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Abstract

This paper considers the moment structure of the ARMA(r,s)-EGARCH(p,q) model. In par-
ticular, we provide the autocorrelation function and any arbitrary moment of the conditional vari-
ance/squared errors. In addition, we derive the cross correlations between the process and the condi-
tional variance/squared errors. We also explain our general results using the MA(1)-EGARCH(3,3)
and the MA(1)-EGARCH(1,4) models as examples. Finally, the practical implications of the results
are illustrated empirically using daily data on four East Asia Stock Indices.
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1 INTRODUCTION

One of the principal empirical tool used to model volatility in asset markets has been the ARCH class of
models. Following Engle’s (1982) pathbreaking idea, several formulations of conditionally heteroscedastic
models (e.g. GARCH, Fractional Integrated GARCH, Switching GARCH, Component GARCH) have
been introduced in the literature, forming an immense ARCH family. Many of the proposed GARCH
models include a term that can capture correlation between returns and conditional variance. Models
with this feature are often termed asymmetric or leverage volatility models!. One of the earliest asym-
metric GARCH models is the EGARCH (Exponential generalized ARCH) model of Nelson (1991).? The
EGARCH model is more general than the standard GARCH model in that it allows innovations of dif-
ferent signs to have a differential impact on volatility than does the standard GARCH model. Also, in
contrast to the conventional GARCH specification which requires nonnegative coefficients, the EGARCH
model by modeling the logarithm of the conditional variance does not impose the nonegativity constraints
on the parameter space.

>From the many different functional forms the EGARCH model has become perhaps the most com-
mon. In particular, various cases of the EGARCH model have been applied by many researchers. For
example, it has been used to examine the interest rates (Brunner and Simon, 1996, Andersen and Lund,
1997, Kavussanos and Alizadeh, 1999, Kim and Sheen, 2000), to model foreign exchange rates (Hu, et
al., 1997, Hafner, 1998, Kim, 1998, Lobo and Tufte, 1998), and to analyze stock returns (Koutmos and
Booth, 1995, Episcopos, 1996, Reyes, 1996, Hagerud, 1997, Booth, et al., 1997, Donaldson and Kamstra,
1997, Kusi and Pescetto, 1998). The EGARCH model has also been applied to the interest rate futures
markets (Tse and Booth, 1996, Tse, 1998).

Various authors have compared the EGARCH model with other alternative conditional heteroscedas-
tic models. For example, Donaldson and Kamstra (1997) compared the EGARCH model with an artifi-
cial neural network GARCH model; Hafner (1998) compared the EGARCH model with nonparametric
GARCH models; Breidt, et al. (1998) compared long memory stochastic volatility models with EGARCH
and FIEGARCH models.

Although the EGARCH model was introduced almost a decade ago and has been widely used in
empirical applications, its statistical properties have only recently been examined by researchers. Engle
and Ng (1993) artificially nested the GARCH and EGARCH models, estimated this nested specification,
and then applied likelihood ratio tests (this approach was also used by Hu, et al., 1997). Hentchel
(1995) developed a family of asymmetric GARCH models that nests both the A-PARCH model and the
EGARCH model. Deb (1996) examined the finite sample properties of the maximum likelihood and
quasi-maximum likelihood estimators of EGARCH(1,1) processes using Monte Carlo methods. Lee and
Brorsen (1997) proposed a Cox-type non-nested test of GARCH versus EGARCH models. Pierre (1998)
found that, regardless of the assumption made about the conditional error distribution, the EGARCH
model is sensitive to the choice of starting values and the degree of computer precision. Andersen, et
al. (1999) performed an extensive Monte Carlo study of efficient method of moments estimation of the
EGARCH model.

This paper focuses solely on the moment structure of the general ARMA(r,s)-EGARCH(p,q) model.
Although the literature on the GARCH/EGARCH models is quite extensive, relative fewer papers have
examined the moment structure of models where the conditional volatility is time-dependent. Specifically,
some studies have examined the time series properties of the conditional variance (see, for example,
Karanasos 1999, 2000) and the relation between the conditional mean and the conditional variance (see,
for example, Karanasos and Kim, 2000, and Fountas, et al., 2000).

