
 
 
 
 
 
 
 

 
 
 
 
 

Discussion Papers in Economics 
 
 
 
 
 
 
 
 
 
 

No. 2000/62 
 

Dynamics of Output Growth, Consumption and Physical Capital 
in Two-Sector Models of Endogenous Growth 

 
by 

 
Farhad Nili 

 
 

 
 
 
 
 
 
 
 
 
 
 

 
 

Department of Economics and Related Studies 
University of York 

Heslington 
York, YO10 5DD 

 
No. 2000/17 

 
The Use of Parametric and Non Parametric Frontier Methods to 

Measure the Productive Efficiency in the Industrial Sector. 
A Comparative Study 

 
by 

 
Luis R Murillo-Zamorano and Juan Vega-Cervera 

 



 1

 
 

THE USE OF PARAMETRIC AND NON PARAMETRIC FRONTIER METHODS TO 
MEASURE THE PRODUCTIVE EFFICIENCY IN THE INDUSTRIAL SECTOR.  

A COMPARATIVE STUDY 
 

 
 

Luis R. Murillo-Zamorano* 
 

Department of Economics  
and Related Studies 
University of York 

Heslington, YO1 5DD 
 York (UK) 

 
 

 
 

Juan Vega-Cervera 
 

Departamento de Economía Aplicada y 
Organización de Empresas 

Universidad de Extremadura 
Avda. de Elvas s/n. 06071 

Badajoz (Spain) 
 
 
 

March 2000 
Abstract 

 
 

Parametric frontier models and non-parametric methods have monopolised the 
recent literature on productive efficiency measurement. Empirical applications have 
usually dealt with either one or the other group of techniques. This paper applies a  
range of both types of approaches to an industrial organisation setup. The joint use can 
improve the accuracy of both, although some methodological difficulties can arise. The 
robustness of different methods in ranking productive units allows us to make an 
comparative analysis of them. Empirical results concern productive and market demand 
structure, returns-to-scale, and productive inefficiency sources. The techniques are 
illustrated using data from the US electric power industry. 
 
Keywords: Productive efficiency, parametric frontiers, DEA, industrial sector 
 
______________________________________________________________________ 

 

1. Introduction 

 

Since such authors as Debreu (1951), Koopmans (1951) or Farrell  (1957) 

introduced the analysis of efficiency in the economic literature, there has been a 

numerous   and   wide   ranging   collection   of   papers  and   articles   devoted   to   the  
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measurement of productive efficiency. There has always been a close link between the 

measurement of efficiency and the use of frontier functions. Different techniques have 

been utilised to either calculate or estimate these frontier functions. In this study we go 

through their joint use as well as their application to an industrial organisation 

framework. 

 

 Most of the papers related to the measurement of productive efficiency have 

based their analysis either on parametric or on non-parametric methods. The choice of 

estimation method has been an issue of debate, with some researchers preferring the 

parametric approach (e.g. Berger, 1993) and others the non-parametric approach (e.g., 

Seiford and Thrall, 1990).  The main disadvantage of non-parametric approaches is their 

deterministic nature. Data Envelopment Analysis (DEA), for instance, does not 

distinguish between technical inefficiency and statistical noise effects. On the other 

hand, parametric frontier functions require the definition of a specific functional form 

for the technology and for the inefficiency error term. The functional form requirement 

causes both specification and estimation problems. Obviously, it would be desirable to 

introduce more flexibility into the parametric frontiers, as well as more thoroughly 

investigate the non-parametric and stochastic methodologies (e.g. Sengupta, 1987). In 

our opinion neither approach seems to be strictly preferable. Instead, we think that the 

joint use of the two groups of techniques can improve the accuracy with which they 

measure productive efficiency. Following recent literature (e.g., Sengupta, 1995), the 

aim of this paper is to provide the framework for the joint use of them. By doing so one 

hopes to avoid the weaknesses inherent, and benefit from the strong aspect of each to 

the two methods, although in general this is not a so easy job to be done.   

