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Abstract

This paper explores the interactions between cross-sectional aggregation and persistence of

volatility shocks. We derive the ARMA-GARCH representation that linear aggregates of

ARMA processes with GARCH errors admit, and establish conditions under which persis-

tence in volatility of the aggregate series is higher than persistence in the volatility of the

individual series. The practical implications of the results are illustrated empirically in the

context of an option pricing exercise.
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1 Introduction

In the last …fteen years or so, the family of Generalized Autoregressive Conditional Heteroskedas-

ticity (GARCH) models has been used extensively in the modelling of the conditional second

moments of …nancial time series. Within this class of models, it is almost a ‘stylized fact’ that

the estimated coe¢cients in the conditional variance function sum to very close to one, espe-

cially for high-frequency …nancial data. In such so-called integrated GARCH models (Engle

and Bollerslev, 1986), shocks to the conditional variance are persistent in the sense that cur-

rent information remains important for volatility forecasts of all horizons. To the extent that

this apparent nonstationary behaviour of volatility is not the result of misspeci…cation of the

conditional variance function (cf. Diebold, 1986; Lamourex and Lastrapes, 1990; Hamilton and

Susmel, 1994), it has broad implications for the construction of long-term volatility forecasts

which are essential in many asset-pricing models and is also important from a theoretical point

of view (see Poterba and Summers, 1986).

The purpose of this paper is to explore the interaction between cross-sectional aggregation

and persistence of volatility shocks. The motivation for our work is the common empirical …nd-

ing that the conditional variance of aggregate series, such as weighted market indices, typically

exhibits higher degree of persistence than the conditional variance of the constituent series. To

investigate this issue, we …rst establish the properties that simple linear aggregates of ARMA

processes with GARCH errors have by deriving the ARMA-GARCH representation of the ag-

gregate series. These results are then used to establish conditions under which the conditional

variance of the aggregate process is more persistent than the conditional variance of the indi-

vidual processes.

The plan of the paper is as follows. Section 2 sets out the assumptions on which our

analysis is based and introduces the necessary notation. Section 3 establishes the aggregation

properties of ARMA processes with GARCH errors. Section 4 gives results concerning the degree

of persistence in the conditional variance of linear aggregates of ARMA-GARCH processes.

Section 5 illustrates the empirical implications of our results in the context of a simple option

pricing exercise. Section 6 summarizes and concludes.

2 Notation and Assumptions

Throughout the paper we consider the situation where the stochastic process fytg is a simple

linear aggregate of k processes fyitg, i.e.

yt =
kX

i=1

wiyit (t = 0; §1; §2; : : :); (1)

where (w1; : : : ; wk) are real constants. Each individual process fyitg is assumed to be a causal

ARMA(ri; si) process satisfying
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©i(L)yit = Áic + £i(L)"it (i = 1; : : : ; k); (2)

where

©i(L) = ¡
riX

j=0

ÁijL
j =

riY
j=1

(1 ¡ Á0
ijL) (Ái0 = ¡1; Ái;ri

6= 0); (3)

£i(L) = ¡
siX

j=0

µijLj (µi0 = ¡1; µi;si 6= 0); (4)

Á0
ij (j = 1; : : : ; ri) are the inverse zeros of ©i(z) and L is the conventional lag operator. Further,

the polynomials ©i(z) and £i(z) are assumed to have no common zeros.

Regarding the innovations f"itg, we assume that they follow a diagonal multivariate GARCH

process (cf. Bollerslev et al., 1988). More speci…cally, letting Ft¡1 denote the ¾-…eld of events

generated by f²s = ["1s; : : : ; "ks]>; s 6 t ¡ 1g, we have

(²tjFt¡1) s N (0; Ht); Ht =

2666664
h1t h12;t ¢ ¢ ¢ h1k;t

h21;t h2t ¢ ¢ ¢ h2k;t

...
...