We contribute to this literature by deriving (i) the autocorrelation function of the conditional variance
and of the squared errors, and (ii) the cross correlations between the process and the squared errors. To

IThe asymmetric response of volatility to positive and negative shocks is well known in the finance literature as the
leverage effect of the stock market returns (Black, 1976). Researchers have found that volatility tends to rise in response
to “bad news” (excess returns lower than expected) and to fall in response to “good news” (excess returns higher than
expected).

2 Another popular asymmetric GARCH specification is the Asymmetric Power ARCH (A-PARCH) model of Ding,
Granger and Engle (1993). The A-PARCH is a general model which includes several other asymmetric models as special
cases (e.g. the GJR model, proposed by Glosten, Jagannathan and Runckle, 1993, and the TARCH model, introduced by
Zakoian, 1994).



obtain the theoretical results and to carry out the estimation we assume that the error term is drawn
from either the normal, or the double exponential or the generalized error distributions.

We should note that, while this research was in progress, Demos (2000) was simultaneously and
independently studying the autocorrelation structure of a model that nests both the EGARCH and
stochastic volatility specifications. However, he only examines the autocorrelations of the conditional
variance/squared errors while we give the autocorrelations between the k;-th and ks-th powers (kq,kg >
0) of the conditional variance/squared errors, he assumes normality whereas we also use the double
exponential and the generalized error distributions, and finally he restricts his analysis to a white noise
specification of the conditional mean® while we use a general ARMA (r,s) process.

Also noted that the coefficients of the Wold representation of the conditional mean and variance are
needed for the computation of the autocorrelations. In contrast to Demos (2000) we provide exact form
solutions which express the coefficients in terms of the parameters of the moving average polynomials
and the roots of the autoregressive polynomials.

The rest of the paper is organized as follows. Subsection 2.1 investigates the autocorrelation function
of the conditional variance for the EGARCH(1,q) and EGARCH(p,1) models. Subsection 2.2 presents
the autocorrelations of the squared errors and provides the cross correlations between the process and its
conditional variance for the general ARMA(r,s)-EGARCH(p,q) model. Section 3 discusses the data and
presents the empirical results. The final Section concludes the paper and suggests future developments.
Proofs are found in the Appendices.

2 EGARCH MODEL

2.1 EGARCH(1,q) Model

Pagan and Schwert (1990), and Donaldson and Kamstra (1997) found that two lag squared errors are
required for the S&P 500 EGARCH. Kim and Kon (1994) used an EGARCH(1,3) model for all individual
stocks in the Dow Jones Industrial Average. The general EGARCH(1,q) model is given by

B(L)In(hy) = w4+ C(L)z, (2.1a)
Et—1 Et—1 Et—1 1
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B(L) = 1-8,L (2.1d)
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o Assumption 1. The autoregressive parameter (3, is less than 1 in absolute value (covariance sta-
tionarity condition).

o Assumption 2. The polynomials B(L) and C(L) have no common left factors other than unimodular
ones (irreducibility condition).

Proposition 1 Under Assumptions 1 and 2 the (ky + ko )-th moment of the conditional variance,
and the auto covariances/correlations between the ki-th and ky-th powers (ky,ky > 0) of the condi-
tional variance, are given by

3 Although Demos (2000) examines only the white noise case, he allows the conditional variance to affect the mean with
a possibly time varying parameter.
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where F denotes the hypergeometric function (see Abadir, 1999).
The proof of Proposition 1 is given in Appendix A.