 

 The set of data utilised is partially taken from the one used in Lee (1995). The 

paper of Lee examines the issue of vertical integration in the US electricity industry in 

1990. Three stages -- generation, transmission, and distribution -- are analysed in his 

study. Our study focuses just on the generation stage and therefore no comparative 

analysis with Lee’s study is made. 

 

 We organise the paper as follows. Section 2 introduces the techniques used to 

measure the productive efficiency. Section 3 presents the data set and discusses the 

results. Finally, section 4 presents the conclusions. 
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2. Methods 

 

 2.1. The parametric approach 

  

The parametric approach is naturally subdivided into deterministic and 

stochastic models. Deterministic models envelope all the observations, identifying the 

distance between the observed production and the maximum production, defined by the 

frontier and the available technology, as technical inefficiency.  On the other hand, 

stochastic approaches permit one to distinguish between technical efficiency and 

statistical noise. 

 

The measurement of productive efficiency by means of parametric techniques 

requires the specification of a particular frontier function. The Duality theory suggests 

the use of cost functions to define the production structure. Nerlove (1963) introduced 

the use of cost functions in the analysis of regulated industries with his application to 

electric sector. The output produced by firms under a regulated environment, as well as 

the prices they pay for factors in competitive markets, can be considered to be 

exogenous. This fact makes the choice of cost functions attractive.  

 

Every cost function implies a set of derived demand equations. Christensen and 

Greene (1976) argued that the joint use of a cost function and a set of cost share 

equations as a multivariate regression system provides better estimates of the production 

structure than those derived from single equation procedures. The dual frontier 

econometric approach has also evolved from the estimation of single cost functions 

(e.g., Greene, 1990) to multiple equation systems (e.g., Ferrier and Lovell, 1990; 

Kumbhakar, 1991). However, some serious estimation and specification problems first 

noted by Greene (1980), and Nadiri and Schankerman (1981), still remain unsolved1. 

Because of this, the technology form finally adopted was a Cobb-Douglas production 

function and the frontier production function specified can be represented as 

 

 

                                                        
1 Panel data techniques can also improve the accuracy of the parametric approach to the measurement of 
productive efficiency. For a detailed comparative analysis of these techniques, see Kumbhakar (1997). 
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where i=1,...N indicates the units and k=1,...r indicates the inputs, Yi is output, Xk,i are 

productive factors. The term vi ui−  is the composed error term where vi represents 

randomness (or statistical noise) and ui represents technical inefficiency. In the 

deterministic approach vi will equal zero. 

  

Several techniques have been developed in the econometric literature in order to 

estimate deterministic frontier models2. In Corrected Ordinary Least Squares (COLS)3 

methodology, the model’s parameters, except the intercept term, can be consistently 

estimated by Ordinary Least Squares (OLS) since that estimation procedure is robust to 

non-normality4. If the estimated intercept term is corrected by shifting it upward until 

no residual is positive and at least one is zero, we also get a consistent estimator of the 

intercept term. 

 

 Let us assume the following model: 

 

y Xi

j

j ij= + ∑α β ε   i +      where ε i  ~ N(0,σ2) 

Thus, 

  

$ $

$ $ max $

$ $ max $

β β

α α ε

µ ε ε

j j

COLS OLS i

i i i

COLS OLS

COLS

=

= +

= −

 

 (2) 
 
and individual technical efficiency will be 
 

                                                        
2 As it is pointed out for one anonymous referee what is given in relations 1 to 7 is not new but it 
constitutes the theoretical framework used in the empirical application. 
3 Gabrielsen (1975). 
4 This was first noted by Richmond (1974). 
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 Unlike the deterministic approach, the stochastic frontier models5 capture the 

effects of exogenous shocks beyond the control of the analysed units. Errors in the 

observations and in the measurement of output are also taken into account in this kind 

of models. 

 

 For the Cobb-Douglas case, the stochastic frontier can be represented by eq. (1). 

