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1 Introduction

There has been growing interest in the last decade to developing nonparametric (i.e.
distribution free) inferential techniques to analyse semiparametric econometric mod-
els. One such technique is based on estimating an unknown multinomial likelihood
supported on the observations, subject to some constraints which are assumed to hold
and represent the only information available in the sample. The resulting constrained
multinomial probabilities can be used to construct a broad class of nonparametric,
asymptotically x? test statistics which can be interpreted as empirical goodness of
fit type of tests (Baggerly, 1998). Examples of tests included in this broad class
are the maximum entropy statistic (Efron, 1981), the Euclidean likelihood statistic
(Owen, 1990), and the empirical likelihood ratio (Owen, 1988). All these tests are
accurate! to an error of order O, (n™!) by an Edgeworth expansion argument, how-
ever, as recently shown by Baggerly (1998), the empirical likelihood ratio is the only
test admitting a Bartlett correction. This remarkable property implies the possibility
of obtaining highly accurate inference in semiparametric models without resorting to
other computationally more intensive competing methods such as the bootstrap, and
can be explained by means of the dual likelihood theory developed for martingales by
Mykland (1995). Specifically, in the case of a simple null hypothesis, the empirical
likelihood ratio can be considered as an artificial likelihood? in the dual parameter,
i.e. in the Lagrange multiplier associated with the constraints in the original max-
imisation problem. The existence of Bartlett type identities for the dual parameter
combined with an Edgeworth expansion argument can then be advocated to justify

the Bartlett correctability of the empirical /dual likelihood ratio test (for more details

!By accuracy we refer to how close nominal and actual coverage probabilities (and type I errors)

are to each others.

2By artificial likelihood we mean a mathematical object which shares some properties of a para-
metric likelihood but it cannot be defined as a formal Radon-Nikodym derivative with respect to

some dominating measures.



about the relationship between empirical and dual likelihood inference see Bravo
(1999a)). Unfortunately when dealing with composite hypothesis the dual likelihood
argument breaks down and the Bartlett correctability property is in general lost (see
for example Bravo (1999b) or Lazar and Mykland (1999)).

In this paper we address the issue of the Bartlett correctability of the empirical
likelihood ratio for a subset of the regression parameters in a linear regression model.
By generalising the argument originally proposed by Chen (1994) for a simple regres-
sion model, we establish a general Bartlett correctability result for a profiled empirical
likelihood which holds for any subset of the regression parameters to be tested. This
interesting result is based on the same approach used by DiCiccio, Hall and Ro-
mano (1991) in their seminal paper about the Bartlett correctability of the empirical
likelihood ratio test in the so called “smooth” function model (see Hall (1992) for
a definition). By exploiting the well known property that in a (partitioned) linear
regression model the least squares estimator for a subset of the regression parameters
(in our case the nuisance parameters) can be expressed in terms of the least squares
estimator of the remaining regression parameters (the parameters of interest), we
can obtain a third order asymptotic expansion for the profiled empirical likelihood
ratio which is a function only of the parameters of interest. This is the key point
in the paper because we can then follow DiCiccio et al.’s (1991) approach, to show
that the O (n™!) term appearing in the Edgeworth expansion for the signed square
root of the empirical likelihood ratio is a linear function of a y? random variate and
hence adjusting the empirical likelihood ratio through multiplication or division by a
constant of the form 1+ B/n will eliminate the O (n™1) term in the adjusted statistic.
The resulting Bartlett corrected empirical likelihood ratio test can be used to carry
out standard specification analysis tests, which are third order accurate without any
distributional assumption about the error process.

The remaining part of the paper is structured as follows: in the next section, after

recalling briefly the main feature of empirical likelihood based inference, we develop



a stochastic expansion for the profiled empirical likelihood ratio test which can be
used as a specification test. Section 3 contains the main result of the paper, Section
4 some Monte Carlo evidence about the finite sample behaviour of the proposed test
statistic, and Section 5 some concluding remarks. All the proofs are contained in the
Appendix.

As it is customary in the literature on higher order asymptotics, we use (unless
otherwise stated) tensor notation and the summation convention (i.e. for any two
repeated indices, their sum over that index is understood) and adopt the following
conventions in order to distinguish between parameters of interest and nuisance pa-
rameters: letters 7, s, ... etc. denote the original dimension of the parameter vector
3, Greek letters index the p x 1 vector (p < k) vector parameters of interest, while

the first four Roman letters a, ..., d index the nuisance parameter.

2 A stochastic expansion for the profiled empirical

likelihood ratio

Consider the following linear regression model in tensor notation:
Y, = X, B + &5, &~ i, (0, 02) (1)

where 27 is a 1 X k vector of weakly exogenous regressors -alternatively we can con-
sider stochastic regressors, in which case we make the stronger assumption that x]
is independent of &; for all 7. In the rest of the paper, we focus on the non random
regressor case, as the random regressor case can be handled in the same manner.
Suppose we are interested to test the (simple) null hypothesis Hy : 3, = 3°; clearly,

under correct specification of (1), the following set of k orthogonality conditions
B = 8 = £ =0 o

hold (with probability 1).



Let p; denote the ith element of the unit simplex S in R" and let p; = 1/n be the
nonparametric maximum likelihood estimator for p;.
An empirical likelihood ratio test for Hg is obtained by solving the following

constrained maximisation problem:

peSsS

W = max2> lognp; (3)
i—1

s.t. Di Z 07 pZZT: )

7

where S = {p; : > ; p; = 1}. A Lagrange multiplier argument shows that the opti-

n

mal probabilities {p;}._ , are given by
pi=(L+NZ) " /n

where )\, is a vector of Lagrange multipliers. It follows that the solution for (3) is
found by minimising

Wae = —23 log (1 + A\, Z7) (4)
=1

with respect to A., which becomes the (dual) parameter of interest for a fixed value
of B, and suggest a dual likelihood interpretation for the empirical likelihood ratio
test: the original null hypothesis Hy : 8, = 3% can be expressed in terms of its dual
formulation Hy : \, = 0, where A, = OWgo /OA, = 0 is the (unique) minimiser of (4).

