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Abstract

The purpose of this paper is the theoretical and empirical comparison of alternative GARCH-in-mean
models. We examine three GARCH specifications: Bollerslev’s (1986) GARCH model, Taylor (1986) -
Schwert’s (1989) GARCH model, and Nelson’s (1991) Exponential GARCH model. In addition, we employ
four of the most common forms in which the time-varying variance enters the specification of the mean to
determine the risk premium: the quadratic, the linear, the logarithmic and the square root one. For all the
aforementioned models we give the auto/cross correlations of the process and its conditional variance. The
practical implications of the results are illustrated empirically using daily data on the Korean Stock Price
Index (KOSPI).
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1 INTRODUCTION

One of the most common mean equations for excess asset returns is the GARCH-in-mean (GARCH-M) model
of Engle, Lilien and Robins (1987). Mean equations of this form have been widely used in empirical studies
of time-varying risk-premia, in the term structure (Engle and Ng, 1993, Hurn, McDonald and Moody, 1995,
Brunner and Simon, 1996, Kavussanos and Alizadeh, 1999), in forward and future prices of commodities (Hall,
1991, Moosa and Loughani, 1994), in industrial production (Caporale and McKierman, 1996) and especially in
stock returns (Black and Fraser 1995, Fraser 1996, Hansson and Hordahl, 1997, Elyasiani and Mansur, 1998,
Ellul, 1999).

In particular, the empirical literature has attempted to characterize the intertemporal relation between
risk and return on the stock market. However, the reported findings are conflicting. For example, French,
Schwert and Stambaugh (1987) and Campbell and Hentschel (1992) conclude that the data are consistent with
a positive relation between conditional expected excess return and conditional variance, whereas Fama and
Schwert (1977), Campbell (1987), Breen, Glosten and Jagannathan (1989), Turner, Starz and Nelson (1989),
Nelson (1991), Pagan and Hong (1991) and Glosten, Jagannathan and Runckle (1993) find a negative relation.
Although there is a large body of empirical research on the trade off between risk and return there have
been relatively fewer theoretical advancements. This paper contributes to both the theoretical and empirical
developments in this research area.

In order to carry out our analysis of stock returns we need to choose a form for the mean and variance
equations. Scholes and Williams (1977) suggested a MA(1) specification for the mean, Lo and McKinlay (1988)
and Nelson (1991) used an AR(1) form, while Hentschel (1995) modeled the index return as a white noise process.
Here, we adopt the ARMA(1,1) form which includes the white noise, MA(1), and AR(1) specifications as special
cases. For the variance equation we examine three alternative GARCH processes: (i) Bollerslev’'s GARCH(1,1)

model, (ii) Taylor/Schwert’s model where the conditional standard deviation (h% ) follows a GARCH(1,1) process
and (iii) Nelson’s Exponential GARCH(1,1) [EGARCH(1,1)] model where the logarithm of the conditional
variance [In(h,)] follows an ARMA(1,1) process.

Furthermore, we need to choose the form in which the time varying variance enters the specification of the
mean to determine the risk premium. This is a matter of empirical evidence. Although a number of authors
assumed linearity between the conditional variance and mean return (see, for example, Nelson, 1991, Glosten,
Jagannathan and Runckle, 1993, and Hentschel, 1995) the theoretical justification for this linear relationship
is meagre, since the required excess return on a portfolio is linear in its conditional variance only under very
special circumstances. In many other applications the square root of the conditional variance (y/h;) has been
used (see for example Domowitz and Hakkio, 1985, Bollerslev, Engle and Wooldridge, 1988, Kavussanos and
Alizadeh, 1999 and Ellul, 1999). However, Engle, Lilien and Robins (1987) found that the logarithm of the
conditional variance [In(h;)] worked better in their estimation of the time varying risk premia in the term
structure, whereas Kroner and Lastrapes (1993) used the square of the conditional variance (h?) as a regressor
in their preferred model. Following the above discussion, we model the relationshilp between the expected return

and the time varying risk premium by assuming (i) linearity, i.e. we use hy, h?, and In(h;) as a regressor in
Bollerslev’s, Taylor/Schwert’s and Nelson’s models, respectively, and (ii) nonlinearity, i.e. we use h?, h;, and hf
in Bollerlsev’s, Taylor/Schwert’s and Nelson’s' models, respectively.

To obtain the theoretical results and to carry out the estimation we need to make a distributional assumption
for the error term?. In the light of empirical evidence of fat-tail errors, several authors (Bollerslev, 1987, Nelson,
1991, and Sentana, 1995) have chosen distributions such as the Student-t distribution or the Generalized Error
Distribution®. We should note that for the GARCH models our theoretical results hold under any distributional
assumption, whereas for the EGARCH model we assume that the error term is drawn from either the Normal,
or the Double Exponential or the Generalized Error Distribution.

The rest of the paper is organized as follows. In Section 2 we present the theoretical results for the above
GARCH-M models. First, for the GARCH specifications we give their ARMA representations, their autocor-
relation functions and the condition for the existence of their second moments*. Second, we obtain the ARMA

LIn the case of the EGARCH(1,1) model with the k-th power of the conditonal variance in the mean equation we only examine
a MA(1) mean specification.

