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Abstract. This paper is about how  the constraints imposed by natural resource  scarcity affects

economic growth and its sustainability. We extend the creative destruction model of Aghion and

Howitt(1998, ch.5) to study its transitional dynamics. This extension allows us to describe the

dynamics of the economy on the stable saddle path and its rate of convergence toward the steady state.

Moreover we show situation in which even in the presence of sustainability condition, suggested by

Aghion and Howitt, it is optimal for consumption to display negative growth rate on the transition

path for a finite period. The conditions for uniqueness of the steady state are also defined. Under

plausible assumptions the closed forms of the fundamentals of the model in the steady state is

determined. We study the stability of  the model around the steady state and analyse the nonlinear

system of differential equations, describing the dynamics of the economy,  by numerical methods. 

Keywords : endogenous growth, exhaustible resources, optimal growth, steady state, transitional     

                    dynamics

JEL classification: C62 , O13 , O41, Q32.

1  Introduction
Oil shock of 1973/74 had  intellectual effects on the research activities as well as its economic effects

on the industrial economies2. It called economists’ attention to the question of  whether it is possible

to deal with the finite stock of exhaustible resources as a binding constraint on the worldwide economic

growth3. Available technology at that time was suggesting fossil energy as an essential input of



in macroeconomics, see e.g. Sachs(1983) and Tornell and Lane(1998).

4 For comparison of the two main approaches to endogenous growth theory, namely expanding product variety and
quality ladder (or creative destruction) and some of shortcomings of the former respect to the latter see Helpman(1992).
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aggregate production. OPEC agreement about a significant reduction in the oil production and its effect

on the economic performance of industrial economies encouraged economists to think about growth

constrained by natural resources as a way to analyse the effect of natural resource scarcity on the

economic growth.

The other stimulus for study of the problem was the studies have been carried out, in a multi-

disciplinary approach, by Forrester and the Club of Rome. Their pessimistic approach was indicating

that worldwide economic growth is constrained by natural resource scarcity. The majority of economists

however despite the above mentioned  Malthusian view found that technical progress, capital

substitution and increasing returns to scale are three ways to compensate the declining trend of rate of

utilization of an essential and nonrenewable resource in the aggregate production function.

The purpose of this paper is to study the transitional dynamics of the creative destruction model4

of Aghion and Howitt in the presence of exhaustible resource introduced in chapter 5 of their book,

Endogenous Growth Theory. They touch environmental issues and nonrenewable resources to address

the advantage of the Shumpeterian approach to AK model to analyse the main questions related to

sustainability. They focus on the steady state and show that a permanent process of innovation ensures

that an economy overcomes natural resource scarcity and provides a permanent level of positive

consumption. In Aghion-Howitt  model the level of initial physical capital has been considered as a

choice variable implying that economy can jump to the steady state instantaneously. In this paper

instead the physical capital is taken given at the time of planning and so having the transitional

dynamics is unavoidable. We thus extend  Aghion-Howitt model to study its transitional dynamics.

Moreover we derive the conditions for the uniqueness of the steady state and for its feasibility and

compute the rate of convergence of the economy toward it. A closed form for the fundamental variables

of the economy in the long run is derived too. In the case of nonuniqueness of the steady state, the

characteristics of multiple equilibria is also found. We furthermore provide the stability analysis of the

steady state and consider the effect of return to scale on the economy as a whole and in particular

balanced rate of growth and rate of resource depletion.

After considering the link of the paper to the existing literature in next section, we explain the

micro foundations of the model in section 3. In section 4 and 5 the optimal growth and steady state are

studied respectively. We analyse the dynamics of the model including the stability analysis and the

study of transitional dynamics in section 6. We conclude then in section 7.

2  Literature review
The problem of the effect of natural resource scarcity ( in particular nonrenewable one) on the economic

growth has been explored during 1970's by Stiglitz(1974a,b), Solow(1974a), Dasgupta(1974), and

Dasgupta and Heal(1974, 1979). They consider  in a neo-classical growth framework the rate of

utilization of natural resources as a factor of production. The results was optimistic and dramatically



5 Meadows et. al. (1972,1974) based on the World Dynamics’ model of Forrester investigate five major trends of
global concern at 1970s: industrialization, population growth, food-consumption, nonrenewable resources depletion, and
pollution; their interconnection, and their implications on growth and the quality of life.

6 The contribution of  neoclassical growth constrained by exhaustible resource has been summarized by Solow

(1999) and in more detail by Toman et. al. (1995) and  Krautkraemer(1998).
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in contrast with the Malthusian view presented by Forrester(1971) and the Club of Rome5. They found

that the world economy can overcome the finite supply of exhaustible resources which are essential for

production if there is a continuous flow of technical progress or if the share of physical capital in

aggregate production function is larger than the share of natural resources. So the world in their view

would survive and technical progress or capital substitution can compensate the natural resource

scarcity6.

Although during 1980s many research carried out on the macroeconomic effects of natural

resource scarcity (see for example Chichilnisky 1985; Chichilinsky and Heal 1983; Marion and

Svensson 1984 ; Hellinell et al. 1982 ; Sachs 1981,1983 ; Krugman 1983 and Buiter and Purvis 1983),

but by 1990s the Stiglitz’ findings was still the state of the art in the area of growth constrained by

natural resource. In his model the main source for overcoming the natural resource scarcity was the

exogenous - and hence unexplained- technical progress factor.

One of the first attempts to endogens technical progress in a growth model in the presence of

exhaustible resource is Suzuki(1976) and Kamien and Schwartz(1978). In the former technical progress

is the result of R&D activities that absorbs part of output. Chiarella(1980) extends Suzuki’s analysis

by endogenizing the aggregate saving rate. However these studies investigate only efficient solutions,

namely in the case of market economy neither externalities nor monopolistic competition. They

demonstrate that growing per capita consumption is possible in a world which exhaustible resources

are essential for production.

The wave of endogenous growth theory arose by Romer(1986, 1990), Lucas(1988), Aghion and

Howitt(1992) and Helpman and Grossman(1991) affected the Stiglitz’ model too, though until recently

the endogenous growth literature has not been concerned about the contribution of natural resources.

Recently Barbier(1999) has reconciled the Stiglitz’ model of constrained growth and Romer’s

model of endogenous growth to study the role of innovation in overcoming natural resource scarcity.

He also considers the possibility that in low income, natural resources abundant economies the supply

of innovation may be adversely affected by the rate of resource utilization. Scholz and Ziemes(1999)

demonstrate that in the decentralized version of the expanding varieties growth model, indeterminacy

of equilibrium trajectories arises when the Romer’s model is extended to incorporate exhaustible

resources. In their paper, two types of inefficiencies are responsible for this result: inefficiencies owing

to monopolistic competition and information spillover. Schou, as reported by Scholz and Ziemes(1999)

shows that compared to the social optimum, in the decentralized version of the model the resource

extraction rate could be too low or too high.