2.2 EGARCH(p,1) Model

Nelson (1991) estimated an EGARCH (2,1) model using daily excess returns on the value-weighted CRPS
index. Donaldson and Kamstra (1997) found that the optimal EGARCH specification for the TSEC stock
index was the 2,1. Pierre (1998) also chose the EGARCH(2,1) model for an equally-weighted index made
up of firms on the NYSE/AMEX. The general EGARCH(p,1) model is given by equations (2.1a)-(2.1b),
where the B(L) and C(L) polynomials are given by

i~
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o Assumption 3. All the roots of the autoregressive polynomial B(L) lie outside the unit circle
(covariance-stationarity condition).

In what follows we only examine the case where all the roots of the autoregressive polynomial B(L)
are distinct.

Proposition 2 Under Assumption 3 and when the conditional distribution is the normal, the (ky+kz)-th
moment of the conditional variance, and the auto covariances/correlations between the ky-th and ke-th



powers (ky, ko > 0) of the conditional variance are given by equations (2.2a)- (2.2¢c) and (2.3a)-(2.3b),
where the fp, 1, and &,; terms are given by
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The proof of Proposition 2 is given in Appendix A.

2.3 ARMA(r,s)-EGARCH(p,q) Model

Donaldson and Kamstra (1997) found that the optimal EGARCH specification for the NIKKEI stock
index was the complex 3,2. Hu, et al. (1997) found that in the pre-EMS period the majority of the
European currencies followed an AR(5)-EGARCH(4,4) model. The general ARMA(r,s)-EGARCH(p,q)
model is

L)y = b+O(L)er, & =eh?, ey ~IID(0,1) (2.6a)
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where the h, is given by (2.1a)-(2.1b) and the B(L) and C(L) are given by (2.4a) and (2.1c), respec-
tively.

o Assumption 4. The polynomials B(L) and C(L) have no common left factors other than unimodular
ones (irreducibility condition).

Theorem 1la. Under Assumptions 3 and 4 the (ki + ka)-th moment of the conditional variance,
and the auto covariances/correlations between the ki-th and ko-th powers of the conditional variance,

(k1,ka > 0) are given by (2.2a)-(2.2¢), where fp is given by
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When the conditional distribution is the normal, the HZ Ky Hﬁ ki ke AN fD terms are given by
(2.8a)-(2.3¢c), where the &;;, and &5; terms are given by
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and Ay, and C; are defined in (2.3e) and (2.5c), respectively.



When the conditional distribution is the generalized error the HD HD and fp terms are
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where £1; and &o; are given by (2.8); v denotes the degrees of freedom of the generalized error distribu-
tion. When v > 1 the summations in (2.9a) and (2.9b) are finite; when v < 1 the first summation is finite
if and only if &1,y + |€4;d| < 0, whereas the second summation is finite if and only if 5,7+ 1€9;d] <0
(see Nelson, 1991).

The above equations, for v =1 (i.e. the conditional distribution is the double exponential) give
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(2.10a) and (2.10b) hold if and only if &,y + |€1:d| < V2 and €q;y + [€5,d| < /2, Tespectively (see
Nelson 1991).
The proof of Theorem 1la is given in Appendix B.
Theorem 1b. Under Assumptions 3 and 4 the 2( ki + k2 )-th moment of the error term, and the auto
covariances/correlations between the kq-th and ka-th powers of the error term, are given by
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where k1 and ko are real positive integers.
When the conditional distribution is the normal or the generalized error or the double exponential
one, the [12 ., TIX and fp terms are given by (2.3a)-(2.3¢), (2.9a)-(2.9¢c) and (2.10a)-(2.10c),

m,k1? m,k1,ka
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In the above expressions ® denotes the error function and &, ,,,_1 (k1) is given by (2.8). When v > 1
the summation in (2.12b) is finite, whereas when v < 1 the summation is finite if and only if §1,m—17 +
€1 mm_1d| < 0. The right hand side of (2.12c) converges if and only if &1, 17+ |€1m-1d] < V2.

The proof of Theorem 1b is given in Appendix B.

Assumption 5. All the roots of the autoregressive polynomial ®(L) lie outside the unit circle.