. . .
...

hk1;t hk2;t ¢ ¢ ¢ hkt

3777775 ; (5)

where each individual variance hit satis…es a GARCH(pi; qi) model,

Bi(L)hit = ®ic + Ai(L)"2
it (i = 1; : : : ; k); (6)

with

Bi(L) = ¡
qiX

j=0

¯ijL
j (¯i0 = ¡1) and Ai(L) =

piX
j=1

®ijL
j: (7)

Moreover, each covariance huv;t satis…es a GARCH(puv ; quv) model,

Buv(L)huv;t = ®uv;c + Auv(L)"ut"vt (u = 1; : : : ; k ¡ 1; v = u + 1; : : : ; k); (8)

where

Buv(L) = ¡
quvX
j=0

¯uv;jL
j (¯uv;0 = ¡1) and Auv(L) =

puvX
j=1

®uv;jL
j :

The parameters in (6) and (8) are appropriately restricted to ensure that f²tg is stationary

up to order 2 and that Ht is positive de…nite with probability one for all t (see Engle and

Kroner, 1995).

For future development, it is helpful to note that (6) may be expressed as an ARMA(p¤
i ; qi)

model,

B¤
i (L)hit = ®ic + Ai(L)´it; ´it = "2

it ¡ hit (9)
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with

B¤
i (L) = ¡

p¤
iX

j=0

¯¤
ijLj =

p¤
iY

j=1

(1 ¡ ¯0
ijL);

where ¯ 0
ij (j = 1; : : : ; p¤

i ) are the inverse zeros of B¤
i (z), p¤

i = maxfpi; qig, and

¯¤
ij =

8>><>>:
®ij if pi > j > qi

¯ij if qi > j > pi

®ij + ¯ij if pi; qi > j:

In a similar fashion, (8) may be rewritten as an ARMA(p¤
uv; puv) model,

B¤
uv(L)huv;t = ®uv;c + Auv(L)´uv;t; ´uv;t = "ut"vt ¡ huv;t; (10)

with

B¤
uv(L) = ¡

p¤
uvX

j=0

¯¤
uv;jL

j =

p¤
uvY

j=1

(1 ¡ ¯0
uv;jL);

where ¯ 0
uv;j (j = 1; : : : ; p¤

uv) are the inverse zeros of B¤
uv(z), p¤

uv = maxfpuv ; quvg, and

¯¤
uv;j =

8>><>>:
¯uv;j if quv > j > puv

®uv;j if puv > j > quv

¯uv + ®uv if puv ; quv > j

Ã
u = 1; : : : ; k ¡ 1

v = u + 1; : : : ; k

!
:

It is also worth noting that the framework described by (1)-(8) includes as a special case the

component model proposed in Ding and Granger (1996) for modelling persistence in volatility.

Speci…cally, since (1)–(8) imply that

var(ytjFt¡1) =
kX

i=1

w2
i hit + 2

kX
v=u+1

k¡1X
u=1

wuwvhuv;t;

it is easily seen that fytg satis…es a 1
2k(k+1)–component GARCH(p; q) model when

Pk
i=1 wi = 1,

the errors f"itg in (2) are the same for all i = 1; : : : ; k, pi = puv = p, and qi = quv = q. Hence,

our framework may be seen as providing an alternative way of analyzing the long-memory

characteristics of the volatility of aggregate time series.

3 Main Results

In this section we derive the ARMA-GARCH representation that the aggregate process fytg ad-

mits. We also give results concerning the moments of the conditional variance ht = var(ytjFt¡1).

All proofs are deferred to the Appendix.
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Theorem 1 Under the assumptions of Section 2, fytg is an ARMA(~r; ¹r) process,

©(L)yt = { + "t + £(L)("¤
t + "t); (11)

©(L) = ¡
~rX

i=0

ÁiL
i =

~rY
i=1

(1 ¡ Á0
iL); £(L) = ¡

¹rX
i=1

µiL
i (12)

where { is a constant, f"tg is a GARCH(¹p; p̂) process such that ("tjFt¡1) s N (0; ht),

B¤(L)ht = ®¤
0 + A¤(L)"2

t ; (13)

B¤(L) = ¡
bpX

i=0

¯¤
i Li; A¤(L) =

¹pX
i=1

®¤
i Li; (14)

and f"¤
t g iids N (0; ¾2

"¤), independent of f"tg. In (12), ~r is the number of di¤erent zeros of the k

©i(z) polynomials and ¹r = maxf¹r1; : : : ; ¹rkg, where ¹ri = ~r ¡ ri + si. In (14), ¹p = maxfp0
i; p0

uvg
and p̂ = maxf¹p; ~pg, where ~p is the number of di¤erent inverse zeros of the k B¤

i (z) polynomials

and of the 1
2k(k ¡ 1) B¤

uv(z) polynomials, p0
i = ~p ¡ p¤

i + pi, and p0
uv = ~p ¡ p¤

uv + puv. The ¾2
"¤,

Á0
i, µi, ¯¤

i and ®¤
i can be found in the proof of the theorem.