The error representing statistical noise is assumed to be identical independent and 

identically distributed. With respect to the one-sided (inefficiency) error, a number of 

distributions have been assumed in the literature, being the most frequently used half-

normal (SFN), truncated from below at zero (SFT) and exponential (SFE). If the two 

error terms are assumed independent of each other and of the input variables and some 

of the previous distributions is used, then the likelihood functions can be defined and 

maximum likelihood estimates can be determined.  

 

 Once the model has been estimated by using maximum likelihood techniques, 

we obtain a fitted value for the composed error term  v  -  ui i . For efficiency 

measurement, we need to separate these two error terms. Jondrow, Lovell, Materov and 

Schmidt (1982) proposed one way to do it. They developed an explicit formula for the 

expected value of ui conditional on the composed error term (E(ui | vi - ui)) in the half-

normal and exponential cases. 

 

 Half-normal case: 
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where φ(.) is the density of the standard normal distribution and Φ(.) the cumulative 

density function. 

 

 Exponential case: 

 

                                                        
5 Aigner, Lovell and Schmidt (1977), Meeusen and van den Broeck (1977), and Battese and Corra (1977). 
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 Truncated case:  

 

 Greene (1993) shows that the conditional technical inefficiencies for the 

truncated model are obtained by replacing eiλ/σ in the expression for the half-normal 

case, with 
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 Finally, individual (conditioned) technical efficiency scores will be 
 

  
 

2.2. The non-parametric approach 
 

   
Non-parametric analysis (Charnes, Coopers and Rhodes, 1978) does not require 

the specification of any particular functional form to describe the efficient frontier or 

envelopment surface. The flexibility of non-parametric techniques allows for several 

alternative formulations. In this paper we analyse two versions of an output-oriented 

DEA model according to which returns hypothesis is assumed: namely, constant returns 

to scale (DEAc) and variable returns to scale (DEAv). 

 

Consider a set of n homogenous Decision Making Units (DMU). There are m 

inputs and s outputs and each DMU is characterised by an input-output (X, Y) vector. In 

order to determine the efficiency score of each unit, these will be compared with a peer 

group consisting of a linear combination of efficient DMUs. For each unit not located 

on the efficient frontier we define a vector µ µ µ= ( , . . . , )1 n  where each µj represents the 

weight of each DMU within that peer group. The DEA calculations are designed to 

maximise the relative efficiency score of each unit, subject to the constraint that the set 

[ ]ii euE
i eTE |−=
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of weights obtained in this manner for each DMU must also be feasible for all the others 

included in the sample. That efficiency score can be calculated by means of the 

following mathematical programming formulation6 where technical efficiency scores 

will be determined by the optimum ψ. Constant (TEc) and variable returns to scale 

(TEv) formulations are described. 
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Operation research techniques usually use the dual of the above problem in order 

to calculate the efficiency scores. Such a dual formulation can be obtained as the 

minimum of a ratio of weighted inputs to weighted outputs subject to the constraint that 

the similar ratios for every DMU be greater than or equal to unity. For an output-

oriented model, the dual formulation is 
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6 See Charnes, Cooper and Rhodes (1978). A more detailed analysis of alternative formulations  can be 
found in Ali and Seiford (1993), and Coelli, Rao and Battese (1998). 
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where wr and zi are the variable weights that solve this maximisation problem and Yrj 

and Xij the outputs and inputs attached to each DMU. A unit will be efficient if and only 

if this ratio equals one, otherwise it will be considered as relatively inefficient.  

 

DEA can also be used to calculate scale efficiency. Total technical efficiency is 

defined7 in terms of equiproportional increases in outputs that the firm could achieve 

while consuming the same quantities of its inputs if it were to operate on the constant 

returns to scale (CRS) production frontier. Pure technical efficiency measures the 

increase in outputs that the firm could achieve if it were to use the variable returns to 

scale (VRS) technology. Finally, scale efficiency would be calculated as the ratio of 

total technical efficiency to pure technical efficiency. If scale efficiency equals one, the 

firm is operating at CRS, otherwise it would be characterised by VRS.8 

 
 
