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Abstract

We examine the relationship between inflation and inflation uncertainty
using a GARCH model that allows for simultaneous feedback between the
conditional mean and variance of inflation. We also derive a number of
theoretical econometric results and illustrate the relevance of these results
with an empirical example of the US monthly inflation process. Our results
show that there is strong evidence in favour of a positive bi-directional
relationship between inflation and inflation uncertainty in agreement with
the predictions of economic theory.
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1. Introduction

The relationship between the inflation rate and inflation uncertainty has been the
subject of considerable research in theoretical and empirical macroeconomics since
the publication of Milton Friedman’s (1977) Nobel lecture. Friedman (1977) anal-
ysed the causal effect of inflation on inflation uncertainty and output growth while
subsequent theoretical research looked also at the opposite direction of causality,
running from inflation uncertainty to the rate of inflation. Despite the consider-
able volume of primarily empirical research on the relationship between inflation
and inflation uncertainty, the empirical literature to date has supplied scant evi-
dence in support of the bidirectional causality between the two variables of interest
that is implied by the theory. To this end, first, we purport to provide a num-
ber of theoretical econometric results from a general dynamic model of inflation
with simultaneous feedback between the conditional mean and variance which
nests many theoretical and empirical GARCH models of inflation. Then, we il-
lustrate the relevance of our theoretical results with an empirical example of the
US monthly inflation process and, therefore, we contribute also to the inflation-
inflation uncertainty empirical literature.

Friedman (1977) and Ball (1992) have provided intuitive and formal argu-
ments, respectively, that result in a positive influence of higher inflation on the
uncertainty about inflation. The opposite type of causation between inflation and
uncertainty has also been analysed in the theoretical macroeconomics literature.
Cukierman and Meltzer (1986) employ the Barro-Gordon set up and show that
an increase in uncertainty about money growth and inflation will increase the
optimal average inflation rate because it provides an incentive to the policymaker
to create an inflation surprise in order to stimulate output growth.

The use of the autoregressive conditional heteroskedasticity (ARCH) and gen-
eralised ARCH (GARCH) approaches introduced by Engle (1982) and Bollerslev
(1986), respectively, allow us to proxy uncertainty using the conditional variance
of unpredictable shocks to the inflation rate. In addition, the ARCH-in-mean
(ARCH-M) model suggested by Engle et al. (1987) allows the econometric test-
ing of the effect of a change in the variance of the series on the series itself. Engle
(1983) and Bollerslev (1986), making use of the ARCH techniques, did not per-
form a statistical test of the Friedman-Ball hypothesis but only compared the
estimated conditional variance series with the US average inflation rate over vari-
ous time periods. Grier and Perry (1998) used the estimated conditional variance
from a GARCH model and employed Granger-causality tests to test for the di-
rection of causality between average inflation and inflation uncertainty. Baillie et
al. (1996) performed these tests simultaneously in a single model by including
lagged inflation in the conditional variance equation and the conditional standard



deviation in the inflation equation. In particular, using US data, Grier and Perry
(1998) find that inflation has a significant and positive effect on inflation uncer-
tainty, but that increased inflation uncertainty dampens future inflation, a result
that is opposite to the predictions of the Cukierman-Meltzer theory!. On the
other hand, Baillie et al (1996) find no significant relationship between inflation
and inflation uncertainty.

This study contributes to the literature on the inflation-uncertainty relation-
ship in three ways: First, we provide a number of new theoretical econometric
results on the univariate GARCH-in-mean (GARCH-M) model that includes also
lagged values of inflation uncertainty in the mean equation and lagged inflation
rates in the conditional variance equation. These results are: (i) We obtain the
univariate ARMA representations of the inflation rate and inflation uncertainty.
(ii) We use the canonical factorization of the auto/cross covariance generating
functions to obtain the auto/cross covariances for the inflation rate and inflation
uncertainty. (iii) We derive the condition for the existence of the second moment
of the conditional variance and we give the kurtosis of the errors. We also illus-
trate the relevance of our results using monthly US inflation data. Second, in
contrast to the majority of the existing literature (the exceptions being Baillie et
al. (1996) and Grier and Perry (1998)), we test for the inflation-inflation uncer-
tainty relationship by estimating a model of inflation with simultaneous feedback
between the conditional mean and conditional variance. Third, in contrast to all
previous studies mentioned in the empirical section and using US data, we provide
strong evidence in favor of a positive effect of a change in inflation uncertainty
on inflation, as predicted by the Cukierman-Meltzer theory. We also find strong
evidence in support of the Friedman-Ball view.

The rest of the paper is outlined as follows: Section 2 provides a brief exposi-
tion of the theory behind the inflation-inflation uncertainty relationship, and our
theoretical econometric model. Section 3 derives a number of theoretical results
on the covariance structure of the inflation rate and inflation uncertainty. Section
4 presents our empirical approach, our results, and an interpretation. Finally,
section 5 summarizes the major conclusions.

1Using a Component GARCH-M model of inflation that includes lagged inflation in the
conditional variance, Grier and Perry (1998) estimate simultaneously the relationship between
inflation and inflation uncertainty. They find that inflation has a positive effect on inflation un-
certainty (the Friedman-Ball hypothesis), but uncertainty has no significant impact on inflation.



2. ARMA-GARCH-M-L Model

2.1. On the direction of causality between inflation and inflation uncer-
tainty

Economists have appealed to the uncertainty about the future rate of inflation in
order to account for the welfare loss that monetary economics has associated with
inflation. Predictable inflation should not lead to welfare loss since indexation
will allow agents to minimize the costs of inflation. However, uncertainty about
future inflation distorts the efficient allocation of resources that is based on the
price mechanism. This distortion, according to Friedman (1977) will lead to lower
output. Furthermore, high inflation rates might result in more variable inflation
and, hence, create more uncertainty about future inflation. As Friedman (1977,
p. 466) wrote: “A burst of inflation produces strong pressure to counter it. Policy
goes from one direction to another, encouraging wide variation in the actual and
anticipated rate of inflation... Everyone recognises that there is great uncertainty
about what actual inflation will turn out to be over any specific future interval.”
Combining the link of inflation to inflation uncertainty and the link of inflation
uncertainty to output, we have the testable hypothesis that higher inflation leads
to lower output, i.e. a positively-sloped Phillips curve.