The moments of the volatility process fhtg are given in the next theorem.

Theorem 2 The …rst two moments of the volatility process fhtg in Theorem 1 are:

E(ht) ´ f1 =

ep¡p¤
mQ

i=1

kP
m=1

w2
m®mo(1 ¡ ¯0

i) + 2
ep¡p¤

uvQ
l=1

kP
v=u+1

k¡1P
u=1

wuwv®uv;c(1 ¡ ¯0
l)

~pQ
i=1

(1 ¡ ¯0
i)

; (15)

E(h2
t ) ´ f2 =

kX
l=1

kX
i=1

w2
i w2

l f2;il + 4
kX

i=1

kX
v=u+1

k¡1X
u=1

w2
i wvwuf 2;i;uv

+ 4
kX

s=m+1

k¡1X
m=1

kX
v=u+1

k¡1X
u=1

wswmwvwuf2;uv;ms; (16)

where ¯0
i are the ~p di¤erent inverse zeros of the k B¤

i (z) polynomials and of the 1
2k(k ¡ 1)

B¤
uv(z) polynomials, ¯0

i 6= ¯0
mj (j = 1; : : : ; p¤

m), ¯0
l 6= ¯uv;j (j = 1; : : : ; p¤

uv), f2;il ´ E(hithlt),

f2;i;uv ´ E(hithuv;t), and f 2;uv;ms ´ E(huv;thms;t). Further, the unconditional kurtosis of "t is

·" ´ E("4
t )=[E("2

t )]2 = 3f2=f2
1 .

As an illustration of how the results in Theorem 1 simplify in speci…c cases, we conclude this

section by giving two relatively simple examples. The …rst example considers a linear aggregate

of two ARMA processes with GARCH innovations.

4



Proposition 1 Let yt = y1t + y2t where fyitg (i = 1; 2) are ARMA(ri; si) processes which

satisfy (2)–(4). Suppose further that ²t = ["1t; "2t]
> follows a bivariate GARCH(1; 1) process

like (5)¡(7) with h12;t = ¸ 2 (0; 1) for all t. Then, fytg admits the ARMA(~r; ¹r) representation

(11)¡(12), where f"tg is a GARCH(2; 2) process with

ht = ®¤
c + ®¤

1"2
t¡1 + ®¤

2"2
t¡2 + (®0

11 + ®0
21 ¡ ®¤

1)ht¡1 ¡ (®¤
2 + ®0

11®0
21)ht¡2;

~r is the number of di¤erent zeros of ©1(z) and ©2(z) and ¹r = maxf~r ¡r1 +s1; ~r ¡ r2 + s2g. The

coe¢cients ®¤
1 and ®¤

2 are given by:

®¤
1 = §fw4

1®2
11(1 + ®02

21)f2;1 + w4
2®2

21(1 + ®02
11)f2;2 + 2w2

1w2
2®11®21(1 + ®0

21®0
11)¸2

§(2f2)¡1fw8
1®4

11(1 ¡ ®02
21)2f 2

2;1 + w8
2®4

21(1 ¡ ®02
11)2f 2

2;2

+w4
1w4

2®2
11®2

21[(1 ¡ ®0
21)2(1 + ®0

11)2 + (1 ¡ ®0
11)2(1 + ®0

21)2]f2;1f2;2

+4w4
1w4

2®2
11®2

21[(1 + ®0
21®0

11)2 ¡ (®0
11 + ®0

21)2]¸4

+w6
1w2

2®3
11®21[(1 + ®0

21)2(1 + ®0
21®0

11 ¡ ®0
11 ¡ ®0

21)