Assumption 6. The polynomials ®(L) and O(L) are left coprime.

In what follows we examine only the case where the roots of the autoregressive polynomial ®(L) are
distinct.

Theorem 2. Under Assumptions 3-6 the cross covariances/correlations between the process and the
conditional variance/squared errors are given by
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When the conditional distribution is the normal, or the generalized error, or the double exponential
one, the IIP and HlD1l terms are given by (2.3a)-(2.3b), (2.9a)-(2.9b), and (2.10a)-(2.10b), respectively,
’ Il

where the Dﬂ,k term is given by
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and &q;(k) is given by (2.8). When v > 1 the summation in (2.17a) is finite, whereas when v < 1 the
summation is finite if and only if &1,y + |&q;d] < 0.

Note that when there is no leverage effect (d =0) the Df,)l,k s zero and hence the cross correlations
between the process and its conditional variance are zero.

The proof of Theorem 2 is given in Appendix C.

3 EMPIRICAL RESULTS

3.1 Data Selections

We use four daily stock indices: the Korean stock price index (KOSPI), the Japanese Nikkei index
(NIKKETI) and the Taiwanese Se weighted index (SE) for the period 1980:01-1997:04 , and the Singaporean
Straits Times price index (ST) for the period 1985:01-1997:04. The daily observations for each country
are extracted from the ‘Datastream’ database. In each case the index return is the first difference of log
prices without dividends. Figure 1 plots the daily returns on the KOSPI, NIKKEI, SE and ST indices.

3.2 Estimation Results

In order to carry out our analysis of stock returns we need to choose a form for the mean equation. Scholes
and Williams (1977), Ding, et al. (1993), and Ding and Granger (1996) suggested a MA(1) specification
for the mean, Lo and McKinlay (1988), Akgiray (1989) and Nelson (1991) used an AR(1) form, whereas
Hentschel (1995) modeled the index return as a white noise process. As a practical matter there is little
difference between an AR(1) and a MA(1) model when the AR and the MA coefficients are small and the
autocorrelations at lag one are equal, since the higher order autocorrelations die out very quickly in the
AR model (Nelson, 1991). We therefore model all the four stock retrns as MA(1) processes. The MA(1)
model is

ye=b+ (1+0L)er, e =esh?, eye_y ~ IID(0,1) (3.1)

To select our ‘best’ EGARCH specification we begin with low order models (e.g., EGARCH(1,1)) and
work upward as required to fit the data. The general EGARCH(p,q) specification that we estimate is

q
1+25U )In(hy) = Z (leq—i| + dies—_s) (3.2)

=1

Table 2 reports the selected specifications.
The Akaike Information Criterion (AIC) chose high order EGARCH specifications for all indices.
When the conditional distribution is the normal, the EGARCH(1,4) specification was chosen in two out



of the four indices. For the double exponential conditional distribution, the EGARCH(1,3), specification
was chosen for the SE and NIKKEI indices, whereas the EGARCH(2,1) and EGARCH(1,2) specifications
were chosen for the KOSPI and the ST indices, respectively. When the conditional distribution is the
generalized error, the EGARCH(1,2), EGARCH(2,1) and EGARCH(3,3) specifications were chosen for
the SE, ST and KOSPI indices, respectively.

In addition, we use the Likelihood Ratio test to show the performance of the high order models over
the simple EGARCH(1,1) model. The tests show the dominance of the high order models with the LR
statistics being as shown in Table 3a . These are much bigger than the 5 percent critical values.

For all the stock returns parameter estimation is conducted jointly on a MA(1) mean specification?
and the appropriate EGARCH model for the conditional variance. Results for the period 1980-1997 are
reported in Table 1, which presents parameter estimates along with probability values. The parameters
b and @ are the intercept and MA(1) coefficient, respectively, for the return eq. (3.1). The remaining
parameters are from the EGARCH model (3.2). Not surprisingly, for all the EGARCH specifications
most of the moving average, leverage and autoregressive parameters are significantly different from zero.

