uniform bootstrap can be an extremely useful tool
for obtaining highly accurate inference in notoriously difficult models such as those
based on moment restrictions. As the empirical likelihood is just one of the possible
methods to obtain (efficient) implied probabilities, it seems quite plausible that the
combination of standard bootstrap with other empirical discrepancy based probabil-
ities might deliver the same kind (if not better) accurate inference. This certainly
deserves future attention.

It is also worth pointing out that the empirical likelihood based bootstrap ap-
proach proposed in this paper can be applied to other test statistics for moment based
econometric models. Recently, Smith, Chesher, and Peters (1999} have obtained an
Edgeworth expansion for the null distribution of the outer product of gradients (OPG)
form of conditional moment test statistic, providing analytic evidence on the poor
finite sample performance of the OPG test. Civen that the empirical likelihood ap-
proach to inference can be cast in their augmented likelihood framework, it might be
interesting to see whether our bootstrap procedure can be used to improve the finite
sample properties of this class of tests.

Finally, we notice that the present approach can be extended to more general data
structures, such as time series, by using blocking techniques as shown in Kitamura
(1997). We believe that the same kind of techniques can be applied to our boot-
strap calibrated empirical likelihood approach to inference, provided we model the
dependence of the data so that we can justify (in the Edgeworth sense) the resulting
asymptotic expansion as in Géotze and Hipp (1983) and Gétze and Hipp (1994). It
should be noted that in the case of weakly dependent observations the internal stu-
dentisation property of the empirical likelihood method is particularly useful because

one needs not compute the complex correction factor necessary to studentise the J
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test.
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APPENDICES

A First order asymptotics for the empirical likeli-

hood ratio J test

All the following theorems are based on or adapted from Kitamura (1997) and Qin
and Lawless (1994). They are included here for completeness. In the next theorem

N B T
we establish the n/? consistency for the saddlepocint estimator (= { A(6p) @ } .
Theorem 4 Under Assumptions A0-A4(ii), X (60) 2 0 and § 2 .

The consistency of A (0p) is proven by noting that under assumption Ad (),
max I (2,80} = o (n1/2>, and then following Owen’s (1990) argument to show
that ”7\(90)” = 0, (n"1/7> which implies the consistency of A (). Next, let 1 {}
denote the indicator function; by considering ¥, (2, 0) = 1 (2;,0) I {R,} with R, =
{z g {z,8)] < pVOM v g e @}, and any vector {, € ' (O,n‘l/(“")u)with fluf =

1, it is possible to show that
B (—nM® log (141, (9)" v, (2, 8))) = ~E [l (z,0) +0(1)

by the mean value theorem and I, (§) = argmin  E (— log (1 + T (z, 9))) By
1er(0mn=1/rmy)
continuity and assumption A3, it also follows that:

lim lipg n/®E  sup —log (141, (0 wn, (2,0")) = —E | (z,0)] . (A1)
noeoTi0 0=er{e,r)

By the uniqueness of 65, and (A1) there exist a finite number of open spheres T (8, 7%,),

k =1,2,...,7 such that LJJ [ {0k, 7i) covers the set @ (1) = © — T (fy, ) and T are
B=1

chosen such that they satisfy:

nMCE  sup —log (141 (07 wr, (2,0")) +0(1) = ~2k, Ky > 0.
9*eT{0x,m)

[N
(S




Asmax sup |9 (2:,0%)] =0 (nl/(”z"))., the weak law of large numbers (WLLN)
T geer (g7

implies that there exists j large enough n > ny:

Pr{*n"lz sup 1og( L8 ¢ (2,0 )) > —-rr’*/<2+">1(k} <e/(25),k=1,2,..,j

G=€0(Or,m1)

for a small € > 0, and hence :

Py {~-n_1 5

for all n >mex ny. By the minimisation property of the Lagrange multiplier vector

sup log( A0 (2,67 )) > “Il‘l/(2+77)]{} < €/2, K =min K,
8*€O(r) ~

X (0) there exists a sufficiently large n' such that Vn > n':

Pr {—n_l > sup log (1 + 20T (2, Q)) 271"1/(“")[{} <e/2. (A2)