+2(1 ¡ ®0
21)2(1 + ®0

21®0
11 + ®0

11 + ®0
21)]¸2f2;1 + w6

2w2
1®3

21®11[(1 + ®0
11)2

(1 + ®0
21®0

11 ¡ ®0
11 ¡ ®0

21) + 2(1 ¡ ®0
11)2(1 + ®0

21®0
11 + ®0

11 + ®0
21)]¸2f2;2g1=2g1=2;(17)

and

®¤
2 = ¡[w4

1®2
11®0

21f2;1 + w4
2®2

21®0
11f2;2 + w2

1w2
2®11®21(®0

11 + ®0
21)¸2]=®¤

1f2; (18)

where ®0
i1 = ®i1+¯i1 (i = 1; 2). Expressions for f2;i ´ E(h2

it) are given in He and Teräsvirta (1997)

and Karanasos (1999), and f2 ´ E(h2
t ) is given in (16).

Our second example considers the case of a linear aggregate of MA(1) processes with GARCH

innovations. This is an interesting case from a practical point of view since many stock-price

series appear to be adequately described by low order MA models.

Proposition 2 Let fytg be a linear aggregate of k MA(1) processes fyitg which satisfy (2)¡(4).

Suppose further that ²t = ["1t; : : : ; "kt]
> follows a GARCH process like (5)¡(7). Then, fytg

admits the MA(1) representation

yt = { + "t ¡ µ("t¡1 + "¤
t¡1); (19)

where f"tg is a GARCH process like (13)¡(14), "¤
t

iids N(0; ¾2
"¤), independently of f"tg,

µ =
kX

i=1

w2
i µ2

i (f1i=f1) +
kX

v=u+1

k¡1X
u=1

wuwv(µu + µv)(f1;uv=f1);

and

¾2
"¤ =

1

µ2f1

(
kX

v=u+1

k¡1X
u=1

w2
uw2

v(µu ¡ µv)2(f1;uf1;v ¡ f2
1;uv)
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+ 2
kX

m=v+1;
m6=u

k¡1X
v=1
v 6=u

kX
u=1

w2
uwvwm(µu ¡ µm)(µv ¡ µm)(f1;uf1;vm ¡ f1;uvf1;um)

+ 2
kX

s=m+1

k¡1X
m=v+1

k¡2X
v=u+1

k¡3X
u=1

wuwvwmws

£
X

i=v;m;s

f1;uif1;i1;i2[(µu ¡ µi1)(µi ¡ µi2) + (µu ¡ µi2)(µi ¡ µi1)]

9=; ;

with

(i1; i2) =

8>><>>:
(m; s) if i = v;

(v; s) if i = m;

(v; m) if i = s;

f1i ´ E(hit) and f1;uv ´ E(huv;t).

4 Persistence of Volatility Shocks

Using the results in the previous section, we can now examine how the persistence of a shock to

the aggregate conditional variance ht is related to the persistence of shocks to the k individual

variances hit. As in Engle and Mustafa (1992), the persistence of a volatility shock is thought

of here in terms of the coe¢cients of the MA representation of the relevant volatility process.

Thus, in the case of fhtg, for instance, persistence depends primarily on ³ = 1 + A¤(1) ¡ B¤(1).

We shall distinguish between two cases of interest, depending on whether the conditional

covariance matrix Ht is diagonal or not. Henceforth, we let hk
t =

Pk
i=1 w2

i hit, hki
t = hk

t ¡ w2
i hit,

and hk¤
t = 2

Pk
v=u+1

Pk¡1
u=1 wuwvhuv;t. The sum of the coe¢cients of the lag polynomials in the

GARCH equations hk
t , hki

t and hk¤
t is respectively denoted by ³k, ³ki and ³k¤.

CASE I: The polynomials B¤
1(z); : : : ; B¤

k(z) have no common zeros and Ht is diagonal. In

this case, the denominator in (15) is equal to

kY
i=1

(1 ¡ ³ i) = 1 ¡ ³k;

where

³i =

p¤
iX

j=1

¯¤
ij (i = 1; : : : ; k);

and

³k = ³1 + (1 ¡ ³1)[³2 + (1 ¡ ³2)[³3 + (1 ¡ ³3)[¢ ¢ ¢ [³k¡1 + (1 ¡ ³k¡1)³k]] ¢ ¢ ¢]:

We have, therefore,
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³k = ³i + (1 ¡ ³i)³
ki > ³i;

and

³k = ³ki + (1 ¡ ³ki)³i > ³ki :

Hence, the sum of the coe¢cients of the GARCH equation hk
t = ht (³k) will be greater than the

sum of the coe¢cients of each of the k GARCH equations hit (³i), and it will also be greater

than the sum of the coe¢cients of hki
t (³ki).

