

The University of York

Discussion Papers in Economics

No. 2000/09

Cross-Sectional Aggregation and Persistence in Conditional Variance
by

Menelaos Karanasos, Zacharias Psaradakis and Martin Sola

cross-sectional aggregat ion and per sist ence in conditional variance ${ }^{\text {® }}$

Menel aos Kar anasos
Department of Economics, University of York, U.K.
Zacharias Psar adakis
School of Economics, M athematics and Statistics, Birkbeck College, U.K.
Martin Sola
School of E conomics, M athematics and Statistics, Birkbeck College, U.K.
Departamento de E conomía, Universidad Torcuato di Tella, Argentina

December 1999

Abstract

This paper explores the interactions between cross-sectional aggregation and persistence of volatility shocks. We derive the ARMA-GARCH representation that linear aggregates of ARMA processes with GARCH errors admit, and establish conditions under which persistence in volatility of the aggregate series is higher than persistence in the volatility of the individual series. The practical implications of the results are illustrated empirically in the context of an option pricing exercise.

Keywords: ARMA process; Cross-sectional aggregation; GARCH process; Volatility persistence.

[^0]
1 Introduction

In the last ..fteen years or so, the family of Generalized A utoregressive C onditional Heteroskedasticity (GARCH) models has been used extensively in the modelling of the conditional second moments of ..nancial time series. Within this class of models, it is almost a 'stylized fact' that the estimated coed cients in the conditional variance function sum to very close to one, especially for high-frequency ..nancial data. In such so-called integrated GARCH models (Engle and Bollerslev, 1986), shocks to the conditional variance are persistent in the sense that current information remains important for volatility forecasts of all horizons. To the extent that this apparent nonstationary behaviour of volatility is not the result of misspeci..cation of the conditional variance function (cf. Diebold, 1986; Lamourex and Lastrapes, 1990; Hamilton and Susmel, 1994), it has broad implications for the construction of long-term volatility forecasts which are essential in many asset-pricing models and is also important from a theoretical point of view (see Poterba and Summers, 1986).

The purpose of this paper is to explore the interaction between cross-sectional aggregation and persistence of volatility shocks. The motivation for our work is the common empirical ..nding that the conditional variance of aggregate series, such as weighted market indices, typically exhibits higher degree of persistence than the conditional variance of the constituent series. To investigate this issue, we ..rst establish the properties that simple linear aggregates of ARMA processes with GARCH errors have by deriving the ARMA-GARCH representation of the aggregate series. These results are then used to establish conditions under which the conditional variance of the aggregate process is more persistent than the conditional variance of the individual processes.

The plan of the paper is as follows. Section 2 sets out the assumptions on which our analysis is based and introduces the necessary notation. Section 3 establishes the aggregation properties of ARMA processes with GARCH errors. Section 4 gives results concerning the degree of persistence in the conditional variance of linear aggregates of ARMA-GARCH processes. Section 5 illustrates the empirical implications of our results in the context of a simple option pricing exercise. Section 6 summarizes and concludes.

2 Notation and A ssumptions

Throughout the paper we consider the situation where the stochastic process $f y_{t} g$ is a simple linear aggregate of k processes $f y_{i t g}$, i.e.

$$
\begin{equation*}
y_{t}={ }_{i=1}^{x^{k}} w_{i} y_{i t} \quad(t=0 ; \S 1 ; \S 2 ;:::) ; \tag{1}
\end{equation*}
$$

where ($w_{1} ;::: ; w_{k}$) are real constants. Each individual process $f y_{i t} g$ is assumed to be a causal ARMA ($r_{i} ; s_{i}$) process satisfying

$$
\begin{equation*}
\bigotimes_{i}(L) y_{i t}=\dot{A}_{i c}+f_{i}(L) "_{i t} \quad(i=1 ;::: ; k) ; \tag{2}
\end{equation*}
$$

where

$$
\begin{gather*}
\Theta_{i}(L)={ }_{i}{ }_{j=0}^{X_{i}} \dot{A}_{i j} L^{j}={\underset{j=1}{Y_{i}}\left(1 i \tilde{A}_{i j}^{0} L\right) \quad\left(\dot{A}_{i 0}=i 1 ; \dot{A}_{i ; r_{i}} \in 0\right) ;}_{£_{i}(L)={ }_{i}^{X_{i}} \mu_{j=0} L^{j} \quad\left(\mu_{i 0}=i 1 ; \mu_{; s_{i}} \in 0\right) ;} . \tag{3}
\end{gather*}
$$

$\hat{A}_{i j}^{0}\left(j=1 ;::: ; r_{i}\right)$ are the inverse zeros of $\Theta_{i}(z)$ and L is the conventional lag operator. Further, the polynomials $\bigoplus_{i}(z)$ and $£_{i}(z)$ are assumed to have no common zeros.

Regarding the innovations f " ${ }_{i t} g$, we assumethat they follow a diagonal multivariate GARCH process (cf. Bollerslev et al., 1988). M ore speci..cally, letting $F_{t_{i}}$ denote the $3 / 4$..eld of events generated by $\mathrm{f}^{2}{ }_{\mathrm{s}}=\left[{ }^{1 s} ;::: ;{ }^{\prime} \mathrm{ks}\right]$; s 6 t ; 1 g , we have
where each individual variance $h_{i t}$ satis..es a GARCH $\left(p_{i} ; q\right)$ model,

$$
\begin{equation*}
\left.B_{i}(L) h_{i t}=®_{c}+A_{i}(L)\right)_{i t}^{2} \quad(i=1 ;::: ; k) ; \tag{6}
\end{equation*}
$$

with

$$
\begin{equation*}
B_{i}(L)={ }_{j=0}^{X_{i}}-{ }_{i j} L^{j} \quad\left({ }^{-}{ }_{i 0}=i 1\right) \quad \text { and } \quad A_{i}(L)={ }_{j=1}^{X_{i}} \otimes_{j} L^{j}: \tag{7}
\end{equation*}
$$

M oreover, each covariance huv;t satis..es a GARCH (puv; quv) model,

$$
\begin{equation*}
\mathrm{B}_{\mathrm{uv}}(\mathrm{~L}) \mathrm{h}_{\mathrm{uv}, \mathrm{t}}=\bigotimes_{\mathrm{uv} ; \mathrm{c}}+\mathrm{A}_{\mathrm{uv}}(\mathrm{~L}) \text { "ut"vt } \quad\left(\mathrm{u}=1 ;::: ; \mathrm{k}_{\mathrm{i}} 1 ; \mathrm{v}=\mathrm{u}+1 ;::: ; \mathrm{k}\right) ; \tag{8}
\end{equation*}
$$

where

$$
B_{u v}(L)=i_{j=0}^{\text {Luv }}-{ }_{u v i j} L^{j} \quad\left({ }^{-}{ }_{u v ; 0}=i 1\right) \quad \text { and } \quad A_{u v}(L)=\sum_{j=1}^{R_{u v ; j} L^{j}: ~}
$$

The parameters in (6) and (8) are appropriately restricted to ensure that $f^{2} t g$ is stationary up to order 2 and that H_{t} is positive de..nite with probability one for all t (see Engle and K roner, 1995).