¢ eo(r)
By the convexity of the criterion function (3):

=N (0) Y (2,60) < — Y log (1+X(0) (#,60)) <0
as nT T (2, 00) £+ 0, and A (6,) = O, (nl/‘z), it follows:
nt Y log (1 3(9)7 v (,00)) B 0. (A3)
for a sufficiently large n > n” . Combining (A2) and (A3) yields
Pr{n~t 3 log (1+X(0)" W (2,00)) < ~K/2} < ¢/2
leading to:
Pri{fel (for)}>1-¢
for n > max (n': -n”) and hence § 2 Oy. QFED

Having established that the unique solution of the saddlepoint problem is consis-

tent at the standard (parametric) n'/? rate, we now prove its asymptotic normality.

Theorem 5 Under A0-A7 the saddlepoint estimator n*2( has the following asymp-

~N< |

totic distribution:

ik
L§*~90

0] | =T ipv-ipTa-t o
ol 0 vl
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T
Taylor expanding (6) around the point [ 0 8, } (01is a7 x 1 vector of zeros)
J

yields

[o} o { N } L { W B2 W } { Ol
0 OpW = 060) W= e W™ 060) g — 0
(A4)
where
BgT/V({,,go) = 0, 8,\1/}"(5’80) = - 21/) (7.8) /n, 869TT/V(B’50) = Olpxpys
RarWiggy = — (20 0) 1 (2,0 [ Wiy = — 5 (0 (2,6) /067) /.

As n — o0, by a straightforward application of WLLN, we get
0§6TW(6.30> - D, a,%V‘W(B,eo) == Z‘I/J (2:,0)9 (2, ‘g)T /nt %,
where D = EOv (2;,0) /907, S = By (2,0) ¥ (2, Q)T. Inverting (A4) yields

(2~1 - 2‘1DV*1DTE‘1>
_V—IDTE—I

RTY2S 4 (2,00) +o(1)  (AS)

with V = DTS D, from which the (joint) asymptotic normality follows as n~/2 T 1) (2, 8,) 4,
N (0,X) by central limit theorem and Slutsky theorem. QFED

Theorem 6 (Corollary 2, Qin and Lawless (1994)) Under assumption A0 to

A7, the empirical likelihood ratio J test
W, = Zlog (1 + ATy (z“é)) 4 X (r—p) asn— oo
if the overidentifying restrictions (1) hold.

As in standard likelihood theory, Taylor expanding W, under the null hypothesis

A =0, (see the first term of the expansion (C3) below) about the saddlepoint A and




g, by WLLN and the continuous mapping theorem we have

D = —ls‘a«LL (#,6) /06 ly7™ D,
T = “1ZU LN U (=, ) Eg:Q“E’E)

so that the O, (1) leading term is of the Taylor expansion is given (see also A5 above)
by

n T
W;=n (Z@D {2,00) /nW) (2-1 ~ z“lpv-lpTz-l) S7ap (2, 00) /nt + 0, (1),

2=1 f=zl

which can be rewritten as

Wy =n ( 1/221/; (2, 00) /n1/2> (1-Q (=) iy’)(zi,éo) JnM? 4+ 0, (1)

where Q = L V2DV -IDTE-Y? and %2 is the matrix inverse of the symmetric
positive definite square root of 3 ; we can then apply a result in Rao {1973, p.187)
for quadratic forms in normal variables, to show that W, X x> (r — p) since Q is an

idempotent matrix of rank p. QFED

Theorem 7 (Theorem 1, Qin and Lawless (1994)) Under Assumptions A0 to

A7, the estimator P; has limiting distribution given by:
23 (B —pi) Iz < 2) 5 N (0,7) (A6)

where n? = o2 — BTy1 (I — DV‘IDTE”) B, o> =p{1 —p)I{z <z}, and B =
E () (z:,00) I {z < z}) for some fized =.