Friedman’s intuitive result has also been subsequently derived formally by
Ball (1992) in an asymmetric information game where the public faces uncertainty
about the type of the policymaker. The two types of policymaker differ in terms of
their willingness to bear the economic costs of reducing inflation. In periods of low
inflation, the tough type will apply contractionary monetary policy. Ball assumes
that the two types of policymakers alternate in office in a stochastic manner.
Therefore, a higher current inflation rate creates more uncertainty about the level
of future inflation since it is not known whether the tough type will gain power
and fight inflation.

Cukierman and Meltzer (1986) show that an increase in inflation uncertainty
will raise the optimal inflation rate. However, a different outcome is derived un-
der the stabilization motive suggested by Holland (1995). Under this scenario, if
higher inflation raises inflation uncertainty, the policymaker responds by disinflat-
ing the economy in order to reduce uncertainty and the associated costs. In such a
case, the effect of inflation uncertainty on the rate of inflation is negative. This is
more likely to observe if, instead of examining the contemporaneous relationship
between inflation and inflation uncertainty, we allow for a lag in policymaker’s
response and the change in the inflation rate.



2.2. The model

The simple AR(1)-GARCH(1,1)-M(0)-L(1) model is given by
W= atal g+ ahite, & =hie, e/ ~IN(0,1)  (2.1)
he = Wt Bpel oy + Ghphis + by, (2.2)

where y; stands for the rate of inflation, and h; for its conditional variance. By
including lagged inflation in the conditional variance equation, and the conditional
variance in the inflation equation, we can simultaneously test the Friedman-Ball
hypothesis and the Cukierman-Meltzer theory. Grier and Perry (1998) measured
the conditional variance using a GARCH(2,2) specification. The GARCH(2,2)
model has an ARMA(2,2) representation. In model (2.1) above, although the
conditional variance has a GARCH(1,1) specification, due to the simultaneous
feedback, it has an ARMA(2,2) representation (see Corollary 1).

Next we extend the simple model in equations (2.1)and (2.2) by increasing the
order of the parameter polynomials in the conditional mean and the conditional
variance of the inflation rate. First, we allow lagged values of the process (r lags),
its conditional variance (n* lags), and s* lagged errors to affect the conditional
mean:

Ay (D = a+ Ap(L)hy + Bye(L)ey, & = hle;, e, ~ IN(0,1)  (2.3a)

r . , ~ il ~j . ~0
Ayy(L) = - ZO&‘L:ULJ, O‘Sy = _1’ Bya(L) = ZﬂyeLJ’ ﬂye = 1’ (23b)
=0 =0
Ap(L) = ) ol I, (2.3c)
=0

Second, we allow lagged values of the process (k* lags), its conditional variance
(p* lags), and ¢* lags of the squared errors to affect the conditional variance:

Apn(L)hy = w + Apy(L)ys + Bpo(L)e?, (2.4a)
p* k*
An(L) = = @, L, ap,=—1, Ay(L)=>Y aj,I’, (24b)
j=0 j=1
~ q* ~] .
Bu(L) = > Bl (2.4c)
j=1

We refer to this model as the ARMA(r,s*)-GARCH(p*,¢*)-M(n*)-L(k*) model?.
It is a general dynamic model with simultaneous feedback between the conditional

2To our knowledge the first paper on the GARCH-M-L model was written by Longstaff and
Schwartz (1992).



variance and the conditional mean. This flexible framework nests the GARCH-
L model if A,,(L) = 0, the GARCH-M model® if A,,(L) = 0, and the simple
GARCH model if A,,(L) = Apy(L) = 0.

The use of monthly data has important implications for the order of the model
and the possibility of lagged effects between inflation and its uncertainty. First,
the use of monthly data in the estimation of the general model (2.3a-2.4a) above
implies that the order of the AR and MA polynomials can be greater than one.*
Therefore, we use an r-th order AR polynomial and a s-th order MA polynomial.
Furthermore, the GARCH(1,1) specification of the conditional variance might be
insufficient. For example, Grier and Perry (1998) used a GARCH(2,2) specifica-
tion. Hence, our general model (2.4a) assumes a GARCH specification of order
(p*, q*). In addition, the generalization of the model to allow for the contempo-
raneous and lagged effect in the relationship between the conditional variance of
inflation and the average inflation rate is justified by the use of monthly data.
Consider, for example, the case where higher inflation leads to more inflation un-
certainty and associated real costs. If the Central bank responds by disinflating
the economy, according to Holland’s (1995) stabilization motive, it is more likely
the case that the reduction in inflation will only appear with a lag in relation to
the increase in uncertainty (Grier and Perry, 1998).

Note that including lagged inflation in the variance equation can cause prob-
lems with the nonnegativity of the variance. In contrast, the two-step method of
Grier and Perry (1998) suffers from a contradiction: in the first step, the authors
estimate the variance from a model that implies that there is no theoretical cross-
correlation between the inflation rate and its variance and, in the second step, use
this variance to check whether it Granger-causes the inflation rate.