2In addition to the potential gains in efficiency, the exact form of the error distribution also plays an important role in several
applications of the GARCH model such as option pricing and the construction of optimal forecast error intervals; see Engle and
Mustafa (1992) and Baillie and Bollerlsev (1992).

30Other parametric densities that have been considered in the estimation of GARCH models include the normal-Poison mixture
distribution in Jorion (1988), the power exponential distibution in Baillie and Bollerslev (1989), the normal -lognormal mixture
distribution in Hsiech (1989) (see also, for an excellent analysis of a variety of non-normal distributions, Paolella, 1999).

4The moment structure of GARCH models is a topic that has recently attracted plenty of attention. Karanasos (1999) examined



representations and the autocorrelation functions of the stock returns. Finally, we give the cross correlations
between the stock return and the GARCH specifications®.

In Section 3 we proceed with the estimation of models from the GARCH-in-mean family in order to take
into account the serial correlation, the GARCH effects and the time varying risk premium observed in our time
series data. Our empirical analysis is based on daily data for the price of the Korean Stock Index. For the
estimation of the GARCH(1,1) specification and the in-mean effect we use three alternative functional forms:
the logarithmic, the linear and the square root one®. All our estimated models suggest a positive and statistically
significant relation between risk and return.

2 GARCH-IN-MEAN MODELS
2.1 GARCH-in-mean-models

GARCH models have been applied in modeling the relation between conditional variance and asset risk premia.
In what follows, we examine an ARMA(1,1) form for the mean equation which includes both the AR(1) and
MA(1) forms as special cases. The AR(1) term allows for the autocorrelation induced by discontinuous trading
in the stocks making up an index (Scholes and Williams, 1977, Lo and Mckinlay, 1988). In addition, for the
variance equation, we assume that either the conditional variance is a linear function of the lagged squared
error as in Bollerslev’s GARCH(1,1) model or that the conditional standard deviation is a linear function of
the lagged absolute error as in Taylor/Schwert’s GARCH(1,1)” model. In the latter model we also include an
asymmetric term®. Finally, in Bollerslev’s model we include the variance in the mean equation, whereas in
Taylor/Schwert’s model we use the standard deviation as a regressor.

e Model 1. Consider the ARMA(1,1)-GARCH(1,1)-in-mean model

L
2

1
(1 —=@L)re =b+ (1 —0L)er +shy , er = eth, ey ~ 11D(0,1) (2.1)

i 8i LEA
he = wtaf(er1)+0h7y, flee1) = [lec1|+diee 1% = h2 ([ler1] + dier 1],
(2.2a)
2 if i=a 0 if i=a
6; = {1 6 oi—p di—{d doi—b , w,a,3>0, -1<d<1 (2.2b)

Note that when i=a (6, = 2, d, = 0) we have Bollerslev’s GARCH-in-mean model (Model 1a), and when
i=b (6, =1, dp = d) we have Taylor/Schwert’s asymmetric GARCH-in-mean model (Model 1b).

In these models the %—th power of the conditional variance follows a GARCH(1,1) process and it also enters
the specification for the mean. In other words, in these models of volatility feedback the long-horizon forecasts
are linearly related to short-horizon forecasts of some volatility measure and the expected stock return is linear
in this same measure.

the moment structure of the squared errors for the standard GARCH model (see also, He and Terdisvirta, 1999). Karanasos
(2000a) derived the auto/cross covariance functions of the aggregate variance and the component variances for the N component
GARCH(n,n) model. K (2000b) and Fountas, Karanasos and Karanassou (2000) derived expressions for the autocovariances of the
conditional variance and obtained the cross covariances between the process and its conditional variance for the ARMA-GARCH-
in-mean and the ARMA-GARCH-in-mean-level models, respectively.

5While we were writing this paper, the work by He, Teriisvirta and Malmsten (1999), hereafter HTM, came to our attention.
HTM examined only the conditional variance in the context of the simple EGARCH(1,1) model whereas we derive results for both
the conditional variance and mean in the context of an EGARCH(1,1)-in-mean model. We should also note that our research has
been contacted independently of HTM.

6 Taylor(1986) and Schwert(1989) first suggested ARCH models for the conditional standard deviation. Nelson and Foster
(1994) show that a GARCH extension of the Taylor/Schwert ARCH model is a consistent estimator of the conditional variance of
near diffusion processes. In the context of a power GARCH model, Ding, Granger and Engle (1993) using daily data on the S&P
500 index estimate a power of 1.43 which was significantly different from 1 or 2; on the other hand, Hentschel (1995) using U.S
stock return data estimate a power of 1.131 and found it to be insignificantly different from 1. Although in our empirical analysis
we estimate a power GARCH model in our theoretical analysis we restrict our attention to either Bollerlsev’s or Taylor/Schwert’s
models.

TOur choice of the first-order model is motivated by the fact that is the most widely applied GARCH model.