For future development, it is helpful to note that (6) may be expressed as an ARMA ($p_{1}^{\alpha} ; q$) model,

$$
\begin{equation*}
B_{i}^{\mathrm{a}}(\mathrm{~L}) h_{i t}=®_{\mathrm{C}}+A_{i}(L)^{\prime}{ }_{i t} ; \quad{ }_{i t}="_{i t}^{2} i h_{i t} \tag{9}
\end{equation*}
$$

with
where ${ }^{-0}\left(j=1 ;::: ; p_{i}^{q}\right)$ are the inverse zeros of $B_{i}^{p}(z), p_{i}^{q}=\operatorname{maxf} p_{i} ; q g$, and

In a similar fashion, (8) may be rewritten as an ARM A (pup ${ }_{\text {uv }}^{\text {r }}$ puv) model,

$$
\begin{equation*}
\mathrm{B}_{\mathrm{uv}}^{\mathrm{a}}(\mathrm{~L}) \mathrm{h}_{\mathrm{uv} ; \mathrm{t}}=\mathbb{R}_{\mathrm{uv} ; \mathrm{c}}+\mathrm{A}_{\mathrm{uv}}(\mathrm{~L})^{\prime}{ }_{\mathrm{uv} ; \mathrm{t}} ; \quad{ }_{\mathrm{uv} ; \mathrm{t}}=\text { "ut "vt } \mathrm{h}_{\mathrm{uv} ; \mathrm{t}} ; \tag{10}
\end{equation*}
$$

with
where ${ }^{-0}{ }_{u v i j}\left(j=1 ;::: ; p_{u v}^{u}\right)$ are the inverse zeros of $B_{u v}^{p}(z), p_{u v}^{p}=\operatorname{maxf} p_{u v} ; q_{u v} g$, and

It is also worth noting that the framework described by (1)-(8) includes as a special case the component model proposed in Ding and Granger (1996) for modelling persistence in volatility. Speci..cally, since (1)-(8) imply that

$$
\operatorname{var}\left(y_{t} F_{t_{i} 1}\right)=\sum_{i=1}^{x^{k}} w_{i}^{2} h_{i t}+2_{v=u+1 u=1}^{x^{k}} w_{u}^{1} w_{v} h_{u v v_{i}} ;
$$

it is easily seen that $f y_{t} g$ satis.es a $\frac{1}{2} k(k+1)$-component $\operatorname{GARCH}(p ; q)$ model when ${ }^{P} \underset{i=1}{k} w_{i}=1$, the errors $f{ }_{i t} g$ in (2) are the same for all $i=1 ;::: ; k_{,} p_{i}=p_{u v}=p$, and $q=q_{u v}=q$. Hence, our framework may be seen as providing an alternative way of analyzing the long-memory characteristics of the volatility of aggregate time series.

3 M ain Results

In this section we derive the ARMA-GARCH representation that the aggregate process $f y_{t} g$ admits. We also give results concerning the moments of the conditional variance $h_{t}=\operatorname{var}\left(y_{t j} F_{t_{i}}{ }_{1}\right)$. All proofs are deferred to the A ppendix.

Theorem 1 Under the assumptions of Section $2, f y_{t} g$ is an ARMA (f, F) process,

$$
\begin{gather*}
O(L) y_{t}=\left\{+{ }^{n} t+£(L)\left("_{t}^{x}+"_{t}\right) ;\right. \tag{11}\\
O(L)=i X_{i=0}^{X^{\kappa}} \dot{A}_{i} L^{i}=\underbrace{Y}_{i=1}\left(1 i \dot{A}_{i}^{Q} L\right) ; \quad £(L)=i X_{i=1}^{X^{k}} \mu_{i} L^{i} \tag{12}
\end{gather*}
$$

$$
\begin{align*}
& B^{x}(L) h_{t}=\mathbb{R}_{\delta}^{g}+A^{x}(L)^{n}{ }^{2} ; \tag{13}\\
& B^{x}(L)=i{ }_{i=0}^{X^{p}}-{ }_{i}^{x} L^{i} ; \quad A^{x}(L)=X_{i=1}^{X^{b}} \mathbb{Q}^{p} L^{i} ; \tag{14}
\end{align*}
$$

 $\Theta_{i}(z)$ polynomials and $k=\operatorname{maxf}_{k_{1}} ;::: ; k_{k} g$, where $k_{i}=k_{i} r_{i}+s_{i}$. In (14), $\beta=\operatorname{maxf} p_{i}^{0}, p_{u v g}^{0} g$ and $\hat{p}=\operatorname{maxf} \beta ; \beta$, where β is the number of dixerent inverse zeros of the $k B_{i}^{p}(z)$ polynomials
 $\dot{A}_{i}^{0}, \mu_{i},{ }_{i}^{-\infty}$ and \mathbb{B}_{P}^{p} can be found in the proof of the theorem.

The moments of the volatility process $f h_{\mathrm{t}} \mathrm{g}$ are given in the next theorem.
Theorem 2 The ..rst two moments of the volatility process $f h_{t} g$ in Theorem 1 are:

$$
\begin{align*}
& E\left(h_{t}^{2}\right) \quad f_{2}=x_{I=1}^{x^{k} x^{k}} w_{i}^{2} w_{i}^{2} f^{2 ; i l}+4_{i=1 v=u+1 u=1}^{x^{k} \quad x^{k} \quad x^{1}} w_{i}^{2} w_{v} w_{u} f^{2 ; i ; u v} \tag{16}
\end{align*}
$$

where ${ }_{i}^{-0}$ are the β dixerent inverse zeros of the $k B_{i}{ }^{\boldsymbol{p}}(z)$ polynomials and of the $\frac{1}{2} k(k ; 1)$
 $f^{2 ; i ; u v}{ }^{\prime} E\left(h_{i t} h_{u v ;}\right)$, and $f^{2 ; u v ; m s}{ }^{\prime} E\left(h_{u v ;} h_{m s ; t}\right)$. Further, the unconditional kurtosis of "t is $\left.\cdot "^{\prime} E\binom{4}{t}=E\binom{" 2}{t}\right]^{2}=3 f_{2}=f_{1}^{2}$.

As an illustration of how the results in Theorem 1 simplify in speci..c cases, we conclude this section by giving two relatively simple examples. The ..rst example considers a linear aggregate of two ARMA processes with GARCH innovations.