The goal of this section is to provide a comprehensive methodology for the
analysis of this model. First, we derive the bivariate ARMA representation of the
process and its conditional variance. Second, we provide the univariate ARMA
representations of the process and its conditional variance. Third, we give the
general conditions for the stationarity, invertibility, and irreducibility of these

3The ARCH-in-mean model was introduced by Engle, Lilien, and Robins (1987). This model
was used to investigate the existence of time varying term premia in the term structure of interest
rates. Such time varying risk premia have beeen strongly supported by a huge body of empirical
research, in interest rates (Hurn, McDonald and Moody, 1995), in forward and future prices
of commodities (Hall, 1991, Moosa and Al-Loughani,1994), in industrial production (Caporale
and McKierman, 1996), and especially in stock returns (Campbell and Hentscel, 1992, Glosten,
Jagannathan and Runkle, 1993, Black and Fraser, 1995, Fraser, 1996, Hansson and Hordahl,
1997, Elyasiani and Mansur, 1998).

*For example, Grier and Perry (1998) used a 12-th order AR polynomial and Baillie et al
(1996) used a 25-th order MA polynomial. In this paper, we use an autoregressive polynomial
of order 24.



representations.

The GARCH(p*, ¢*)-L formulation in equation (2.4a) can readily be inter-
preted as an ARMA(p,q¢*)-L model for the conditional variance. This ARMA
representation is given in the following Corollary.

Corollary 1: The ARMA representation of the conditional variance is given by

ALYy = w+ Apy(L)y + Bro(L)vy, v =2 — Iy (2.5a)
p
An(L) = Awm(L) = Bu(L) = =Y aj, L7, p=max(p*,q"), (2.5b)
=0

a{;,h,? ]7p* > q*
J Y s % *
Qpp = Bror DA >Dp (2.5¢)
~i . e
aibh_l_/ghv? p.q >
Note that v; in equation (2.5a) is an uncorrelated term with expected value 0.
Proof: In (2.4a) we add and subtract By, (L)h; and we get (2.5a). B
In the Proposition that follows we will give the univariate ARMA representa-
tions for the process and its conditional variance. In other words, we will express

y, only as a function of lagged values of v, lagged values of the errors (g;) and
lagged values of the v; term.

Proposition 1: The univariate ARMA representations of the process and its
conditional variance are

A(L)yy = o + By(L)ey + By, (L)vy, (2.6a)
/ /
A(L) = Zaij = H(l — N\ L), f=max(r+p,n"+£k") (2.6Db)
§=0 J=1

By(L) = > Bl.I7, s=p+s", Bu(L)=> B/, n=n"+q" (2.6c)
=0 j=1

A(L)ht = w* + BhE(L)St + B}w(L)’Ut (27&)
k q
Bu(L) = > AL, k=k+s", Bwn(L)=> p,L7, ¢=r+q(2.7b)
j=1 j=1

All the parameters o*,w*, o/, ﬂgg, {w’ fm,and ﬂfw together with the proof are
given in Appendix A.

Thus, the ARMA-GARCH-M-L formulation in equations (2.3a) and (2.4a)
is readily interpreted as an ARMA[f, max (n, s)] model for the process, and an

7



ARMA[f, max (k, q)] model for the conditional variance. From equations (2.6a)
and (2.7a) it is apparent that the cross correlations between the process and its
conditional variance are due to the fact that the error term and the v; term are
entering both equations (2.6a) and (2.7a). These cross correlations are given in
the next Section. Note also that for the simple ARMA-GARCH model where
there are no mean effects (from the conditional variance to the conditional mean)
and no level effects (from the conditional mean to the conditional variance), the
two polynomials B,, (L), and Bj.(L) are 0. This means that, since the error term
is uncorrelated with the v; term, there is no cross correlation between the process
and its conditional variance. Finally, note that in the univariate representations
(2.6a) and (2.7a), a measure of persistence for the inflation rate and the conditional
variance is the highest root of the AR polynomial eq. (2.6b)°.

o Assumption 1 All the roots of the autoregressive polynomial [A(L)] lie out-
side the unit circle (stationarity conditions for the univariate ARMA repre-
sentations).

o Assumption 2. The polynomials A(L), By.(L), and B,,(L) have no com-
mon left factors other than unimodular ones, i.e, if A(L) = U(L)A;(L),
By.(L) = U(L)B,.(L) and By,(L) = U(L)B,,(L), then the common factor
U(L) must be unimodular (irreducibility condition for the univariate ARMA
representation for the process).

e Assumption 3. The polynomials A(L), Bj.(L), and By,(L) have no com-
mon left factors other than unimodular ones, i.e, if A(L) = U(L)A;(L),
Bhne(L) = U(L)B}.(L) and By,(L) = U(L)B},(L), then the common factor
U(L) must be unimodular (irreducibility condition for the univariate ARMA
representation for the conditional variance).

3. Covariance Structure

The moment structure of GARCH models is a topic that has recently attracted
plenty of attention. Karanasos (1999) derived the autocovariances of the squared
errors for the simple GARCH model. Karanasos (2000a) obtained the auto/cross
covariances of the component variances and the aggregate variance for the Com-
ponent GARCH model. Karanasos (2000b) gave the auto/cross covariances of the
process and its conditional variance for the GARCH-in-mean model.

5In measuring the persistence of the inflation rate, Baillie et al. (1996) used the order of a
fractional integrated process. In measuring the persistence of the conditional variance, Grier
and Perry (1998) used the permanent component of a component GARCH model.



In this section we focus our attention on the second moment structure of
the general ARMA-GARCH-M-L model. In what follows we use the canonical
factorization (CF) of the autocovariance generating function (AGF) of the process
and its conditional variance to derive the auto/cross correlations for the inflation
rate and inflation uncertainty; we only examine the case where the roots of the
AR polynomial are distinct. The goal of our method is not only theoretical purity
but also the production of expressions intended for practical use.