By Taylor expanding n/2 (§; — p;) about 0 and 6o, we get:

n2 (i ~ p;) = nM® (B — p;) = n*BTA + 0, (1),

where 7 is the non-parametric maximum likelihood estimator of p;; noting that:

n-V2 pllase-n ijv(‘:ojl,
1/)('21)00) 0
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and recalling (45) thet n'/2X = 571 (I = DV DTS ) n Y2 55 4) (2, 60) + 0, (1) for
i=1

n — 0oc, we obtain:

n2 (7, —p;) = { 1 —BS™ (I - DV-1DTS) ]n'l/QZ[ Iz <2} (2,007 |+
- i=1 4

from which (A8) follows by Slutsky theorem. QFED

B Arrays of derivatives of W;

In this appendix, we list the derivatives of the empirical likelihood ratio test as
obtained from (11). Noticing that the n (n = 1,2,3,4) number of different block
components in the derivatives’ arrays of order m (m = 1,2,3) is given by:
n+m-—1
n

and recalling that the letters «, 3,... and s,¢,... run from 1 to r and r + 1 to 7 + p,

respectively, it is easy to see that:
kabc = k:a_&y + 1'3} ka,@s + |—3-| kast + kstu
kabcd = ka,@’y& + !—4-} k"o:ﬁ'}'s + ]-6] ]"aﬁst s ‘-41 sty ]‘/stuv

where the symbol [4] indicates j different permutations of the indices giving rise to
the same block of derivatives.

The (r + p) x (r + p) matrix Uy has block components given by:

DassW =~ (14 A5*)? (B1)
o
2 ; — _ e B a, o o0
FpraW = o= (1= 2P/ (14 X92)) / (1+ A2,
2,700
g W = o AC/(HAQW)—‘% i SN (14 A%y

d6:0¢¢ a0s o6t

The (r + p)3 third order array Uge has block components given by:

Rarore W = 207/ (1+ A2p%)° (B2)
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RBarogsW = 2< %ﬁjwﬁ-l"%é-"w PP/ (1 4 Ay )) [ (1 A%y
Bagog W = <§0-21’2—2 - (%Z—thﬁ 9091; %”; > /(1= 2%p%) +
?és aéfgt YIXENR /(14 A C)) JAVE PN
Bgegu W <5£;—é%zv 32 a‘?jf; AN (L )
o 00" DUP O

a8y ;/oz,a / Q1,00
507 Bo" agu)\)\/\/(l—r\z_/; )>,(1+/\7/1).

The (r + p)4 fourth order array Uses has block components given by:

aia,\.ﬂ/\v,\évv = 6%y ’ﬁ'lLﬁ(' ‘5/ 1+ \a¢a)4 (B3)

. (U
8§a/\,3(\,,gsw = 6 <8863 U) ?;ﬂ - %%__)\a /ﬁw /'L) (1 + /\a?,/)a)2> /(1 + /\a,(/)a)Q 5

o o s
NorsgorW = Py 4 g
SCOVIEN (28981/1?/) <aew’¢ 33 W

(1+29%)7%,

%wma> /(14 A“zb“)) %

AarsgeaW = —2 Oy OM° WX/ (1 4+ M%) | /(1 + A% +
Ae2BO5G “\Fmae? ~ aesaer / ) L A%
81/%81#” ~ Lo AN 2 o,y 2
%s%t@ww”(TAw)~3wu0/uTAw>)
(14 Aop>) ™"
oW = 2L (1= 92X/ (14 2%9%) / (1 + Aoye) -
Aceooto 9628606+ ' Fo T
8¢ﬂ82¢& 2 Byo, B3 L\, o, N2
GWW(A = XX S (1 X)) [ (14 2A0%) +
awa @wﬁ 81[)7 By a By v,e g a, o3
s 507 50 (N7 = A2/ (14 X%R)) /(1 + A%p®)
) e By ayP
o4 —_ ? [o3 a8 [a PR3
Govotouan WV (aesaetaeuaevA ~ “ogeagia pge N/ LA ))
_ Py 9 .
14 A%p%) 2 — AV Vo
(1+A%%) 3<aesaetf)(9uaevA 4
(O 8%p® By

By R a2
o067 progs e L E A ))/(””’)
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6 Ql_/)i a'l[)ﬁ aw'y aw&

I E ZE a8\ oy, pand
o6+ ot age o N/ (LEA

Evaluating the above derivatives arrays at A = 0 gives the null arrays appearing in

(12) . Notice that the null derivatives kg and ke, are 0.