8The asymmetric response of volatility to positive and negative shocks is well known in the finance literature as the leverage
effect of the stock market returns (Black, 1976). Researchers have found that volatility tends to rise in response to “bad news”
(excess returns lower than expected) and to fall in response to “good news” (excess returns higher than expected).
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Proposition 1. The ARMA(1,1) representation of the %L—th power of the conditional variance (h? ) is
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ki = E[f(es1)] = Elle; 1| + dies 1]* (2.3b)

%i
The stationarity condition for h? is B3, < 1.
In addition, the univariate ARMA representation of the stock return (rs) is

(1=¢L)(1 =B, L)re = [b(1 = By) + sw] + (1 = 0L)(1 = B, L)e; + savie— (2.4)
The stationarity condition for ry is (B1,|¢| < 1. In what follows we examine only the case where ¢ # (3.
s

Moreover, the auto/cross covariances/correlations of the stock return ( r¢) and the %--th power of its con-
%i
ditional variance (h*) are
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Note that when i=a, Aq1 = 0 and thus the last terms in the right hand side of equations (2.5b), (2.5d) and
[ 1
(2.7) are 0; when i=b, E(h; %) = E(hy).
5

Furthermore, the j-th moment of ht_zk is given by

iy i ﬂn
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E(ht") = 15, ; (2.8a)
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=0



5.
Hence, the condition for the existence of the j-th moment of ht_2L is (By,...B; < 1. In particular, the first and

5,
second moments of the ht_ZL are

bW sy [BGDP?
E(h?) = 7= 7 E(h) = — %[b 7 (2.9)

The proof of Proposition 1 is given in Appendix A.

The theoretical justification for including the c¢h; term in the mean equation of Bollerslev’s GARCH(1,1)
model is meagre’, since the required excess return on a portfolio is linear in its conditional variance only under
very special circumstances (Nelson, 1991)'Y. Therefore, in what follows we include the ¢h? and ch; terms in the
mean equation of Bollerslev’s and Taylor/Schwert’s models, respectively.

e Model 2 Consider the ARMA(1,1)-GARCH(1,1)-in-mean model

1
(1—¢L)yry =b+ (1 —0L)e; +<hy', e = e, eqr_1 ~ I1D(0,1), (2.10)
[ 5 s 5 s
h = wtaf(ee1) +Bh2q, flem1) = [le—1] + dice1]|” = 24 [lec—a| + die—a]”",  (2.11a)
2 if i=a 0 if i=a

As in model 1, when i=a (§; = 2, d; = 0), we have Bollerslev’s GARCH-in-mean model (model 2a), and when
i=b (6; =1, d; = d) we have Taylor/Schwert’s asymmetric GARCH-in-mean model (model 2b).

In these models the %L—th power of the conditional variance follows a GARCH(1,1) model whereas the ¢;-th
power of the conditional variance enters the specification for the mean. In other words, in these models of
volatility feedback the long-horizon forecasts are linearly related to short-horizon forecasts of some volatility
measure and the expected stock return is quadratic in this measure.

Proposition 2. The ARMA(2,2) representation of h®' is

(1—B,0)(1 = BoL)RY = (1 + By) + 2wavy 41 + a(l — B, L)avy_1 + 20vs +_1], (2.12a)
8 :
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8i .
’U37t_1 = Ul,t—lht2_17 ]{?J = E[f(et_l)j], (212C)
B, = aky+ B, By=kpa®+ [ +2kiaB (2.12d)

The stationarity condition for hfi s By, 05 < 1.
In addition, the ARMA(3,3) representation of the stock return is

(1-¢L)(1—-pB,L)1—pByL)ry = b +as(l—BL)aves—1 + 20v3 1] + 2wacvy 11 +
+(1—-6L)(1 — B{L)(1 — ByL)ey, (2.13)
b = b(1— )1 By) + (145 )’

The stationarity condition for ry is [y, Bs,|¢| < 1. In what follows we examine only the case where ¢ #

B1 # Ba-

9Rather, the justification for including ch¢ is pragmatic: a number of researchers using GARCH models (e.g., Hentschel, 1995)
have found a statistical significant relation between conditional variance and excess returns on stock market indices.

10Tn Mertons’s (1973) intertemporal CAPM model, for example, the instantaneous expected excess return on the market portfolio
is linear in its conditional variance if there is a representative agent with log utility. Merton’s conditions (e.g., continious time,
continuous trading, and a true “market portfolio”) do not apply in our models.




Moreover, the auto covariances/correlations of the stock return are
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Furthermore, the cross covariances/correlations between the stock return and the %—th power of its condi-
tional variance are

p(re h:_{ ) = cov(rt,ht_zjm) _ % if m>0
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where 7,¢ and 7y, are given by (2.15a) and (2.6, when m=0), respectively.
Finally, the auto covariances/correlations of the 6;-th power of the conditional variance are
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The proof of Proposition 2 is given in Appendix A.
Note that all the formulae in Propositions 1 and 2 hold for the general Asymmetric Power GARCH!!-in-

} (2.17)

mean model where 0< §; and -1<d; < 1. For this model the E(h, 7 +2) and E(h;) are fractional moments and
their calculation is beyond the scope of this paper.