Theorem 1: The AGF and the autocorrelations of the inflation rate are given

by
Bye(2) By (2 )02 + Byu(2) Byu(2 oy & m o m
Gy = A A) =Y It 2, (31a)
02 = E(h), 02=2E(h}), Yym = covm(yt) (3.1b)
. b oif m=0 ys 2 y’U 2 _ 7y_m
.fm — { 1 if m 7é 0 }7 ,yym ZClm 1m%e lmav}? pym - /7y0 7(31C)
by f+m—1
Clm = ( l) 9 (31d)
[ (=) TT (=)
k=1,k4l
s m s—d s
Z—En _ Z 2+Z 6 ]+dAd+/\ ZZﬂ ]+d/\d+)\d Qm)7
J=0 d=1 j=0 d=m+1 j=0
(3.1e)
n m n—d n
;/:1 _ Z 2+Z ﬁ ]+d>\d_|_)\ ZZﬁ ]+d)\d_|_)\d2m)
7=1 d=1 j=1 d=m+1 j=1
(3.1f)

The first and second moments of the conditional variance are given in Proposition
2 below. The proof of Theorem 1 is given in Appendix B.

Theorem 2: The AGF and the autocorrelations of the conditional variance are

BEZBEZAJ?—FB@ZBUZ* o; m m
g = D Z<Z>A<zi§ elE )% S ™ 27, (320
5 ’U ’y m
Tho



k—

k m
;"bni _ Z( 2+Z ﬁheﬁ]er )\d Z Zﬁ ]+d )\d_F)\;ime),

sH

j=1 d=1 j=1 d=m+1 j=1
(3.2¢)
m q—d
;LT’IYJL _ Z 2+ZZﬂ ]+d )\d Z Zﬂ ]+d /\d+/\;i—2m)
7=1 d=1 j=1 d=m+1 j=1
(3.2d)

The proof of Theorem 2 is similar to that of Theorem 1.

Theorem 3: The cross covariance generating function and the cross correlations
between the inflation process and its conditional variance are

Bye(2)Bhe(27 )02 4+ Byy(2) Bpo(z 1) o?

2 = L 3.3
et ADA) (3:30)
= Z P)/yh,ymzm7 P)/yh,,m = cov (?/t; htfm) ) (33b)
~ Zl 1 Clm |: o 2 + gyh” 2:| it m >0 P . ’yyh,m
yh,m v . » Pyhom — = ——»
Zl 1 Cl\m\ |:§l|m| 05 + é-l':;'y 2i| if m S 0 \/7y0/7h0
(3.3¢)
where
ks m* s
CEED S WS o RIOUESS o) W
d=0 j=0 d=1 j=1 d=m*+1 j=1
where m* = min(m, s),
m* q n q
v j j — j j d—2m
SR WEUTS 3 W LTS v o R
d=0 j=1 d=1 j=1 d=m*+1 j=1
where m* = min(m,n),
s K m* s
€ j j j d—2m
EED W EUTS » T E NS o A
d=0 j=1 d=1 j=0 d=m*+1 j=0
where m* = min(m, k),
n q m* n’
v j j (d—2m
' = DA DD BN > S A
d=0 j=1 d=1 j=1 d=m*+1 j=1
where m* = min(m, q),
s = min(s,k —d), ¥ =min(k,s —d), n’ = min(n,q —d), ¢ = min(q,n — d)
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The proof of Theorem 3 is given in Appendix C.

The structure of the cross covariances between the inflation series and its con-
ditional variance given by equations (3.3a)-(3.3¢) distinguishes ARMA-GARCH-
M-L model from the ARMA-GARCH model, employed by Grier and Perry (1998),
where the theoretical cross correlations are zero.

Several authors have studied conditions for the existence of higher order mo-
ments in GARCH models, see, for example, Ling and Li (1997), An and Chen
(1998), Carrasco and Chen (1999), Giraitis, Kokoszka and Leipus (1999) and Ling
(1999).

Proposition 2. The first and second moment of the conditional variance,
and the kurtosis (k) of the errors are given by

*

E(h) = A“El), (3.4a)

E(h2) = [E(ht)ltvjqz(])E(ht), (3.4D)

COBEY 3B C
b= E@E T B (3-40)

f f

€ h v hv

where 73, = Z Cio€i s Yho = 2 Z Cio€io -
=1 =1

The condition for the existence of the second moment is 1 — 7}, > 0. The proof
of Proposition 2 follows from Theorem 2.

In this Section we presented a complete characterization of the moment struc-
ture of the inflation rate and its conditional variance for the general ARMA-
GARCH-M-L model. The results in this section are useful, for example, if we
want to compare the model with the simple ARMA-GARCH model. They reveal
certain differences in the moment structure of both models. The coefficients in
our formula are expressed in terms of the roots of the autoregressive polynomial
[A(L)] and the parameters of the moving average ones. We should mention that
we only examine the case where the roots of the AR polynomial are distinct (the
case of equal roots is left for future research). However, our methodology can be
applied to even more complicated GARCH-M-L models like the Component and
the Asymmetric Power GARCH-M-L models.

11



4. Empirical Application

4.1. The empirical evidence

Okun (1971) is one of the first studies to find that countries experiencing a high
inflation rate are also countries where the standard deviation of inflation is large.
The empirical approach to the inflation-uncertainty relationship faces the issue of
measuring uncertainty. Two measures of uncertainty that have been used widely
in empirical studies are the dispersion of survey-based individual forecasts and the
moving standard deviation of inflation. The major disadvantage of these measures
lies in their inability to distinguish between variability and uncertainty. In other
words, they include both predictable and unpredictable variability, even though
the former does not imply any uncertainty. Overall, the empirical evidence on
the Friedman-Ball view is rather mixed®. Ball and Cecchetti (1990), Cukierman
and Wachtel (1979), Evans (1991), and Grier and Perry (1998), among others,
provide evidence in support of a positive influence of the average rate of inflation
on inflation uncertainty. In particular, Grier and Perry (1998) find that in all G7
countries inflation has a significant and positive effect on inflation uncertainty.
On the other hand, using US data, Baillie et al. (1996), Cosimano and Jansen
(1988) and Fischer (1981), among others, find no significant relationship between
inflation and inflation uncertainty. The opposite direction of causality, that is,
from inflation uncertainty to the average rate of inflation has also been considered
by the empirical literature. Baillie et al. (1996), using US data, find that a
change in inflation uncertainty does not have a significant effect on the rate of
inflation. However, Baillie et al. (1996) find some evidence in favor of a positive
relationship using inflation data for the UK and some high-inflation countries
(Argentina, Brazil, Israel). Grier and Perry (1998) obtain mixed results for the
G7. In three countries (the US included), the authors find that an increase in
inflation uncertainty lowers inflation, in sharp contrast to the predictions of the
Cukierman-Meltzer theory. On the other hand, for Japan and France, they find
that increased inflation uncertainty raises inflation.