Consider now the following partitioned regression model
Yi :ajgﬂa‘l‘ajz‘aﬂa‘l’gi; (5)

and suppose that we are interested to test the subset 3, of the whole parameter vector
By, so that the null hypothesis becomes H : 3, = 3°. An empirical likelihood ratio
test for H{ can be obtained by profiling (i.e. maximising out) the nuisance parameter
(., leading to the profiled empirical likelihood ratio

Wig =max We, B ={B.]fa =3} (6)

BacB



which produces tests and confidence regions for 3, with asymptotic x? (p) calibration
and coverage error O, (n"1), but, as opposed to the case of a simple null hypothesis,
this coverage error cannot be improved to the order O, (n~?) by exploiting the du-
ality between A, and [, (see Lazar and Mykland (1999) for a simple example). The
Bartlett type identities (Mykland, 1994) for the dual parameter A, cannot be advo-
cated to eliminate to an order O, <n73/ 2) the terms involving the profiled parameter
[, appearing in the asymptotic expansions of the third and fourth order cumulants
of (6). On the other hand, in their seminal paper about the Bartlett correctability
property of the empirical likelihood ratio for a smooth function of a mean, DiCiccio et
al. (1991) did not use these Bartlett type identities and obtained the Bartlett factor
by a careful (and painstaking) examination of the algebraic structure of the third and
fourth cumulant of the signed square root of the empirical likelihood ratio test.

As mentioned in the Introduction, the approach we follow in this paper is based on
this latter approach: given a stochastic expansion for the whole parameter vector (3,,
we first find a stochastic expansion for the nuisance parameter vector 3., which, by the
so-called Frish-Waugh theorem, is a function of the vector of parameters of interest
0., The resulting expansion is then inserted in the original stochastic expansion for
B,, yielding (after some simplifications) to a stochastic expansion for the profiled
empirical likelihood ratio which is simply a function of the parameter of interest .
This latter fact is the key factor to proving the Bartlett correctability of the statistic
under investigation, as it allows us to use DiCiccio et al. (1991) technique to establish
the asymptotic order of the relevant cumulants.

Let us introduce some additional notation and quantities. Let
V' = EZI 78 In = ozl /n, V= (V™)' (7)

denote the k X k (average) covariance matrix associated with the orthogonality con-



ditions (2), and its inverse. Partition V,, as

Sab Saa
‘/7’5 ="n ) (8)
Saa Saﬁ
where
_ -1 1 1
s = (xtz)”! <6Cb + (a:;atjo‘) Sus (a:fa:;l) (a:%a:i) ),
-1 1
Sap = (a:f‘m”a:f) , Saq = — (zixf) (a:;a:f) Seds
define
uab uaa
Urs = (Vrs)1/2 _ 7 (9)
& uozﬁ
and

.. -1
mi; = 6" —pij,  Dij = T; <$Z$2) 372‘3
(i.e. the usual projection matrices in linear regression models). Finally define the

following (averaged) arrays:

KIIT2Ty . [JTIS1[]T2T2  [TTuTu [ (erl ZZTQZZM) /n (10)

KT’17’2...7’v — UT151 UTQTQ ‘”UTvT’v ZZTl ZZTQZZTv _ K:T17’2...7’v

so that K" is a k x 1 averaged standardised vector of orthogonality conditions, K™*
is a k X k averaged matrix whose expectation is 6" (i.e. the Kronecker delta) and so
on. Notice that k72™ is O, (1) and K™+ is O, <n71/2).

Let ch{A} denote the convex hull of the set A C R* )y, denote the smallest

eigenvalue of z{xf, my, = max {||z]| :i=1,2,...,n}, and ||-| denote the Euclidean
norm. Assume that the following regularity conditions hold uniformly in n (with

probability 1)
Al O e ch{Z], 75, ..., 72"} for n sufficiently large,

A2 a7 is of full rank k,



A3 lim Ay, /n>0, my, =0 (né) for some 6 € [0,1/2),

n—oo
A4 £’s have a non-zero absolutely continuous component which has a positive

Lebesgue density on an open subset of R,
A5 &’s have finite 15th absolute moment and nh_m (1/n) 0, ||z )* < oo

Remark I. Assumption Al is standard in empirical likelihood theory, as it implies
the existence and positiveness of the empirical likelihood ratio (4); as a consequence
of this assumption, we emphasise that all the results presented in the paper are to be
intended conditional on Al. Assumptions A2-A4 are standard in asymptotic theory
for least squares (see for example Amemiya (1985, Ch. 3)): they imply the consistency
and normality of the least squares estimator of 3 which is asymptotically equivalent,
by a standard dual likelihood theory argument, to the maximum empirical likelihood
estimator solution of 9W/98 = 0 . The remaining two assumptions are used to justify
the existence of a valid Edgeworth expansion for the empirical likelihood ratio test.

In particular A5 implies that there exists a set K, such that
Pr{Wa/n € Kn} =140 (n *?)

(see for example Chandra and Ghosh (1979)), where ng /n is given by

Wa/n = KK — KK K*+ 2™ K"K*K'/3 + K™ K"K K" + (11)
2K7’stK7’KsKt/3 _ 2I{TSUKtuKTKSKt + (Krvatuv _ Krstu/2) KTKSKtKu7

l.e. a stochastic expansion for the empirical likelihood ratio test (4) (see (Chen,
1993)).

Consider now the profiled empirical likelihood ratio Wo defined in (6); to derive
the required stochastic expansion we need to develop a stochastic expansion for the

nuisance parameter [, ; let

o~

Ba _ (xgxs)—l a:? (yj _ 37?304) 7 ﬂa = (ajl-amijajf)il (a;?ngyj) (12>

8



be the usual partitioned least squares estimators for 3, and 3,. Consider the following

arrays

g = Yi— afﬁa — B0, v =U"x]/n, (13)
o= g, (P =n (T,

Tos = nYCUEBL, TN =nl"CUBLA
Test = NP iCEE0,,

where (3! is defined in (14) below. We can then prove the following proposition.
Proposition 1 Suppose that 5, has a stochastic expansion of the following form:

Bo=Bat B+ B+ B +0,(n?), (14)
where 3 = O, (1/nj/2). Then

fo = Dot (a82d) " alod (Bu— 2) = Carl™ % (15)
5 =t (K = )] (K5, =) + 0, (7).

where Ké is the set of k X 1 orthogonality conditions (2) evaluated at ﬁa, the least

squares estimator of B, defined in (12).

Proof. See the Appendix. B

Using (15), we can now write the stochastic expansion for the profiled empirical

ratio test for the composite hypothesis H§ : 8, = Bao as follows:

We/n = (K5 —C°0) (K5 = ¢P8)) = (K5 —°0) x (16)
(K = ¢780) (K% — 27 + 7l ) + 267 (K = CT81) x
(15, = C7) (5, =) fa+ K K
(K5 = o) (1, <) + 2 (05 - )
(K5, = 8) (K5, = <) (K5 = 37u) /3 -

9



ot (1 - covt) (K, - co4l) o
(Kga o Cucﬂcl) o Cabﬂgﬂg € <K:7’SUK:tuU o Krstu/2)
(1,7 1, o) (o )
(K, = ¢"61) +0p (n™").
Noting that the k& x 1 vector <K§a — C”ﬁ;) is equal to n™* (Ea — ﬂg), where the

k X p matrix "¢ is
B

%

r

’)’] o —= ’u,rﬁa’; Tﬁsaﬁ

My T =u
and the matrix u"? is given by the upper and lower right corners of the matrix U™

defined in (9), we obtain (by contracting over the index r)

70 (B = 82) (Bo — 83) = 0257 (B — 82) (B — 15).
with s% = a:f‘mijatf which gives the leading term in the asymptotic expansion of the
distribution of the profiled empirical likelihood ratio Wo®.