3. Data and results 
 

A wide range of papers related to the treatment of the electric sector with 

frontier techniques is available in the empirical literature. Schmidt and Lovell (1979, 

1980) and Greene (1990) introduced the analysis of electricity sector data sets into 

frontier functions literature. Fare, Grosskopf and Logan (1985) utilise mathematical 

programming techniques to calculate six different measures of efficiency and compare 

public versus private performance of electric utilities. Hjalmarsson and Veiderpass 

(1992) study the local retail distribution of electricity in Sweden in 1985. They apply 

different versions of the DEA model to 329 firms. Using DEA techniques and OLS 

analysis, Pollit (1994) examines the cost efficiency in 129 electricity transmission and 

145 electricity distribution systems in 1990. Lastly, Ray and Mukerjee (1995) perform a 

comparative analysis of parametric frontier dual cost functions and non-parametric 

techniques applied to the data set used previously in Greene (1990). 

 

The data set used in the present empirical application corresponds to a sample of 

70 US (investor-owned) electric utility firms in 1990. These firms are approximately 

                                                        
7  According to an output-oriented model formulation. 
8  Whether those variable returns to scale represent increasing or decreasing returns to scale will depend 
on the relationships among technical efficiency scores calculated under constant, variable or non- 
increasing returns to scale.  
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evenly spread across the United States. Table 1 provides descriptive statistics for each 

of the variables used in this study. 

 

<<< TABLE 1 >>> 

 

 The capital stock variable is constructed for four different asset classes: steam, 

nuclear, hydroelectric and other power-generating equipment. In any case, steam 

technology counts for most of the electricity generated by the companies analysed in 

this study. The labour variable indicates the number of workers of each firm. There are 

four main categories of fuel: coal, oil, natural gas, and nuclear. BTU equivalents are 

used to aggregate different types of fuels over all plants belonging to one firm. The fuel 

variable is measure in millions of BTUs used in generation of electricity. Finally, total 

output is indicated in megawatts hours (MWh).9 

 

 3.1 Efficiency scores 

 

With respect to the parametric frontiers the estimated parameters of the 

deterministic and stochastic production functions are given in table 2. 

 

<<< TABLE 2 >>> 

 

These results come from estimating eq. (1) by means of COLS and MLE, where 

i=1,...70 indicates the firms, Yi the output, X1,i = Ki the Capital stock, X2,i = Li the 

number of workers, and X3,i= Fi the fuel; β1, β2 and β3 are the elasticities of output with 

respect to capital, labour and fuel. We infer the presence of constant returns to scale in 

all the specifications analysed10. We estimate a Cobb-Douglas production function. 

More flexible technologies, such as different versions of translog production functions, 

presented major problems in the significance of their estimated parameters. Without the 

factor share equations, estimation of full translog functions can be hampered by an 

important problem of multicollinearity.11 

                                                        
9 A major description of the set of data and variables used in this study can be found in Lee (1995).  
10 Actually, this hypothesis was strongly accepted when we imposed the constraint (β1) + (β2) + (β3) = 1 
to the initially unrestricted model. The estimation procedure was made using Limdep 7.0. 
11 According to Klein’s rule of thumb, multicollinearity is a problem if max Rj

2 > R2  where Rj
2 is the R2 

statistic from the OLS estimation of the auxiliary regression of the jth regressor on the other regressor and 
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 Each of the stochastic specifications yields similar estimates for the partial 

elasticities of output with respect to capital, labour and fuel. This result seems to 

confirm the robustness of the technology and distribution hypotheses assumed in the 

specification of the model. 

 
Table 3 reports the average technical efficiency measures for each of the models 

explained in the Methods section.12  

 

<<< TABLE 3 >>> 

 

 As the theory advances, the average efficiency scores of parametric deterministic 

techniques are lower than the ones estimated through stochastic frontier approaches. 

Given that COLS is a not stochastic procedure, noise is also reported as inefficiency.  