4.2. Description of the data

In our empirical work we use seasonally adjusted time series on the US Con-
sumer’s Price Index which we obtained from the OECD Main Economic Indica-
tors database. Our sample includes 470 monthly observations covering the period
1960M1-1999M2. Figure la presents the plot of the inflation rate (y;) series (this
is constructed as the first difference of the log of CPI), and Table la gives its

®Davis and Kanago (2000) provide a recent and detailed taxonomy of the results of cross-
section and time-series studies on the subject.
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descriptive statistics. The US inflation rate possesses significant autocorrelations,
and according to the Jarque-Bera statistic it has a non-normal distribution (in
particular, its distribution appears to be leptokurtic and skewed to the right). In
addition, the significant () — statistics of the squared deviations of the inflation
rate from its sample mean indicate the existence of ARCH effects.” Furthermore,
application of standard unit root test shows that we can treat the inflation rate as
a stationary process. The results of the Dickey-Fuller (DF) and Phillips-Perron
(PP) tests are reported in Table 1b.®

4.3. Estimation results

We proceed with the estimation of models from the AR-GARCH-M-L family in
order to take into account the serial correlation and the ARCH effects observed in
our time series data, and to capture the possible simultaneous feedback between

inflation and inflation uncertainty. Following a general to specific approach we
estimated the following AR(24)-GARCH(1,1)-M(0)-L(1) model:

y = 0.7(10)7° + 03ly_; — 0.03y_1o — 0.0dy,_0s + 460k, +7,
[0.00] [0.00] [0.55] [0.28] [0.00]
(4.1
he = —09(10)" 4+ 0.0482, + 08471 + 0.2(10) 2y, , (4.2
[0.11] [0.00] [0.00] [0.00]

where probabilities are given in brackets. Table 2 presents some of our estima-
tions. The above model, which is given as Model 1 in Table 2, was selected on
the basis of the Akaike Information (AIC') and Schwarz (SC) criteria. According
to the above estimates, the “in-mean” effect is stronger than the “level” effect:
a one unit increase in the inflation rate will increase next period’s inflation un-
certainty by 0.2 units, while a unit increase in inflation uncertainty will increase
the inflation rate by 0.46 units.” The positive relationship between inflation and

"When we use the LM test we cannot reject the presence of ARCH effects at any conventional
significance levels.

8To check the sensitivity of our results to the order of augmentation of the unit root tests, we
include both a “small” and a “large” number of lagged differenced terms in the DF regressions.
Similarly, we use both a “low” and a “high” truncation lag for the Bartlett kernel in the PP
tests.

9The unit of measurement of our monthly inflation rate series is 0.1 % , i.e. 0.001. Con-
sequently, the unit of measurement of its variance is (0.1%)2, i.e. 0.000001. So the estimated
“in-mean” and “level” effects are given by

460 (0.000001) = (0.46) (0.001),
(0.2) 1073 (0.001) = 0.2(0.000001),
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inflation uncertainty is depicted in Figure 1b which plots the inflation rate and
its corresponding conditional standard deviation (eq. (4.2)).

Table 3 gives the diagnostics of the standardized residuals of the above esti-
mated model (Model 1 in Table 2). We believe that the significant first order
autocorrelation of the squared standardized residuals is due, not to the inade-
quacy of the model to capture the autoregressive conditional heteroskedasticity of
the inflation rate, but to the presence of some outliers in the data. In fact, when
we add to our model two dummies for the 8 /1973 and the 3/1986 data points (see
Figure 1 and Model 2 in Table 2), we obtain uncorrelated squared standardized
residuals. Also note that the Jarque-Bera test for normality is very sensitive to
outliers. For the model with the dummies we obtain a value for the test equal
to 8.66 [prob=0.01], much lower than the one computed for the selected model.
The reason that we finally prefer Model 1 to Model 2 is that, while both models
exhibit similar persistence, Model 1 is better according to the AIC and SC model
selection criteria (see Table 2).

4.4. Stability conditions of the estimated model
Now consider the above AR(24)-GARCH(1,1)-M(0)-L(1) model in terms of its

theoretical parameters:
(1-p"L)h = w+ aLlv+vyLy, (4.2%)

where 3" = a+ 3, and v; = €2 — h;. The univariate ARMA representations of the
inflation rate (y;) and its conditional variance (h;) are

A(L)y: =b" + By, (L)er + By, (L) vy, (4.3a)
where
A(L) = 1—(¢+B" +6y) L+ 9B L* — @1 L + 351, LY — ¢y L** + 5y LP
— P, (1-\D), (4.3b)
By, (L) = 1-p"L, By, (L) =éal, b*=(1—-05")b+ bw (4.3c)
and
A(L)hy = w" + Bp: (L) &t + By (L) vy, (4.4a)
where
Bhe (L) = L, Bp, (L) =a (L - ¢1L2 - ¢12L13 - ¢24L25) ) (4-4b)
w' = w(l=9¢)+b, ¢= ¢+ P1o+ Poy (4.4c)
respectively.
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We use eq.(4.3b) to check the stability of our estimated model (4.1)-(4.2). Note
that the \’s we calculate in (4.3b) denote the reciprocals of the roots of the A (L)
polynomial. Using our estimated parameters we find one real root and twelve
pairs of conjugate complex roots, all with modulus less than one (see Table 4).
Therefore our selected model satisfies the stability conditions.

