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Abstract

The purpose of this paper is to examine the covariance structure of mixed ARMA models, as dis-
cussed in Granger and Morris (1976). The method we use to obtain the autocovariances is based on
the Wold representation of an ARMA model as it is given in Pandit (1973) or in Karanasos (2000). We
give two examples to illustrate our general results: (i) two ARMA(2,2) processes with identical autore-
gressive polynomials and di�erent moving average ones, and (ii) two ARMA(2,1) processes with di�erent
autoregressive and moving average polynomials.
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1 Introduction

Ever since their introduction by Yule (1921, 1927) the autoregressive and moving average
models have been greatly favoured by time series analysts. The purpose of this paper is to
examine the covariance structure of mixed autoregressive and moving average (ARMA)
time series models.

The theoretical autocovariance function (acf) of the ARMA model is an important
tool in time series analysis. The calculation of the theoretical autocovariances is used (i)
to estimate ARMA models with conventional exact maximum likelihood procedures (ii) to
analyze the distribution of estimated ARMA parameters (Hannan, 1970) and (iii) to ini-
tialize simulations with ARMA models. The theoretical acf of the univariate ARMA(p,q)
model has been already derived in the literature. The autocovariances are obtained in
terms of the roots of the autoregressive (AR) polynomial and the parameters of the moving
average (MA) one.

Pandit (1973, pp. 100, 141) and Pandit and Wu1 (1983, pp. 105, 129-130), hereafter
PW, derived the acf of the ARMA(p,q) model (when the roots of the AR polynomial
are distinct) by using the in�nite moving average (ima) or Wold representation2 of the
aforementioned model. Nerlove, Grether and Carvalho (1979, pp. 39, 78-85) used the
canonical factorization (cf) of the autocovariance generating function (agf3) to derive a
general expression for the acf of the ARMA(p,q) process (As an illustration they presented
the acf of the MA(q), AR(p), and ARMA(1,1) models).

Zinde-Walsh (1988) obtained the acf of the ARMA(p,q) model by using the standard
(see for example, Priestley, 19814) spectral representation for the acf of a stationary
ARMA process. She derived expressions for both cases of simple and multiple roots of
the AR polynomial. Karanasos (1998), hereafter K, derived the acf of the ARMA(p,q)
model (when the roots of the AR polynomial are distinct) by expressing the ARMA(p,q)
model as an AR(1) process with an ARMA(p-1,q) error.

Algorithms for computing the theoretical autocovariances for univariate ARMA pro-
cesses have been suggested in McLeod (1975, 1977) and Tunnicli�e Wilson (1979).

This paper contributes to the above literature by deriving the acf of the sum of ARMA
processes when the roots of the AR polynomials are distinct. Granger and Morris (1976)

1PW only examine the case where q < p.
2They called the coe�cient function in this expansion \Green's function" (see Miller (1968)). What PW have

called Green's function is also referred to in the literature as weighting function ( see Wiener (1949) and Pugachev
(1957)) or as  weights (see Box and Jenkins (1970)).
For a proof of Wold's theorem see Wold (1938, pp. 75-89), Hannan (1970, pp.136-137), Anderson (1971, pp.

420-421), Sargent (1979, pp.257-262) or Brockwell and Davis (1987, pp. 180-182), hereafter BD; also see Hannan
(1970, pp. 157-158) for the vector case. Wold's theorem has also been discussed by, for example, Nerlove, Grether
and Carvalho (1979, pp. 30-36), hereafter NGC, PW (1983, pp. 87-89), and Reinsel (1993, p. 7), hereafter R.
The ima representation of the ARMA model has been discussed by, for example, O.D. Anderson (1976, p 44),

PW (1983, p 108), Granger and Newbold (1986, pp. 25-26), hereafter GN, BD (1987, pp. 87-89), Wei (1989, p
56), Hamilton (1994, pp. 59-60), Gourieroux and Monfort (1997, pp 160-162); see also Mittnik (1987), R (1993,
pp. 33-34), Lutkepohl (1993, pp. 220-221), hereafter L, or Gourieroux and Monfort (1997, p 252) for the vector
case.

3The cf of the agf has also been discussed by, for example, O.D. Anderson (1976, p 129), GN (1986, pp. 26-27),
BD (1987, pp. 102-103), Wei (1989, pp. 242-243) or Hamilton (1994, pp. 61-63); see also BD (1987, p 410) or
R(1993, pp. 33-34), for the vector case.