For all four indices, parameter estimates are consistent with those generally reported in the literature.
In particular, as the persistence measure shows, volatility appears nearly integrated. Persistence is given
by the value of the highest root of the autoregressive polynomial and it ranges from .889 to .983 (see
Table 3b). Most noteworthy is the observation that in all EGARCH models, the product of the moving
average parameter and the leverage coefficient for the first lagged error is negative (see column 2 of Table
3b). In addition, the sum of these products, over all the lagged errors, is negative as well (see column 3
of Table 3b).

3.3 Autocorrelation structure of the estimated models

The EGARCH(1,4), EGARCH(3,3), EGARCH(1,3), EGARCH(2,1) and EGARCH(1,2) specifications
are special cases of the EGARCH(4,4) model. The autocorrelations of the conditional variance for the
EGARCH(4,4) model are given by (2.2c) where the HZ,I and HZ,M terms, for the normal distribution
are given by (2.3a)-(2.3b), and for the generalized error distribution are given by (2.9a)-(2.9b), where the
(v £ d)&;; terms are

4
(vEd)§y; = fﬁ:klzgf)‘?iﬂ:

=1
{f = 45—3} f=1,2314,
nll(ﬂf — By)
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A = ca(l£dy) +es(1+d3)By + ca(1£d2)B7 + ca(1 £ dy) B,
A= ARBYt i,
and the (y & d)¢,,; terms are
4
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f=1

When the conditional distribution is the double exponential one, the HZ ; and HZ 1 1 terms are given

1The only exception is the Taiwanese Se weighted index, where the white noise specification is used for the generalized
error and the double exponential conditional distributions.



by (2.10a)-(2.10b), where the &,y and &;;d terms are

1 .
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In addition, the &,,v and £,,d terms are given by

4 4
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Figure 2 plots the theoretical autocorrelations of the estimated conditional variance for all the afore-
mentioned EGARCH models.

4 CONCLUSIONS

In this paper we obtained a complete characterization of the moment structure of the general ARMA(r,s)-
GARCH(p,q) model. In particular, we provided the autocorrelation function and any arbitrary moment
of the squared errors and the conditional variance. In addition, we derived the cross correlations between
the process and the conditional variance/squared errors. To obtain our results we assumed that the error
term is drawn from either the normal or the double exponential or the generalized error distributions. The
techniques used in this paper can be applied to obtain the moments of more complex EGARCH models like
the EGARCH-in-mean model, the Component EGARCH model and the Fractional Integrated EGARCH
model. The derivation of the moment structure of these models is left for future research.
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APPENDIX

A Proof of Propositions 1 and 2
PROOF OF PROPOSITION 1

Using the Wold representation of an ARMA model (as it is given in Karanasos, 2000) and the
EGARCH(1,q) conditional variance (eqs 2.1a-2.1d), we have

oo
ki 30 Az

) wky
w hF = eTo7 =1
In(hy) = + Z)\llzt—l = P e (A.1)
1-0, =1 & _whko k2 37 Auzi—m—t
= hi2, =eT P xe =1
where \y; is defined in (2.3e).
Multiplying h®' by h¥2  and taking expectations gives
ol k) ka3 Avize > (s Mt i+ ks A1)z
E(b Rk ) = o™ R po" BT « gty (A2)
Moreover, from (A.1) it follows that
wk k 5 AliZi—i
B(h) =™ B =) (A.3)

When the conditional distribution is the normal, we use formula 2.3.15 #7 in Prudnikov, et al (Volume
1, 1992), to obtain the expected value of eFe??

e—va/g Po-a? )2 _
Befet) = ST - St et
0 Pata? b(y + d)
+W{@ 1 +‘I’(T)]}} (A4)
for k=0,1,2...