4.5. Autocorrelation structure of the estimated model

The autocorrelation function of the inflation rate (pym) is

F)/ m £ v
= yym = YVimE (he) + Yo E (h7) , m >0, (4.5a)
y0

Pym

where v, and v,,,, denote the variance and mth autocovariance of y;, respectively,
and

25 A24
Vom = Y. 5 = 1+ (82— 28"\, m=0,  (4.5b)
=TT = M) TT(L = Aidg)
k= k=1
25 \24+m )
Yom = D L 1+ (52— N+ A7), m>1,
=TT =) TT( = Xide)
k=1 k=1
ki
(4.5¢)
25 )\24+m ) 5
Vom = . = i 26%a2. (4.5d)
=TT =) TT(T = Aide)
k=t k=1

The first and second moments of the conditional variance hy, E(h;) and E (h?),
and the kurtosis coefficient (k) of the errors are

(1—¢)w+~b

Eh) = I T o)+ i — st P s — Gon & Py - 08)
E(h?) = [E(ht>1t7j‘§lE(ht), var(hy) = E (h2) — [E(hy)]?, (4.6b)
- E(e;) _ 3E(h) (4.6¢)

(B [E(h)]*

where 7%, and 75, are given below by eq. (4.7b) and (4.7d), respectively.
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The autocorrelation function of the conditional variance (p,,,) for m > 24 is

’y m v
Phm = LJ Yhm = /YimE(ht) + thmE(h?)J (47&)
Tho
where v;,, and 7;,,, denote the variance and mth autocovariance of h;, respectively,

and

25 \24+m
Vim = D= — 7, m >0, (4.7b)
=TT — M) TT( = ANide)
k=1 k=1
k#i
e A 2 2 2
Vim = Z 25 . 25 20°[1 + ¢ + b1y + Py
=TT — M) TT( = Aide)
= =
—o (N AT A+ 1A AT+ (B1a0as — D12) (A + AT
F 1D (A + A7) = o (N + A7), m > 24, (4.7¢)
25 /\24
v . 7 2
Thm = Z 25 25 20
1=1 ()\Z — /\k) H (1 — )\z/\k)
k=1 k=1
ki
(14 &7 + iy + by — 201N + 2019120 +
2(¢12¢24 - ¢12)/\}2 + 2¢1¢24/\123 - 2¢24/\124]: m = 0. (4-7d)

Recall that the condition for the existence of the second moment of the condi-
tional variance is that the denominator of eq. (4.6b) is positive, i.e. 1 —~}, > 0.
Inserting our estimated parameters in eq. (4.7d) we get ~}, = 0.125 which satisfies
the above condition. Next, we use eq. (4.6a)-(4.6b) to compute the theoretical
variance of hy; : var (h;) = 1.2(10)"""; note that the sample variance of the esti-
mated conditional variance h; is 1.1 (10)711 . To compute the theoretical variance
of the inflation rate (v,0) we use eq. (4.5a), (4.5b), and (4.5d), for m = 0, and ob-
tain v, = 9.82 (10)°. This value is very close to 9.27 (10) ®, the sample variance
of the inflation rate for the estimation period.

Furthermore, we use eq. (4.5a)-(4.5d) to compute the first 132 autocorrelations
of the inflation rate which are presented in Figure 2a. We should note that the
theoretical autocorrelations move quite closely with the sample autocorrelations
of the inflation rate (see Figure 3). This shows that our AR-GARCH-M-L model
can approximate reality quite well. We then use eq. (4.7a)-(4.7c) to compute the
autocorrelations (of order 24 to 132) of hy, ploted in Figure 2b. Observe the high
correlations that characterize the uncertainty of the inflation rate process.
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Finally, for the computation of the cross correlations between the inflation rate
and its conditional variance we use the following results:

P)/yh,m

Pyhom — ——x=x=s Thym — CO’U(ht, yt—m) = 78 mE(ht) + 7U mE(hQ)’ (48&)
P ST " hm
where
(25 244+m )
Z 25 A 25 26@2[1 - ¢1)‘;1 - ¢12)‘;12 - ¢24>‘;24] m >0
=1 [T (\i=2g) TT A=Xidg)
k=1 k=1
Yh = 25 7
y,m 244 |m|
25 a 25 26@2[1 - ¢1)‘1 - ¢12)‘212 - ¢24)‘124] m S 0
=1 IT (\i—=2g) TT A=Xidg)
k=1 k=1
L kA
(25 244+m )
As * _
25 55 [_ﬁ 7"'7)‘1‘ 1] m >0
i=1 IT (A\i—=Ax) IT A—=Xidg)
: e
’yhym’], = 25 /\24+|m‘ . . (4:8C)
Z 25 —55 [_ﬁ v+ 7>‘1] m <0
i=1 [ (Ni—Ar) TT (1=Xidg)
k=1 k=1
L kA y,

When m = 0, eq. (4.8a)-(4.8¢c) give the theoretical instantaneous cross correlation
between inflation and its conditional variance: pj,, = 0.703. This is very close
to the corresponding sample value of 0.682. Figures 2c-2d present the theoretical
cross correlation functions between inflation and its conditional variance. Observe

the slowly decaying pattern characterizes the correlation structure in Figures 2a-
2d.