C Derivation of the stochastic expansion for W;

Under assumption A8 and A12, by expanding the first order conditions defining A
and 4 as defined in {6), and inverting this expansion, we get the third order stochastic

expansion for (¢ = nl/2Ce:
(:a — anaUa] _ (UabUde {UCQUQ] E-UdaUO:! T (C]_)
U Upeq [U*Ua) U**U gy (U7 Ue} [UPU]) /2 +
U Upege [U**Va] [U*“Vs] [U*V] /6 + 0, (n7)
where U is the matrix inverse of U,,.
Next, by Taylor expanding the empirical likelihood ratio W, under the null hy-
pothesis A = 0 about the saddlepoint estimator (* = [ e gs } we obtain:

T/VJ = &abgagb - 57abcC“CbCC/3 - ﬁabcdgagbgcgd/12 + Op (‘nq) . (02)

Using now assumptions A9-A10, we can then expand the U arrays under the null

hypothesis:

i

ﬁab Uap + UapeC® + Uabcdg‘cé‘i + 0p (n'l) ;
o = Uabe + UnpeaC* + 0, (n7),,

Uabcd = Ugpeq + Op (n_l)
from which, it follows that:

I/VJ = UabCaCb T+ 2Uabccagbgc/3 - UabchHCbCCQd/4 + Op (nil) . (CS)
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Inserting the stochastic expansion for the saddlepoint estimator (C1) in (C2), we

obtain the stochastic expansion for ELJ test for the overidentified model (1) as given

in (12).

D Derivation of the CF for W;

By truncating the sum in (14) at z + 2y + 3y = 4, the Edgeworth series distribution

is to o (n™1):

€Xp {n71/2 (ka,bcaaabc - ka,ﬁ,ﬁfaaaﬁ&y/B) + ‘n_l (ka,abcaaaabc‘}'
kab,cdaabacd/g - ka,,@,abaaaﬁaab/?' + ka,ﬁ,’y,éaaaﬁaya&/z‘i) g (Ua; Uab) Uu,bc)

Applying now the various derivative operators to g (U, Uy, Uase), the full Edgeworth
density A (U, Upp, Ugse) = B {-) is:

h() = (2m)7/? lk“'ﬂrl/ ? exp (—*2UUs/2) {1+ 07 (kg an [K*PUp) Bt
K ([K2°Us] (W70 [E74U] - 362 7903 ) f6) + (DY)
" (~keate [ Us| Buse + ot caBeoOea 2
kagan (R57U) [B99Us| = k%) 0us 2 + kg s (I65°UL) [K24U |
U} (657U, | — 662 (6770, (K9 U) + 3k2K7) /24 +
(koo ca ([(£270] [KUs] = ) OusBa = kaskians (16°UL] (74U
770] (657U = 8k%7 (637U;] (657Us] — 8 (62U} K27 [T +
SK*K) [Bunf3 + hapirkisec ((K7Uy] K77 Us) (674T) [K9) x
kU, [K5T| = 6k [40] (K50, (ko#0,] (k64T —

Ok [KP7Us) [BU.) (kU [KFUe] + 969k (U] [KS€T] +
18kKT (kU] [R5 Te] — 18K kP (KT, ] [K9U;] — ok oo —

6k k7<) /36) /21 T] 6 {Uao = kao} [T 6 {Uane =1 ks ) +0 (n7?)
ab ab,c
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To derive the C'F of W, we apply the Edgeworth density h (U, Usy, Ugse) 88 derived
in (D1) to exp (tW;), where ¢ = (al)lﬂ, obtaining:

CFy, (1) = / / &3P (W) b (Ua, Uas, Uste) AUadUalUrpe + 0 (n ™).