Proposition 1 Let $y_{t}=y_{1 t}+y_{2 t}$ where $f y_{i t} g(i=1 ; 2)$ are ARMA($\left.r_{i} ; s_{i}\right)$ processes which satisfy (2)-(4). Suppose further that ${ }^{2} t=[" 1 t ; " 2 t]^{>}$follows a bivariate $\operatorname{GARCH}(1 ; 1)$ process like (5) $\mathrm{i}(7)$ with $\mathrm{h}_{12 ; \mathrm{t}}=, 2(0 ; 1)$ for all t . Then, $\mathrm{f} \mathrm{y}_{\mathrm{t}} \mathrm{g}$ admits the $\operatorname{ARMA}(\mathrm{F}, \mathrm{F})$ representation (11) $\mathbf{i}(12)$, where $f{ }^{\prime \prime} \mathrm{t} g$ is a $\operatorname{GARCH}(2 ; 2)$ process with
\mathfrak{F} is the number of dixerent zeros of $\mathbb{O}_{1}(z)$ and $\mathbb{O}_{2}(z)$ and $\mathcal{F}=$ maxf $F_{i} r_{1}+s_{1} ; F_{i} r_{2}+s_{2} g$. The coed cients ${ }_{1}^{r}$ and \mathbb{R}_{2} are given by:

$$
\begin{aligned}
& \S\left(2 f_{2}\right)^{i}{ }^{1} f w_{1}^{8} \mathbb{R}_{11}^{4}\left(1 ; \quad \mathbb{R}_{21}^{L}\right)^{2} f_{2 ; 1}^{2}+w_{2}^{8} \mathbb{R}_{21}^{4}\left(1 ; \quad \mathbb{R}_{11}^{P}\right)^{2} f_{2 ; 2}^{2} \\
& +\mathrm{w}_{1}^{4} \mathrm{w}_{2}^{4} \mathbb{R}_{11}^{2} \mathbb{R}_{21}^{2}\left[\left(1 \mathrm{i} \mathbb{R}_{21}\right)^{2}\left(1+\mathbb{R}_{11}^{0}\right)^{2}+\left(1 ; \mathbb{R}_{11}\right)^{2}\left(1+\mathbb{R}_{21}\right)^{2}\right] \mathrm{f}_{2 ; 1} \mathrm{f}_{2 ; 2} \\
& +4 w_{1}^{4} w_{2}^{4} \mathbb{R}_{11}^{2} \mathbb{R}_{21}^{2}\left[\left(1+\mathbb{R}_{21}^{\rho} \mathbb{R}_{11}^{\rho}\right)^{2} \mathrm{i}\left(\mathbb{®}_{11}^{0}+\mathbb{R}_{21}^{0}\right)^{2}\right], 4 \\
& +w_{1}^{6} w_{2}^{2} \mathbb{R}_{11}^{3} ®_{21}\left[\left(1+\mathbb{R}_{21}\right)^{2}\left(1+\mathbb{R}_{21}^{0} \mathbb{®}_{11}^{0} ; \quad \mathbb{R}_{11}^{0} ; \mathbb{R}_{21}^{9}\right)\right. \\
& \left.+2\left(1 \mathrm{i} \mathbb{R}_{21}^{0}\right)^{2}\left(1+\mathbb{R}_{21}^{0} \mathbb{R}_{11}^{0}+\mathbb{R}_{11}^{0}+\mathbb{R}_{21}^{0}\right)\right],{ }^{2} \mathrm{f}_{2 ; 1}+\mathrm{w}_{2}^{6} \mathrm{~W}_{1}^{2} \mathbb{R}_{21}^{3} \mathbb{B}_{11}\left[\left(1+\mathbb{R}_{11}^{0}\right)^{2}\right. \\
& \left.\left(1+\mathbb{R}_{21} \mathbb{R}_{11} \mathrm{i} \mathbb{R}_{11}^{\rho} \mathrm{i} \mathbb{R}_{21}\right)+2\left(1 \mathrm{i} \mathbb{R}_{11}^{0}\right)^{2}\left(1+\mathbb{R}_{21} \mathbb{R}_{11}^{\rho}+\mathbb{R}_{11}^{\rho}+\mathbb{R}_{21}^{0}\right)\right],{ }^{2} \mathrm{f}_{2 ; 2} 9^{1=2} \mathrm{~g}^{1=2} ;(17)
\end{aligned}
$$

and
where $\mathbb{R}_{1}^{9}=®_{1}+{ }^{-}{ }_{i 1}(i=1 ; 2)$. Expressions for $f_{2 ; i}{ }^{\prime} E\left(h_{i t}^{2}\right)$ are given in He and Teräsvirta (1997) and K aranasos (1999), and $f_{2}{ }^{\prime} E\left(h_{t}^{2}\right)$ is given in (16).

Our second example considers the case of a linear aggregate of MA(1) processes with GA RCH innovations. This is an interesting case from a practical point of view since many stock-price series appear to be adequately described by low order MA models.

Proposition 2 Let $f y_{t} g$ be a linear aggregate of $k M A(1)$ processes $f y_{i t} g$ which satisfy (2) ${ }_{i}$ (4). Suppose further that ${ }^{2} t=\left[" 1 t ;::: ;{ }^{\prime} k\right]^{>}$follows a GARCH process like (5) i (7). Then, $\mathrm{f} \mathrm{y}_{\mathrm{t}} \mathrm{g}$ admits the $M A(1)$ representation

$$
\begin{equation*}
y_{t}=\left\{+{ }^{t} \mathrm{t} \mu\left("_{\mathrm{t}_{\mathrm{i}} 1}+\mathrm{n}_{\mathrm{t}_{\mathrm{i}} 1}\right) ;\right. \tag{19}
\end{equation*}
$$

$$
\mu=\sum_{i=1}^{x^{k}} w_{i}^{2} \mu_{i}^{2}\left(f_{1 i} f_{1}\right)+\sum_{v=u+1 u=1}^{X^{k}} w_{u} w_{v}\left(\mu_{u}+\mu_{v}\right)\left(f_{1 ; u v} f_{1}\right) ;
$$

and

$$
3 / /_{u}={\frac{1}{\mu^{2} f_{1}}}_{\left(x^{k} x^{1} w_{u+1 u=1}^{2} w_{v}^{2}\left(\mu_{u} ; \mu_{v}\right)^{2}\left(f_{1 ; u} f_{1 ; v} i f_{1 ; u v}^{2}\right)\right.}
$$

$$
\begin{aligned}
& \text { 又 } \text { x }^{1} \text { x }^{2} \text { x }^{3} \\
& +2 \quad w_{u} w_{v} w_{m} W_{s} \\
& s=m+1 m=v+1 v=u+1 u=1 \quad 9
\end{aligned}
$$

with

$$
\left(i_{1} ; i_{2}\right)=\begin{array}{ll}
8 \\
\gtrless(m ; s) & \text { if } i=v ; \\
(v ; s) & \text { if } i=m ; \\
(v ; m) & \text { if } i=s ;
\end{array}
$$

$f_{1 i}{ }^{\prime} E\left(h_{i t}\right)$ and $f_{1 ; u v}{ }^{\prime} E\left(h_{u v ; t}\right)$.