5. Conclusions

We have examined the relationship between inflation and inflation uncertainty
using a GARCH model that allows for simultaneous feedback between the condi-
tional mean and variance of inflation. We have also derived a number of theoretical
econometric results and illustrated the relevance of these results with an empirical
example of the US monthly inflation process. Our empirical analysis, in sharp con-
trast with existing evidence, shows that there is a strong positive bi-directional
relationship between inflation and inflation uncertainty, in agreement with the
predictions of economic theory expressed by the Cukierman-Meltzer theory and
the Friedman-Ball view. It would be interesting to examine the robustness of this
result using data from a number of countries.
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Table la: Inflation rate (y;), 2/1960 - 2/1999, 469 obs.

Mean= 0.0037
Maximum= 0.0179

Minimum= —0.0055

Standard deviation= 0.003
Skewness= 1.0403
Kurtosis= 4.5885
Jarque-Bera= 133.90 [0.00]

Correlations of (y; —7)

Correlations of (y; — y)z

m AC,, PAC,, @ — Statistic m AC,, PAC,, (@ — Statistic
1 0.677 0.677 216.54 [0.000] 1 0477 0477 107.41 [0.000]
2 0.636 0.328 407.97 [0.000] 2 0403 0.228 184.35 [0.000]
3 0564 0.108 558.78 [0.000] 3 0314 0.077 231.06 [0.000]
4 0.548 0.127  701.33 [0.000] 4 0314 0.119 277.89 [0.000]
5 0.557 0.164 849.25 [0.000] 5 0.355 0.169 337.75 [0.000]
6 0.555 0.119 996.35 [0.000] 6 0.334 0.085 390.89 [0.000]
7 0545 0.076 1138.6 [0.000] 7 0330 0.079 442.83 [0.000]
8 0.544 0.087 1280.5 [0.000] 8 0.294 0.038 484.34 [0.000]
9 0.594 0.200 1450.1 [0.000] 9 0.336 0.118 538.53 [0.000]
10 0.550 0.012 1595.8 [0.000] 10 0.301 0.030 582.26 [0.000]
11 0.536 0.006 1734.2 [0.000] 11 0.234 -0.059 608.68 [0.000]
12 0.464 -0.094 1838.2 [0.000] 12 0.241 0.024 636.73 [0.000]
Notes: Probabilities are given in brackets

The Asymptotic standard error is 1/ VT = 0.046

Table 1b:Unit root tests

Dickey — Fuller :  DF(4) = —=3.69 DF(24) = —2.91
Phillips — Perron : PP(4) = —9.08 PP(24) = —13.92

Notes: The tests include a constant
Order of augmentation and lag truncation in parentheses
Critical values: —3.45 (1%), —2.87 (5%), —2.57 (10%)
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Table 2

AR-GARCH-M-L estimation, 2/62 - 2/99
Dependent variable is the inflation rate

% Model 1 Model 2 Model 3 Model 4 Model 5
b | 0.7(10)3 [0.00] | 0.6(10)3 [0.00] | 0.8(10)3 [0.00] | 0.8(10)™3 [0.00] | 0.4(10)™ [0.00]
b 0.31 [0.00] 0.57 [0.00] 0.61 [0.00] 0.60 [0.00] 0.33 [0.00]
b, 0.18 [0.00]
s ~0.01 [0.89]
4 0.02 [0.59]
b 0.10 [0.00]
Pe 0.09 [0.02]
b7 0.01 [0.79]
s 0.03 [0.50]
b, 0.21 [0.00]
D10 0.03 [0.43]
b1, 0.05 [0.13]
b1y -0.03 [0.54] 0.15 [0.00] 0.11 [0.00] 0.130.00] |  -0.07 [0.03]
Do -0.04 [0.28] | -0.003 [0.89] 0.03 [0.30] ~0.11 [0.00]
5| 459.9[0.00] | 103.30.02] 34.3 [0.36] 0.87 0.9
dl 0.02 [0.00]
a2 ~0.004 [0.00]
o [-0.9(10)7 [0.11] | 0.6(10)76 [0.03] | 0.8(20)7 [0.62] | 0.5(10)7 [0.62] | -0.1(10)77(0.91]
a 0.04 0.00] 0.10 [0.00] 0.21 [0.00] 0.17 [0.00] 0.13 [0.00]
3 0. 84 [0.00] 0. 84 [0.00] 0. 63 [0.07] 0. 80 [0.00] 0. 84 [0.00]
71 0.2(10)3 10.00] [ 0.1(107% [0.27] | 0.2(10)3 [0.00] | 0.4(10)% [0.00] | 0.7(10)™ [0.40]
SC -9.55 -9.53 -9.48 -9.46 -9.39
AIC -9.63 -9.62 -9.55 -9.53 -9.57
R 0.51 0.55 0.46 0.47 0.56
Notes: b is the constant term in the conditional mean of the process

the ¢’s denote the autoregressive parameters; ¢ is the in-mean effect
dl and d2 are 0, 1 dummies: d1 = 1 for 8/73, d2 = 1 for 2/86-4/86

w is the constant term in the conditional variance of the process

a and 3 denote the GARCH parameters

~ captures the effect of lagged inflation on its conditional variance
Probabilities are given in brackets; the % indicates the selected model
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Table 3: Diagnostics of Model 1

Autocorrelations of standardized residuals
1 2 3 4 5 6 7 8 9 10 11 12
—0.04 0.04 —-0.02 —-0.04 0.06 0.08 0.01 0.01 0.12 0.03 0.07 —0.01
Autocorrelations of standardized residuals squared
1 2 3 4 5 6 7 8 9 10 11 12
0.21 —-0.01 —0.001 —0.01 0.09 0.05 0.01 —0.04 0.01 0.01 0.01 0.02
Asymptotic standard error= 0.05

Jarque-Bera test= 150.7 [0.00]