In the above expression ® denotes the error function (formula 8.250 #1 in Gradshteyn and Ryzhik,
1994). Using formula 8.253 # 1 in Gradshteyn and Ryzhik (1994), the above expression, for k£ = 0, gives

Blewt) = e WEZ M 1y e ) 4 (A.5)
b(Wrd)F(1 3 V(y+d)? )+b(7—d)F(1;3.bQ(v—d)2)}

Nor 2 2 Vor 272

where F' denotes the hypergeometric function (for an alternative derivation see Theorem Al.l in
Nelson, 1991).
Combining equations (A.2), (A.3) and (A.5), after some algebra, yields (2.2a)-(2.3e). |

PROOF OF PROPOSITION 2

Using Karanasos’s (2000) results and the EGARCH(p,1) conditional variance (egs. 2.1a-2.1b, 2.4a-
2.4b), we have

wk o D
h . fH (1-By) kici 120 leCfﬁ}thlfz
=€ X e ==
ln(ht): > +c E E Cfﬁfo 11 = why - ,
L,
1:[ (1 — ﬂf) =0 f=1 hkz _ jHl<lfﬁf) y ekzcl Igo fgl CrBrzi—1—m—1

t—m

(A.6)
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where ( is defined in (2.5c).

Multiplying h’”l by ht m and taking expectations yields

Lotk thy)

7 L i—1 X & m i1
11 (a-py) ckr 30 30 CpBy i a Y Y (kB +ka)l 87 trumiom
E(h{hz,) = ot x Bl SR T g S
(A.7)
Furthermore, from (A.6) it follows that
w(l\ +kg) o » .
. H (l B ekl Y By Tz
E(h}") = T xB(e =AY (A8)

Combining equations (A.7), (A.8), and (A.5), after some algebra, gives (2.2a)-(2.2c), (2.3a)-(2.3c),
(2.5a) and (2.5b). |

B Proof of Theorems 1la and 1b

PROOF OF THEOREM 1a

Using the Wold representation of an ARMA model (as it is given in Karanasos, 2000) we express the
k1-th power of the EGARCH(p,q) conditional variance (egs. 2.1a-2.1c, 2.4a) as

wky

L - o
o k H (1=By) k1 2 > kafzzt,,
h 1 —ef=1 x e i=1f=1
In(hy) = ———+> > CAnze = iy o (B.1)
1- I=1f=1 H (1=By) ko 3 CrAfi12t—m—1
fl;ll( ﬁf) hi”n’b =e/=t r X e i=1f=1 !
Multiplying hfl by hi”z m and taking expectations yields
PCEY v -
fi a—s k1 S L Afizi—i SN (Bidp,meapitkeApi) p2i—i—m
B hz,) =0 x B(e ST B (e ' (B.2)
In addition, from (B.1) it follows that
w(k +ko) o »
. H (l B k1> 3 ApiCpzi—i
B(h") = Y x B =TT (B:3)

Next, when the conditional distribution is the normal, using equations (B.2), (B.3), and (A.5), after
some algebra, gives equations (2.2a)-(2.2¢), (2.3a)-(2.3c), (2.7) and (2.8).

Moreover, when the conditional distribution is the generalized error, the expected value of ef o*:®
given by expression A1.5 in Theorem A1.2 in Nelson (1991):

bl(zl)\l‘ +k4+1
Bt = ¢ T 2 Y 000+ 0O g ()

where k is a nonnegative integer. When v > 1 the above summation is finite, whereas when v < 1 the
summation is finite if and only if by + |bd| < 0.
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Using equations (B.2), (B.3), and (B.4) for k£ = 0, after some algebra, yields equations (2.2a)-(2.2c),
and (2.9a)-(2.9c¢).
Furthermore, the above equation, for v = 1, gives

Eleb o] — 2752 g Ik 4 1) (Fk + 1, 05D e 1. 202Dy )

V2 V2

The right hand side of the above expression converges if and only if by + |bd| < V2. In addition, the
above equation, for k = 0, gives

5 1 s 2 —\/2by
E[Q lb] = 59 e b2 (12 _d2)
1= Vaby + Ba

(B.6)