2.2 EGARCH-in-Mean-Models

One limitation of the GARCH models 1 and 2 results from the nonnegativity constraints on w « and § in (2.2a)
and (2.11a) which are imposed to ensure that h, + remains nonnegative for all t. These constraints 1mply that

increasing f(e;) in any period increases ht *m for all m> 1, ruling out oscillatory behavior in the h; * process
(Nelson, 1991). Alternatively, one can use a model in which the logarithm of the conditional variance of returns
follows a GARCH-like process. This can be combined with the assumption that the expected return is linear
in the logarithm of the conditional variance, as suggested by Engle et al (1987)'2.

e Model 3. Consider the ARMA(1,1)-EGARCH(1,1)-in-mean model

(1=¢L)rs =b+4 (1 = 0L)er +<In(hy), e = ethf, eye—q ~ IID(0,1), (2.18)

1 The statistical properties of the simple Asymmetric Power GARCH(1,1) model have been examined in He and Terasvirta
(2000).

2Engle, et al (1987) computed a series of LM tests for omitted variables [oht hz, and log(ht)] to test the assumed linearity
between the conditional variance and mean returns. Economic theory has little to s: w on the nature of this trade-off as it presumably
depends on the risk preferences of the traders. Engle et al (1987) found that only the log variance was significant and they concluded
that the final preffered model was the one with the log variance in the mean.



(1-BL)In(hy) = w + czr1, 21 =d L s . (2.19)

T ey

In this model the logarithm of the conditional variance follows an ARMA(1,1) process and it also enters in
the specification of the mean. The stationarity condition for the In(h;) is | 3| < 1. Note that in (2.19) there
are no inequality constraints whatever, and that cycling is permitted, since the § term can be negative or
positive.

Proposition 3. The univariate ARMA (2,2) representation of the stock return is
(1—=¢L)(1—pBL)ry = [b(1 — ) + béw]+ (1 —OL)(1 — BL)er + scze—1 (2.20)

The stationarity condition for the stock return is |B|, |¢p| < 1. In what follows we examine only the case where

B# .

In addition, the auto covariances/correlations of the stock return are
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where the first and second moments of h; are given below and the variance of z; is given by
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where N, GE and DE denote the Normal, the Generalized Error and the Double Exponential distributions,
respectively; v are the degrees of freedom of the generalized error distribution.

Moreover, the (k1+ksy )-th moment of the conditional variance, and the auto covariances/correlations between,
the ki-th and ko-th powers of the conditional variance (k1, ko > 0), are given by
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When the conditional distribution is the normal the f p, Hﬁ g, ond Hﬁ Kk, leTms are given by
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where F denotes the hypergeometric function.
When the conditional distribution is the generalized error the fp, HZ K, and HZ K, k, LETMS are given by

g Im|—1 oo L i1 - - F(LF)
g B o0 o0 % . - i . F(IJ;T)
Hm,kl,kg = g{;p AB (ks + ki B™D]T[(v + )" + (v — d) ]W}’ (2.25b)
_ zrdynd) s, g o DA )
A= 2FTEIEITE fo= (D) (2.25¢)

where v are the degrees of freedom of the generalized error distribution; when v > 1 the summations in (2.25a)
and (2.25b) are finite whereas when v < 1 the summations are finite if and only if k1cB'y + |ki1c8'd] <0 and
e (ka2 + klﬁ‘ml)’y + [cB (ko + klﬂ‘m‘)d\ < 0, respectively (Nelson, 1991).

When v =1 (i.e. the conditional distribution is the double exponential), the above equations give
|m|—1

d

_ 2 — \2kicfBly
L. = 1 2 — 2v/2k1cB'y + (k1c)26% (72 — d?)’

=0

S

\/57

fa= m # 0, (2.26a)

0

Hd 1 2 — V2eB (ky + k1 8™y
mka ko 62— 2V2cB (ky + k1 8™y + 2% (ko + k1 B2 (42 — d2)’

(2.26b)

The above equations hold if and only if kicB'y+ |kicf'd| < /2 and cﬁi(klﬁlml +ko)y+ \cﬁi(klﬂ‘m‘ +ko)d| <
V2. (Nelson, 1991).

Use of the logarithm of the conditional variance as a regressor in the mean equation induces a negative sign
to the risk premium whenever h; is less than one, and as h; — 0 the effect on r; would be infinite (Pagan and
Hong, 1991). Therefore, in what follows, we use the k-th power of the conditional variance as a regressor in the
mean equation and we examine only a MA (1) mean specification. As a practical matter there is little difference
between an AR(1) and a MA(1) model when the AR and MA coeflicients are small and the autocorrelations at
lag one are equal, since the higher order autocorrelations die out very quickly in the AR model (Nelson, 1991).

e Model 4. Consider the MA(1)-EGARCH(1,1)-in-mean model

vy =b+ (1—0L)er+<hE, & = eh?, ey ~ IID(0,1), (2.27)
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(2.28)
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Note that in this model the logarithm of the conditional variance follows an ARMA(1,1) process whereas
the k-th power of the conditional variance enters the specification in the mean. Although for this model
we do not have the ARMA representation of the hf, and consequently of r, the covariance-stationarity
condition for both processes is |3] < 1.