We can now express the stochastic expansion for the profiled empirical likelihood
ratio given in (16) as a function of <ﬁa — ﬂg); for notational convenience let (ﬁa — ﬂg)
= Ea and define the following arrays:

STS = TLQUraUsbpij/yg/ysu gTS = n27§7§pikpﬂ€k€l <17>
@™ = nPUUnW 2" 2 ;.

Some algebra shows that the required expansion is

Wag/n = (5°°/0%) Bufls + 070" (= K™ + 267 = " + K™K*™) fuffs + (18)

3As VAR (8,) = 0%543/n, a straightforward application of the central limit theorem yields
nt/2 (527 0%) 1 (B = ) 4 N (0.6°7)

whence the quadratic form

o~

n (57 /0%) (B = 3) (Ba— 59) 4 x* ().

10



QKTStnTanSBTIWBQBBBV/S _ Cabgragsbntanuﬂ «
(KrsKtu o 2,{7’%7]1)7[(1“)37 + KTStKUUwTIUan(sByBé) BO&BB +
27]ro¢7]5[3nt7 (Krst . 3w7’st . SKTSUKM) BQBBBW/S €

(Krvatuv . Krstu/2) nransﬁnmnuéﬁagﬁgvgé + Op <n75/2) ‘

which is a function of the parameters of interest only.

In the next section we analyse the higher order asymptotic behaviour of (18): by
finding its signed square root W< (i.e. a p X 1 random vector such that ng/n =
nWWwe 4+ O, <n75/2)), we will show that W< is sufficiently close to a multivariate
normal vector with identity matrix, in the sense that its third and fourth order
cumulants are O <n73/2) and O (n~?), respectively, so that a simple scale adjustment

to the mean of Wyo will improve the coverage error to O (n~2).

3 Main result

Let W& = W + W3 + W3 be the signed square root of VT/Bg /n, where each subcom-
ponent W = O, (n*j/2) is given by:

o ag\V2? 3
Wy = (s*)" fBs/o, (19)
o 1/2 ra,.s rs 3 rst, ro,. s 2 7
(s27/0%) "WY = =T KB /2 4 K0 Bafi, /3,

(saﬁ/O_Q) 1/2 W?fg _ nmnsg (57’5 . grs/2 + Krtht) BB + nmnsﬁnm (Krst N Swrst) 3537/3 N
KR O I (GGG + see™ 0™ /9) Ba By Bs /2 —
0 (CanC™ S '™ 2 + sysn™ 0 " /8) K™ K™ 35 +
+ (K o s o0 /6 — K ) KB 3, +
nmnsﬁnmnué (Krvatuv/Q N Krstu/4) EBBWB&

In the next proposition, we evaluate the asymptotic order of the first four cumulants

of nt/2WWe,

11



py=F (5?/0’“) be the standardised kth moment; it then follows that:

Y = = (50p) "% 83 XPX] X008 /6012 4 O (n372) | (20)
B0 = 697 4 (6% 4 (00)""? (s00)? 5, XEXSXT X ph /20—
(50)""? (550" 8050, X5 X XEXEX) XL /30 —
(50c)'"? (500)"* 5555 XE X XPXSXT X1 pP05 360) + O (1/n?),
kot =0 (1/713/2) or less for v > 3.

Proof. See the Appendix. B
This asymptotic order for the cumulants of the signed square root of the profiled
empirical likelihood ratio is a sufficient condition for proving the existence of a Bartlett
correction via standard Edgeworth expansion theory, as shown in the next theorem.
Assume also that A5-A7 reported in the appendix hold with probability 1. Then

we can prove the following theorem.

Theorem 3 Under assumptions A2-A7, then

(A) there exists a valid (in Bhattacharya and Rao (1976, Theorem 20.1) sense) Edge-
worth expansion for the signed square root of the profiled empirical likelihood ratio test
for the p x 1 wector 3°.

Moreover, by using the transformation from RF to R,, T : W* — VT/gg

(B) the Edgeworth expansion for the profiled empirical likelihood ratio can be expressed

as
Pr {VNVgg < ca} =a— Beagy (ca) /n+ O <n73/2) : (21)

where the constant c,, is such that: Pr {Vngg < ca} = «, g, (+) is the density function

of a x* (p) random variate and B is the Bartlett factor:

B=p+ (Xf‘sang)Q pi/2n — (Xf‘sang)3 pipt/3n’. (22)

12



Proof. See the Appendix. W

Remark IT Notice that the resulting Bartlett correction differs from the “stan-
dard” adjustment for a multivariate mean in that there is an additional term which
takes into consideration the fact that we are considering a profiled empirical likelihood
ratio; this term would disappear in the case of no nuisance parameters.

Theorem 3 shows that an empirical likelihood confidence interval I, = {ﬂg ] ng < ca}

has coverage error O (n~1). Since:
E(We) = nB(WiWY + 2WPWY + 2WpWy + Wewy) + 0 (n?)
= p+B/n+0(n?),
we can prove the following corollary to Theorem 3.
Corollary 4 Under the conditions set forth in Theorem 3, then,
Pr {VT/BQ/E (VNVgg) < ca} =a+0 <n72) . (23)

Proof. See the Appendix. W

In practice the Bartlett factor B is not known, but it can be consistently estimated
by replacing the expectation operator with its sample analogue, and the innovations
with the least squares residuals &;, yielding the following empirical version of the

Bartlett correction:
N 2 3
B =p+ (XfsasX]) /20— (XfsapX]) 25 /30%. (24)

Remark III It is worth noting that in the case of the empirical version of the
Bartlett correction B we may still obtain the same level of accuracy of Corollary 4,
by noting that

B=DB+R,,

where the O, (nil/ 2) remainder R, is actually of order O, (n"!) by the even-odd
properties of the Hermite tensors appearing in the Edgeworth expansion of the joint

distribution of the components of W and B.

13



In the next section we illustrate how the present theory can be applied to com-
monly used specification tests which would correspond to standard F tests under the

assumption of normality of the errors.

4 Empirical likelihood specification testing: some

Monte Carlo evidence

Before illustrating the theory with some examples, we briefly discuss some compu-
tational aspects related to solving (numerically) the mathematical programs (4) and
(6).