Farzin(1999) in a AK-type model claims that growth models that incorporate the flow of



7 This section is heavily relied on the model of Aghion and Howitt (1998, ch.3) in the presence of exhaustible
resource.
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nonrenewable resources as an essential input of production are not the suitable framework for the

exhaustible resource-exporting developing economies (EREs), where among all of their features

production linkages between the resource sector and the rest of the economy are weak and the gross

national income is generated primarily from liquidation and the direct export of the exhaustible asset.

He produces a bang-bang characteristic for the optimal extraction policy which is totally different from

the policies that have been derived so far. Characterization of optimal saving policy for ERE’s is the

main contribution of Farzin(1999) who shows that, both in magnitude and time profile, the optimal

saving policy for an ERE sharply differs from that of a non extractive economy and that derived from

the conventional models of growth with exhaustible resources. For a wide range of plausible parameter

values, he also shows that a set of selected EREs have been substantially under saving.

There is similarities between incorporating exhaustible resources and the environmental

considerations(e.g. the accumulation of pollution) in the growth models. From methodological point

of view, growth models dealing with pollution usually consider environmental quality as a renewable

resource and enter it as an argument in the utility function. Growth models constrained by exhaustible

resources instead consider rate of natural resource use as a factor of production. Aghion and

Howitt(1998, ch.5) for example consider environmental quality as a renewable resource and regard to

environmental considerations and exhaustible resource scarcity as two different aspects of

sustainability. They show that sustainability in the latter version can be attained with  weaker

assumptions. They also show that AK model, due to lack of distinguishing between physical and

intellectual capital, can not deal with the sustainability issue well .They propose then Shumpeterian

approach of creative destruction to endogenous growth as an appropriate way to analyse both

environmental considerations and natural resource scarcity.

Grimaud(1998) illustrates how the optimal growth paths in Aghion-Howitt model can be

implemented in a decentralized economy. He also studies the suboptimality of the market equilibrium

respect to central planner’s version of the model and moreover analyses the effects of government

intervention on the characteristics of the economy, in particular the rate of growth and the  rate of

resource use in the long run.

3  The model7

Consider an economy populated by a fixed continuous mass of households, each endowed with one unit

of skilled labour and supplies it inelastically. The population size is normalized to unity and so, one

is also equal to the aggregate flow of labour supply. This means that we abstract from the size effect

and variables in the model are in per capita terms .

There are two type of activities for labour force: working in the final product market or doing

research. We denote the number of people producing final product and doing research with L and n

respectively and hence in each period we will have
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    (1)n Lt t+ = 1

Following Aghion-Howitt we extend the conventional growth model of creative destruction to

incorporate use of natural resources by including R, the rate of extraction of an exhaustible resource,

S, as an additional input in the production of final good. According to the theory of exhaustible

resource( See Dasgupta and Heal 1979, ch.6) the relation between R and S is described as

                   (2)St 
 S0	P
t

0
R
2
d2

where  ( for t �0) is the stock of resource at t. We assume that  is given and its amount is knownSt S0

with certainty. Moreover for convenience we assume that there is one pool of resource and we do not

consider the problem concerning common utilization of the resource and its externality effect.

The economy produces one (numeraire) final product, denoted by Y, and a continuum of

intermediate (capital) goods  indexed on the unit interval [0,1] and denoted by  where 0 � i �1.  Eachxi

intermediate good is produced from physical capital and each can be used to produce the final good

independently of other intermediate goods, with no complementaries between them.

More specifically, the flow of final good that can be produced using intermediate good i  depends

only on the flow  of intermediate good i according to the production functionxi

Yi 
 Bi xi
.L �R� 0� i�1

where L and  R  as introduced before are the total amount of labour working in final-product section

and rate of extraction of the natural resource respectively;  is the highest level of technology inBi

section i, which represents the productivity of the latest generation of intermediate good i. Aggregate

output of the final good is therefore the sum

    (3)Y
 L �R�

P
1

0
Bi xi

.di

where ., �, � � (0,1) are technology parameters which represent the importance of intermediate good

(or physical capital as will be described later), labour and natural resource in the aggregate product

respectively.

The engine of growth in the model is technical progress through innovation in the intermediate

sector.  Since the variety of intermediate goods is assumed to be constant, innovation leads to

improvement in the quality of the existing goods which has been interpreted as vertical innovation.

Research activities are sector specific and lead to innovation in a stochastic fashion. More research

effort in a sector more likely is the innovation and improvement in the quality of the product of that

sector along the quality ladder. Furthermore innovation has a spillover effect  through knowledge

accumulation in the whole economy. Innovation in each sector has a positive externality on the other

sectors by increasing the level of public knowledge accessible for all researchers.

Beside this positive externality, quality improvement of the intermediate goods makes the old

products less attractive. In the extreme case where we suppose perfect substitution among the products
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of each sector, new products make the last products obsolete. This negative externality of new

innovations on the incumbent producers will be explained in the following in terms of monopolistic

competition among researchers.

Each intermediate sector is monopolized by the holder of a patent to the last generation of that

good. The local monopolist sells its output to the competitive final-good sector in which its marginal

product, and thus its price measured in final good, is given by

     (4)Pi 
 .L �R�Bi xi
.	1

which gives the demand for i-th intermediate as

      (4')xi 
 (. L �R�Bi /Pi)
1/(1	.)

Suppose now that there is a stock of physical capital K, embodied in durable machines and

belongs to the households. Capital is produced, along with consumption goods C, according to the

production function (3), where the factors of production are employed in two activities of producing

consumption goods and physical capital

    (5)Y
 C� ÚK

where there is no depreciation. 

The only input into the production of intermediate goods is capital. The monopolist in sector i to

produce  requires   units of capital and the i-th intermediate is produced according to the (linear)xi Bi xi

constant returns production function   for 0 �i�1, where   is the amount of capital usedxi 
 Ki / Bi Ki

to produce good i. Thus more advanced technologies (larger ) are more capital intensive.     Bi

Assume that each monopolist rents its capital from households in an imperfectly competitive

market, where the rental rate at each date t is . Then its average cost will be . Thus thert Bit r t

monopolist’s profit will be

                         �i 
 (Pi	 rBi )xi

The first order condition of the profit-maximization problem yields the monopolist’s output in section

i as 

        for all  i � [ 0,1 ]     (6)xi 
 x :
 (.2L �R� / r )1/(1	.)

which is constant across sectors. Thus the optimal supply of intermediate goods is proportional to

supply of labour in product market and the rate of utilization of resource and is inversely related to the

rental rate of capital.

 Replacing the optimal (symmetric) supply of intermediate good in the inverse demand function

(4) leads the (markup) monopoly pricing as which is not constant neither over time, norPit
Bit r t /.