Proposition 4. The autocorrelations of the stock return are

- ’YT7n - 9 D D _ D D (.-57k'\l(rui;c'yf£21 D D D B
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where the 112  and H ki are defined by (2.24a)-(2.26b); when the conditional distribution is the normal,

the double exponential and the generalized error one then the D,Zk term is given by

gcm p)z\"’\gq+d1
D7nk = 27‘(‘
[ ckﬂ\m\ ('Y + d)] Qi(ck)zﬁz‘m"ydD_g[—C/{ﬂlm‘(’y _ d)}}, (2308.)
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0
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where Dgy[-] denotes the parabolic cylinder function; when v > 1 the summation in (2.30c) is finite whereas
when v < 1 the summation is finite if and only if ckﬁ‘m|’y+|ck5|m‘d| <0.
Finally, the cross correlations between the stock return and the ki-th power of its conditional variance are

cov(ry, B m)
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Z1, m<-1

2k [w—cyfpl
o Aalemedinl op 1D D D
Yhoe, = © 7 Mook, k, — ok, 000k, (2.31¢)

where 7,4 1s given by (2.29b).
The proof of Proposition 4 is given in Appendix C.
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3 EMPIRICAL APPLICATION

Estimation and Inference

For our empirical analysis, we use the daily returns for the Korean stock price index (KOSPI) for July 1986
to December 1991. The reason that we choose this particular period is to avoid the structural changes that
have characterized the Korean stock market during its evolution since 1980 ( figure 1 plot the series for 1980-
present). In particular prior to 1987, the authorities had imposed strict regulations on the pricing of stocks
in the issuing market. The subsequent deregulation of the Korean stock market together with the late 80’s
economic boom increased the total value of the market from 6,600 billions at the end of 1985 to 73,000 billions
in 1991. Moreover, until the end of 1991 only domestic investors were allowed to participate in the Korean
stock exchange; in January 1992 it opened to foreign investors as well. Finally, the currency crisis of 1997 which
affected all Asian economies created a turmoil in the Korean financial market as well.

An immediate problem in using this data is that we wish to model the excess returns but do not have access
to any adequate daily riskless return series. However, Nelson (1991) fitted both models using excess returns and
capital gains (ignoring both dividends and the riskless rate of return) and found actually no difference in either
the estimated parameters or the fitted variances!®. Therefore, we fit the models using the capital gain series.

We estimate our models using numerical maximum likelihood. This procedure is subject to the same caveat
that applies to all empirical work with GARCH-in-mean models, namely that sufficient regularity conditions
for consistency and asymptotic normality of the maximum likelihood estimator are not yet available. Below we
treat our estimates as if they are indeed asymptotically normal.

Next, we examine the empirical issues raised earlier on in the paper. Table 1 presents various estimations of
our models. We have estimated both Bollerslev and Taylor/Schwert GARCH(1,1) model using an AR(1) mean
specification, two alternative conditional distributions (the gaussian and the student’s t), and either the h; or

1
h7 or In(h;) to capture the in-mean effect. Similarly, we have estimated Nelson’s EGARCH(1,1) model using
an AR(1) or a MA(1) mean specification, two alternative conditional distributions (the normal and the double

exponential), and either the h; or ht% or In(h;) to capture the in-mean effect.

For all the autoregressive models the AR coefficient is statistically significant and very small'*. In all the
moving average EGARCH models the MA parameter is statistically significant and its value is very close to
the AR parameter of the AR-EGARCH models. In addition, the estimated risk premium, as represented by ¢,
is positive and statistically significant'®. This agrees with the significant positive relation between returns and
conditional variance found by researchers using GARCH-M models (e.g., Chou, 1987, and French, Schwert and
Stambough, 1987, but contrast with the findings of other researchers not using GARCH models (e.g., Pagan
and Hong, 1991). Note that in Bollerslev’s model a) when we include the leverage term the in-mean coefficient
decreases and becomes less significant (for example, when the variance is used as a regressor and the conditional
distribution is normal the in-mean coefficient drops from 7.58 to 6.27 and its p value increases from .036 to
.061), and b) when we use the t distribution the in-mean coefficient increases and remains highly significant (for
example when the variance is used as a regressor the in-mean coeflicient increases from 7.58 to 11.79 and its p
value drops from .036 to .028).

Furthermore, for all models the asymmetric relation between returns and changes in volatility, as represented
by d, is negative and highly significant. Recall that a negative value of d indicates that volatility tends to rise(fall)
when returns surprises are negative(positive). Note that in Bollerslev’s model when we use the t distribution
the leverage coeflicient decreases (in absolute value) from .187 to .169 and remains highly significant. Moreover,
for the asymmetric power GARCH model, the estimated power, as represented by ¢ is insignificantly different
from two (for both the normal and the t-distributions). Therefore, it is of no surprise that the coefficients of this
model are very similar to those of Bollerslev’s model. This contrasts with the findings of Ding et al (1993) and
Hentschel (1995). Finally, observe that in all cases where the t distribution is assumed the estimated degrees
of freedom are greater than five which implies that the first two conditional moments exist.

Diagnostic Testing

Next we use a variety of diagnostic tests to determine whether various aspects of our different models
are correctly specified. The diagnostics of the standardized residuals from the estimated models are given in

B The two series had a sample correlation of .9996. In other words, the series were practically identical, so ignoring dividends
and interest payments appears likely to introduce no important errors in forecasting volatility of broad market indices.