Firstly, notice that the two programs can be formulated as a saddlepoint problem:

W0 =maxmin Wgo; (25)

Ba€B Ar

given the convexity of the objective function in the dual parameter \,, the minimisa-
tion problem can be easily handled by any optimisation routines. Profiling the vector
B, out can be handled as in Owen (1990) by using a nested algorithm in which an
optimisation routine at the outer level calls a function at the inner level that min-
imises A,. Alternatively, we can apply directly the multivariate Newton’s algorithm
to Wio as a function of both A, and f,; this amounts to Newton’s method for solving

the nonlinear system of k + (k — p) first order conditions:

8W[3§/8)\T - 0
8ng /3ﬂa = 0

with starting point in the iterative process set to (A2, 39) = (0,Ea) where Ea is the
least squares estimator for the nuisance parameter vector J,. It is worth noting that
the convergence of the Newton’s method to a saddlepoint is known as a pitfall of
optimisation routines; in the present case this is exactly the desired behaviour of the

solution of (25). For the Monte Carlo study reported below we have used Newton’s

14



method as implemented in the NLSY'S routine for the GAUSS programming language,
with convergence to the required saddlepoint achieved in general after 4 or 5 iterations.

We now give 3 different examples which illustrate how we can use profiled empirical
likelihood ratios for specification testing in linear models; given that we are working
with a linear regression model, it seems useful to express the Bartlett correction factor

(24) using the more familiar matrix notation. In order to do so, let

y=X161+XofBo +¢

be the partitioned regression model described in (5) with (3 the p X 1 vector of

parameters of interest, and
ij T -1 o7 T -1
m =My, =I=X (X[ X1) X[, Xaps = My, Xp, 50 =9 = (XJ My, Xo)
The matrix version of the empirical Bartlett correction is then given by
=1

i=1j=1

where Xj9; is the ith row of the n X p matrix Xy;s.

EXAMPLE 1. Test for the (overall) significance of the regressors

The model under investigation is
y=p0o+ X0 +e (27)

and we want to test the hypothesis that H§ : 3; = 0. In this case the dimension
of the nuisance parameter (the intercept fy) is 1, while dim (1) = p = k — 1. The

matrix M, = I —n'u? (where ¢ is a n x 1 vector of ones) transforms the data to de-

— —\T —\ !
viations from the mean, hence X ;5 = (X — X) and S = <<X — X) (X — X)) ,
respectively. The empirical Bartlett factor (26) is:

Ay (0 -X) s (x %) s

E:k—1+i[(X—7)is(X—Y)j >
=1 =1 j=1 (28>

15



EXAMPLE 2. Test for the inclusion of irrelevant regressors

The model under investigation is given by:
y=X101+ Xofa+ ¢ (29)

and we want to test the hypothesis H§ : B9 = 0. Then the empirical Bartlett factor

is as in (26) with the appropriate degrees of freedom corresponding to dim ().

EXAMPLE 3. Test for a single regressor
The last example deals with testing a specific value of one parameter and cor-
responds to a traditional (squared) ¢ test under normality. The model considered
is:
y=X101 +x20s+¢ (30)
with dim (1) = k — 1 and dim(f;) = 1; the hypothesis under investigation is
H§ : By = By for some specified value 3yy. The empirical Bartlett correction is

then as in (26) with 1 degree of freedom and the vector xs replacing the matrix Xo.

We now present some Monte Carlo evidence of the finite sample performance of

the proposed empirical likelihood based specification tests; the model analysed is

Y = Bo + 2101 + 2900 + 13,05 + 14500 + &5

and we consider both the cases of stochastic and fixed regressors.
The regressors are generated as x;; ~ N (0, ) for the stochastic case, while for the

fixed regressors we generate x; as an equally spaced grid of numbers between -1 and

16



1, z9 = 2% and 3 as the expected normal order statistic in sample of size n, so that
there is no substantial leverage effect on the design; the last regressor is generated as
N (0,1) as we limit ourselves to testing for the inclusion of irrelevant regressor(s). The
errors £’s are drawn independently from the z’s and are specified as N (0,1), x?* (4)
and ¢ (5). The first specification is useful to compare our approximation with the
(exact) F statistic; the other two error specifications examines the effect of a skewed
and of a symmetric but with thick tails distribution, respectively. All the following
results are based on 5000 Monte Carlo replications for sample sizes n = 20, n = 40
and n = 80; the case n = 100 is not reported as the figures obtained as pretty much
the same as the case n = 80. We have also simulated bigger sizes such as n = 200;
in this case the first order approximation for the profiled empirical likelihood was
already satisfactory (maximum size distortion obtained was 0.07 for the x? (4) case
and the correction did improve it to 0.069).

We consider first the stochastic regressors case: the parameter vector 3 is specified
as [1,0.8,—0.5,1.5, O]T 450 that we are testing the inclusion of irrelevant regressor as
in (30). Table 1 below report the Monte Carlo results. For each specification of the
innovation process, the first row reports the size of the profiled empirical likelihood
ratio W@ (Ba0), the second one the size of the Bartlett corrected, while the third is
based on the critical value of a F'(1,n — 5) for normal innovations and F' (1, c0) for

the other two distributions.

TABLE 1 approximately here

4Tt should be noted that the choice of these values (and all the others in the reported simulation

studies) for the regression parameters is completely arbitrary.

17



In the next simulation, we partition the vector § as 3y = [1,0.8,—0.5]T and

B0 = [1.5, 0.5]T and the null hypothesis is Hy : 33 = [399. Table 2 reports the results.

TABLE 2 approximately here

In Figure 1, we show the Q-Q plots for the six tests in the stochastic regres-
sors case. It is evident that the correction is always effective. Interestingly, the Q—-Q
plots are relatively straight, indicating that the asymptotic approximations are rather
good. It is also evident that there is a tendency of the sampling distribution of the
(profiled) empirical likelihood ratio to generate outliers, as shown also in Figure 2 for

the fixed regressors case.

FIGURE 1 approximately here

We next consider fixed regressors. The parameter vector [ is partitioned as
51 = [1,-0.5,2, 2.5]T and By = 0, so that we are testing the inclusion of an irrel-

evant regressor as in (30). Table 3 reports the results of the Monte Carlo experiment.

TABLE 3 approximately here

18



Finally we consider the following parameterisation 3, = [1,—0.3, Q]T and [y =

[0, O]T and test Hy: Jo = 90 as in (29). Table 4 reports the results for such a test.

TABLE 4 approximately here

In Figure 2 we present the Q-Q plots for the fixed regressors case; their shape
is similar to the stochastic regressors case, with the Bartlett correction noticeably

improving the accuracy of the approximation.