8 Maximizing Y subject to (9) yields the optimality condition , where %=r/. is the lagrangexi
x
L (% /.)1/(.	1)

multiplier of the constraint expressed in (9). This is another way to find that the supply of intermediate goods is symmetric
across sectors.
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across sectors. The monopoly’s flow of profit will be then    

       (7)�i 
 [(1	.) /.] rBi xi

        (7')
 (1	.)Pi xi

which the latter shows that the revenue from each  innovation is distributed in the fraction of ( 1- . )

and . to the profit and cost of renting capital which are received by innovators and households

respectively.

Now let

    (8)B
 P
1

0
Bi d i

denote the average productivity parameter across all sectors. Since each sector i uses  units ofBi xi

capital and there is a total capital stock of K, capital market equilibrium requires

  (9)K
 P
1

0
Bi xi d i

According to (6), all sectors produce the same amount of intermediate goods at any given time8. This

with two above equations imply that 

              for all  i � [0,1]   (10)xi 
 x
 k :
 K /B

That is, the equilibrium flow of intermediate output from each sector at date t must be equal to the

capital intensity k .

Substituting  from (10) into (3) yields the familiar Cobb-Douglas aggregate production functionxi

  (11)Y
 Bx.L �R�

  (11')
 B1	.K .L �R�

This functional form is consistent with the theory of exhaustible resources where it is quite natural to

consider the flow of utilization of the resource as a factor of production in the aggregate production

function. Moreover in a CES world where the elasticities of substitution between natural resource and

the aggregate capital  is constant, only the Cobb-Douglas form exhibits realistic characteristics which

are consistent with the feasibility conditions implied by the scarcity of resources. [See Dasgupta and

Heal(1974) for more details.]

What we have just described in (11') is a three sectors growth model where the level of output is

determined by three stocks: the stock of capital K, the level of knowledge which is proportional to B
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and the rate of utilization of resources R, which depends on S. We refer through this paper to these three

types of capitals as physical ( or tangible), intellectual and natural capital. 

The above functional form indicates that for a given state of knowledge, . + � + � is a measure

of returns to scale. In spite of studies that carried out so far and are reviewed in the previous section we

do not impose the constant returns to scale(CRTS) on the production function because in this case one

can not distinguish the effect of change of . and �.

Combining (6) and (10) gives us rental rate of capital as a function of capital intensity

           (12)r 
 .
2k.	1L �R�

According to (12), an increase in the historically predetermined capital intensity will reduce the

equilibrium rental rate that a monopolist must pay for capital. This can be interpreted as a consequence

of decreasing returns at the accumulation of capital intensity. Comparing (12) and (11')  we find that

the rental rate of capital is . ( < 1) times of  its marginal product, i.e

 r = . 0Y/0K   (12')

                      (12'')
 .
2Y/K

which means higher the degree of monopoly in the intermediate section, less households will receive

from lending capital. This is another expression for what we found in (7') that capital expenditure is

distributed between monopolists and households according to parameter . .

Research in intermediate section is sector specific and the probability of success of research in

each sector proportionately depends on the research effort in that sector which we measure it with the

amount of researchers in the sector. Following Aghion- Howitt we assume that the probability  of

innovation per researcher is constant over time and across sectors. Thus if we denote by , the researchni

employment in sector i then the arrival rate of innovation in sector i would be  where �>0 is a�ni

parameter indicating the productivity of the research activities. Although the arrival rates in different

sectors are independent of each other, the innovations themselves all contribute to raise the level of

public knowledge. The state of this knowledge is represented by a leading-edge technology, whose

amount at date t is denoted with

 B B it it
m ax m ax { : }= ≤ ≤ 0 1

This parameter grows gradually at a rate proportional to the aggregate flow of innovations

n n d it it= ∫0

1

with a factor of proportionality equal to 1>0. Thus in the economy as a whole there will be a continuous

flow of  �n innovation per unit of time. This implies

  (13)ÚBmax

 1�nBmax

Equation (13) is the law of motion governing the evolution of public knowledge. At any point in time



9 See section 3.1.2 of Aghion-Howitt for details.
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there will be a distribution of productivity parameters  across the sectors with values ranging fromBit

0 to . Over time the distribution will be displaced upward as innovating sectors move up to Bmax
t Bmax

t

and rightward as technological progress raises  itself. Fortunately, the shape of the distribution doesBmax
t

not change, even if the order of the sectors occupying the different places in the distribution are

continually changing. More specifically, in the long run the cross-sectoral distribution of the relative

productivity parameters  will be given by the distribution function9bit
Bit /B
max
t

H(b)
b1/1, 0�b�1

According to the definition of relative productivity parameter b, equation (8) gives  an expression for

its average which is equal to .On the other hand by definition we haveE(bi) 
 B / Bmax

for all  i � ( 0,1)E(bi)
P
1

0
bi h(bi)dbi


1
1�1

where  is the probability density function of relative productivity. Equating these twoh(b)
b (1	1)/1/1

expressions obtained for E(b) gives

Bt 
 Bt
max/ (1�1)

From the above equation and considering (13), we obtain

 (14)
ÚB

B



ÚBmax

Bmax

 1�n

which shows that research effort, n has a positive growth effect on the accumulation of knowledge and

hence on the economy as a whole. The overall structure of the model is now complete and depicted in

figure 1.

 Figure 1, in here

4  Optimal growth
Now suppose that households have identical lifetime utility function as

          (15)W
P0

�

e	! tU(Ct)dt

where U is the instant utility of consumption, and  is the rate of time preference. The problem of! > 0

optimal growth is that of choosing the rates of consumption C, research employment n, and extraction

of resource R, at each date so as to maximise W subject to
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             (2')S R
.

= −

                                                                   (5')K B K n R C
.

( )= − −−1 1α α β ν

 (14)B nB
.

= ση
where and  are given. The coefficients . , � and � are all in [0,1) and . + � + � is the measureB0,K0 S0

of returns to scale which otherwise stated we do not impose any constraint on it.

The Hamiltonian of the optimization problem is

H 
 U(C)�� [ B1	.K . (1	n)�R�
	C] �µ1�nB	�R

There are three state variables (K, B and S), three costate variables ( and ), and three control� ,µ �

variables (C, n and R). Assuming an interior solution, the first order (static efficiency) conditions are

           (16)HC
0 < U �(C)
�

            (17)Hn
0 < ��Y/ (1	n)
µ�1B

           (18)HR
0 < ��Y/R
�

The Euler equations (dynamic efficiency conditions) are

  (19)HK
	
Ú��!� < g

�

 !	.Y/K

  (20)HB
	 Úµ�!µ < gµ 
 !	 (� /µ)(1	.)(Y/B)	�1n

  (21)HS
	
Ú��!� < g

�

 !

where for each variable like z, we denote its exponential rate of growth with . Thegz

dz/dt

z
transversality conditions are

         lim t��e
	! t�K
 lim t��e

	! tµB
 lim t��e
	! t�S
0

(22)

Before returning to the algebra, we follow Barbier(1999) to build intuition about these conditions.