4 Persistence of Volatility Shocks

Using the results in the previous section, we can now examine how the persistence of a shock to the aggregate conditional variance h_{t} is related to the persistence of shocks to the k individual variances $h_{i t}$. As in Engle and Mustafa (1992), the persistence of a volatility shock is thought of here in terms of the coed cients of the MA representation of the relevant volatility process. Thus, in the case of $f h_{t} g$, for instance, persistence depends primarily on ${ }^{3}=1+A^{x}(1) ; B^{x}(1)$.

We shall distinguish between two cases of interest, depending on whether the conditional covariance matrix H_{t} is diagonal or not. Henceforth, we let $h_{t}^{k}={ }_{i=1}^{k} w_{i}^{2} h_{i t}, h_{t}^{k_{i}}=h_{t}^{k} i \quad w_{i}^{2} h_{i t}$, and $h_{t}^{k x}=2^{P} \underset{v=u+1}{k} P_{\substack{k_{i} 1 \\ u=1 \\ w_{u} \\ w_{v}}} h_{u v ; t}$. The sum of the coed cients of the lag polynomials in the GARCH equations $h_{t}^{k}, h_{t}^{k_{i}}$ and $h_{t}^{k_{x}}$ is respectively denoted by ${ }^{3 k}$, ${ }^{k_{i}}$ and ${ }^{3 k x}$.

CASE I: The polynomials $B_{1}^{\mathfrak{x}}(z) ;:: ; B_{k}^{\sharp}(z)$ have no common zeros and H_{t} is diagonal. In this case, the denominator in (15) is equal to

$$
{ }_{i=1}^{Y^{k}}\left(1_{i}{ }^{3}{ }_{i}\right)=1 i^{3 k} ;
$$

where

$$
3_{i}=\prod_{j=1}^{X_{i}^{p}}-\underline{i j} \quad(i=1 ;::: ; k) ;
$$

and

We have, therefore,

$$
{ }^{3 k}={ }_{i}+\left(1_{i}{ }^{3} i\right)^{3 k_{i}}>{ }_{i} ;
$$

and

$$
3 \mathrm{k}={ }^{3 k_{i}}+\left(1_{i}{ }^{3 k_{i}}\right)^{3}{ }_{i}>3 \mathrm{k}_{\mathrm{i}}:
$$

Hence, the sum of the coed cients of the GARCH equation $h_{t}^{k}=h_{t}\left({ }^{(k)}\right)$ will be greater than the sum of the coed cients of each of the k GARCH equations $h_{i t}\left({ }^{(}{ }_{i}\right)$, and it will also be greater than the sum of the coed cients of $h_{t}^{k_{i}}\left({ }^{3 k_{i}}\right)$.

CASE II: The polynomials $B_{i}^{\mathbb{X}}(z)$ and $B_{u v}^{a}(z)(i ; u ; v=1 ;:: ; ; k)$ have no common zeros and H_{t} is non-diagonal. In this case, the denominator in (15) is equal to

$$
{ }_{i=1}^{Y^{k}}\left(1 i_{i}^{3}\right)^{Y^{k}}{ }_{v=u+1}^{k_{i}=1}\left(1 i^{3} u v\right)=\left(1 i^{3 k}\right)\left(1 i^{3 k x}\right)=1 i^{3} ;
$$

where
and

$$
\begin{aligned}
& { }^{3} \mathrm{~kg}={ }^{3}{ }_{12}+\left(1 \mathrm{i}^{3}{ }_{12}\right)\left[{ }^{3}{ }_{13}+\left(1 \mathrm{i}^{3}{ }_{13}\right)[\$ \not \subset 申\right.
\end{aligned}
$$

From the last equation we have

$$
{ }^{3}=3^{k}+\left(1 i^{3 k}\right)^{3 k x}:
$$

Hence, if the sum of the coed cients of all the $\mathrm{B}_{\mathrm{uv}}^{\mathrm{g}}(\mathrm{z})$ polynomials $\left({ }^{3 \mathrm{~kg}}\right)$ is positive (negative), then the sum of the coed cients of the GARCH equation $h_{t}\left({ }^{3}\right)$ will be greater (smaller) than the sum of the coed cients of $h_{t}^{k}\left({ }^{3 k}\right)$.

Furthermore, from (15) we obtain

$$
\begin{aligned}
& \left.\left.{ }^{3}={ }^{3} i+\left(1 i^{3}{ }_{i}\right)\right)^{3_{i}}+\left(1 i^{3 k_{i}}\right)^{3 k x}\right] ; \\
& { }^{3}={ }^{3 k_{i}}+\left(1 i^{3 k_{i}}\right)\left[{ }^{3}{ }_{i}+\left(1 i^{3}{ }^{3}\right)^{3 k x}\right]:
\end{aligned}
$$

Hence, when the sum of the coed cients of all the $B_{u v}^{x}(z)$ polynomials ($\left.{ }^{3 k x}\right)$ is negative, the sum of the coed cients of the GARCH equation $h_{t}{ }^{(3)}$ will be greater than the sum of the coed cients of $h_{t}^{k_{i}}\left({ }^{3_{i}}\right)$ if ${ }_{i}>\left(1 i^{3}{ }_{i}\right)^{3 k x}$, and it will be greater than the sum of the coed cients in the GARCH equation $h_{i t}\left({ }^{3}{ }_{i}\right)$ if ${ }^{3 k_{i}}>\left(1_{i}{ }^{3 k_{i}}\right)^{3 \mathrm{kx}}$.

Also, if ${ }^{3 k \infty} ; r$ and ${ }^{3 r ; k x}$ denote the sums of coed cients in the GARCH equation for respectively r out of the $\frac{1}{2} k(k ; 1)$ terms in $h_{t}^{k x}$ and $\frac{1}{2} k(k ; 1) i r$ terms in $h_{t}^{k x}$, we have from (15) that

$$
{ }^{3}=3^{k}+\left(1 i^{3^{k}}\right)\left[^{3 k x ; r}+\left(1 i^{3 k x ; r}\right)^{3 r ; k x}\right]:
$$

Hence, when the sum of the coed cients of the r out of the $\frac{1}{2} k(k ; 1) B_{u v}^{r}(z)$ polynomials is positive, the sum of the coed cients of the GARCH equation $h_{t}\left({ }^{3}\right)$ will be greater (smaller) than the sum of the coed cients in h_{t}^{k} if ${ }^{3 k m ; r}>\left(1 i^{3 k x ; r}\right)^{3 r ; k x}\left({ }^{3 \mathrm{~km} ; r}<\left(1 i^{3 k m ; r}\right)^{3 r ; k x}\right)$.