FUGURE 2 approximately here

From this simple Monte Carlo analysis, it seems that the Bartlett corrected pro-
filed empirical likelihood ratio test outperforms standard asymptotic (or exact) spec-
ification tests for subsets of the regressors’ coefficients in a linear regression model
and that the dimension of the nuisance parameters does not affect the performance of
the tests. It is also clear that the correction is quite effective to reduce size distortion
even in small sample, although there is a tendency to overcorrect the original statistic

for a sample size of 20. The Q-Q plots reported in Figure 1 and 2 confirm this fact.
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5 Conclusions

We have introduced a class of empirical likelihood based specification tests which
can be used in linear regression models. By generalising a result of Chen (1994), we
were able to obtain a Bartlett correction factor for a profiled version of the empiri-
cal likelihood ratio, by exploiting the linearity of the least square estimator for the
regression parameters and the Frish-Waugh theorem. This latter result is in itself
quite interesting because the introduction of nuisance parameters leads generally to
the non Bartlett correctability of the resulting profiled empirical likelihood ratio (as
opposed to standard parametric likelihood ratios). A small Monte Carlo study is used
to assess the finite sample performance of the profiled empirical likelihood ratio as
well as of the Bartlett corrected version of the test. Overall, the Bartlett corrected
test seem to perform reasonably well as shown also by the Q-Q plots, though size
distortions are still present. It is also worth pointing out that we can achieve the same
level of accuracy by bootstrapping directly the Bartlett correction (details for more
general situations can be found in Bravo (1999a)), but given the extreme simplicity
of the correction itself, this alternative procedure seems unnecessary.

Despite these encouraging results, our approach cannot be easily extended to time
series regressions. Although it is possible to obtain a Bartlett corrected empirical like-
lihood ratio test for the regression parameters of a time series regression by modifying
a result of Kitamura (1997), this is not a straightforward extension for the situation
analysed in this paper. In a weak dependent setup, we need to introduce some form of
blocking the observations to take the serial correlation in account. The length of the
blocks depends on an additional parameter M = o (nl/ 2-1/ 25) for some ¢ > 0 which
slows the rate of consistency of the Lagrange multiplier A to an order O, (Mnfl/Q),
and the overall coverage error for confidence intervals to the order O (nf‘r’/ 6). On
the other side it is not difficult to show that the rate of consistency of the profiled

parameter ﬁa is still the standard O, (nil/ 2) . This fact implies that we are working
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with two quantities characterised with different orders in probability and it is not
clear how the overall order of probability of the asymptotic expansion for the profiled
empirical likelihood ratio is affected. Moreover the arrays of observations described
in (17) which were essential to express the asymptotic expansion for the profiled em-
pirical likelihood ratio (16) as a function of the parameters of interest as given in the
expansion (18) do not generalise to weak dependent observations. It seems therefore
difficult to extend our analysis to the more general setting of time series regressions.
Possibly in this case it is more useful to use some form of bootstrap to increase the
accuracy of the test statistic.

A second limitation of the present approach is that we cannot test more general
restrictions; as mentioned before one of the key feature of the linear regression model
is that we can express the least squares estimator of the nuisance parameters as a
function of the least square estimator for the parameter of interest. This fact allowed
us to modify the original approach of DiCiccio et al. (1991) to Bartlett correcting
empirical likelihood ratios and obtain the desired correction factor. In the case of
general nonlinear restrictions this is clearly not the case therefore it seems plausible
to deduce that it is not possible to obtain Bartlett corrections with the approach used
in this paper.

Recently Bravo (2000) has obtained Bartlett type adjustments for the empirical good-
ness of fit class of tests, using arguments similar to those used by Cordeiro and Ferrari
(1991) for correcting (up to an order o(n~')) Rao’s score test. This fact opens the
possibility of obtaining asymptotic refinements without relying on the asymptotic
order of magnitude of the cumulants of the empirical likelihood ratio (or of quantities
related to it) and hence might be possibly exploited in the context of testing nonlinear
restrictions in linear regression models. This certainly deserve attention for future

research.
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Appendix

Proof of Proposition 1

Recall that 8, = G, + B+ 324 82 + O, (n"?); generalising Chen (1994) approach, to

obtain 3! we solve the following quadratic
rr}a?x K{K7

where K7 is the set of averaged k x 1 estimating equations, evaluated at the point
B; + 3L; simple differentiation shows that the required (k — p) X 1 maximiser is given
by:

Bl = (altfavf)i1 a:?a?? (ﬂAa — ﬂao) (31)

which is O, (nil/ 2) as required. Next, we determine 32, which solves:

max (K3 K5 — K5 Ky K3 + 2657 KS K3 K3 /3) |

with K7 evaluated this time at B; + Bl + 32, and corresponds to maximising with

respect to 32 the following expression:
CPBa0 + 20 KK By — 2%y K5 Ba 55 — 267 Vst K B0y +
2" K K5 B2 4 27y Yiel B B4 B
with K;Aa as in (?7) evaluated at B; Differentiating this last expression, we obtain
8= —CaC" [K2 — W (K5 = ¢a)| (K3 - ¢aY), (32)

where (g is the matrix inverse of (%. Using the same technique, it can be shown

that 32 = O, (1/n?), whence (15) follows immediately. B

Proof of Proposition 2

Suppose that X is a random vector having the same distribution of X; (i = 1,2,...,n),

and suppose that h' h? ... are real valued functions such that £ {h/ (X)} =0, j =
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1,2,... Let HY =17 (X) and let LY =37 | W7 (X;) /n. Then

(1)
(LﬂLkLle)

B (LJ L’“LleL")
)

E (LJL’“LZL’”L"LO

E (HJH’“) fn, E(DLFL) = B (B HMHY) /n?,

(33)

(n—1)E(H/H*) E(H'H™) /n*+ B (H H*H'H™) /n®,

VB (HOHY) B (HH™H") /n* +0 (1)),

)E
) (Hle) (H"H®) /n3+0(n*4),

(HJH’“

where the symbol [k] indicates the sum over k similar terms obtained by suitable

permutation of indices.

Let

I, = (s%)"7 (sﬂc)W( (s w)” XeXp XX pl, T =[3]67767,  (34)
Ty, — [4] (sm’)” (855/)1/2 <8w)1/2 (355’)”2 <X XE XD XXX

T, = [3] (saa’)1/2 (85[3’)1/2 (Sw’)l/Q (855’)1/2 X X X:X) X& X$p3ot.