Equation (16) describes the optimality rule for consumption. It indicates that, along the optimal path,

the marginal utility of consumption must equal the shadow price of accumulated capital. Condition (17)

determines the optimal amount of research effort. It shows that the marginal productivity of labour force

in final product relative to marginal contribution of research in innovation, must equal the relative price

of intellectual capital to tangible one. Condition (18) indicates that the marginal productivity of resource

inputs must equal the relative price of the resource stock to capital. Condition (19) shows that the



10 Under CRRA, for W in (15) to be well-defined and considering (23) we should have

 . Y/K ( 1- 0 ) < !
which is trivial for 0 �1.
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percentage change in shadow price of physical capital must equal the discount factor less the marginal

productivity of capital. Similarly, condition (20) shows that the percentage rate of change in shadow

value of intellectual capital should equal the discount factor less the rate of growth of social knowledge

and the relative price of physical capital to intellectual one times the marginal productivity of social

knowledge. Finally, condition (21) indicates that the capital gains of holding on the resource stock on

the optimal path must equal to its opportunity costs.

We assume households have isoelastic preferences which means U in (15) is of the form

 and , the inverse of elasticity of substitution, is a positiveU(C) 
 (C1	0) / (1	0) 0 
 	U ��(C)C/U �(C)

constant parameter. Considering this functional form for the preferences, from (16) and (19) we obtain

the familiar Ramsey equation for consumption10

  (23)gC 

.Y/K	!

0

Taking into account (11'), Eq. (23) gives the optimal rate of growth of the consumption as 

           (23')gC(t) 
 [. (Bt /Kt)
1	.L �

t R�

t 	! ] / 0

which means that in the absence of population growth, an economy with exhaustible resources is

sustainable if increases in the ratio of intellectual capital to the tangible capital can compensate the

finiteness of the essential resources.

Plugging (17) into (20) yields

            (24)gµ 
 !	1�n	
(1	.) (1	n)1�

�

Log-differentiating from (11'),(17) and (18) respectively yields

           (25)gY
 (1	.)gB�.gK	�gn��gR

   (26)g
�
�gY�gn
gµ�gB

   (27)g
�
�gY	gR
 !

where we used (1) and (21) in (25) and (27) respectively. Replacing (19) in (27) gives

   (28)gR
 gY	.Y/K



11 Similarly S/R indicates the life time of the resource.
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Following Barbier(1999) we call this condition, the basic Hotelling rule for resource flows which

indicates growth in resource use is determined by the growth rate of output less the marginal

productivity of capital.

We can rewrite (5) as

             (5')gK 

Y	C

K

substitution of  and  from (5') and (28) in (25) givesgK gR

    (29)gY

1

1	�
[ (1	.)1�n	�gn	.

C
K

]�.
Y
K

where we have rewritten (14) as 

  (14')gB
1�n

Now consider (26). On the LHS we can substitute  and  from (19) and (29) respectively andg
�

gY

on the RHS we can substitute and  from (24) and (14'). Assuming  � + � g1   and aftergµ gB

manipulation we obtain

    (30)gn 

(1	.)1�

�
(n�

�	1
1	�	�

)�
.

1	�	�
C
K

Substituting from (30) into (29) gives the optimal rate of growth of final product as

  (29')gY
 (
1	.

1	�	�
)1�	 (

.

1	�	�
)
C
K
�.

Y
K

which after plugging in (28), leads the optimal rate of decline of resource use as

      (28')gR
 (
1	.

1	�	�
)1�	 (

.

1	�	�
)
C
K

This considering (2') for R/S , the rate of utilization of the resource11 gives

   (31)gR/S
 (
1	.

1	�	�
)1�	 (

.

1	�	�
)
C
K
�

R
S

Furthermore by definition we have

            (32)gS
 	R/S
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Equations (19),(21),(23-24),(5'),(14'),(28'),(29'),(30),(31) and (32) define the law of motion of the

economy on the optimal growth path. As we consider the optimal growth path of the all variables are

linear combinations of Y/K, C/K, n and R/S which will be called  the fundamentals of the model.

5  Steady state analysis
Definition of the steady state requires that C, K and Y grow at a constant common rate denoted by

  (33)g:
gY
gC
gK

 

This implies that capital productivity remains constant at the steady state which from (12'') results

 where  is the rental rate of physical capital. Moreover research effort and portion ofgr 
 0 r 
 .
2Y/K

labour force working in product market remains constant which requires 

  (34)gn
gL
0

Furthermore following Barbier(1999), in a growth model constrained by a natural resource and

to investigate whether natural resource scarcity operates as a binding constraint on the economic

growth, it is worth exploring the condition under which the long run equilibrium is characterised by the

rate of resource utilization R/S, converging to a steady state value (R/S)*. Thus an additional steady state

condition imposed on the optimal path of the economy is 

  (35)gR/S
 0

Beside transversality conditions defined by (22), equations (33-35) define constraints determining

the balanced growth path in the steady state. In the following subsections, firstly we impose the steady

state conditions on the optimal growth equations to derive the balanced optimal growth path. We derive

then the conditions determining uniqueness of the steady state and then solve equations governing the

balanced optimal growth path to derive the long run values of the fundamenatls.

5.1 Balanced optimal growth
In this subsection we impose the constraints determine the steady state, i.e conditions (33-37) on the

equations define optimal growth path derived in section 4. Imposing (35) on (31) gives the steady state

rate of utilization of the resource as

                 (36)
R

S

C

K
=

− −




 −

−
− −









α
β ν

α
β ν

ση
1

1

1

Now using (35) in (31)and considering (32) gives

                  

                                                           (37)g g
C

KR S= =
−

− −






 −

− −




 <

1

1 1
0

α
β ν

ση
α
β ν



12 This argument is entirely different from the approach undertaken by Sachs and Warner(1995) and related studies
about the effect of natural resource abundance on economic growth.
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which means that in the steady state, the stock of resources and its rate of utilization both decline with

a  common rate which is inversely related to the consumption-capital ratio. In addition the trans-

versality condition corresponding to S, using (21) gives

lim t��P
t

0
R
2
d2 
 S0

Due to finiteness of S and non negativity of R, this implies

  (38)lim t��Rt 
 0

If we impose now (33) and (34) on (25) and substitute  from (37) we obtaingR

                      (39)g g
R

SB= −
−







ν
α1

This, considering (R/S) �0, means that in the presence of exhaustible resource the balanced rate

of growth is lower than rate of knowledge accumulation. Higher the rate of utilization of the resource

or higher the resource contribution in the final product, lower is the balanced rate of growth. This  is

a justification of the argument that natural resource intensity is harmful for growth12. Using a Cobb-

Douglas production function with a declining flow of natural resource as an essential factor of

production, makes the growth slower respect to no-resource case, ie when � = 0. In the latter case the

balanced rate of growth is equal to the rate of knowledge accumulation.

From (16), for CRRA case we have which considering (33) gives . This, so long� 
 C	0 g
�

 	0g

as g > 0, indicates that along the balanced growth path, the shadow value of physical capital is

declining.