Finally, in the extreme case where all the polynomials $B_{i}^{p}(z)$ and $B_{u v}^{x}(z)$ are identical, the sum of the coed cients of the GARCH equation h_{t} will be equal to the sum of the coed cients of each GARCH equation $h_{i t}$.

5 A ggregation and Option Pricing

As an illustration of some of the practical implications of the results given in the previous two sections of the paper, we consider the exects of cross-sectional aggregation in the context of GARCH option pricing. More speci..cally, we price options on individual stocks and on an equally weighted index and compare the price of a call option on the index to the average cost of the calls on the individual stocks. Since the volatility of the index typically exhibits more persistence than the volatility of the individual stocks, a forecast of the volatility of the index would take longer to revert to the unconditional variance. Hence, whenever forecasting from a period of high volatility, the forecast values will be above the unconditional variance, and whenever forecasting from a state with low volatility, the forecast will be below the unconditional variance. The exects on the price of the option pricing would be more dramatic for the index than for the individual stocks.

Our analysis here is based on daily data for the price of stocks of seven U.K. companies, namely Allied-Lyons (ALLD), ASDA, Blue Circle Industries (BCI), Cadbury Schweppes (CB RY), C ourtaulds (CTLD), National Westminster B ank (NW B), and R oyal Insurance (ROY L), as well as on a simple linear aggregate of the seven stocks with equal weights (referred to hereafter as the 'index'). The sample covers the period ${ }^{* * * * ~(920 ~ o b s e r v a t i o n s ~ i n ~ t o t a l), ~ a n d ~ i s ~}$ chosen so as to avoid the possibility of structural breaks which would spuriously increase volatility persistence. A simple speci..cation search revealed that all individual price series can be characterized as GARCH $(1 ; 1)$; the ..tted models show little or no signs of residual serial correlation in the residuals, and no signs of serial correlation in the squared residuals. Table 1 reports quasi-maximum likelihood estimates of our persistence measure (i.e. the sum of GARCH coed cients) for the individual stocks and the index, along with their asymptotic standard errors (computed using the usual sandwich covariance matrix estimator). Clearly, the estimates for the individual stocks are smaller than the estimate for the index.

To assess the exects of aggregation on the persistence of volatility shocks (and on option pricing), we must distinguish between what we shall call diversi..cation exect and increased

Table 1. Estimates of Persistence ${ }^{\mathrm{a}}$

ALLD	0.7301	(0.1476)	CTLD	0.6617	(0.2307)
ASDA	0.5432	(0.1780)	NWB	0.6706	(0.1626)
BCI	0.2401	(0.1473)	ROYL	0.7036	(0.1498)
CBRY	0.5729	(0.4038)	Index	0.8736	(0.0978)

${ }^{2}$ Figures in parentheses are asymptotic standard errors.
persistence exect. Clearly, taking a weighted average of the individual stocks would reduce the unconditional variance of the index. Therefore, we are interested in assessing how much of the dixerence between the value of the call on the index and the average of the calls on the individual stocks using GARCH option pricing comes from the reduction of the variance associated with averaging (diversifying the portfolio) and how much comes from the exects of the increased persistence. In order to do so, we have also created a synthetic option using constant variances.

B efore analyzing the exects of aggregation on GARCH pricing, it is worth examining the plot in Figure 1 which shows the unconditional variance, the ..tted conditional variance for the index, and 30 forecasts of the conditional variance. It is evident that the end of the sample coincides with a period of low volatility and that the forecast values are all below the unconditional variance. This will have implications for option pricing since, when compared with the option prices computed using historical volatility, GARCH pricing will give lower or higher values for the relevant forecast period depending on whether the economy is in a period of high or low volatility at the forecast origin and on whether the option is in-the-money or out-of-the-money.

In our pricing exercise we follow Bollerslev and Mikkelsen (1996) in using the Black and Scholes (1973) option pricing formula to calculate the price of a European call option written at date T as a function of the volatility of stock prices, the maturity time of the option ($\dot{\text {) , the }}$ exercise price (K), the stock price at date $T\left(\mathrm{P}_{\mathrm{T}}\right)$, and the risk-free interest rate over the life of the option (r). This formula is evaluated using both historical volatility and the average (over the life of the option) of forecasts from the ..tted GARCH models for the relevant stock price or index. ${ }^{1}$ Our exercise consists of evaluating option prices for maturity times $i=1 ;:: ; 30$. We consider options that are deep-in-the-money ($K=0: 8 \mathrm{P}_{\mathrm{T}}$), in-the-money ($\mathrm{K}=0: 9 \mathrm{P}_{\mathrm{T}}$), and at-the-money ($\mathrm{K}=\mathrm{P}_{\mathrm{T}}$), and take $\mathrm{r}=0: 08$ per year. Under these scenarios, we compare the option price of the index with the average of the option prices of the individual stocks.

As is evident from Table 1, the individual stocks are characterized by relatively small persistence, so they tend to revert to the unconditional variance in few time periods after a volatility

[^1]shock. This implies that, for our sample, GARCH pricing and historical volatility pricing would yield very similar results for the individual stocks. For the purpose of our exercise, this result is very informative since it allows us to distinguish between diversi..cation exects and increased persistence exects.

Figure 2 shows the results of our simulations for both GARCH and historical volatility pricing. The values of the average of the calls of the individual stocks using either of the two pricing methods are indistinguishable for the reason explained before. The Black-Scholes value of the call on the index is higher since the volatility of the index is smaller (because of aggregation) and the stock is deep in the money (and therefore the prospect of the price falling bellow the strike price is smaller). Nevertheless, the value of the GARCH option is even higher since the forecast origin was a low variance state. ${ }^{2}$ Figure 3 shows qualitatively similar results for in-the-money options. Finally, the results shown in Figure 4 for options that are at-the-money reveal once again that option prices for the individual stocks using either pricing method are very similar and are higher than the values of the options on the index (since the lower is the variance the less likely it is that the an option at-the-money has any value). As before, the dixerence between prices obtained by the two alternative pricing schemes reveals how much of the dixerences in option prices is due to the increased persistence that characterizes the index.

6 Summary

This paper has investigated the properties of linear aggregates of ARMA processes with errors that follow a diagonal multivariate GARCH process. We have derived the ARMA-GARCH representations that such linear aggregates admit. We have also shown that, under conditions that are typically satis..ed in practice, persistence in the volatility of the aggregate series is higher than persistence in the volatility of the individual series. As an empirical illustration of the importance of the issues analyzed, we have discussed the results of a simple option pricing exercise involving seven U.K. individual stocks and an equally weighted index.