Using (33) and (34), it follows that:

E (W)
E(Wy)
E(Wiwy)

E (Wiwy)

E (Wswy)

B (Wiwiwy)

0, BEWE) =—(sg,)"? 8,6 XX X003 /6n,
O(n”), E(Wf‘Wf) = 6% /n,

5% 1907 — (50e)V? (55) /% 5,0 XEXTXI XS 20 4
(Sac) /2 (s5¢)"? svészsXWX‘sXCX"XLpZp]/?)n

5 (sas)""? (55)"" 5, XPXFX] X3 p /80 —

29 (s%)l/2 <Sgc)1/ svészsXVX‘sXCX"XLpZpj/72n —
(Sac) 2 (s5¢)"? Synsa X; X7 XX XTI X! p2 p? /7202,
(506)""? (58) "% 5, XPXT X X pt /An® —

7 (505) " (88:)"” $c80 XEX] XEXEXT X p2p2 /3602 +
($05)"? (836) "% 850, X SXTXs XEXTX ! p3pl /36n?,

(3a8) " (352)"7 (540)"” X2 X XS p2 I,
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E(WEWEWE) = = (sas)'? (s52) "/ (3,0)"/2 XP X X5 p} 3% —
(35/7/)1/2 87/‘5Xf‘Xf/Xfpf6m/6n2,
Wow/ wiw? T+ (n=1)Ty) /n*,  E(WiWY) B (WIWY) = Ty/n’,
= (6T + 4Ty — T/6 + 2T /3 + [12] B (WiWY) B (WiW3)) /n®,
(

Wewewwe

£
E ( WEWEeWIW.
E( 9T, — 19T, /9) /n®,

)
;)
)
E(WiWIWiWE) = (8Ty— Ty + Ts/6+504/9 + B (WeWY) B (WyW3)) /n®,
so that

B (Wewiwy) = B (Wew?) B W) — B (Wewiwy) 3+0 (n*)  (36)

B (wy WfoWl) JE (Wewd) B (Wiwy) = (Ty—Ty) /n®, (37)
[4]E<WO‘W{3W1”W5) JE(Wew{) B (WiW5) = (=6 + 20y — Ts/6+ 2I'y/3) /n,
6] B (Wiw W, ) JE(WrwY) B (WyW5) = (301 — Ty +Ty/6 — 5I4/9) /n,
4 B (WiwPwiwyg) — 2] B (Wewd) B (WiWg) = (20h —Th/9) /n®,

and finally

— (W B (Wpwiwy) + 12 B (Wewiwy) - 2(6] B (Wewy) B (W3) B (W)) =0 (n %)
(38)

Combining now (35), (36), (37) and (38) with the formulae for the first four cumulants

(see e.g. McCullagh (1987, p. 31)) yields the following;:

B = B(W®) = B W+ Wg) = — (s59)! 2 P XFX]XPE (5 /0%) f6n+ O (n?),
k0 = B (WeWP) — BE(W") B (W7)
= B (WPWY 4 2WPWy 4 2w Wy + Wewy) — BE(W) E (WP) +0 (n )
= & /n+ ((s%)l/2 (Sgc)l/Q smsX-sX-CX-Wst 124
(80e) " (350)"” 8,86, XEX] XX SXT X p20% /30 —

(Sac)"? (850) svgszsXVX‘sXCX"XLpZp]/36n) /n*+0 ( )

26



kP = B (WeWPW?) = 8] B (WeW?) B (W7) + E(W®) E (W?) B (W)
= B (Wpw{wy) + B B (Wewiwy) — 3 B (Wiw!) E(W)) + 0 (n?)
- 0(x?)
P18 E (WeW W W?) - [3] B (WeW®) B (W'W*) — (4] B (WO‘WBWV) E (W) +

2[6] B (W) E (W?) B (W'W*) = 6E (W) E (W?) B (W) E (W*)
= B (WrWPWiwy) + [4] B (WEwPwiwy) + [4] B (W WfoW3) +
6] E (WiWPwiw?) — 8 B (Wiwy) B (WiW?) —
2] B (Wewd) B (Wiwy) — 12| B (Wiwy) B (WiWy) —
6] B (Wiwy) B (WaWh) + 4 B (Wewiwy) B (W) —
(2] B (Wewiwy) B (W3) +2[6] B (Wew?) B (Wy) B (W5) + O (n )
= 0(n")
The order of the higher order cumulants can then be deduced by using James and

Mayne’s (1962) general results. B

Proof of Theorem 3

In order to show part (A), we first prove that there exists a valid Edgeworth expansion
for the signed squared root of the empirical likelihood ratio orthogonality condition
EZT =F (XT&‘) = 0 (i.e. for the whole parameter vector ). Part (b) then follows
by a simple integration argument.

As in Chen (1994) we switch now to matrix notation; let U, be the jth (j =
1,2, ..., k) row of the matrix U = U, defined in (9), and let U_, define the (k —r + 1) x
k matrix obtained after deleting top 7 (r =0, 1,...,k—1) rows from U. Define the fol-
lowing j; X k? and jp x k* (where j; =k (k+1) /2 and jp = ji+k (k +1) (2k + 1) /12)
matrices:

T

Tl = U1®U,0 UQ@U,1 Uk®U,k,1 s
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Ty = [U1®U1®U0--- Uh@Ue QU_p1 Uy @U@ U_4...

T

U2 & Uk & U,k,1 Uk & Uk & U,k,1

I

where @ denote the Kronecker product and let
El == Xz (629) X{rf (512 — 0'2) s EQ == Xz (629) Xz (629) X[rg (5? — /Lg)

where X; is a 1 X k vector.

1/2

— — — _
Let @,, = n'/?W, where W = 37 | w;/n, and

T

: (39)

1/2 —_— —_—
wi:n/ [XZTU€Z =1 29

be the (k + j; + j2) x 1 vector containing all distinct first three multivariate central
moments of U Z;.
In order to prove the validity of the Edgeworth expansion for the random vector

w;, we need some preliminary lemmae. Assume that

A6 lim Ain/n >0, my =0 (né) for some 6 €10,1/2) fori=23

n—o0

where \;;, and m;, are the smallest eigenvalues and the max for the n? x p? and
(3

n® x p® matrices X © X and X © X @ X, respectively.

Firstly, notice that under A2 the w,’s are independent 0 mean random vectors.
Lemma 5 Under A8 and A5 and A6 for n > N, then for v <5,
T (1/n) S B il < oo. (10)
=1

Proof. First notice that A3 and A6 imply that there exist an 7’ large enough such
that such that n/X\;, < ¢; (i =1,2,3) for some constants ¢;. The result then follows

by noting that

B les]®

IA

3v [E (HnmUXiT

(|,

D E(er=]))] @y
" ).