Imposing (33) and (34) on (25) gives . Substituting these two expressionsgR
 (1	.) (g	1�n) / �

for  and  into (27) gives the optimal balanced rate of growth of the economy as an increasingg
�

gR

function of research effort

  (40)g n
n

t
t( )

( )

( ) ( )
=

− −
− + −

1

1 1

α ση ρν
α ε ν

We have assumed  for derivation of (40) which in the cases of constant or decreasing(1	.) /� g 1	0

returns to scale (ie when ) or when 0 �1 is obviously valid.1	.	� � �>0>	0

What we have found in (40) is that research effort has a positive growth effect on the steady state

rate of growth which is consistent with conventional creative destruction model. But in that model, the

balanced growth rate is equal to the growth rate of intellectual capital which according to (14') is equal

to 1 � n*,where n* is the steady state amount of research employment. In the conventional model of

creative destruction, in the steady state output, consumption, physical and intellectual capital grow with

the same constant rate g = 1 � n* ( see section 3.2.2 of Aghion and Howitt 1998). What we found here
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is that incorporating natural resource into the model not only causes the share of natural resource, �

comes into account but also in this case the degree of risk aversion of consumers does matter. The

relation between balanced growth rate, g and the level of research effort, n is depicted in figure 2. As

we consider in the presence of exhaustible resource a minimum level of research effort, namely

  nm in ( )
=

−
ρν
α ση1

is required to compensate the declining trend of resource use and provide a positive rate of growth.

 Figure 2, in here

Imposing (33) on (23),(5') and (29') gives two independent linear equations involving Y/K and

C/K. Using algebra we derive the steady state level of output-capital ratio and consumption-capital ratio

from these equations respectively as 

                    (41)
Y

K




 =

− −
+ −

* ( )

[ ( ( ) ]

ε α ση ρδ
α ε β ν δ

1

  (42)
C

K




 =

− − + −
+ −

* ( )[ ( ) ( ) ]

[ ( ) ]

α α δ ρ α ε ση
α ε β ν δ

1

where / = 1 - . - � - � is the degree of increasing return to scale, and we have assumed (.	0)(.	/) g 0

for derivation of these expressions. In CRTS these expressions reduce to

  (41')
Y

K




 =

* ση
α

  (42')
C

K




 = −

−* ση
α

ση ρ
ε

Now we impose (34) on (30). This ,after substitution from (42), gives the steady state level of

research effort as

                   (43)n *

( )
=

−
−

+
+ −

−
−

−






1 ν
α δ

β
ε β ν δ

α ε
α δ

ρ
ση

which in CRTS reduces to

   (43')n *

( )
=

−
+

−
−





ν
α

β
α ση

ση ρ
ε1 1

By substituting the steady state level of consumption-capital ratio from (42) in (36) and assuming ��� g 1

we derive the rate of utilization of the resource at the steady state as

      (44)
R

S




 =

− − +
+ −

* ( )[ ( ) ]

( )

1 1α ση ε ρ
ε β ν δ
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which in CRTS reduces to

            (44')
R

S




 = −

−





*

ση
ση ρ

ε

Eq. (37) indicates that the negative of these expressions gives the rate of decline of resource stock and

resource use at the steady state. In particular, according to (37), in CRTS we have

g gS R= =
−

−( )
1 ε

ε
ση

ρ
ε

and thus the optimal rate of depletion of resource will be

 R R tt =
−

−0 exp{ [( ) ] }
ση ρ

ε
ση

In the simplest case where 0 =1, rate of decline of resource use is equal to the discount rate, !.

This means that our model , like those of Barbier(1999), can produce the Hotelling’s rule as a special

case. Moreover in the absence of R&D (i.e. when 1 = � = 0) we will have  which is the samegR
 	! /0

as findings of the neoclassical models (see e.g Dasgupta and Heal 1974).

For deriving the balanced rate of growth, we can substitute (C/K)* from (46) into (27), or (Y/K)*

and (C/K)* from (45) and (46) respectively into (5'), or n* from (47) into (44). After manipulation and

rearrangement we obtain

  (49)g =
− − +

+ −
( ) ( )

( )

1 α ση ρ β ν
ε β ν δ

which in CRTS becomes

  (49')g =
−ση ρ

ε
The effect of change in the parameters of the model on the long run growth of the economy is described

in the following statement, which is the result of simple manipulations on equation (49):

Proposition 1 The balanced rate of growth is an increasing function of the productivity of research

activities, 1 and � ; the degree of return to scale, / and a decreasing function of the willingness to

consume, ! and 0. It also decreases when the contribution of each of the factors of production increases

if and only if the long run rate of growth does not exceed the incremental value of public knowledge

per researcher, ie

∂
∂ θ

ση θ α β ν
g

< ≤ =0                  if f        g                w here      , ,

which is always true in case of CRTS.

By comparison of (47') and (49') one finds the following relationship between research effort in

the steady state and balanced rate of growth
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    g n= − −
ση
β

α ν[ ( ) ]*1

which results

    g g n=
− − − + + +

( , , , , , )*α β ν σ η

The rate of knowledge accumulation at the steady state can be obtained by substituting n* from

(47) into (14') as 

                                   (50)g nB = = − + −
+ −

ση ση β δ εν
βρ

ε β ν δ
* ( )

( )

which in case of CRTS reduces to

  (50')g B = + −
+

ση β εν
βρ

ε β ν
( )

( )

5.2 The existence and uniqueness 
As we considered on the balanced growth path C, K and Y grow with the same rate, n does not change

and R and S decline with the same rate too.Thus the dynamical analysis can be done on the four

variables Y/K, C/K, n and R/S whose rates of growth on the steady state must be zero.

According to optimal growth equations, from (29') and (5') we have

   (47)gY/K 

1

1	�	�
[ (1	.)1�� (1	.	�	�)

C
K

]� (.	1)
Y
K

Moreover from (23) and (5') we obtain

  (48)gC/K 

.	0

0

Y
K
�

C
K
	
!

0

Now (47), (48), (30) and (31) define the growth rates of fundamental variables of the model in

a system of equations, which due to Cobb-Douglas functional form of production function is linear

respect to those variables itself:

     (49)

g

g

g

g

D

D

D

D

Y K

C K

n

R S

D D

D D

D D

Y K

C K

n

R S

/

/

/

/

/

/

/

/

( ) /

/



















=

− −

−

−

−















































−
−



















α
α

α ε
ε

α
β

α

ρ ε
ν β

1 1 0 0

1 0 0

0 0

0 0 1

1

1

1

2

1

2 1

2 1

2 1
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where

                   and             D1
1	�	� D2
 (.	1)1�

We call the RHS of the above system Ax - b , where A is the 4×4 matrix of coefficients,

    (54)x
 (
Y
K

,
C
K

, n ,
R
S

)T

is the vector of fundamental variables and b is the constant vector of parameters. 

The nonzero entry in the last row of A indicates that the rate of decline of resource utilization is

affected by the consumption-capital ratio, while the zero entries of the last column of A indicate that

the dynamics of the core of the economy is not affected by the rate of resource utilization.