M The autoregressive coefficient takes values from .037 to .079; its p value ranges between .1 and .003.

15When we include the variance, the standard deviation and the logarithm of the variance as a regressor in the mean equation ¢
takes values from 6.27 , .24 and .001 to 11.79, .32 and .001, respectively; the p values range from .06, .09, and .117 to .008, .008,
and .01, respectively.
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Table 2. In all cases the standardized residuals and squared standardized residuals are uncorrelated. Note that,
although the Shapiro-Wilk test shows no normality it is very sensitive to outliers. When we add two dummies
for the 26/06/86 and 27/04/90 data points we obtain a p value for the test which is above .05 for most of
the models. Table 2 also gives a measure for the persistence of the conditional variance. For Nelson’s model
volatility persistence is approximately .82 and for Bollerslev’s model it ranges from .82 to .88. Note that in the
latter model persistence decreases to .72 when the t distribution is used.

In addition for all the estimated GARCH-in-mean models Table 3 reports those that are preferred to the ones
without in-mean effect according to the Akaike information model selection criterion (AIC) and the likelihood
ratio test. According to these two simplistic selection criteria Bollerslev’s asymmetric GARCH(1,1) model with
the variance as a regressor in the mean appears to be superior'®. These tests leave many potential sources
of misspecification unchecked. It therefore seems desirable to check the forecasting performance of the model.
Table 4 presents four alternative measures of forecasting accuracy; Models 1a when the conditional distribution
is the normal and la when the conditional distribution is the t have the minimum mean square error (MSE)
and mean absolute error (MAE), respectively, whereas models 2b and 1b have the minimum logarithmic error
(LE) and logarithmic absolute error (LAE), respectively.

Moreover, we use three diagnostic tests for volatility models suggested by Engle and Ng (1993): the Sign
Bias Test, the Negative Size Bias Test, and the Positive size Bias Test. These tests examine whether we can
predict the squared normalized residual by some variables observed in the past which are not included in the
volatility model being used. If these variables can predict the squared normalized residual, then the variance
model is misspecified. The sign and size bias tests do not indicate any asymmetric variance effects in the
estimated models'”.

As we have already explained we have chosen the 1986-1991 estimation period because of its homogeneity
in economic conditions. However, our results appear to be quite robust to the sample size. Table 5a presents
some of our models which have been estimated for the 1980-1997 and 1992-1997 periods. Note the similarity of
the estimated parameters to those given in Table 1. Also note that when we include dummy variables in our
models the estimated parameters remain virtually unchanged (see Table 5b).

Estimated Theoretical Autocorrelations

The main objective of this study was not only to investigate which of the various GARCH-in-mean speci-
fications model the conditional variance “best” but also to provide analytic expressions for existing moments
of the various GARCH-in-mean processes. Figure 2 plots the estimated theoretical autocorrelations (eta) for
models 1 to 4. Note that the eta of the stock return are positive for the AR models and negative for the MA
ones (except for the first lag) (see figure 2a). In addition, for all models the eta between the stock return and
lagged values of the conditional variance/standard deviation are positive (see figure 2b and 2d) whereas the eta
between the conditional standard deviation and lagged values of the stock return are negative (see figure 2e).
Finally, the eta of the conditional variance for models 2a and 3 are positive (see figure 2f).

4 CONCLUSIONS

This paper derived analytical expressions for existing moments of various GARCH-in-mean models. In particular
we derived the autocorrelation function of the stock return and its conditional variance, and the cross correla-
tions between the stock return and its conditional variance. We used an ARMA(1,1) form for the mean equation
and we examined three alternative asymmetric GARCH specifications: Bollerslev’s GARCH(1,1) model, Tay-
lor/Schwert’s GARCH(1,1) model and Nelson’s EGARCH(1,1) model. For the later we assumed that the error
term is drawn from either the Normal or the Double Exponential or the Generalized Error Distribution. We
chosen the form in which the time varying variance enters the specification of the mean to determine the risk pre-

mium by assuming (i) linearity, i.e. we used hy, hé , and In(h;) as a regressor in Bollerslev’s, Taylor/Schwert’s and
Nelson’s models, respectively, and (ii) nonlinearity, i.e. we used h?, h;, and h¥ in Bollerslev’s, Taylor/Schwert’s
and Nelson’s models, respectively. All our estimated models suggested a positive and statistically significant re-
lation between risk and return. According to the selection criteria Bollerslev’s asymmetric GARCH(1,1) model
with the variance as a regressor in the mean appeared to be superior. We left the consideration of higher order
ARMA-GARCH models for future research.