Table 4: Roots of the ARMA representation of Model 1

Roots Modulus
A = —0.85439 — 0. 118 261 0.86254
Ay = —0.85439 +0.118 264 0.86254
A3 = —0.79789 — 0.329 74i 0.86334
A= —0.79789 + 0.329 744 0.86334
A5 = —0.67855 — 0.534 191 0.86359
Ag = —0.67855+0.53419 0.86359
A7 = —0.52411 — 0.689 421 0.86602
Ay = —0.52411 + 0.68942; 0.86602
Ag = —0.31748 — 0. 806 2617 0.86652
Ao = —0.31748 4 0. 806 261 0.86652
A1 = —0.10624 — 0. 864 05¢ 0.87056
Ao = —0.106 24 + 0. 864 057 0.87056

A3 =0.13211 — 0.86117¢ 0.87124
A4 =0.13211 4 0.86117¢ 0.87124
A15 = 0.34399 — 0. 806 47 0.8767

A1s = 0.34399 + 0. 806 41 0.8767

A7 = 0.54966 — 0. 683 541 0.87713
Mg = 0.549 66 + 0. 683 547 0.87713
A19 = 0.706 06 — 0. 530637 0.88323
A20 = 0.706 06 4 0. 530 637 0.88323
A1 =0.82124 — 0.317 767 0.88057
Moo = 0.82124 4 0. 317 767 0.88057

Aoz = 0.8709 — 9.2767 x 1072 0.87583
Aoy = 0.8709+9.2767 x 1072 0.87583
A2 = 0.979 36 0.979 36
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Figure la: ignore this page
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Figure 1b: ignore this page
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Figure 2: Ignore this page
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Figure 3: Ignore this page
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Appendix A: Proof of Proposition 1

Multiply (2.3a) by Apn(L) and substitute (2.5a) into (2.3a) to get

Apn(L) Ay (L)yr = aApn(1) = Ayn(L) |w + Apy (L)y: + Ehv(L)Ut] +By (L) Apn(L)e; =

[Apn(L)Ayy (L) — Agn(L) Ay (D)) ye = [aAnn(1) + wAyn(1)] + Ayn(L) Bro (L),
+By. (L) Apn(L)e, (A.1)

Multiply (2.5a) by A,, (L) and substitute (2.3a) into (2.5a) to get

Apn(L)Ayy (L)hy = wAyy (1) +Any (L) | + Ayn(L) Ry + EyE(L)gt +§hv(L)Ayy(L)Ut =

[Ann(L)Ayy (L) — Ay (L) Agn(L)] by = [wAyy (1) + aApy (1) + Apy (L) Bye(L)e,
+ By (L) Ayy (L), (A.2)

r4+p  min(r,j) ' S r+p ' '
Ayy(L)Ann(L) = Z Z a;yaﬂllﬂ :Za;y,hhlﬂv
J=0 i=max(0,j—p) j=0
ekt minGetgol) ke
Ap(L) A (L) = > > apa L= ) o), L,
Jj=1 i=max(0,j—k*) j=1
A(L) = Ayy(L)Apn(L) = Ayh(L)Ahy(L)—

r+p n*+k*

_ J J J _ JTJ
= Z gy nn 7 — Z O‘yh 'l = Z o' L
=0

¥ | a]_y,hh ayh,hy if r+pn*+k*>j
= H(l—)\jL), o = a;y,hh if j,r+p>n*4+k*
j=1 — Q) hy if jn*+k>r+p

f = max(r+p,n*+ k%)

and
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pt+s*  min(p,j)

BQE(L) = Ahh( Z Z O‘hhﬁya L _Zﬁ] LJ S:p+8*7

Jj=0 i=max(0,j—s*)
n*+q* min(n*,j—1)

Byv(L) = Ayh B/w Z Z thBi;ZLJ - Zﬁ] L] n = n* + q*7

j=1 i=max(0,5—q*) j=1
k*+s* min(s*,j—1) ] . k '

Bull) = A DBAD= S S Pt = LI
j=1 i=max(0,j—k*) j=1

r+q* min(r,j—1)

.o q
i It . . *
Bh'U(L) = A ( B}w Z Z Ckyy/ghv L] :Zﬁ‘;w[/]7 q:T+q
7j=1

J=1 i=max(0,j—q*)
Equations (A.1), (A.2) give equations (2.6a) and (2.7a) where

of = Ahh(l)a+Ayh(1)w
W= Ay(Dw+ Ayl
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Appendix B: Proof of Theorem 1

The CF of the AGF for the inflation rate (y;) (3.1a) follows immediately from
the univariate ARMA representation of y; (2.6a) and the CF of the AGF of an
ARMA model given in Nerlove, Grether and Carvalho (1979). Moreover, using

s s s s—k
B9 = (S0) (D) =TS a it
=0 =0 k=0 1=0
(B.1)
n n—k

Byu(2)By(z7") = Zﬂﬁﬁzl> (Zﬂéwz‘l) FuBy By (2" +275)
=1 =1

k=0 l=1

(B.2)

1 if k#£0

,—/H/—\

5ifk:0}

1 ! 1 A
ADAG YD Z(1-Alz)(1—xlzfl)x 7

into (3.1a) we get (3.1b)-(3.1f).
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Appendix C: Proof of Theorem 3

The CF of the cross covariance generating function between the inflation rate (y;)
and its conditional variance (h;), eq (3.3a) follows immediately from the univariate
ARMA representations of y; and h; (2.6a, 2.7a) and the CF of the AGF of ARMA
processes given in Sargent (1979, p. 228). Next, rewriting (B.3) we have

1 ! 1 PV
AR)A(z ) 2 TSI = (C.1)

=1

Moreover,

B E(Z)Bh6(271> = 1 S yh,e _m Ehy —-m m
(1 —yAzz)(l — Nz 1- M2 mZ::O <5m + &im > Al (C.2)

>From (C.1) and (C.2) we have

oo

ByE(Z)BhE yha m ahy —-m
Similarly
Byv(Z)Bhﬂ) ! = yh v m 'U h,y —m

Using equations (C.3) and (C.4) into (3.3a) we get (3.3b)-(3.3c).

31