According to the previous section, the steady state will be defined as

SS x A x b= ∈ ={ : } R +
4

So the existence and uniqueness of the steady state can be analysed by characterization of matrix of

coefficient A for which we have

det
( )

[
( )

]A =
− − +

− −
−

α α ση
βε

α ε β ν
β ν

1

1
1

Range of possible values of the parameters of the model indicates that A is nonsingular (ie det A g 0)

if and only if the following assumption holds

Assumption 1    
α
β ν

ε
−
+

≠ −
1

1

Thus we conclude the following statement

Proposition 2 The necessary and sufficient condition for uniqueness of the steady state in the model

is assumption 1. In this case the steady state is completely described by the parameters of the model

by

  (55)x A b* = −1

The existence of steady state requires that the RHS vector in (53), b can be generated by the columns

of matrix of coefficient, A.

Obviously in the case of CRTS, A is lower triangular and we have
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det
( )

A = −
−

<
1

0
2α ση

β

Moreover if 0 �1, the RHS of assumption 1 becomes nonnegative while the LHS remains negative. Thus

we conclude

Corollary 1 The steady state is unique if the aggregate production function exhibits constant returns

to scale or if the degree of risk aversion of consumers is higher than or equal to one.

The linear form of growth equation (49) helps us to characterise the steady state in case of

nonuniqueness as follows

Corollary 2  There is a possibility for indeterminacy in the model by which we mean multiple

equilibria. This possibility depends on the parameters of the model and occurs when assumption 1

violates.  If A is singular, multiple equilibria are not isolated and there is a continuum of steady states.

This happens because 

z , z’ � SS < � z + ( 1- � ) z’ � SS        for        0 < � < 1

The linear dimension of the steady state is equal to the dimension of the kernel of A which defined as

 

ker { : }A x A x= ∈ =R 4 0

In addition SS and kerA are parallel. In other words

z � SS  < z + z’ � SS                              for all z’ � kerA

SS is different from ker A so long as b g 0.

We limit our attention in what follows to CRTS, so A is triangular and we can solve (49)

analytically to obtain

(52a)
Y

K




 =

* ση
α

(52b)
C

K




 = + −

*

[ ( ) ]
1

ε
ρ ε α

ση
α

                (52c)n * [ ( )]= −
−

+ −1
1

1
1

1
β

α ε
ρ

ση
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(52d)
R

S




 = + −

*

[ ( ) ]
1

1
ε

ρ ε ση

which are the same as what we derived before in equations (41'),(42'),(43') and (44').

Now it is the time to ask how central planner sets the control variables at initial position. The best

set of control variables for him is the values that equate  with  where the elements of  have beenx0 x� x�

described by the RHS of equations 52(a-d). Thus given ,  and   and the parameters of the model,K0 B0 S0

to avoid the social cost of being out of steady state, social planner should solve the Eq. (52a) at time

of planning so as

B

K
S0

0

1

01
1









−




 −

−





−
−



 =

−α β β ν
νβ

α
ση ρ

σηε
ση

ση ρ
ε

ση
α

or simply

B

K
S cste0

0

1

0







 =

−α
ν

One degree of freedom is required to equate the LHS of the above equation with the RHS which is

given by parameters of the model. Aghion and Howitt(1998, pp164), by taking  as a function ofK0 B0

and , avoid the analysis of transitional dynamics in their model and conclude that the optimalS0

balanced growth path can be reached instantaneously from the chosen initial position. We consider

instead the initial value of physical capital, as well as intellectual and natural capital, as given to the

central planner. According to this argument in general being on the steady state is unlikely and the

economy described by this model is almost always on the transitional path toward the steady state.

According to (11') and (52a) now we can derive the ratio of intellectual to tangible capital in the

steady state as

 ( ) [ ( ) ]* * *K

B
n R= − −

α
ση

β ν α1
1

1

Equation (52a) shows that the marginal productivity of physical capital at the steady state is equal

to the percentage rate of increase of knowledge per researcher:

∂
∂

ση
Y

K




 =

*

Furthermore (52a) implies

 r
Y

K
*

*

= 



 =α αση2

By plugging the steady state research effort n* from (52c) into (40) one can derive a closed form

for the balanced rate of growth as follows



13 When 0 < 1, this is also the sufficient condition for W in (15) to be bounded (see footnote 10).

14 Obviously the condition for sustained growth would be stronger in the presence of population growth or capital
depreciation. See Helpman(1992) for details.
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  (53)g =
−ση ρ

ε
which is the same as (45'). For g to be positive it is necessary to have . In addition for g to beρ ση<
less than r* we should have13 . We combine these inequalities by assumingση ρ σηαε− <

Assumption 2         0 < − <ση ρ σηαε

We show in the following that assumption 2  is the exact condition required for the steady state

to be feasible.

Proposition 3  Assumption 2 is the necessary and sufficient condition for sustainability of the economy

( ie for g > 0 ) in the presence of an exhaustible resource which is essential for production14, and also

for g to be less than r*. Moreover beside output-capital ratio which based on the range of the

parameters of the model is positive,  assumption 2 is the necessary and sufficient condition for research

effort to be at the steady state in its acceptable range( ie 0 < n* < 1). In addition the second part of that

assumption ( ie 1 � - ! < 1 � . 0 ) is sufficient for both the consumption-capital ratio and the rate of

utilization of the resource to be positive.

Eq. (52a) and (52b) imply an expression for consumption-output ratio and saving rate, s
 ÚK /Y

,whose characteristics are described below:

Corollary 3 In the steady state, consumption-output ratio is constant and we will have

C

Y




 = −

−*

( )1
α

ση
ση ρ

ε

This, considering (53), implies  where g is the balanced rate of growth of the economy.C g Y* *( / )= −1 α ση
The portion of output which is consumed in the steady state is a function of the parameter of the model

as follows:

C

Y




 =

− + + + +

*

( , , , , )ϕ α ε ρ σ η

Moreover assuming assumption 2, we will obtain as a lower bound for consumption-output ratio.1	 .
2

In addition, saving has a positive growth effect as . Thus higher the productivity ofg s= ( / )ση α
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R&D, or lower the physical capital share in aggregate output, higher is the growth effect of saving in

the model.

By comparison of g in (53) and  in (14') we find that g is less than  if we havegB gB

n� > ñ :

1
1�

(
1�	!

0
)

But from (52c)

n� 
 1	
�

1	.
(1	 ñ)

which implies

1	n�
1	 ñ



�

1	.

Since � > 0 , the RHS is less than one. This implies  which resultsñ < n�

g n< =
−

+
−

−



ση

σην
α

β
α

ση ρ
ε

*

1 1

We conclude then

Corollary 4  In the presence of exhaustible resource ( ie when  � > 0 ), and assuming assumption 2 ,

rate of balanced growth is less than rate of knowledge accumulation. This implies that in the steady

state the supply of intermediate goods are declining without bound.