6 Hentchel (1995) developed a family of asymmetric GARCH models that nests both the A-PGARCH model and the EGARCH
model.

T Hagerud (1997a, b) proposed two new tests for asymmetric effects, based on a pair of LM statistics, and he showed that these
two tests have superior power properties, compared to the standard asymmetric GARCH tests developed by Engle and Ng (1993).
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APPENDIX

A Proof of Proposition 1

I3
In (2.2a) we add and subtract akih,? ; and we get (2.3a).
We multiply (2.1) by (1 — ;L) and we use (2.3a) to get (2.4).
Equations (2.5b)-(2.7) follow from the canonical factorization of the auto/cross generating functions of the

stock return and the %—th power of its conditional variance:
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In the above equations taking expectations we get
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where k; denotes the 1-th moment of f(e;_1). For example, when the conditional distribution is the normal
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Equation (2.9) follows from (2.8a), when j =1,2.
]
B Proof of Proposition 2
Squaring (2.11a) we get
5; 8
Kot = —w? + a%f(e4_1)? + B2 | + 208 f(e4—1)h2 | + 2whp? (B.1)
In the right hand side of the above equation we add and subtract a2kehl’ | + 2a8k h%7 | to get
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Multiplying (B.2a) by (1 — 8, L), where 3, = ak; + (3, and using

di

(1-B1L)h7 =w+aviz (B.3)

we get (2.12a).
Moreover, the variances/covariances of the vq¢, vo; and v, are

v(on) = (ke —KDEMR), v(va) = (ks — k) E(R), (B.4a)
v(vs)) = (ko —kDE(P), cov(vay,v3) = (k3 — kiko) E(h?%), (B.4b)
cov(vrg,var) = (ks — kika) (T ), cov(vie, var) = kr(ky — 1)E(R) (B.4c)

For example, the covariance between vo; and v3; can be derived by
L
cov(var,v3) = E{[f(er)” — kahy|[f(ee)hF — kahy]} =
= E{hgﬁi[f(et)s - k1f(et) - sz(@t) + k1k2” = E(h%&)[k?) - klkﬂ (B-5)

Furthermore, the covariances between the ¢; term and the vy, vo; and vg; terms are

=

% 5+ 5i+3
cov(er,v1e) = E(hE T3 N1, covler,var) = E(hy %) A2, cov(er,vz) = E(h; T2 N1, Aij = E[f(er) ef]

5.

Next, using equation (2.8a) we get the third and fourth moment of ht_2L

5i
38 w3 = 3w?E(h? ) 4 3wE(hY
Bh7) = P, (B.6)
5; 36,
B — 6wt + 4w3E(h? ) — 6w2E(h) 4 4wE(h,? )
t 1 o 64 ]
By = ksa®+ 3koa3B + 3k1aB’ + B,
By = kga* + 4k3a®B + 6kga?G? + 4kyaf> + 3
&

The condition for the existence of E(h,? ), is 84, By, B3 < 1 and for the existence of E(hf‘s") is By, B9, B3, By <
1.

Moreover, to obtain the ARMA(3,3) representation of the stock return we multiply (2.10) by(1 — 5, L)(1 —
B,L) and we use (2.11a).

Furthermore, the auto-covariances/correlations of the stock return can be derived using the canonical fac-
torization of the autocovariance generating function:

(1—02)(1—0271) a%s2[a?v(vey) + 432 v(vse) + 4afeov(va, v3t)]
o Z) = =g )" T - Bl - 6 DAz )
4w?(as)*v(v1e)
(L= 02)(1 = ¢z71)(1 = B12)(1 = Br27 1) (1 — Ba2)(1 — Bpz™)
(as)?2wacov(vat, v1z) + 2Bcov(vat, v1g)] [ 1
(I=512)(1 = Byz71) (1= ¢2)(1 = B,2)
asacov(vye, ) + 2Bcov(vs, €4)] [(1 —0z)z7t L (1—027Yz
(1=02)(1—¢z1) (L=Pez7t)  (1=0y2)
2wascov(viy, &) (1—0z2)z1 n (1—-6z"1)z

(1 =¢2)(1 = pz71) (1= F127") (A = Baz") (1= 5,2)(1 - ﬁzz)}
= Z /mizm (B?)

m=—0Q

+

+ +

]

1
A - )

[
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In addition the cross-covariances/correlations) between the stock return and the ——power of its conditional
variance can be derived using the canonical factorization of the cross-covariance generating function:

2w§a20(v1t) a2§[acov(vgt, v1¢) + 28cov(vst, v1t)]

+ P —
Irm®) = A0 50— )0 =Bz D) | (1= 92)(1 - 521 — Bz 1)
(1 —02)z"Lacov(vy, g4)

* =620 = 51

D IR R e

m=—0oC

Finally, the auto-covariances/correlations of the §;-th power of the conditional variance can be derived using
the canonical factorization of the autocovariance generating function:

g () = dw?a?v(vyy) n a?[a®v(vy) + 4ﬂ2v(v3t) + 4afBcov(vat, v3t)) .
e (1= 6,2)(1 = Ba2)(1 = B2~ 1) (1 — Bpz™ ) (1= B2)(1 = Bpz 1)
2wa?[acov(vig, var) + 2Bcov(vit, v3e)] [ 1 L 1 ]

(1= B22)(1 = By271) (1=B2)  (1—PBe271)
Z ’YhQ,mZm (B.Q)

m=—0o

C Proof of Proposition 3

We multiply (2.18) by (1 — L) and we use (2.19) to get the (2.20).The auto covariances/correlations of the
stock return can be obtained from the cf of the agf of the stock return

(1—02)(1—0271) (se)2var(z)