2u
|

Rl be

A

3 [cg’/ 2 HXZ.T

P T
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by the Loeéve and Chauchy-Schwarz inequality, where p” is the vth moment of £;.By
A5 the right hand side of the second line of (41) is uniformly bounded, whence the
result. B

Let

A = UMY XT(X;0X) B () 1] /n,

=1
Mg = UM X[ (X0 X 0X,)E ()13 /n,
=1

A = T3 (X0 XT) (e 0 X0) [B (=) - B2 (2)] T0/m,

=1

“-

Ay = 11> (XToX]) (X0 X;©X,) B ()15 /n,

K2 K2

=1

)=

Ay = T3 (XToXToX]) (X0 X;0X,) B () - B ()] 15 /n,

i
I

and let 775 and 73 denote the largest eigenvalues of Ayy and Asz, respectively. Assume

that

AT =AMt > 0andns— A ' — (7]2 — )\171)71 > 0, where A; is the smallest eigenvalue
of XTX.

we can then prove the following lemma.
Lemma 6 Under A7, ¥ = (1/n) 37, COV (w;) is positive definite, and
o = () 3 0] < oo, (42)
for 0 <wv <5, where Q2 = X1,

Proof. The proof is based on Lemma 2.1 of Chen (1993). There exists a nonsingular
matrix S such that

Iy, 0 0
STES = 0 A22 — A{2A12 0
0 0 A33 - A%AB — Q
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-1

where () = (Ag3 - A1T3A12) <A22 - A1T2A12) <A23 - A%AB). Noting that the small-
est eigenvalue of Aoy — AT A9 > 19— )\fl and the smallest eigenvalue of Ag3 — AT, A 13—
Q>n3— AN — (7]2 — )\171)71 are both positive by A7, it follows that the matrix X is

positive definite. Let 15, denote the smallest eigenvalue of 3. Clearly we have

19 = 1/7];/2 <y =calk, pa, ..., he) , HQ&H <o =c5 (k. p2, s ) (43)

where ¢4 and ¢y are finite constants depending on the first 6 moments of the &;’s.
Combining now (43) and (40) yields that u,, = (1/n) X0 |Quws||” < ¢5 = ¢5 (l{:, ]/L]%),
where ¢5 is a finite constant which depends on the 3uvth absolute moment of £;’s which
is finite by A5, whence (42). B

Let ﬁz be the Fourier transform of the distribution function F; of w; and let
]5]- (it,{xsn}) be the Fourier transform of the function P; (—¢o s, {Xxsn}) obtained by
formally substituting (—1)‘(1‘ Digy s for (it)? (i = v/—1) in the polynomial ]3J (it, {xsn}),
where |q| = Z?i{ﬁjg g, D1 = Dgl...DZZZ?I;j (D, is the jth partial derivative opera-

tor) and ¢p5; is the normal density in R*™72%J3 and s, are the first 5 cumulants of
W (see (20)).

We can prove the following lemma.

Lemma 7 Under A2-A7, there exist positive constants cg = cg (k:, ]ul% ,v) and c; =

cr (k:, s ,v) such that for every t € RF72%5 and some § € [0,1/2) satisfying:
] < egnt>=?, (44)
one has
no N v—3 ]
DITLE (St P) — exp (= 7 /2) (1430 92, (~gus, (o) || (89
i1 =

< C7n7(v72)/2 {HtH2f\(J\ + HtHi’»(v72)+\qq exp {_ HtH2 /4} 7

for all g € (7)1
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T —~
: by Ad G is

Proof. Let (i be the Fourier transform of [ g &2 —o0% £ —ps
continuous at 0 and hence there exists a ¢ > 0 such that ‘é(z) — 1‘ < 1/2 for

|z|| < e.. Let
c¢ = min {c (v, k) u;l/(“Q), €/cq (ci;/2 + 62/2 + 02/2)} (46)

where p,, is defined in (42), ¢4 in (43) and ¢(v,k) is a generic positive constant

depending on k and v. Combining (44), (46) and (42) one gets
Il < e (v, k) n'2p, 072, (47)

Let dn:sup{a>0:tTEt§a2:>

F; (ot/n1?) —1] < 1/2}.

Suppose that Ot = [ ty ty 15 where t; € R¥, ty € B and t3 € R%. Then

F (Qt/nl/Q) =

"t

G, ([ FUXT 3T, (XT 0 XT) AT, (XT o XT o XT)
Gi(A), say.
Clearly under A6
3
AT <3 g 1900 A2 < cacon? (2 4 642 4 %)t < e,
j—1

so that

F, (Et/nl/Q) — 1‘ < 1/2for all i = 1,...,n. The result (45) follow directly
from Theorem 9.9 of Bhattacharya and Rao (1976) as (46) and (47) implies condition
(9.37) of that theorem. W

Lemma 8 Let £ € RF215 [ (¢ e):=FE = {‘STQwi > e ||€]| /20 = 1,2, ...,n},
and let #FE be the cardinality of E. Then for 0 < ¢; <1, one has
#B/n> (1= )/ [(nmi/ns) = 3] (49)

Proof. Let #E° = {|¢70w;| < e ¢l /n/?i=1,2,...n}. As T7, ({TQwi)Q =
P (€Tl QE) = €], we can write

lE? = 30 (€70w:)" + 3 (€7w,)" < #E €12 mb /ns + (n— #E) €] er/n,
#E #Ec
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where the first term in the inequality follows, since 75, :mi:nl I wwl/n < mi,.

In the following lemma we show that the Fourier transform of the distribution of
T

€4 g? — g2 g? — 13 satisfies the Cramér condition.

Lemma 9 Under A2-A7, let cg denote a posilive constant, for alli € #FE one has

Fi(t)] <d
for some 0 < d < 1.

Proof. Asin Lemma 7, let G and G denote the distribution and the Fourier transform
T

2 . Using Lemma 1.4 of Bhattacharya (1977), we have

of | &5 &2 —0% & — ps

lim Bl < 1.
lIt]|—o0 ( )‘

For cg > 0 and the same constant ¢; of Lemma 8, we have
sup |G (t)‘ =d< 1. (50)
[tl>c7es/3
Assume now that t € R¥"72173 satisfies ||t|| > cg, then either ||t;]| > cg/3 or ||ta] >
cg/3 or ||ts]] > cs/3. Let F (&) = @(A) as in Lemma 6. Notice that for all i € #F,
if ||t1]] > ¢3/3, we have

HUXT| > er ]|t > eres/3,

and if ||to > /3
G X7 o X7

> Cr HQtQH > C7Cg/3

finally if ||¢3]] > /3, then
‘t?):TQ (XZT & XZT & XZT)‘ > C7 HQt?,H > C7Cg/3,

because 0 < ¢7 < 1. These inequalities imply altogether that

T

> C7C3/3,

H [ JUXT 37 (XF o XT) @7, (X o X7 o X7)
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so by (50) we have