From the Cobb-Douglas form of the aggregate production function in (11) we know that both

intermediate goods x, and rate of extraction of the resources R, are essential for production. In (38) we

conclude that in the steady state R is declining without bound. In the above we found the same result

for x. Furthermore according to (10),(31),(33),(35) and (39) rate of decline of both variables are

proportional in the steady state:

 g gx R=
−
ν

α1
 

This indicates that integrating exhaustible resource into the aggregate production is harmful for

sustainability of the growth directly through its declining rate of extraction and also indirectly via the

supply of intermediate goods.

In next section we investigate the dynamical properties of the model around the steady state and

its transitional path toward it.

6  Dynamical analysis
The purpose of this section is to study the dynamical properties of the model. We investigate firstly the
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stability of the model by linearization of the dynamical system describing the optimal growth paths

around the steady state. We will study then the transitional path of the economy toward the steady state.

6.1 Stability
In this section we suppose either assumption 1 or its stronger version by assuming CRTS or 0 >1. Hence

we assume that x* ,described in (51), is unique. In this case the local dynamical  properties of the model

around x* will be the same as the following system of linear differential equation

  (54)
d

dt
x x A x x( ) ( )* * *− = −

where A* is the Jacobian matrix of the dynamical system described in (49) evaluated at x*. A simple

manipulation shows that 

det det*

* *

*

*

A
Y

K

C

K
n

R

S
A= 

















By assuming assumption 2 we conclude that both det A* and det A are of the same sign. But only based

on the assumption 1 we cannot determine the sign of det A and so to take the argument one step further

in the remainder we assume CRTS. In this case A* like A is lower triangular and we can explicitly

determine its eigenvalues as follows

λ α
α ση
β

( ) { ( ) , ,
( )

, }*

* *

*A
Y

K

C

K
n= − 











−
       1

1
1

or after substitution from (52a-d)

λ
α ση

α
ση
α

ση ρ
ε

νση
β

ση ρ
ε

( ) {
( )

, , , }*A =
−

−
−



 +

−
        

1
1

based on assumption 2, A*  has one negative eigenvalue  and three positive�1 
 (.	1)1� /.

eigenvalues: . The eigenvalues are real but the positive eigenvalues are not necessarily�2,�3,�4

distinct. So there is a possibility for overshooting (see Hirsch and Smale 1974, ch.6 for details), but as

will be described in the follows, we can set the initial conditions in  such a way that the dynamics of

the system becomes more tractable.

The solution of the linearized system (54) can be written in the general form as 

  (55)x x c t et i
i

i
ti i− =

=
∑*

1

4

Γ δ λ

where  is the eigenvector corresponds to eigenvalue ,  is a nonnegative integer less than+i �i /i

multiplicity of , and  is the constant of integration. Considering initial conditions, although  ,�i ci B0 K0

and  are given we can freely determine   and   and thus . Hence we can choose  in suchS0 C0 , n0 R0 Y0 x0

a way that has no component in the subspace generated by . This implies x0	x� +i ( i 
 2,3,4) ci 
 0

for i = 2 , 3 , 4. By replacing these constraints in (55), the stable solution can be characterised as

 x x x x et

t
− = −

−
* *

( )

( )0

1α ση
α
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Thus the rate of convergence of the economy toward the steady state is determined solely by ., 1 and

�. As we considered, in  the only subspace generated by  is stable, so we have a one-dimensionalÜ
4

+1

stable saddle path converging to the steady state .        x�

6.2 Transitional dynamics
To analyse the transitional dynamics of the model in the phase space, one should derive the locus Úxi
0

of the components of the vector x. Assuming CRTS, from (49) the dynamical system describing the

behaviour of x is as follows

  (56a)
d

dt

Y

K

Y

K

Y

K




 = − 









 −







( )α
ση
α

1

(56b)
d

dt

C

K

C

K

Y

K

C

K




 = 





− 



 + 



 −







α ε
ε

ρ
ε

 

(56c)
dn

dt
n

C

K
n= +

−
+

−















( )1 1α ση
β

ν
α

(56d)
d

dt

R

S

R

S

R

S

C

K




 = − −

−





( )α ση
α
1

As we see the dynamics of (Y/K) and (C/K) can be described respectively in one and two

dimensions, but the dynamics of n and (R/S) cannot be analytically described in phase plane. The

transitional dynamics of output-capital ratio is depicted in figure 3. As we see beside the origin which

is a trivial steady state,  is the stable equilibrium of the differential equation described(Y/K)�
1� /.

in (56a). We see from (12'') and (23) that  and  are linear transformationsr 
 .
2Y/K gC
 (.Y/K	!) /0

of (Y/K). So the transitional dynamics of r and  are the same as (Y/K) except that they converge togC

.1�

and (1� - !) / 0  respectively.

 Figure 3, in here

By assuming ! < 1� in assumption 2, we ensure that in the long run output, consumption and

physical capital will grow with a positive (and constant) rate. Sustainability, interpreted as non-negative

rate of growth of per capita consumption, requires that  . Y/K �!. Now if  , then for a(Y/K)0 < ! /.

finite time (0< t �T),  would be negative (see figure 3) and intergenerational equity a lagC

Solow(1974b) violates, where

T t Y K t= =m in{ : ( / ) / }ρ α
Note that to be on the stable saddle path, for every given value of , there is a unique . Although K0 C0 Ct

is decreasing for 0< t �T, but (C/K) is increasing toward its long rum target (C/K)*.

The transitional dynamics of (C/K), based on the equation (56a-b) is depicted in figure 4. As we
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see ((Y/K)*,(C/K)*) is saddle stable. Beside this steady state, and the origin which is the trivial

equilibrium, there are two attractors in the phase diagram: and . The former is(1� /. ,0) (1� /. ,��)

intertemporally inefficient and the latter is not feasible. The slope of the saddle path is positive

(negative) if  0 is greater (less)  than ..

 Figure 4, in here

6.3 Numerical illustration
To illustrate the working of the model, a handy example is given in this section. We should emphasis

however that it is not a calibration exercise but to show how model works. For this reason we select a

set of plausible values for  technology parameters: . = 0.5, � = 0.25, � = 0.25 ; preference parameters:

0 = 2, ! = 0.005; and R&D parameters: 1 = 0.1 , � = 1. So we have assumed CRTS to ensure the

uniqueness of the steady state. Moreover we have set the degree of risk aversion higher than one. We

call the above set of values basic setting.

variables Basic Setting  

(BS)

BS  but  . = .6, 

� = � = .2    (2)