Integrating Uy, and U, out (see Hayakawa (1977, p.365) for details about integrating

with respect to derivatives of Dirac § functions), we obtain the following expansion:

CFwy (t) = (21) 7" kgl P exp {= (67 - 2tk ) UnUp [2} %
{1 =itk koU,) (629U (670, /3+
7 (= sthasebeqr k! 6T [KPU] (kU] [6405] fa+ (D2)
itkases (8] [K%Us] [(670,] [6%°05] /12 ~
(2/2) (ke leo02) [1205] 1771 13)°) }
{1407 (ithaas [622U) (670) [K505) +
Fape ([K27Us] [0 [k74U] - 364 [KU5))) /6 +
17 (= itkawk ke [E°Up| [670,) [K4005) (b5U) —
Whoyase [B%°Us] (6°10,) [6%05 ] (kU] /3 +
ka1 (6°Ua] [KPUs] (70) [B90;] + 2 (BeoU,] [K2U5) k) 2+
g (kU] [K99U5] - k=) (metr] [0, 2+
iz (I6°UL] [W7U] 97U, [k97Us] — 687 (k717,] [k59U) +
SKCPRT) /2 + dtha,akg ca (U [0 ~ £%2)
(vt (b0] [R2U3] (om0 (52905 + 2 (670 [B°U5] k) /2 +
ks ankia s ([R7U [BSUC] 177Uy [157T5] +
B2 UL [6970,] 4 kU k97 [6970,] - k2287) (52T, [£5U,] /6 +
by Kaag (670 [0 670 [(60,) k20, [6570,] -
6k%7 (k70,] [k B [T, | - 988 [k8907,] (kU] x
(6U,] [67U, ] + 9kPk% (B7T] [T, ] + 18K257° (kU] x
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(6640, ] + 18k0k0 kU] (66U, |

L

—OkSPRHRSE — 6K RPCKTS) J72} + 0 (n7T)

where k% is the 7 X 7 upper left block of the matrix Uy, (see (B1)) which is different
from k*? (i.e. the second Bartlett identity does not hold).

We now integrate with respect to the r vector U = U,. As in Hayakawa (1973),
we transform the vector U to z = Q~V?U, where (Q“l/z)T Q12 = Q0 is the (r x 7)

matrix inverse of

o]
|

(1-2)"' 2 (1 - 2457 DV D),
Q—-l

57 -2 (27 - 2DV IDTE )
with the Jacobian of the transformation given by:
QY% = (1 — 2u)" 0P g2

so that z is IV (0,1), and (E‘l - E‘lDV_lDTE“l) Q127 can be regarded as statis-
tically independent of (V‘lDTE’l) QY% Let T = (E‘l - E‘lDV“lDTE‘1>; we
note that:

(1-2)s705™t = (37! - 2un DV IDTE ) = (kP — 20(*°) (D3)
(1—2)TQr

i

T = = (1~ 2t) £710T,

i

—y-1pTEIar
50 (V“DTZ‘1>T

0, VDTn 0 (V*DTE*)T =Vl =,

- (v DTZ‘1>T = B

After extremely lengthy algebra, where essentially the arrays k%, ke and kapeq are
split according to the components given in (B1)-(B3), it can be shown that the

resulting CF' is given by:

CFy, () = (1 — 2ut)" P72 (1 +n7t (P(;Lt + in/ (1- ZLt)j>> +o (n'1> (D4)

=0
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where the various P’s are functions of the cumulants as described in (13) and of the

matrices in (D3) and are given by:

!

Po = ]"37,5,3 (kaﬁsféeﬁr’aﬁgsﬂ/s + kast")’a&‘f)’{s@st) /4 - ka,qukﬁ,dtfaﬁ"ﬁﬂ’sa/4 -
Feas,ptYapV™ [4 + Kastkg m Yoy (45@““ + 2¢ﬁs“w) - (D5)

klastk‘ﬁuUVaB (Ustvuu + 2,Usuvtv) /16,

Poo = kanskoect™ (1vee + 20e%ec) /8 + (~Ranokoeck™ (hravec + 20 — 5 ,0) +

2Rk (Soo toethas + VonVoePas = 4% Vors) — Lh ol esh ™€ 135) /8 —
(2Ka16k ™ Vo - Aagysh ™Yoo + o 1665 — bipiysh™® Yos) /4 = (D6)
Rovesbp e (667 oo + K™ s + KP10hs) /3 = Kesahiarysec (367767 4 k&P~
KSR 4 IPVE) [12 4 b p b (BEPEP5ET 4 260E006