T

3

é[ HUX! g1 (X ox?) 471, (x] o x! o x])

and so

Fi)<d m
Noting that (43) with Lemmae 7 and 9 imply Theorem 20.1 of Bhattacharya and
Rao (1976), it follows that

sup
BeB

=0 <n73/2) ,
(51)
where B is any class of Borel subsets of RFt71172 guch that sup @y, 15, (0B)" = O (¢),
BeB

Pr{weB}—/B

2
14 Zn’”/QPj (=D, Xfm)] Pretjr+iz () d
s

where @, 5, 14, (+) is k + j1 + jo dimensional multivariate normal distribution, (9B)
is the set in R**/1%%2 within ¢ from the boundary d of B.
From (19), it is then clear that there exists a smooth function f, () such that the

signed square root of the profiled empirical likelihood ratio test VT/Bg = fn (@) where

U= [ <§a _ ﬂao) KTs st }

and @ = (1/n) 3" ; w; where

T

-1
Wi = |: (XQTMXIXQ) XQMX1€Z' El EQ

l.e. it has the same structure of the vector (39), the only difference is the dimension,
being in this latter case p + 71 + j2. We can then use Theorem 3.2 and Remarks 3.3.
and 3.4 of Skovgaard (1981) to show that the expansion (51) may be transformed
by a sufficiently smooth function f, () to yield a valid Edgeworth expansion. This
proves part (A).

The second part of Theorem 3 follows easily; switching back to the tensor notation,

(51) is given by:

=0 <n73/2) (52)

sup
BeB

P{nl/QWO‘ € B} — /BH<U) ¢p (V) dv
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where ¢, (v) is the p dimensional standard multivariate normal distribution and H (v)

is the second order Edgeworth polynomial (see for example McCullagh (1987, Ch. 5))
H(v) = 1+ k*h* /!> 4+ (k7 + k*K°) h*? J2n.

Using the symmetry of ¢, (v), the orthogonality property of the Hermite tensors

het-2 and an integration by part argument yields that up to an error of order

O (n73/?):

Pr{nWWe <c¢,} = /U<cl/2 H (v) ¢p (v) dv

o

= Pr{i®(p) < ca} + 6% (k7 + k7)) [Pr{x*(p+2) < ca} —
p 1

(270 (1/2) e <exp (—o0%5°9/2) i +ordg @))] .

a=1

Integrating the last term of the second line yields (21). B

Proof of Corollary 4

The results follows immediately by noting that
Pr {X2 (p) <eo(l+ B/n)} =a+ Beagy (¢o) /n+ O (n*Q) : (53)
so combining this latter expression with (21) we get
Pr {VNVgg/E (ng) < ca} = a — Beagp (ca) /n+ Beagy (co) /n+ O <n73/2) ;

as the error term O <n73/2) is actually O (n"2) by the even-odd property of the
Hermite tensors (see Barndorfl-Nielsen and Hall (1988)), the result follows. B
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Tables and figures

TABLE 1. EMPIRICAL SIZE OF Wgo

n =20 n =40 n = 80

0.183* 0.118° 0.134* 0.101° 0.121¢ 0.071°

N(0,1) 0.147* 0.083 0.119* 0.058° 0.113* 0.054°
0.151¢ 0.081° 0.117* 0.056° 0.113* 0.053°

0.214% 0.159° 0.149* 0.101° 0.139* 0.095°

x? (4) 0.163* 0.108° 0.138% 0.092° 0.115* 0.081°
0.231¢ 0.163° 0.141% 0.104° 0.132% 0.095°

0.202¢ 0.131° 0.131* 0.096° 0.128* 0.083°

t(5) 0.152% 0.094° 0.119* 0.078° 0.119* 0.071°
0.194% 0.142° 0.142% 0.082° 0.135* 0.085°

a,b 10% and 5% nominal size, respectively.
TABLE 2. EMPIRICAL SIZE OF ng
n =20 n =40 n = 80

0.199¢ 0.131° 0.141* 0.093° 0.122* 0.069°

N(0,1) 0.151* 0.095 0.123* 0.071° 0.118* 0.063°
0.181% 0.094° 0.125% 0.069° 0.117* 0.059°

0.231¢ 0.152° 0.172¢ 0.107° 0.150¢ 0.102°

x” (4) 0.172% 0.098° 0.140* 0.091° 0.127% 0.093°
0.229% 0.128° 0.179* 0.109° 0.139* 0.103°

0.214% 0.145° 0.159¢ 0.101° 0.134* 0.092°

t(5) 0.162 0.079° 0.134 0.074° 0.120* 0.069°
0.202¢ 0.113° 0.160* 0.089° 0.134% 0.094°

a,b 10% and 5% nominal size, respectively.
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TABLE 3. EMPIRICAL SIZE OF Wﬁg

n =20 n =40 n = 80
0.192* 0.129®  0.135* 0.086°  0.128* 0.079
N(0,1)  0.140* 0.080*  0.130* 0.072®  0.119* 0.065"
0.141* 0.079*  0.133* 0.071*  0.121* 0.065°
0.243* 0.154*  0.170* 0.132°  0.151* 0.098°
x* (4) 0.154% 0.119°  0.134* 0.099°  0.126* 0.085°
0.229* 0.135*  0.176* 0.119®  0.145* 0.106°
0.207* 0.135*  0.167* 0.102°  0.138* 0.088?
t(5) 0.149* 0.105*  0.129* 0.078®  0.125* 0.073°
0.195% 0.142°  0.139* 0.099°  0.135* 0.091°
a,b 10% and 5% nominal size, respectively.
TABLE 4. EMPIRICAL SIZE OF ng
n =20 n =40 n = 80
0.208* 0.135*  0.151* 0.099°  0.130* 0.082°
N(0,1) 0.146% 0.090°  0.135* 0.073°  0.124® 0.067"
0.143* 0.089®  0.138* 0.083"  0.123* 0.064°
0.239* 0.161°  0.181* 0.139®  0.139* 0.100°
x* (4) 0.164* 0.125*  0.157* 0.104*  0.130* 0.090°
0.240% 0.169° 0.189% 0.147° 0.141¢ 0.108°
0.221¢ 0.136° 0.159¢ 0.121° 0.134% 0.087°
t(5)  0.157* 0.104*  0.140° 0.096°  0.121® 0.072°
0.209* 0.129°  0.168* 0.126°  0.133* 0.096°

a,b 10% and 5% nominal size, respectively.
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1a: N(0,1) innovations

1b: Chi square (4) innovations

1c: t(5) innovations
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Figure 1: Q-Q plots for the stochastic regressors case. Vertical lines indicate the 90%

and 95% critical values, respectively.
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2a: N(0,1) innovations 2b: Chi sqaure (4) innovations 2c: t(5) innovations
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Figure 2: Q-Q plots for the fixed regressors case. Vertical lines indicate 90% and 95%

critical values, respectively.
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