BS but . =.65, 

� = .2, � =.15 

  BS but 

  ! = .075

(2) but 

 ! = .075

(Y/K)* 0.20 0.167 0.154 0.20 0.167

(C/K)* 0.175  0.142 0.129 0.1875 0.154

(C/Y)* 0.875 0.85 0.8375 0.9375 0.925

n* 0.625  0.625 0.571 0.5625 0.5625

(R/S)* (%) 7.5  7.5 8.75 8.75 8.75

r* (%) 5  6 4.2 5 6

. (Y/K)* 0.10 0.10 0.10 0.10 0.10

g (%) 2.5 2.5 2.5 1.25 1.25

 (%) 6.25 6.25 5.7 5.625 5.625gB

(1-. )1� / . (%) 10 6.67 5.38 10 6.67

 (%) - 7.5 -7.5 -8.75 - 8.75 - 8.75gR
gS

The Table shows the size of the variables of the model in the basic setting and some of the other

settings which are described there. We have also drawn the dynamics of the fundamental variables

around their steady state values and based on the basic setting in figure (5-8). These figures represent

the numerical solutions of the differential equations described in equations 56(a-d). The phase diagram
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of the output-capital ratio, and those of the output-capital and consumption-capital ratios are depicted

in figures 5 and 6 respectively. Indeed, figures 5 and 6 are the numerical versions of figures 3 and 4

respectively. The dynamics of output-capital and consumption-capital ratios and research effort is

depicted in figure 7. In addition the dynamics of output-capital and consumption-capital ratios and rate

of utilization of the resource is depicted in figure 8. Figures 7 and 8 are  three dimensional phase

diagrams.

 Figures 5-8 , in here

7 Conclusion and possible extensions
We conclude our findings as follows:

• Innovation is always profitable and the profit is distributed to innovators and households who

lend capital for producing intermediate goods. The parameter that measures the contribution of capital

in the aggregate production function ., indicates the share of researchers and households in the profit.

Higher ., higher is the competition in the product market and higher households will benefit from

lending capital.

• The share of natural resource in the production function has a positive and demanding effect on

the steady state amount of research effort. Moreover in the presence of natural resource a minimum

level of research effort is required to overcome the declining trend of the exhaustible resource use.

• In the absence of population growth, an economy with exhaustible resources is sustainable if

increases in the ratio of intellectual capital to the tangible capital can compensate the finiteness of the

essential resources.

• The necessary and sufficient condition for uniqueness of the nontrivial steady state in the model

is derived. As a result the steady state is unique if the aggregate production function exhibits constant

returns to scale or if the degree of risk aversion of consumers is higher than or equal to one. In either

cases the steady state is completely described by the parameters of the model. 

• There is a possibility for indeterminacy in the model by which we mean multiple equilibria. This

possibility depends on the parameters of the model. Multiple equilibria are not however isolated and

there is a continuum of steady states in case of nonuniqueness.

• Concerning Aghion and Howitt(1998, pp164)’s argument, we show that given the level of

physical capital, public knowledge and natural asset at the initial stage of planning, jumping

instantaneously to the steady state is unlikely and the economy described by this model is almost always

on its transitional path toward the steady state.

• The steady state is one dimensional saddle stable. The number of given and free variables in the

model ensures  that by correct selection of initial values for rate of consumption , research effort and

rate of extraction of the resource, localization of the economy on the stable saddle path is always

possible.  Rate of convergence of the economy on the stable saddle path is also determined by

parameters of the model.

• Under plausible assumptions the steady state is feasible. The condition is also valid for

sustainability and for balanced rate of growth to be less than rental rate of capital.
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• In the presence of exhaustible resource, the balanced rate of growth is lower than rate of

knowledge accumulation. This implies that in the steady state the supply of intermediate goods is

declining without bound. Higher the rate of utilization of the resource or higher the resource

contribution in the final product, lower is the balanced rate of growth. This may provide a justification

for the argument that natural resource intensity is harmful for growth. Thus integrating exhaustible

resource into the aggregate production adversely affects sustainability of the growth directly through

its declining rate of extraction and indirectly via its effect on the supply of intermediate goods.

• In the steady state, the stock of natural resources and its rate of utilization both decline with a

common rate which is inversely related with the consumption-capital ratio.

• The optimal rate of depletion of resource is derived which incorporates the Hotelling’s rule as

a special case.

• Although the dynamics of the rate of utilization of the resource is affected by the fundamentals

of the model, it does not by itself affect the rest of the economy.

• The balanced rate of growth is an increasing function of the productivity of research activities,

the degree of return to scale, and a decreasing function of the willingness to consume. It also decreases

when the contribution of each of the factors of production increases if and only if the long run rate of

growth does not exceed the incremental value of public knowledge per researcher which is true in case

of constant returns to scale.

• Investment in physical capital has a positive growth effect. Higher the productivity of R&D, or

lower the physical capital share in aggregate output, higher is the growth effect of saving in the model.

• Although by imposing sustainability condition , introduced by Aghion and Howitt , growth on

the steady state is sustained ,but we provide conditions upon which it is optimal for consumption per

capita to display negative growth rate on the transition for a finite period.

We now address some debates concerning the model described here. They can probably lead to

some possibilities for its extensions.

1) In the exogenous growth framework, Hartwick(1977) establishes that investing the extracted

resources in the form of building new physical capital, provides a sustainable growth path for an

economy which constrained by finite essential resource. Is there a counterpart for this policy in the

Shumpeterian framework? What is the Hartwick’s rule of knowledge accumulation to compensate

finiteness of the resources and to provide the sustainability of the economy?

2) A comprehensive measure of capital (including physical, intellectual, and natural) can be

introduced and the time pattern of share of each type of capital in the comprehensive measure (in

particular transformation of natural capital to physical and intellectual one) can be monitored through

time. What is the optimum combination of three kinds of capital in the portfolio of social planner? And

how the composition of national wealth, i.e B + K + S, evolves through time?

3) What is the result if we compare the findings of this model with those of the neo-classical  and

AK endogenous growth models in the presence of exhaustible resources? In particular, how we can

address intergenerational justice, a la Rawls, in this context?

4) Another possible extension is to consider the step size between innovations as an endogenous

variable, by allocating a portion of the extracted  resource to education and by assuming that  is a1
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positive function of the level of education and historically determined state  of man power. This is

slightly similar to one of the extension of the basic Shumpeterian model which takes the productivity

of research activity,  as positive function of n. �

5) Considering the possibility of population growth in the model, allow us to examine the effect

of the size of the economy on the results, and analyse sustainability in per capita terms.

6) Does K and B are complementary or substitutable? What is the answer of the similar question

about S , K and B? See Krautkraemer(1998) for a discussion about whether S and K are complementary

or substitutable. Chichilnisky and Heal(1983) also investigate the effect of energy price on the

substitutability of K and S. 

7) One should also extend the model to a small open economy where r is constant and rate of

return on accumulated capital does not tend to zero.
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Figure 5. The dynamics of output-capital ratio, under basic  
setting.

Figure 6. The dynamics of output-capital ratio(x1) and
consumption-capital ratio(x2),under basic setting.
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Figure 7. The dynamics of output-capital ratio(x1),
consumption-capital ratio(x2), and research effort(x3), under
basic setting.

Figure 8. The dynamics of output-capital ratio(x1),
consumption-capital ratio(x2), and rate of utilization of the
resource(x4), under basic setting.