247 (26765 + €7°6%) ) (24 + Rospiyhsa (—2h0E0ETE — hoghrEn

HEPRTOES L KOIROEH) B4 haps (§7PE17 — 2APIEN 4 O /8 4

B, 087 (Bapry (Ve Vo + Doy Toc) = BkapsVapbys — Sosevacv™) /24 +

(kaﬁms (2Yary Vo6 + YopVys) = ]Cas,m”/a,sUSt) /8 + kapyshgst (—2nsbastor—

Ak Yy Pas + Vyas Yoy — 260, s0% + kP "/,,,511“) /8 +

Vo (4ka,ﬂst1}3t + 9/€astk,@uvkwvsu> /8 4 (=BhopskeoeYopsebrs — 2kapyko,csVos VisPes —
hastkp 5 Vo VsV = Bhapske,st1ap V560 + 2kastkip puTon (¢,su'USt + 20555'0&”)) /4+
(S5 k™Y + Kaypobise (= 2astbartus — U prbus + v X

(Yad s + 2VorVes)) /8 + (—24/%5515“/&;31)” + Bkags kst Yoy Yps0™ + 3RapskstVas 10

+4k5aﬁwk6st7a'7’\/;36v“ + Zkaﬁ'ykést')’&ﬁ/)/w&v“ - 3kastk5ﬁuu"/a;3‘ (Uﬁ?)uv + 2vsuvtu)) /96

Pl = ka,‘i5kﬂ,-€§ <—4"/a,y"]'5,5’)/5< — 6£a'3"/75"/§4‘ - Sfaﬁ’\,’ryﬁ’ﬁ;g + ka’ﬁ ("/»’;5'}'54‘ + 2’\,/,),5'\/60) /8 +
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(ka,'y&k,ﬁ,ac (ka"ﬁ (”/qv&“/sc + 2y Vsg — 415(“/75) — 4% (’Ym,"‘/{ib‘ - éaa%&)) - X

Ko yskpse (6%7"/55%5 + 2Y5yV5e Pay — 41‘»‘56“,’&,'(!5%) + 2Ro,5K5.e (416“5&‘5 Vst (D1
2k kesyﬂ‘,(g» /4 + <ka5ﬁ5k7§"/aﬁ + 2Kap sk Vop — Kag s (Yarvpe—

“faﬁ%’& + ka’ﬁ%‘én 12+ keeckpqs (1%&6"/685’575 - 6]’5(1’5"/68(!575 + kaﬂ’?’&sd’vs—“
kﬁﬁﬂ/&qﬁas) /3 = kacckpqs (12575",@5”/_5( — 9E%0E e+ 2Py st

ROFE g - 2P yoeryog — ZROTE P + ROTRS e 48RP ) [12

S <9£a6€;35£'7( + 6£PEIEC _ gpaBeregst  gradgrges 3O LC
—3105’55“‘55”‘ — %7,55&#‘564 + Qka,ﬂkv,ﬁgec + 4ka’ﬂk"’5§5< _ 3k7,<§a6€74 R 4kaﬂk5£§/‘/5 3
DKESETEN 1 PESET) J24 + (=Ko pkisec (—dhemogregne — gpedePrese s
ka,ﬁkﬁ;/fec 4 %a,sk,@.egqc + QKQ"B};”""sfs{ i 2ka,§k7,C€ﬁa + ka,ﬁk&sfh/g‘ _ ka,ﬁkq,ck&a) +
s (260800 4 BROPE 4 1OEF — UBRTON) I8 ke ok kK s 2
_kas,ﬁt’?’aﬁi’St/S + (ka,yskﬁ,&t <¢>asq')ﬂt“/@:5 + Qk&"‘,’a’)'“/[ié + v ("/aﬁ’)’ﬁ'ﬁ - 2’?’62"/7;36)) -
kagrs (Yoo Tys + 2Var85)) /4 + Kanshissn (2hobastdor + 4k Dao