4For the important subject of spectral analysis see also the excellent books by Jenkins and Watts (1968), and
Hannan (1967).
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consider such mixed ARMA models. As most economic series are both aggregates and
are measured with error it follows that these mixed models are often found in practice.
We examine three distinct cases, depending on whether the processes have identical or
di�erent autoregressive parts and uncorrelated or correlated errors. We obtain our results
by using the ima representation of the ARMA(p,q) model, as it is given in Pandit (1973)
or in K (2000)5 of the ARMA(p,q) model. The autocovariances are expressed in terms
of the roots of the AR polynomials and the parameters of the MA ones. In the case of
distinct roots Zinde-Walsh (1988) or K(1998) results are special cases of our Theorem 1
(see Proposition 1a).

2 MIXED ARMA MODELS

The following Proposition presents the autocovariances of an ARMA(p,q) model, when
the roots of the AR polynomial are distinct.

Let yt be an ARMA(p,q) process given by:

�(L)yt = �+�(L)�t; �t � IID(0; �2� ); (2.1)

�(L) =

qX
k=0

�kL
k; �(L) = �

pX
k=0

�0kL
k =

pY
k=1

(1� �kL); �00 = 1; �k 6= �l

(2.1a)

Assumption 1. All the roots of the autoregressive polynomial [�(L)] lie outside the
unit circle (Stationarity condition).

Assumption 2. The polynomials �(L) and �(L) are left coprime. In other words the

representation �(L)
�(L)

is irreducible.

Proposition 1a. Under assumptions 1-2 the autocovariances of yt (
m) are given by6


m =

pX
l=1

�lm�l;min(m;q)�
2
� ; �lm =

�
p�1+m

l
pQ

k=1

(1� �l�k)
pQ

k=1
k 6=l

(�l � �k)

; (2.2)

�lm =

qX
k=0

�2k +
mX
d=1

q�dX
k=0

�k�k+d(�
d
l + ��d

l ) +

qX
d=m+1

q�dX
k=0

�k�k+d(�
d
l + �d�2m

l )
(2.2a)

The proof of Proposition 1a is given in Appendix A.
By considering the model generating the sum of two or more series, Granger and

Morris (1976) have shown that the mixed ARMA model is the one most likely to occur.

5K has also used the ima representation in the context of the GARCH and GARCH in mean models.
6Zinde Victoria Walsh (1988) derived the above result (eqs 2a and 2b) by using the standard (see for example,

Priestley (1981)) spectral representation for the acf of a stationary ARMA process whereas K(1998) derived the
same result by expressing the ARMA(p,q) model as an AR(1) process with an ARMA(p-1,q) error. Zinde-Walsh's
formula is general as it is not restricted to the case of simple roots.
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They mentioned that \two situations where series are added together are of particular
interpretational importance. The �rst is where series are aggregated to form some total,
and the second one is where the observed series is the sum of the true process plus an
observational error. Most of the macroeconomic series, such as GNP, unemployment or
exports are aggregates. Virtually any macroeconomic series, other than certain prices or
interest rates, contain important observation errors." So speaking the following analysis
of the autocovariance function of the sum of ARMA processes can be a useful tool for the
applied economist.

Let yt be equal to the sum of n uncorrelated ARMA(p; qi) processes that have identical
autoregressive parts:

yt =
nX

i=1

yit; �(L)yit = �i(L)�it; �i(L) =

qiX
k=0

�ikL
k; (2.3)

��t =

2
66664

�1t
:

:

:

�nt

3
77775 ; ��t � IID(0; ��2� ); ��2� =

2
664
�11;� : : : 0
: : : : : : : : : : : : : : :

: : : : : : : : : : : : : : :

0 : : : �nn;�

3
775 (2.3a)

where �(L)is de�ned by (2.1a).
Assumption 3. The polynomials �(L) and �i(L) are left coprime. In other words the

representation �(L)
�i(L)

is irreducible.