 

COLS shifts all the residuals down to non-positive values and only one firm of 

the sample is estimated as efficient13. With respect to the DEA approaches, given that 

the constraint set is less restrictive under CRS than under VRS, lower efficiency scores 

are reported for the former case. In our example, DEAc presents an average level of 

technical efficiency of 73.32% while DEAv efficiency average is 78.71%. For the same 

reason, fewer units are found to be efficient under CRS than under VRS.  

 

 Within the stochastic approaches, no noticeable differences arise. The average 

efficiency is lower with normal/half-normal models than with the normal/exponential  

or normal/truncated models, but, in any case, the choice of distribution assumptions 

does not seem to have a significant effect on the values of the efficiency estimates. 

 

 Stochastic frontier models’ estimates of σv
2 and σu

2
 provide us with a measure 

for the relative importance of statistical noise and inefficiency in the estimation of 

frontier production functions. The variance of the composed error term σe
2 is defined as 

                                                        
the intercept term. Several auxiliary regressions were estimated and in all of them this condition was 
found. Moreover, when we checked the functional form specification of the model, applying a RESET-
Test, the Cobb-Douglas technology turned out to be well specified. 
12 The individual efficiency scores generated by each method are available from the authors upon request. 
13 The one with the largest positive OLS residual. 
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the sum of the variance of the inefficiency error term σu
2 and the variance of the 

statistical noise term σv
2. Therefore the (%)  participation of each of these components - 

u and v - in the aggregated error term e can be determined by means of the relationships 

%u = σu
2 / (σu

2 + σv
2 ) and %v =  σv

2 / (σu
2 + σv

2). According to the information in table 

2, noise represents 59.72% of total variance in the exponential model. In the half-normal 

and in the truncated cases, these proportions are lower, 25.18% and 17.08% 

respectively, but still broadly indicative of the importance of noise in the estimation of 

these models. Therefore, the fact that deterministic models do take noise into account 

seems to be quite important in our illustrative application. Especially noticeable is the 

COLS procedure where the average level of technical efficiency is around 60%. These 

models therefore suffer from both drawbacks: the problems of a rigid specification 

associated to their parametric nature, and the shortcoming of not distinguishing between 

inefficiency and noise given their deterministic structure.  

 

 3.2. Robustness 

 

 Having analysed the efficiency scores, we explore the consistency of the above 

models in ranking the 70 electric utilities that make up our sample. We are interested in 

the robustness of the relative position of each electric utility to the use of different 

methods, rather than in the average levels of technical efficiency found. Table 4 

presents pairwise Spearman rank correlation coefficients of the efficiency scores yielded 

by the six methods used in our analysis.14 

 

<<< TABLE 4 >>> 

 

 These results show that parametric models are extremely consistent in ranking 

the units. Their pairwaise correlation coefficients are not less than 99%. The correlation 

is also high between parametric techniques and DEAc. On the other hand, correlation 

coefficients between DEAv and both the econometric approaches and DEAc are not so 

high. They are around 83% for the group of parametric techniques and 89% for the 

DEAc model. All parametric approaches were also estimated by imposing the CRS 

constraint. It seems that the choice of parametric or non-parametric techniques, 

                                                        
14  Spearman´s correlation coefficients were calculated using the SPSS 8.0 package. 
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deterministic or stochastic approaches, or between different distribution assumptions 

within stochastic techniques is irrelevant if one is interested in ranking electric utilities 

according to their individual efficiency scores. Only the VRS specification leads to 

certain differences in those rankings, although such differences are not so large as to 

stop these rankings still being comparable with the others 

 

Table 5 reports the returns to scale of the efficient units in the sample of firms 

analysed in our study. 

 

<<<TABLE 5>>> 

 

There is detect an almost perfect correlation between the size of the efficient 

firms and their returns to scale, in the sense that the bigger firms have decreasing returns 

to scale and vice versa. It seems that economies of scale are exhausted at the greatest 

levels of production while they are still available at lower levels. This result agrees with 

the low value found for the average scale inefficiency and is supporting evidence that 

the units in our sample are operating at the correct scale. Some studies as Cummins and 

Zi (1998), for example, have found a direct relationship between the size of units and 

their inefficiency levels. In our case, no such relationship seems to appear. 