~ a5y 0% + 50" (3% = 2627 ) /8 + kise ¢ (15Kapy Yoo E +

Kage (12705906 0cs = 9Vaot*bss + 66 Yapbos) = Ohiase (Yacthnadhee + Yastecy™)
Tk kg Yapg Ve + B0,k (—Gka,ﬁ,w’aﬂ%& + 3koapsVasdys + Skasﬂacvsz» /24 +
((oavse + 2Yasoe) (18K apobsesh™ + Bhapehisch™ + 2Thaalrgek™ + A 00
=12k g5t Yapv™ — 27kastkﬂuvkw7&ﬁvsu) [24 4 (—koghsec (aspeYoe + Vap Vs Ver) -
+6k0gshy 56 Vap Ve s + HhaprkoesVog Tvsbes + BkasthpsVasTyst™ +
+12Kapek 5o 1r50™ = Wtk Vo (S50 + 28p,0™) ) /4 +

(IQkaﬁ”/E'Yaﬁf‘/’fﬁ + kaprksec (2VasVoe e + 3VasYrsTee) + 24k apet VasV™

—6kagsknsi™ (Yapys + 2var¥os) — Ahapyksat™ (Yag s + YanVes)

+3kasckﬁuvﬂ/al3 (Ustv“'“ + 2’1)su’l)m)> /96

P2 = ka{@,'y& ('7&[3776 + 2'70(7’)’;35) /8 -+ (_18ka67k6sskﬁis (’7&5"\/65 + 27&6’)',85) -
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x
§
i

(Voo + Ve Y2) (Bhoehnach™ + 2hagolisit® + Ao s ) ) /24

+ko,078 (ka’ﬁ"m — %5 + 2%43%5) J4+ (D8)
Ko nsksec (~24’YQ5AK@5A/7C + (WysY¥e¢ + 2evoe) (‘%aﬁ + kaﬁ)) /8+

oo ec (K (2arros = €ms) = b7 (1atec + 2metc — k)
+2kqyoks.s: (asTprVse + 3DasTarVse) + 4k 5khp esh™ X

(o785 = 5 (67 = k) /8 + hayauhipy s (K9 — £29) +

koeckaqs (24575‘7&5735 — QgL ey, A 2fP tyeVoc + BEOPE Ny,

K750 (27e + €%+ B7) = 2k (690cvp¢ — 38 eq + k%P )) /12 +

Kk e, cb™ (Ve re + 20ay¥se) /24 + Koy g ks b (—€7€56 — 0gPog7 4
EP1ESC 4 ofPeenC o igle  opBepmd L Eoderr kﬁ»maé) /8
hoporkinec (9670EPET + BEPLIEN — ARIPEIEN _ ppgroest _ dehoen
BRI L BOPEEN . g OEOPE L Y BETILeC o et gsl
A T R R R R R R L i L
R e R | N R A N 21»:“"3/';“-'"%5’4) /24 +

Ko ps (5043575 — fBETS _ vdges 4 ka,ﬁk:f,a) /8 + (12kcpysYap s —
Zhapyksec (27asVpe Ve + 3YapaeVee) + Bhapshinsrt™ (Yagvrs + 2varvos) +
Fagliser™ (Yog s + 2V 1ss) ) /96 +

Ko sk s (2%77@5 + YogVys — EP s + kaﬁ‘/qv&) /8 +

ke (516&,677&_5"/76 (—3§6C + Zk“) + 3kogs (—27a5”/ﬁs</‘3cs + Vg s
~kapbss) ) 24+ (Veapybis,ac (Yo 1y ret + s Yoeoc)

—3kapsVas (kﬁ,sc%s’)’s; 4 degatvsn‘/&a> -

Qkaﬁwké,ssqsssﬂ/aﬁ'ﬁ/o‘ - 3kastk'y,sg‘v5t'}'¢xﬁ’\/ys) /4,

By = Kapyhsee (3aptyevec + 2VasVpsTre) /96 + Kansks e X

(1209857 = €% (st + 2ersc) + 2 (aaveg + 2hresc)) /8= (D)
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kopyksec (Yogrrsvee + YosVpeVoc) /4 + Kaecks s (*4%:7@4@5 + faﬁfw”/sc-
RSP g B ayp — K + ROO) fa 4

Bk ks (£ Vas s — K Yais) /24 + kg hise g X (—3gmgpegm—
DEPETE 4. QP LMt | Gpadelepis | qpbeeasent 3P 4
ka,éé«aﬁfec — Qka,ﬁk'/,ﬁfsc + 3EYeEates 3/90"%7’({58 — 3kE,E;C%C£a6 +

BkEORPEC 4 Ok PEOPET L RS L gprbpesead | 2k"=%‘f'5lz$>4) /24.