Proposition 1b. Under assumptions 1 and 3 the autocovariances of the preceding
ARMA process are given by


m =
nX

i=1

pX
l=1

�lm�
i
l;min(m;qi)

�ii;�;

(2.4)

�i
lm =

qiX
d=0

�2id +
mX
d=1

qi�dX
r=0

�ir�ir+d(�
d
l + ��d

l ) +

qiX
d=m+1

qi�dX
r=0

�ir�ir+d(�
d
l + �d�2m

l )
(2.4a)

where the �lm is de�ned in (2.2).
The Proof of Proposition 1b is given in Appendix A.
In the Proposition that follows the assumption of independence is weakened to allow

for contemporaneous correlation between the noise series.
Let yt be equal to the sum of n correlated ARMA(p; qi) processes as de�ned by (2.3),

where ��2� is given by

��2� =

2
664
�11;� : : : �1n;�
: : : : : : : : : : : : : : :

: : : : : : : : : : : : : : :

�n1;� : : : �nn;�

3
775 (2.5)
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Proposition 1c. Under assumptions 1 and 3 the autocovariances of yt are given by


m =
nX

j=1

nX
i=1

pX
l=1

�lm�
ij
l;m�ij;�; (2.6)

�
ij
l;m =

qjX
c=0

q0

iX
d=0

�id�j;d+c�
c
l +

m?X
c=1

q0

jX
d=0

�jd�id+c�
�c
l +

qiX
c=m?+1

q0

jX
d=0

�jd�id+c�
c�2m
l

(2.6a)

where

q0i = min(qi; qj � c) q0j = min(qj; qi � c)

m? = min(m; qi) (2.6b)

and �lm is de�ned in (2.2). The proof of Proposition 1c is given in Appendix A.
Example 1. Consider two ARMA(2,2) processes (y1t; y2t) with identical autoregressive

polynomials and di�erent moving average ones

(1� �1L)(1� �2L)y1t = (1 + �11L + �12L
2)�1t; �1 6= �2; j�1j; j�2j < 1

(1� �1L)(1� �2L)y2t = (1 + �21L + �22L
2)�2t;

�
�1t
�2t

�
� IID(0; ��2� ); ��2� =

�
var(�1t) cov(�1t; �2t)

cov(�1t; �2t) var(�2t)

�
=

�
�11;� �12;�
�12;� �22;�

�

The cross covariances between the two processes are

cov(y1t; y2t) = �12;� �

f
�1[1 + �11�21 + �12�22 + (�21 + �11�22 + �11 + �21�12)�1 + (�12 + �22)�

2
1]

(1� �1�2)(1� �21)(�1 � �2)
+

�2[1 + �11�21 + �12�22 + (�21 + �11�22 + �11 + �21�12)�2 + (�12 + �22)�
2
2]

(1� �1�2)(1� �22)(�2 � �1)
g

cov(y1t; y2;t�1) = �12;� �

f
�21[1 + �11�21 + �12�22 + (�21 + �11�22)�1 + (�11 + �21�12)�

�1
1 + �22�

2
1 + �12�

0
1]

(1� �1�2)(1� �21)(�1 � �2)

+
�22[1 + �11�21 + �12�22 + (�21 + �11�22)�2 + (�11 + �21�12)�

�1
2 + �22�

2
2 + �12�

0
2]

(1� �1�2)(1� �22)(�2 � �1)
g
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cov(y2t; y1;t�1) = �12;� �

f
�21[1 + �11�21 + �12�22 + (�11 + �21�12)�1 + (�21 + �11�22)�

�1
1 + �12�

2
1 + �22�

0
1]

(1� �1�2)(1� �21)(�1 � �2)

+
�22[1 + �11�21 + �12�22 + (�11 + �21�12)�2 + (�21 + �11�22)�

�1
2 + �12�

2
2 + �22�

0
2]

(1� �1�2)(1� �22)(�2 � �1)
g

cov(y1t; y2;t� m
m�2

) = �12;� �

f
�1+m
1 [1 + �11�21 + �12�22 + (�21 + �11�22)�1 + (�11 + �21�12)�

�1
1 + �22�

2
1 + �12�

�2
1 ]

(1� �1�2)(1� �21)(�1 � �2)

+
�1+m
2 [1 + �11�21 + �12�22 + (�21 + �11�22)�2 + (�11 + �21�12)�

�1
2 + �22�

2
2 + �12�

�2
2 ]

(1� �1�2)(1� �22)(�2 � �1)
g

cov(y2t; y1;t� m
m�2

) = �12;� �

f
�1+m
1 [1 + �11�21 + �12�22 + (�11 + �21�12)�1 + (�21 + �11�22)�

�1
1 + �12�

2
1 + �22�

�2
1 ]

(1� �1�2)(1� �21)(�1 � �2)