 

 So far, we have analysed different methods and their robustness in the 

measurement of productive efficiency. The next step in this empirical application will 

provide some possible explanations for the efficiency scores described above. 

 

 3.3. Inefficiency sources 

 

 One common practice in the literature is to regress the efficiency scores against a 

vector of explanatory variables. Disaggregated data for different types of capital and 

output are used as proxies for the productive structure and market demand structure 

faced by each electric utility. Capital stock levels attached to steam, nuclear and 

hydroelectric assets are used to evaluate the influence of each of those technologies on 

higher or lower efficiency scores. Similarly, the allocation of total megawatt-hours to 

three different demand categories -- commercial, industrial and residential -- is also 

considered on the basis of explaining individual efficiency scores. 
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 The high degree of correlation between those proxies for productive and market 

structure and the original variables specified in our model is a handicap for two-stage 

models. However, the choice of a one stage model, as Lovell (1993) points out does not 

solve this problem of correlation between the variables used in the initial specification 

of the model and those used in the subsequent analysis of the efficiency sources: it just 

replaces a problem of omitted (two stages model) with one of multicollinearity.15  

 

 For the series of inefficiency scores to take into account as the dependent 

variable, we have used that generated by the DEAc model16. The DEA-based efficiency 

scores are truncated from below at one. OLS regression would produce biased and 

inconsistent parameter estimates, so we use a truncated regression model (Tobit model). 

The estimated parameters are given in table 5. 

 

<<< TABLE 6 >>> 
 
 

Given the statistical significance of the three parameters used as proxies, it 

seems that the productive structure affects the efficiency scores attained by the different 

electric utilities. The market demand structure, on the other hand, seems not to have any 

influence.  

 

 The variables used to measure the effects of market demand structure on the 

inefficiency of each unit are characterised by a high degree of homogeneity across 

observations (see table 1). Therefore it is not surprising to find that they are not 

significant explanations for the inefficiency of units.  

 

 Within productive structure factors, steam and nuclear technologies are found to 

be directly related to inefficient behaviour of the units in the sample, while the use of 

hydroelectric technology seems to have positive effects on their efficincy. Nuclear and 

                                                        
15 Some functional forms with dissaggregated levels of capital and output used as regressors were also 
estimated. However, such a large list of variables, especially in the translog version, and the high degree 
of correlation among them requires a very high order in the convergence criteria of the maximum 
likelihood algorithms of stochastic frontier models. This precluded the estimation of these stochastic 
models. 
16 The results with the COLS, SFN, SFE and SFT efficiency series were almost identical.  
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even more so steam technologies seem to be exhausting their particular economies of 

scale.  

 

The main problem of “two-stage” models, such as that used in this paper, is to 

know which regressors must be included in the estimation of efficiency levels and 

which in their explanation. In the light of our results, besides their not being highly 

correlated with the variables utilised in the frontier estimation procedure, a necessary 

although not sufficient condition for regressors to be considered as proxies for 

inefficiency sources is that they must be able to introduce heterogeneity in the analysis. 

Thus, a necessary extension to the empirical analysis that we have so far presented 

would be the introduction of additional information through variables properly 

representative of the industrial organisation, such as market structure, regulatory 

environment, ownership or internal organisation of the firm.  

 

4. Conclusions 

 

 The joint use of parametric and non-parametric techniques devoted to the 

measurement of efficiency in the industrial sector is a novel issue in the recent empirical 

literature. However, this is not always feasible. Our paper has focused on the definitions 

of a framework for the joint use of these techniques.  

 

 The main disadvantage of non-parametric approaches is their deterministic 

nature. DEA techniques, for instance, make no accommodation for noise. Parametric 

techniques, as we have seen, require specification of a particular technology for the 

frontier function as well as the definition of a specific statistical distribution for the 

inefficiency term. The functional form requirement causes both specification and 

estimation problems. Hence, the parametric-deterministic approaches for the 

measurement of productive efficiency does not seem to be suitable for this kind of 

analysis. As our results suggest, they suffer from the disadvantages of both methods.  