7 Appendix: Proofs

Proof of Theorem 1. First note that from (1) and (2) we have

[^2]where $E_{t_{i}}\left(\Phi\right.$ denotes conditional expectation with respect to $F_{t_{i} 1}$. Next, consider the polynomial
\[

$$
\begin{equation*}
B(L)=Y_{i=1}^{Y_{i}^{\beta}}(1 ;-q)=i_{i=0}^{X^{\beta}}{ }_{i} L^{i} \quad\left(-{ }_{0}=i 1\right) ; \tag{A.2}
\end{equation*}
$$

\]

 polynomials. Since each $B_{p}^{p}(z)$ has p_{i}^{x} zeroes and each $B_{u v}^{p}(z)$ has $p_{u v}^{x}$ zeroes, the maximum value of β is $P_{i=1}^{k} p_{i}^{d x}+P_{v=u+1}^{k} P_{\substack{k_{i}=1 \\ u \\ p_{u v}^{a}}}^{(\text {assuming that the zeroes of each polynomial are dixerent); }}$ the minimum value of p is the maxf $p_{1}^{x} ; p_{u v}^{\alpha} g$.

Now, multiplying (A.1) by (A.2) and using (6) and (8) we obtain

$$
\begin{equation*}
B(L) h_{t}=\mathbb{B}_{b}^{0}+{ }_{i=1}^{X^{k}} A_{i}^{0}(L) w_{i}^{2 \prime}{ }_{i t}+2{ }_{v=u+1 u=1}^{x^{k} 1} A_{u v}^{0}(L) w_{u} w_{v}^{\prime}{ }_{u v ; t} \tag{A.3}
\end{equation*}
$$

where

In the right-hand side of (A.3), we have $k A_{i}^{O}(L)$ polynomials and $\frac{1}{2} k\left(k_{i} 1\right) A_{u v}^{0}(L)$ polynomials. Each $A_{i}^{q}(L)$ is of order $p_{i}^{0}=p_{i} p_{i}^{\alpha}+p_{i}$ and each $A_{u v}^{0}(L)$ is of order $p_{u v}^{0}=\rho_{i} p_{u v}^{\alpha}+p_{u v}$. In other words, the right-hand side of (A.3) is equal to the sum of $k M A\left(p_{i}^{9}\right)$ parts and $\frac{1}{2} k(k ; 1)$ MA ($p_{u v}^{0}$) parts. Hence, it can be expressed as an MA of order $\beta=\operatorname{maxf} p_{1}^{0} ; p_{u v}^{0} g$;

$$
\begin{equation*}
B(L) h_{t}=\mathbb{C}_{\delta}^{P}+A^{\mathbb{a}}(L)^{\prime}{ }_{t} ; \tag{A.4}
\end{equation*}
$$

 and (A.4) by $1 /{ }^{2}$ and ${ }^{1}{ }_{t}$, respectively, we have

$$
\begin{aligned}
& \mathrm{m}^{\mathrm{z}} \mathrm{j}^{\mathrm{j}} \mathrm{X}^{k} \mathrm{X}^{\mathrm{k}}
\end{aligned}
$$

$$
\begin{aligned}
& \text { pf } \mathrm{c}_{\mathrm{i}} \mathrm{j}^{\mathrm{K}} \mathrm{x}^{1} \mathrm{X}^{k}
\end{aligned}
$$

$$
\begin{aligned}
& 1=1 \quad v=u+1 u=1 i=1 \\
& \text { Mix (sij } x^{k} x^{1} x^{k} x^{1}
\end{aligned}
$$

 of the above two equations for $\mathrm{j}=0 ;::: ; \beta \mathrm{i} 1$ and solving the resulting system of β equations.

Next, from (A.4) we have
where $\hat{p}=\operatorname{maxf} \hat{\beta} ; \mathrm{pg}$ and

$$
-\bar{i}=\begin{array}{ccc}
8 \\
\gtrless & \text { ® }+{ }^{-} & \text {if } \beta ; \beta>i \\
3 & \text { ® }^{\text {P }} & \text { if } i ; \beta>\beta \\
-i & \text { if } i ; \beta>\beta:
\end{array}
$$

Now, consider the polynomial

$$
\begin{equation*}
O(L)=Y_{i=1}^{Y^{K}}\left(1 ; \dot{A}_{i}^{Q} L\right)=i_{i=0}^{X^{F}} \dot{A}_{i} L^{i} \quad\left(A_{0}=i 1\right) ; \tag{A.5}
\end{equation*}
$$

where \hat{A}_{i}^{0} are all the $\mathfrak{F d i x e r e n t}$ inverse zeros of the $k \Theta_{i}(z)$ polynomials (each of which has r_{i} zeros). Clearly, maxfr $r_{1} ;::: ; r_{k} g 6 \sigma^{P}{ }_{i=1}^{k} r_{i}$. Multiplying (1) by (A.5), and using (2) and (6), we obtain

$$
\begin{equation*}
O(L) y_{t}=\left\{+{ }_{i=1}^{X^{k}} £_{i}^{0}(L) w_{i} "_{i t} ;\right. \tag{A.6}
\end{equation*}
$$

where

$$
£_{i}^{G}(L)=\sum_{j=0}^{X_{i}} \mu_{i j}^{0} L^{j}={ }_{l=1}^{Y Y r_{i}}\left(1_{i} \quad A_{q}^{q} L\right) £_{i}(L):
$$

In the right-hand side of (A.6), we have $k £_{i}^{g}(L)$ polynomials, each of which is of order $k_{i}=$ $\mathrm{F}_{\mathrm{i}} \mathrm{r}_{\mathrm{i}}+\mathrm{s}_{\mathrm{i}}$. In other words, the right-hand side of (A.6) is equal to the sum of $\mathrm{k} M \mathrm{M}\left(\mathrm{F}_{\mathrm{i}}\right)$ parts. Hence, it can be expressed as an MA term of order $k=\operatorname{maxf}_{1}{ }_{1} ;::: ; ;_{\mathrm{k}} \mathrm{g}$;

$$
\begin{equation*}
\mathfrak{O}(\mathrm{L}) \mathrm{y}_{\mathrm{t}}=\mathrm{n}_{\mathrm{t}}+\mathrm{f}(\mathrm{~L})\left(\mathrm{nk}_{\mathrm{t}}+\mathrm{n}_{\mathrm{t}}\right) ; \tag{A.7}
\end{equation*}
$$

where

Denoting the right-hand sides of (A.6) and (A.7) by ${ }^{1 / 2}$ and ${ }^{1}{ }_{t}$, respectively, we have
where $f_{1}{ }^{\prime} E\left(h_{t}^{2}\right)$ and

$$
f_{1 ; u v^{\mathbb{a}}}=\begin{array}{ll}
\left(h_{u v ; t}\right) & \text { if } v \in u \\
E\left(h_{u t}\right) & \text { if } v=u:
\end{array}
$$