R A (Rt ([ R Sy

(1—0z)scz! (1—62"Y)ccz
{(1 —¢z)(1 — ¢z~1)(1 — B=z71) * (1—¢2)(1—pz—1)(1 — Bz) feov(z, &)
= Z Vem2 T, cov(zg,E) = dE(h,ji), v(es) = E(hy) (C.1)

m=—0oC

In addition, the Wold representation of the conditional variance (eq. 2.19) is

whky N i
hkl*9m+0kli§15 e

In(hy) = —— 5t ly £ oo C.2
( f Zﬂ o k. %4’01%”2 > 8 siim ( )
ht27n =0 =t
>From the above equation taking expectations we get
[m| =S
w(ky ko) k Z 61 '1 . (k 4k 6\111.\) Z 61,7],( .
B ,) = o x B ST T xpe T AT T (C:38)
2 wk k,fﬁifl‘,—é
E(hf) = oFFE@ =7 ) (C:3b)

Next consider the expression Al.3 given in Theorem Al.1 in Nelson (1991)

b2 ('y+ )2 bz('y a2

+ @[(y — d)ble } (C4)

E[e?] = e VE[®[(y + d)b]o

where ® denotes the cumulative normal distribution. The cumulative normal distribution can be expressed
in terms of a hypergeometric function as (see Abadir, 1999)

+—=F(5i5:—%) (C.5)



Using equations (C.3a)-(C.5) after some algebra we get equations (2.23a)-(2.24b).
Next, consider the expression Al.5 given in Theorem Al.2 in Nelson (1991)

5 1
b'ymTsz &S] 741

Elg™)=¢ " Y270 [(y +d) + (v~ )]
7=0

)
TN 0

when v > 1 the above summation is finite whereas when v < 1 the summation is finite if and only if
by + |bd] < 0.

Using equations (C.3a), (C.3b) and (C.6) after some algebra we get (2.23a), (2.23b),

(2.25a) and (2.25D).

Finally, when v = 1, the above equation gives (if and only if by + |bd| < /2)

2 — /2by

1 by L
E[QZ[b] =350 TV B2 (2 —d2 (07)
2 1— \/ﬁb’)/ + JWQ_Z
Using equations (C.3a), (C.3b) and (C.7) after some algebra we get (2.23a), (2.23b),
(2.26a) and (2.26b). M
D Proof of Proposition 4
From equation (2.27) we get
1
covp (1) = <2cov(hF) 4+ cE (R} hf metm) —SOE(RER? . er 1) — 06, E(hi 1), (D.1)
var(ry) = Zvar(h) + (1 + 60*)E(h) — 260E(hFhD 1e;1) (D.2)
Using the Wold representation of the conditional variance (C.2) the above equation gives
k ‘"’Z‘;l gi—1 )
covm(ry) = g%ovm(h,]f) +¢ % g%?g {E(o0 = dﬂ) X
i (F+kB™) S B 2 s
Blerme" oy x BT BT
[ml o
ck /Brbilztf'i, m ¢ ‘l+k/6hn‘+l 51715[7 m|—i
—0E(e 2 ) X E(et—7n—1QCkB‘ ‘Z’*’"*l) x E(o ( )& T -
OZO B 2y
79£7ngl i E( = )7 m 7£ 0 (D3)
w ck OZO BTz
var(ry) = Zvar(h¥) + (1 + GQ)Q]'TE x E(o ™ ) —
wk.5 e(L+kpB ) B e
200%F x Ble_10%7) x B(g" " Y (D.4)
Next consider expression Al.4 given in Theorem Al.1 in Nelson (1991)
- b2 (y+d) )2
Blerg™) = o VE—= (05 Da[b( -+ )] - ¢ T DLty — ) (D.5)

where Dy [-] denotes the parabolic cylinder function.

Using equations (2.23a), (2.23b), (C.4), (C.5), (D.3), (D.4) and (D.5) after some algebra we get (2.29b) and
(2.30a).

Next consider expression Al.5 given in Theorem A1.2 in Nelson (1991)

by 1(2))\21 ]:‘(EI'_Q)

X 2% )\Z (A25D) (Y +d)” — (y —d)"] — (D.6)

Ele:e™] = ¢ o (L)I(1 + 1)

when v > 1 the above summation is finite whereas when v < 1 the summation is finite if and only if
by + |bd| < 0.
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Using equations (2.23a), (2.23b), (C.6), (D.3), (D.4) and (D.6) after some algebra we get (2.29b) and (2.30c).
Finally, when v = 1, the above equation gives (if and only if by + |bd| < v/2)
= bd(V2 — by)

V2[1— 2y + ﬁﬁg;dzlp

Using equations (2.23a), (2.23b), (C.7), (D.3), (D.4) and (D.7) after some algebra we get (2.29b) and (2.30d).
>From equation (2.27) we get

Ele 0™ b} = Qibw

4

(D.7)

ccov(hF, hFL Y if m>1
cov(re, hfL,) = scov(hF WM —0E(hF 1P e ) if m=0 (D.8)
§CO’U(hfl ) h{‘c—m) + E(hiﬂ hif)—'met—m) - GE(hi‘Cl hif)—7n—1et—7n—1) if m <-1

Using a similar methodology to the one above, it can be seen that equation (D.8) gives (2.31a). N
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