 
 With respect to parametric-stochastic approaches, in so far as the disturbances 

about the frontier estimator tend to be symmetrically distributed, the frontier approach 

can be interpreted as a neutral transformation of the “average” technology. Then only 

Timmer´s “Holy Grail” (Timmer, 1971) i.e. the necessity of placing the frontier in order 
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to give numerical values to efficiency performances of each analysed unit, would justify 

a frontier approach instead of the traditional OLS-average approach. However, the 

presence of skewness in the disturbances is another reason why frontier functions might 

be taken into account: the underlying technology assumed under the average and the 

frontier specification can describe structural dissimilarities between the two techniques, 

such as different returns to scale or elasticities of substitution.  

 

On the basis of the robustness of different techniques in ranking productive 

units, DEA can improve the accuracy of parametric techniques. DEA flexibility permits 

the introduction of relevant issues such as non-discretionary variables (Banker and 

Morey, 1986a), categorical variables (Banker and Morey, 1986b), or constrained 

multipliers (Charnes, Cooper, Wey and Huang, 1989). Moreover, a recent paper 

(Sengupta, 1999) extends the use of DEA to a dynamic framework by incorporating  

changes in productivity due to technological progress or regress. These aspects may 

correct some of the specification problems associated with parametric methods. 

 

The versatility of DEA techniques also provides a simple way of analysing the 

scale efficiency. In our study, no relationship between the size of firms and their 

inefficiencies seems to exist. On the basis of the aforementioned robustness it is also 

possible to analyse the sources of productive inefficiency by using two-stage models. 

These models will only be meaningful if the variables used as regressors introduce 

heterogeneity into the analysis. 

 

We have here described some methodological considerations based on the data 

set used for this study. Much work remains to be done.For instance, additional 

information on prices and a larger sample of observations might improve the 

measurement of economic efficiency in an industrial sector by taking into account 

technical and allocative efficiencies as well as cost and revenue efficiencies. As the 

literature shows, serious problems arise when applying duality theory to parametric 

frontier models. However, Data Envelopment Analysis provides a suitable way of 

treating the measurement of economic efficiency. This approach has been used in a 

number of empirical applications related to nonprofit, regulated and private sectors. In 

conclusion, the present results provide encouragement for the continued development of 

the collaboration between parametric and non-parametric methods.  
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Tables 

 

 

Table 1. Main descriptive statistics of variables used in the study. 
 

Variable Mean Max. Min. Standard 
Deviation 

Total Output 15.582 70.517 1.678 1.568E+10 
Total Capital 94.914 409.673 9.367 91.747 
Total Labour 4.993 24.607 440 5.198 
Total Fuel 1.324E+10 4.750E+11 7.001E+09 1.111E+11 
% Ksteam (1) 0.7674 0.9999 0.084 0.2192 
% Knuclear (1) 0.1120 0.6754 0 0.1762 
% Khydroelectric(1) 0.0422 0.3256 0 0.0757 
% Kother GE(1) 0.0783 0.9150 0 0.1280 
% Ocommercial (2) 0.2664 0.6421 0.037 0.0987 
% Oindustrial(2) 0.3485 0.5533 0.1052 0.0774 
% Oresidential(2) 0.3850 0.8113 0.063 0.1272 

 
(1) Represents the percentage of capital stock  levels attached to steam, nuclear, hydroelectric and other 
power- generating equipment assets. 
(2) Allocation of total MWh to commercial, industrial and residential demand categories. 
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Table 2.Estimated parameters of deterministic and stochastic production frontiers. 