Setting $\operatorname{cov}\left(1 / 2 ;{ }^{1} / \gtrless_{i} j\right)=\operatorname{cov}\left({ }^{1} \mathrm{t}^{\prime}{ }^{1} \mathrm{t}_{\mathrm{i}} \mathrm{j}\right)$ we obtain a system of $\mathrm{k}+1$ equations which can be solved for the μ_{i}^{\prime} s and $3 / 4$. $\quad \neq$

Proof of Theorem 2. Observe ..rst that, under the assumption of conditional normality, we may write

$$
{ }^{u t}=e_{u t}^{p} \overline{h_{u t}} \quad(u=1 ;::: ; k) ;
$$

where $f e_{u t} g{ }^{\text {iid }} \mathrm{N}(0 ; 1)$. It follows, therefore, that

$$
\begin{aligned}
& E_{t_{i} 1}\left(e_{u t} e_{v t}\right)^{\prime} \quad i_{u v}=h_{u v i t}=\frac{p}{h_{u t} h_{v t}} ; \quad E_{t_{i} 1}\left(e_{u t}^{2} e_{u t}^{2}\right)=1+2 i_{u v}^{2} ; \quad E_{t_{i} 1}\left(e_{u t}^{3} e_{t t}\right)=3 i_{u v} ;
\end{aligned}
$$

Also note that, from the de..nition of ' ${ }_{i t}$, ' ${ }_{u v ; t}$ and "ut, we have

$$
\begin{align*}
& \operatorname{cov}\left({ }^{\prime}{ }_{u t} ;{ }^{\prime}{ }^{v t}\right)=2 E\left(h_{u v ; t}^{2}\right)^{\prime} f_{2 ; u v} ; \quad \frac{1}{2} \operatorname{var}\left({ }^{\prime}{ }_{u t}\right)=E\left(h_{u t}^{2}\right)^{\prime} f_{2 ; u} ; \tag{A.8}\\
& \operatorname{var}\left({ }^{\prime}{ }_{u v ;}\right)=E\left(h_{u t} h_{v t}\right)+E\left(h_{u v, t}^{2}\right)^{\prime} f^{2 ; u v}+f_{2 ; u v} ; \tag{A.9}\\
& \frac{1}{2} \operatorname{cov}\left({ }^{\prime}{ }_{u t} ;{ }^{\prime}{ }_{u v ;}\right)=E\left(h_{u t} h_{u v ; t}\right)^{\prime} f^{2 ; u ; u v} ; \tag{A.10}
\end{align*}
$$

$$
\begin{align*}
& \operatorname{cov}\left({ }^{\prime}{ }_{u v ; i} ; ;^{\prime}{ }_{u m ;}\right)=f^{2 ; u ; v m}+f^{2 ; u v ; u m} ; \tag{A.11}
\end{align*}
$$

Furthermore, there exist constants ${ }^{\circ}{ }_{u 0},^{\circ}{ }_{v 0},^{\circ}{ }_{u v 0},^{\circ}{ }^{\circ} \mathrm{uv} ; 0$ and ${ }^{\circ} \mathrm{u} ; \mathrm{uv} ; 0$ such that

$$
\begin{aligned}
& \operatorname{var}\left(h_{\mathrm{ut}}\right)={ }^{\circ}{ }_{\mathrm{u} 0} \operatorname{var}\left({ }^{\prime}{ }_{\mathrm{ut}}\right) ; \quad \operatorname{var}\left(\mathrm{h}_{\mathrm{vt}}\right)={ }^{\circ}{ }_{\mathrm{v} 0} \operatorname{var}\left({ }^{\prime}{ }_{\mathrm{vt}}\right) ; \quad \operatorname{var}\left(\mathrm{h}_{\mathrm{uv} ; \mathrm{t}}\right)={ }^{\circ}{ }_{\mathrm{uv}} \mathrm{var}\left({ }^{\prime}{ }_{\mathrm{uv} ;} \mathrm{t}\right) ; \\
& \operatorname{cov}\left(h_{u t} ; h_{v t}\right)={ }^{\circ u v ;}{ }^{0} \operatorname{cov}\left({ }^{\prime} u t ;{ }^{\prime}{ }_{v t}\right) ; \quad \operatorname{cov}\left(h_{u t} ; h_{u v i} t\right)={ }^{\circ u ; u v ; 0} \operatorname{cov}\left({ }^{\prime}{ }_{u t} ;{ }^{\prime}{ }_{u v ;}\right) \text {; }
\end{aligned}
$$

so we may write

$$
\begin{gather*}
f_{2 ; u v}=\frac{\left[E\left(h_{u v ;}\right)\right]^{2}+{ }^{\circ}{ }_{u v ; 0} E\left(h_{u t}\right) E\left(h_{v t}\right)}{1_{i}{ }^{\circ}{ }_{u v ; 0}\left(1+2^{\circ}{ }^{\circ} ; ; 0\right.} ; \quad f_{2 ; u}=\frac{\left[E\left(h_{u t}\right)\right]^{2}}{1 i{ }^{2}{ }^{\circ} ; 0 ; 0} ; \tag{A.14}\\
f^{2 ; u ; u v}=\frac{E\left(h_{u t}\right) E\left(h_{u v ;}\right)}{1_{i} 2^{\circ}{ }^{\circ} ; u v ; 0} ; \quad f^{2 ; u ; v m}=\frac{E\left(h_{u t}\right) E\left(h_{v m ;}\right)}{1_{i}{ }^{\circ}{ }^{\circ} ; v m ; 0} ; \tag{A.15}\\
f^{2 ; u v ; u m}=\frac{E\left(h_{u v ; t}\right) E\left(h_{u m ; t}\right)+{ }^{\circ}{ }^{\circ} u v ; u m ; 0 E\left(h_{u t} h_{v m ; t}\right)}{1_{i}{ }^{\circ} u v ; u m ; 0} ; \tag{A.16}
\end{gather*}
$$

and

Finally, notice that

$$
\begin{equation*}
f_{1 i}^{\prime} E\left(h_{i t}\right)=\frac{®_{c}}{B_{i}(1){ }_{i} A_{i}(1)} ; \tag{A.18}
\end{equation*}
$$

and

$$
\begin{equation*}
f_{1 ; u v}{ }^{\prime} E\left(h_{u v ;}\right)=\frac{®_{u v ; c}}{B_{u v}(1) ; A_{u v}(1)}: \tag{A.19}
\end{equation*}
$$

Now, from (A.1), using (A.18)-(A.19) and taking into account all the common zeros of the autoregressive polynomials, we obtain (15). M oreover, squaring (A.1), taking expectations and using (A.8)-(A.13), we get (16), where the $f_{2}{ }^{\prime} s$ and f^{2} 's are given by (A.14)-(A.17). $\quad \neq$