+
�1+m
2 [1 + �11�21 + �12�22 + (�11 + �21�12)�2 + (�21 + �11�22)�

�1
2 + �12�

2
2 + �22�

�2
2 ]

(1� �1�2)(1� �22)(�2 � �1)
g

Note, that when the two moving average polynomials and the two error terms are
identical (y1t = y2t = yt) the above expressions give the autocovariances of the yt process:

cov(y1t; y2;t�m) = cov(y2t; y1;t�m) = covm(yt).
In the following Theorem the assumption of identical autoregressive parts is relaxed.
Let yt be equal to the sum of n correlated ARMA(pi; qi) processes, where the roots of

the AR polynomials are distinct:

yt =
nX

i=1

yit; �i(L)yit = �i(L)�it; �i(L) = �

piX
k=0

�0ikL
k =

piY
k=1

(1� �ikL); �ik 6= �il

(2.7)

where �i(L), ��t, are de�ned by (2.3) and ��2� is de�ned by (2.5).
Assumption 4. All the roots of the autoregressive polynomials [�i(L)] lie outside the

unit circle (Stationarity conditions).
Assumption 5. The polynomials �i(L) and �i(L) are left coprime. In other words the

representation �i(L)
�i(L)

is irreducible.
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Theorem 1. Under assumptions 4 and 5 the autocovariances of the preceding process
are given by


m =
nX

j=1

nX
i=1

(

piX
l=1

�mil;j�
ij
l;m +

pjX
k=1

�mjk;i�
k;m
ij )�ij;�; (2.8)

�mil;j =
�mil

pjQ
k=1

(1� �il�jk)

; �mil =
�
pi�1+m
il

piQ
k=1
k 6=l

(�il � �ik)

; (2.8a)

�
ij
l;m =

qjX
c=0

q0

iX
d=0

�id�j;d+c�
c
il +

m?X
c=1

q0

jX
d=0

�jd�id+c�
�c
il ; �

k;m
ij =

qiX
c=m?+1

q0

jX
d=0

�jd�id+c�
c�2m
jk

(2.8b)

The proof of Theorem 1 is given in Appendix B.
Example 2. Consider two ARMA(2,1) processes (y1t; y2t) with di�erent autoregressive

and moving average polynomials

(1� �11L)(1� �12L)y1t = (1 + �11L)�1t; �11 6= �12; j�11j; j�12j < 1

(1� �21L)(1� �22L)y2t = (1 + �21L)�2t; �21 6= �22; j�21j; j�22j < 1

�
�1t
�2t

�
� IID(0; ��2� ); ��2� =

�
var(�1t) cov(�1t; �2t)

cov(�1t; �2t) var(�2t)

�
=

�
�11;� �12;�
�12;� �22;�

�

The cross covariances between the two processes are

cov(y1t; y2t) = �12;� �

f
�11[1 + �11�21 + �21�11]

(�11 � �12)(1� �11�21)(1� �11�22)
+

�12[1 + �11�21 + �21�12]

(�12 � �11)(1� �12�21)(1� �12�22)
+

+
�221�11

(�21 � �22)(1� �21�11)(1� �21�12)
+

�222�11

(�22 � �21)(1� �22�11)(1� �22�12)
g

cov(y1t; y2;t�m) = f
�1+m
11 [1 + �11�21 + �21�11 + �11�

�1
11 ]

(�11 � �12)(1� �11�21)(1� �11�22)
+

+
�1+m
12 [1 + �11�21 + �21�12 + �11�

�1
12 ]

(�12 � �11)(1� �12�21)(1� �12�22)
g�12;�; m � 1
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cov(y2t; y1;t�m) = f
�1+m
21 [1 + �11�21 + �11�21 + �21�

�1
21 ]

(�21 � �22)(1� �21�11)(1� �21�12)
+

+
�1+m
22 [1 + �11�21 + �11�22 + �21�

�1
22 ]

(�22 � �21)(1� �22�11)(1� �22�12)
g�12;�; m � 1

Note that when the autoregressive polynomials of the two processes are identical (�21 =
�11; �22 = �12) the above expressions reduce to those given in Example 1 with �12 = �22 =
0.