E Proof of Theorem 3

The proof is standard; from the two asymptotic expansion (17) and (20), it is easy
to see that

Pr{W, > a2} = Pr* {W; 22} =o(n™)

uniformly over z; as P and P, (1 =0, .., 3) differ from their bootstrap analogues by

0, (1}, equation (22) follows by replacing z by %, QED
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Footnotes

1 That is to say, the information of the resulting parametric subfamily at the
true unknown distribution is no greater than for the full original nonparametric

problem.

2 It is not difficult to see that (under the null hypothesis) -see also Appendix B-

the so called signed square root decomposition of W, (cf. eq. (12) is given by:

)

U = Uaag [USU,) [UPUs] /3 = 2U s U7 VU] /3 + 05 (n711%)

from which Sargan’s (1980) Lemma 1 follows with k = 2, as U, = 0.
Notice that we do not require the existence of all moments of U, 5, but we assume

that the Cramér condition holds jointly for the first 4 arrays of derivatives.

3 Actually the coverage error can be shown to be O (n~%) by strengthening the
regularity conditions so that there exists an Edgeworth expansion of the J sta-
tistic with error O (n“3/ 2) and exploiting the even-odd property of the Hermite

polynomials (tensors) appearing in it (Barndorff-Nielsen and Hall (1988)).

4 We set the number B of bootstrap replications to 200; increasing the number of
replications did not change significantly the results (for an explanation of the

phenomenon, see Hall (1986)).

(e

We use exp {max(z)} rather than an (inefficient) n2/? consistent GMM, because
in the case of the bootstrap the maximum empirical likelihood estimator § would

be inconsistent.
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Tables and figures

TABLE 1
EMPIRICAL LEVELS OF J TESTS FOR MODEL

{10) SAMPLE s1ZE n = 50

2z~ N(1,2) zeex (1)

size W, Jrr Jou W, Jir Jou

0.10 0126 0.131 0.130 0.261 0.299 0.288

0.05  0.060 0.065 0.060 0.183 0.213 0.202

0.01 0.029 0.030 0.029 0.129 0.152 0.143

Wy empirical likelihood ratio J test, Jr and Joy J tests based on iterated and
continuously updated G:M A estimators, respectively (cf. Hansen, Heaton, and Yaron (1996}).

TaBLE 11
EMPIRICAL LEVELS OF J TESTS FOR MODEL

(10) SAMPLE SIZE n = 100

z~N(1,2) z~x2(1)
size W Jrr Jeu W, Jrr Jov

0.10 0.116 0.121 0.120 0.181 0.209 0.208

0.05 0.058 0.061 0.060 0.143 0.162 0.154

0.01 0.021 0.025 0.024 0.094 0112 0.109

W, ewpirical likelihood ratio J test, J; and Jou J tests based on jterated and
continuously updated GM M estimators, respectively (cf. Hansen, Heaton, and Yavon (1996)).




TABLE IIT

EMPIRICAL LEVELS OF J TEST FOR MODEL (23)

] n = 50 n =100

size
0.10  0.171°(0.228) 0.132° 0.124° (0.197) 0.165° (0.194) 0.123* 0.120° (0.164)
0.05  0.142° (0.171) 0.090° 0.080° (0.149) 0.113° (0.132) 0.082° 0.065° (0.113)
0.01  0.101% (0.102) 0.048" 0.048° (0.095) 0.072° (0.067) 0.032° (0.081° (0.063)

@ asymptotic, b Edgeworth corrected, ¢ bootstrapped critical values. The values reported in parenthesis are those reported i
Hall and Horowitz (1996). Underlined values indicate a level not significantly different from nominal level at 0.05 level.




Figure 1: Densities of ELJ test
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Figure 2: Densities of 8
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