(t-test statistics appear in parentheses) 
 
 

COLS SFN SFT SFE 

Intercept (αα) 10.819(*) 
(10.014) 

11.786 
(15.870) 

11.145 
(13.886) 

10.951 
(14.453) 

Capital (ββ1) 
 

0.1392 
(2.414) 

0.1340 
(1.893) 

0.1066 
(1.330) 

0.1391 
(2.270) 

Labour (ββ2) 0.6441 
(10.539) 

0.6745 
(10.865) 

0.6713 
(10.084) 

0.6441 
(11.485) 

Fuel (ββ3) 0.2174 
(3.474) 

0.1794 
(3.954) 

0.2170 
(4.705) 

0.2174 
(4.847) 

R2 0.9506    
F 423.529    
Log-Lik. 10.1631 11.3880 11.1224 11.8625 

u vσ σ   1.7239 
(1.897) 

2.2007 
(1.405) 

 

u

2σ   0.0621 0.0995 0.0176 

v

2σ   0.0209 0.0205 0.0261 

(ββ1) + (ββ2) + (ββ3)** 1.0007 
{0.9756} 

0.9879 
[0.3570] 

0.9949 
[0.1421] 

1.0006 
[0.0230] 

(*) If the estimated intercept term is corrected by shifting it upward until no residual is positive and at 
least one is zero, we will get a consistent estimator of the intercept term. In our case this consistent 
intercept is 11.349.  
(**) CRS hypothesis test:.{ _ }:Probability associated with an F-Test (1.66). [ _ ]: Significance level in a 
Wald Test-χ2 (1). 
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Table 3. Technical efficiency averages. 
 

Method Average 
Efficiency 

Max. Min. Standard 
Deviation 

Number of 
efficient units 

COLS 60.09 1 28.95 0.123 1 
SFN 82.61 94.86 49.72 0.086 0 
SFT 87.77 96.31 54.33 0.073 0 
SFE 87.64 95.93 49.66 0.080 0 
DEAc 73.32 100 33.3 14.77 6 
DEAv 78.71 100 6.9 19.39 16 

(*) The average efficiency measures of COLS, SFN, SFT, and SFE were estimated under the null 
hypothesis of Constant Returns to Scale. 
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Table 4. Spearman correlation coefficients among alternative efficiency measures(*). 
 

 COLS SFN SFT SFE DEAc DEAv 

COLS 1.000      

SFN 0.994 1.000     

SFT 0.995 0.994 1.000    

SFE 0.991 0.998 0.994 1.000   

DEAc 0.909 0.907 0.918 0.915 1.000  

DEAv 0.833 0.829 0.843 0.835 0.890 1.000 

(*) All the correlation coefficients among different methods are significant at the .01 level (2-tailed). 
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Table 5.  Returns to scale of  efficient units 
 

Observations (1) 
 

Total output (2) Returns (3) 

2 1.731 IRS 
3 1.823 IRS 
4 2.382 IRS 
8 2.683 IRS 
9 3.240 CRS 

15 4.473 CRS 
17 4.620 CRS 
28 7.149 DRS 
30 7.721 CRS 
46 15.539 CRS 
52 19.678 CRS 
64 36.309 DRS 
67 51.776 DRS 
68 63.558 DRS 
69 64.410 DRS 
70 70.517 DRS 

(1) Ordered by output produced. 
(2) MWh. 
(3) IRS:Increasing Returns to Scale, CRS: Constant Returns to Scale, DRS: Decreaasing Returns to Scale. 
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Table 6. Tobit model estimated parameters 

 
Variable (%) Parameter 

Estimate 
t-student Mean Max.  min. Standard 

Deviation 
Ksteam 0.2975    2.346** 0.7674 0.9999 0.084 0.2192 

Knuclear 0.2848   1.856 * 0.1120 0.6754 0 0.1762 

Khydro. -0.4295  -1.820 * 0.0422 0.3256 0 0.0757 

Ocommercial 0.1049 0.530 0.2664 0.6421 0.037 0.0987 

Oindustrial 0.2526 1.596 0.3485 0.5533 0.1052 0.0774 

Oresidential -0.2848 -1.484      0.3850 0.8113 0.063 0.1272 

** Significant coefficients at the 5% level (2-tailed). 
* Significant coefficients at the 10% level (2-tailed). 
 
 
 
 
 