3 Concluding Remarks

Since the publication of the book by Box and Jenkins, almost 30 years ago, the interest
by time series analysts and econometricians in more complicated even if more parsimo-
nious linear time series models has greatly increased. The purpose of this paper was to
examine the covariance structure of mixed ARMA models. In Section 2 we presented the
autocovariance function of the sum of n ARMA(pi; qi) processes using the in�nite moving
average representation of an ARMA model. The autocovariances were expressed in terms
of the roots of the AR polynomials and the parameters of the MA polynomials. In this
paper we examined only the case of distinct roots of the autoregressive polynomials-the
case of equal roots is left for future research. The ima representation technique can also be
applied to non linear multivariate time series models (e.g. GARCH or Markov Switching)
to derive their covariance structure7.
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Appendix

A PROOF OF PROPOSITION 1a

The impulse response function (IRF) of yt is given by8

yt =
1X
r=0

er�t�r; where er =

pX
l=1

min(r;q)X
k=0

�r�k
l �k; �ml =

�
p�1+m
l

pQ
k=1
k 6=l

(�l � �k)

(A.1)

From the preceding equation we have that


m = covm(yt) =
1X
r=0

erer+m�2� (A.1a)

After some algebra we get


m =

pX
l=1

�ml s0l �lm�
2
� ; where s0l =

pX
k=1

�0k
(1� �l�k)

(A.1b)

Subsequently, using

s0l =
1

pQ
k=1

(1� �l�k)

(A.1c)

we get (2.2)-(2.2a). �

PROOF OF PROPOSITION 1b

From (2.3) and using Proposition 1a we get


m =
nX

i=1

covm(yit) =
nX

i=1

pX
l=1

�lm�
i
l;min(m;qi)

�ii;� (A.2)

�

8It is given in Pandit (1973) or K (2000).
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PROOF OF PROPOSITION 1c

The IRF of yit is given by

yit =
1X
r=0

eri �it�r; where eri =

pX
l=1

min(r;qi)X
k=0

�r�k
l �ik (A.3)

From the preceding equation we get

cov(yit; yjt�m) =
1X
r=0

erje
r+m
i �ij;� (A.3a)

After some algebra we have that

cov(yit; yjt�m) =

pX
l=1

� lms
0
l �

ij

l;m�ij;� =

pX
l=1

�lm�
ij

l;m�ij;� (A.3b)

Using the preceding equation, together with equations (2.3) and (2.5) we get


m =
nX

j=1

nX
i=1

cov(yit; yjt�m) =
nX

j=1

nX
i=1

pX
l=1

�lm�
ij
l;m�ij;� (A.3c)

�

B PROOF OF THEOREM 1

The IRF of yit is given by

yit =
1X
r=0

eri �it�r; where eri =

piX
l=1

min(r;qi)X
k=0

�r�k
il �ik; �mil =

�
pi�1+m
il

piQ
k=1
k 6=l

(�il � �ik) (B.1)

From the preceding equation we have

cov(yit; yj;t�m) =
1X
r=0

erje
r+m
i �ij;� (B.1a)

After some algebra we get
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cov(yit; yj;t�m) = (

piX
l=1

�mil s
0
j;il�

ij
l;m +

pjX
k=1

�mjks
0
i;jk�

km
ij )�ij;�; where s0j;il =

pjX
k=1

�
0;il
jk ;

(B.1b)

�
0;il
jk =

�0jk

(1� �il�jk)
; �

ij
l;m =

qjX
c=0

q0

iX
d=0

�id�j;d+c�
c
il +

m?X
c=1

q0

jX
d=0

�jd�i;d+c�
�c
il

(B.1c)

�km
ij =

qiX
c=m+1

q0

jX
d=0

�jd�id+c�
c�2m
jk ; (B.1d)

and q0i = min(qi; qj � c), q0j = min(qj ; qi � c), m? = min(m; qi).
In the preceding equation, we use

s0j;il =
1

pjQ
k=1

(1� �il�jk)

(B.1e)

to get

cov(yit; yj;t�m) = (

piX
l=1

�mil;j�
ij
l;m +

pjX
k=1

�mjk;i�
km
ij )�ij;�; where �mil;j =

�mil
pjQ
k=1

(1� �il�jk)

(B.1f)

Thus, we have

yt =
nX

i=1

yit ) covm(yt) =
nX

j=1

nX
i=1

cov(yit; yj;t�m)

=
nX

j=1

nX
i=1

(

piX
l=1

�mil;j�
ij
l;m +

pjX
k=1

�mjk;i�
km
ij )�ij;�

(B.1g)

�
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