CASE II: The polynomials B¤
i (z) and B¤

uv(z) (i; u; v = 1; : : : ; k) have no common zeros and

Ht is non-diagonal. In this case, the denominator in (15) is equal to

kY
i=1

(1 ¡ ³i)
kY

v=u+1

k¡1
u=1 (1 ¡ ³uv) = (1 ¡ ³k)(1 ¡ ³k¤) = 1 ¡ ³;

where

³uv =

p¤
uvX

j=1

¯¤
uv;j;

and

³k¤ = ³12 + (1 ¡ ³12)[³13 + (1 ¡ ³13)[¢ ¢ ¢
[¢ ¢ ¢ ³1k + (1 ¡ ³1k)[³23 + (1 ¡ ³23)[¢ ¢ ¢ [³k¡2;k + (1 ¡ ³k¡2;k)³k¡1;k] ¢ ¢ ¢]:

From the last equation we have

³ = ³k + (1 ¡ ³k)³k¤:

Hence, if the sum of the coe¢cients of all the B¤
uv(z) polynomials (³k¤) is positive (negative),

then the sum of the coe¢cients of the GARCH equation ht (³) will be greater (smaller) than

the sum of the coe¢cients of hk
t (³k ).

Furthermore, from (15) we obtain

³ = ³ i + (1 ¡ ³i)[³
ki + (1 ¡ ³ki)³k¤];

³ = ³ki + (1 ¡ ³ki)[³i + (1 ¡ ³i)³
k¤]:

Hence, when the sum of the coe¢cients of all the B¤
uv(z) polynomials (³k¤) is negative, the sum

of the coe¢cients of the GARCH equation ht (³) will be greater than the sum of the coe¢cients

of hki
t (³ki) if ³i > (1 ¡ ³ i)³

k¤, and it will be greater than the sum of the coe¢cients in the

GARCH equation hit (³ i) if ³ki > (1 ¡ ³ki)³k¤.

Also, if ³k¤;r and ³r;k¤ denote the sums of coe¢cients in the GARCH equation for respectively

r out of the 1
2k(k ¡ 1) terms in hk¤

t and 1
2k(k ¡ 1) ¡ r terms in hk¤

t , we have from (15) that

7



³ = ³k + (1 ¡ ³k)[³k¤;r + (1 ¡ ³k¤;r)³r;k¤]:

Hence, when the sum of the coe¢cients of the r out of the 1
2k(k ¡ 1) B¤

uv(z) polynomials is

positive, the sum of the coe¢cients of the GARCH equation ht (³) will be greater (smaller) than

the sum of the coe¢cients in hk
t if ³k¤;r > (1 ¡ ³k¤;r)³r;k¤ (³k¤;r < (1 ¡ ³k¤;r)³r;k¤).

Finally, in the extreme case where all the polynomials B¤
i (z) and B¤

uv(z) are identical, the

sum of the coe¢cients of the GARCH equation ht will be equal to the sum of the coe¢cients of

each GARCH equation hit.

5 Aggregation and Option Pricing

As an illustration of some of the practical implications of the results given in the previous two

sections of the paper, we consider the e¤ects of cross-sectional aggregation in the context of

GARCH option pricing. More speci…cally, we price options on individual stocks and on an

equally weighted index and compare the price of a call option on the index to the average

cost of the calls on the individual stocks. Since the volatility of the index typically exhibits

more persistence than the volatility of the individual stocks, a forecast of the volatility of the

index would take longer to revert to the unconditional variance. Hence, whenever forecasting

from a period of high volatility, the forecast values will be above the unconditional variance, and

whenever forecasting from a state with low volatility, the forecast will be below the unconditional

variance. The e¤ects on the price of the option pricing would be more dramatic for the index

than for the individual stocks.