Proof of Proposition 1. From (A.1) it follows that

$$
h_{t}=w_{1}^{2} h_{1 t}+w_{2}^{2} h_{2 t}+2, w_{1} w_{2}:
$$

M ultiplying the above equation by $\left(1 ;{ }_{11}^{\rho} \mathrm{L}\right)\left(1 ; \mathbb{R}_{21}^{\rho} \mathrm{L}\right)$ and noticing that
we obtain

Therefore, writing $\tilde{A}_{t}=\left(1 ; \mathbb{R}_{11}^{9} \mathrm{~L}\right)\left(1 ; \mathbb{R}_{2}^{〔} \mathrm{~L}\right) \mathrm{h}_{\mathrm{t}} \mathrm{i} \quad \mathbb{R}_{0}$, we have

$$
\begin{aligned}
& \operatorname{var}\left(\tilde{A}_{t}\right)=2 w_{1}^{4} \mathbb{R}_{11}^{2}\left(1+\mathbb{R}_{21}^{2}\right) f_{2 ; 1}+2 w_{2}^{4} \mathbb{R}_{21}^{2}\left(1+\mathbb{R}_{11}^{2}\right) f_{2 ; 2}+4 w_{1}^{2} w_{2}^{2} \mathbb{R}_{11} \mathbb{R}_{21}\left(1+\mathbb{R}_{21} \mathbb{R}_{11}^{0}\right),{ }^{2} ; \\
& \quad \operatorname{cov}\left(\tilde{A}_{t} ; \tilde{A}_{t_{i} 1}\right)=i 2 w_{1}^{4} \mathbb{R}_{11}^{2} \mathbb{R}_{21}^{9} f_{2 ; 1} ; 2 w_{2}^{4} \mathbb{R}_{21}^{2} \mathbb{R}_{11}^{0} f_{2 ; 2} ; 2 w_{1}^{2} w_{2}^{2} \mathbb{R}_{11} \mathbb{R}_{21}\left(\mathbb{R}_{11}^{0}+\mathbb{R}_{21}^{0}\right),{ }^{2} ;
\end{aligned}
$$

 be expressed as
where ${ }_{t}="_{t}^{2} i h_{t}$, we have
 solving for $\mathbb{®}_{1}^{r}$ and \mathbb{R}_{2} yields the results in (17)-(18). $\quad \neq$

Proof of Proposition 2. From (1), it follows that

$$
\begin{align*}
& \operatorname{cov}\left(y_{t} ; y_{t_{i} 1}\right)=i_{i=1}^{x^{k}} w_{i}^{2} \mu_{i} f_{1 i}{ }_{v=u+1 u=1}^{x^{k}} w_{u} w_{v}\left(\mu_{u}+\mu_{v}\right) f_{1 ; u v}: \tag{A.21}
\end{align*}
$$

M oreover, (19) implies that

$$
\begin{gather*}
\operatorname{var}\left(y_{t}\right)=\left(1+\mu^{2}\right) f_{1}+\mu^{23 / 4} ; \tag{A.22}\\
\operatorname{cov}\left(y_{t} ; y_{t_{i} 1}\right)=i f_{1}: \tag{A.23}
\end{gather*}
$$

The derided results are obtained by equating the right-hand sides of (A.20) and (A.22) and (A.21) and (A.23) and solving for $3 / 4 \times$ and $\mu \quad \neq$

R eferences

[1] Black, F., and Scholes, M. (1973), "T he Pricing of Options and Corporate Liabilities", J ournal of Political Economy, 81, 637-659.
[2] B ollerslev, T., Engle, R.F., and Wooldridge, J.M (1988), "A Capital Asset Pricing M odel with Time-Varying Covariances", J ournal of Political E conomy, 96, 116-131.
[3] B ollerslev, T., and Mikkelsen, H.O. (1996), "M odeling and Pricing Long M emory in Stock M arket Volatility", J ournal of E conometrics, 73, 151-184.
[4] Diebold, F.X. (1986), "M odelling the Persistence of Conditional Variances: A Comment," Econometric Reviews, 5, 51-56.
[5] Ding, Z., and Granger, C.W.J. (1996), "Modeling Volatility Persistence of Speculative Returns: A New Approach", J ournal of Econometrics, 73, 185-215.
[6] Engle, R.F., and Bollerslev, T. (1986), "M odelling the Persistence of Conditional Variances", E conometric Reviews, 5, 1-50.
[7] Engle, R.F., and Kroner, K.F. (1995), "Multivariate Simultaneous Generalized ARCH", Econometric Theory, 11, 122-150.
[8] Engle, R.F., and M ustafa, C. (1992), "Implied ARCH M odels from Option Prices", J ournal of E conometrics, 52, 289-311.
[9] Hamilton, J.D., and Susmel, R. (1994), "A utoregressive C onditional Heteroskedasticity and Changes in Regime", J ournal of E conometrics, 64, 307-333.
[10] He, C. and Teräsvirta, T. (1997), "Fourth M oment Structure of the GARCH(p; q) Process", Working Paper in Economics and Finance No. 168, Stockholm School of Economics.
[11] Hull, J., and White, A. (1987), "T he Pricing of Options on Assets with Stochastic Volatilities", J ournal of Finance, 42, 381-400.
[12] K aranasos, M. (1999), "T he Second Moment and the Autocovariance Function of the Squared Errors of the GARCH M odel", J ournal of E conometrics, 90, 63-76.
[13] Lamoureux, C.G., and Lastrapes, W.D. (1990), "Persistence in Variance, Structural Change, and the GARCH Model," J ournal of Business \& Economic Statistics, 8, 225-234.
[14] Poterba, J.M ., and Summers, L.H. (1986), "T he Persistence of Volatility and Stock M arket Fluctuations," A merican Economic Review, 76, 1142-1151.

[^0]: ${ }^{\text {y }}$ C orrespondence to: Zacharias Psaradakis, School of E conomics, M athematics and Statistics, B irkbeck College, 7-15 Greese Street, London W 1P 2LL, U.K .; fax: +44 20 76316416; e-mail: zpsaradaki s@con. bbk. ac. uk.

[^1]: ${ }^{1}$ We also priced the option by computing the average of the calls evaluated using instantaneous variances (in our context, GARCH forecasts). Hull and White (1987) have shown that this is equivalent to Black-Scholes pricing whenever the continuous-time volatility process is uncorrelated with the aggregate consumption in the economy. The results obtained with this alternative pricing scheme are qualitatively similar to those reported here and do not change our conclusions (detailed results are available upon request).

[^2]: ${ }^{2}$ In this example, the increased persistence has the exect of producing slowly declining forecasts with lower than average variance. In such a case, both the persistence exect and the diversi..cation exect reduce the variance. Had this exercise been conducted at observation 740 (associated with high conditional variance), the persistence exect would have had opposite sign form the diversi..action exect since the forecast of the conditional variance at that date would produce values considerably higher than the unconditional variance.