Finally, (B.5), for k =1, gives

bd(V2 — by)
\/5[1 _ \/§b7 T MP
Using equations (B.2), (B.3), and (B.6), after some algebra, gives equations (2.2a)-(2.2¢c), and (2.10a)-

(2.10¢).
]

Ele,¢™] = ¢ "V

(B.7)

PROOF OF THEOREM 1b

>From (B.1) it follows that the expected value of e2°' 2% is
otk bha) et
e 9k fl a-sp) ki >3 3 Cphrize—a
E(eMefs) = Bl hirel,hiz,) = o=t x E(ef) x B(e /= )
P o P
k1 3 (pArnzi—m >3 (kg mepithad i) p2e—imm
(B.8a)
o > 3 (Bi)r,ithkaXri)C
3 I =By 3 . ) SIS, i TR2ASFI)G p2L—i
B ™) = o < BT x (o™ ) (B-8b)

Next, when the conditional distribution is the normal, combining (B.8a), (B.8b) and (A.5), after some
algebra, yields equations (2.11a)-(2.11d), (2.3a)-(2.3c) and (2.12a).
Moreover, when the conditional distribution is the generalized error, using expressions (B.8a), (B.8b)
and (B.4), after some algebra, gives (2.11a)-(2.11d), (2.9a)-(2.9¢) and (2.12b).
Finally, when the conditional distribution is the double exponential, combining equations (B.8a),
(B.8b) and (B.5), after some algebra, yields (2.11a)-(2.11d), (2.10a)-(2.10c) and (2.12c).
]

C Proof of Theorem 2

Using Karanasos’s (2000) results, the Wold representation of the ARMA(r,s) process (eq 2.6a) and its
conditional variance (egs 2.1a-2.1c, 2.4a) are

PR 1 b
ye = b tehi+d S ihi,, b= (C.9)
1=1 [1(1—)
=1
i w— ) 5 ) Af12t—m—
htfm = efglo Pr X elgl fz::],cf " ! (C]_O)

where ¢; is defined in (2.14b).
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1 1
Furthermore, the expected values of e;_y—nh7 ,,_pPhi—m and e;_m_nhi ,,_, he are

n—1 p

1.5w
7
L Il (1-By) 303 CpAriri—m—t
E(6t77n,nht2_7n_nht, m ) = e/=t ! X E(e’:]' =1 ! [ X
m>0
i CrAfnZi—m—n § i (>‘f,n+1+-5>‘f1)szt—l—mfn
X E(et—m—ne’=" ) x E(o=1i= ,
(C.11a)
7 1.5w m4n—1 i A
L II (1-8¢) S1Rt—1
E(et—m—nhi pm_nht) = /= . x E(e =1 /=1 ! ) X
i Cf)\f,7n,+n2t—m.—n, § i (Af,7nr+n+1+~5AfI)CfZt—l—m—n
X E(et—m—ne’™=! ) x E(g=1 /=1 )
(C.11b)
forn=1,...,00.
Note that the variance of y; is (see Karanasos, 2000)
T s s s—I W'HD E(hf)
i1lo,1,0 :
var(ye) = » 1> 0542 > 0,05 ¢ ————— (C.12)
SR [0 66,
n=1

where 7; is given by (2.14b).
Next, when the conditional distribution is the normal, combining equations (C.9)-(C.12), (A.4) for

k=1, and (A.5), after some algebra, gives (2.14a)-(2.14c) and (2.16).
Moreover, when the conditional distribution is the generalized error, using equations (C.9)-(C.12),

and (B.4), after some algebra, yields (2.14a)-(2.14c) and (2.17a).
Finally, when the conditional distribution is the double exponential, combining equations (C.9)-(C.12),

(B.6) and (B.7), after some algebra, gives (2.14a)-(2.14¢c) and (2.17b).
The derivation of p(y;,e7_,,) is similar to that of p(ys, ht—m).
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