Our analysis here is based on daily data for the price of stocks of seven U.K. compa-

nies, namely Allied-Lyons (ALLD), ASDA, Blue Circle Industries (BCI), Cadbury Schweppes

(CBRY), Courtaulds (CTLD), National Westminster Bank (NWB), and Royal Insurance (ROYL),

as well as on a simple linear aggregate of the seven stocks with equal weights (referred to here-

after as the ‘index’). The sample covers the period **** (920 observations in total), and is

chosen so as to avoid the possibility of structural breaks which would spuriously increase volatil-

ity persistence. A simple speci…cation search revealed that all individual price series can be

characterized as GARCH(1; 1); the …tted models show little or no signs of residual serial correla-

tion in the residuals, and no signs of serial correlation in the squared residuals. Table 1 reports

quasi-maximum likelihood estimates of our persistence measure (i.e. the sum of GARCH co-

e¢cients) for the individual stocks and the index, along with their asymptotic standard errors

(computed using the usual sandwich covariance matrix estimator). Clearly, the estimates for

the individual stocks are smaller than the estimate for the index.

To assess the e¤ects of aggregation on the persistence of volatility shocks (and on option

pricing), we must distinguish between what we shall call diversi…cation e¤ect and increased

8



Table 1. Estimates of Persistencea

ALLD 0.7301 (0.1476) CTLD 0.6617 (0.2307)

ASDA 0.5432 (0.1780) NWB 0.6706 (0.1626)

BCI 0.2401 (0.1473) ROYL 0.7036 (0.1498)

CBRY 0.5729 (0.4038) Index 0.8736 (0.0978)
aFigures in parentheses are asymptotic standard errors.

persistence e¤ect. Clearly, taking a weighted average of the individual stocks would reduce the

unconditional variance of the index. Therefore, we are interested in assessing how much of the

di¤erence between the value of the call on the index and the average of the calls on the individual

stocks using GARCH option pricing comes from the reduction of the variance associated with

averaging (diversifying the portfolio) and how much comes from the e¤ects of the increased

persistence. In order to do so, we have also created a synthetic option using constant variances.

Before analyzing the e¤ects of aggregation on GARCH pricing, it is worth examining the plot

in Figure 1 which shows the unconditional variance, the …tted conditional variance for the index,

and 30 forecasts of the conditional variance. It is evident that the end of the sample coincides

with a period of low volatility and that the forecast values are all below the unconditional

variance. This will have implications for option pricing since, when compared with the option

prices computed using historical volatility, GARCH pricing will give lower or higher values for

the relevant forecast period depending on whether the economy is in a period of high or low

volatility at the forecast origin and on whether the option is in-the-money or out-of-the-money.

In our pricing exercise we follow Bollerslev and Mikkelsen (1996) in using the Black and

Scholes (1973) option pricing formula to calculate the price of a European call option written

at date T as a function of the volatility of stock prices, the maturity time of the option (¿), the

exercise price (K), the stock price at date T (PT ), and the risk-free interest rate over the life of

the option (r). This formula is evaluated using both historical volatility and the average (over

the life of the option) of forecasts from the …tted GARCH models for the relevant stock price

or index.1 Our exercise consists of evaluating option prices for maturity times ¿ = 1; : : : ; 30.

We consider options that are deep-in-the-money (K = 0:8PT ), in-the-money (K = 0:9PT ), and

at-the-money (K = PT ), and take r = 0:08 per year. Under these scenarios, we compare the

option price of the index with the average of the option prices of the individual stocks.

As is evident from Table 1, the individual stocks are characterized by relatively small persis-

tence, so they tend to revert to the unconditional variance in few time periods after a volatility

1 We also priced the option by computing the average of the calls evaluated using instantaneous variances

(in our context, GARCH forecasts). Hull and White (1987) have shown that this is equivalent to Black-Scholes

pricing whenever the continuous-time volatility process is uncorrelated with the aggregate consumption in the

economy. The results obtained with this alternative pricing scheme are qualitatively similar to those reported

here and do not change our conclusions (detailed results are available upon request).
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shock. This implies that, for our sample, GARCH pricing and historical volatility pricing would

yield very similar results for the individual stocks. For the purpose of our exercise, this result

is very informative since it allows us to distinguish between diversi…cation e¤ects and increased

persistence e¤ects.

Figure 2 shows the results of our simulations for both GARCH and historical volatility

pricing. The values of the average of the calls of the individual stocks using either of the two

pricing methods are indistinguishable for the reason explained before. The Black-Scholes value of

the call on the index is higher since the volatility of the index is smaller (because of aggregation)

and the stock is deep in the money (and therefore the prospect of the price falling bellow the

strike price is smaller). Nevertheless, the value of the GARCH option is even higher since the

forecast origin was a low variance state.2 Figure 3 shows qualitatively similar results for in-

the-money options. Finally, the results shown in Figure 4 for options that are at-the-money

reveal once again that option prices for the individual stocks using either pricing method are

very similar and are higher than the values of the options on the index (since the lower is the

variance the less likely it is that the an option at-the-money has any value). As before, the

di¤erence between prices obtained by the two alternative pricing schemes reveals how much of

the di¤erences in option prices is due to the increased persistence that characterizes the index.

6 Summary

This paper has investigated the properties of linear aggregates of ARMA processes with errors

that follow a diagonal multivariate GARCH process. We have derived the ARMA-GARCH

representations that such linear aggregates admit. We have also shown that, under conditions

that are typically satis…ed in practice, persistence in the volatility of the aggregate series is

higher than persistence in the volatility of the individual series. As an empirical illustration of

the importance of the issues analyzed, we have discussed the results of a simple option pricing

exercise involving seven U.K. individual stocks and an equally weighted index.

7 Appendix: Proofs

Proof of Theorem 1. First note that from (1) and (2) we have

ht = Et¡1

24(
kX

i=1

wi"it ¡ Et¡1

Ã
kX

i=1

wi"it

!)2
35 =

kX
i=1

w2
i hit + 2

kX
v=u+1

k¡1X
u=1

wuwvhuv;t; (A.1)

2 In this example, the increased persistence has the e¤ect of producing slowly declining forecasts with lower

than average variance. In such a case, both the persistence e¤ect and the diversi…cation e¤ect reduce the variance.

Had this exercise been conducted at observation 740 (associated with high conditional variance), the persistence

e¤ect would have had opposite sign form the diversi…action e¤ect since the forecast of the conditional variance at

that date would produce values considerably higher than the unconditional variance.
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where Et¡1(¢) denotes conditional expectation with respect to Ft¡1. Next, consider the polyno-

mial

B(L) =

~pY
i=1

(1 ¡ ¯0
iL) = ¡

~pX
i=0

¯iL
i (¯0 = ¡1); (A.2)

where ¯ 0
i are all the ~p di¤erent inverse zeros of the k B¤

i (z) polynomials and of the 1
2k(k¡1) B¤

uv(z)

polynomials. Since each B¤
i (z) has p¤

i zeroes and each B¤
uv(z) has p¤

uv zeroes, the maximum value

of ~p is
Pk

i=1 p¤
i +

Pk
v=u+1

Pk¡1
u=1 p¤

uv (assuming that the zeroes of each polynomial are di¤erent);

the minimum value of ~p is the maxfp¤
i ; p¤

uvg.

Now, multiplying (A.1) by (A.2) and using (6) and (8) we obtain

B(L)ht = ®¤
0 +

kX
i=1

A0
i(L)w2

i ´it + 2
kX

v=u+1

k¡1X
u=1

A0
uv(L)wuwv´uv;t (A.3)

where

A0
i(L) =

~p¡p¤
iY

l=1

(1 ¡ ¯0
lL)Ai(L) =

p
0
iX

j=1

®0
ijL

j ; ¯0
l 6= ¯0

ij (j = 1; : : : ; p¤
i );

A0
uv(L) =

~p¡p¤
uvY

l=1

(1 ¡ ¯0
lL)Auv(L) =

p0
uvX

j=1

®0
uv;jL

j; ¯0
l 6= ¯0

uv;j (j = 1; : : : ; p¤
uv);

®¤
0 =

kX
i=1

w2
i ai0

~p¡p?
iY

l=1

(1 ¡ ¯0
l) + 2

kX
v=u+1

k¡1X
u=1

wuwv®uv;0

~p¡p?
uvY

s=1

(1 ¡ ¯0
s); ¯0

l 6= ¯ 0
ij; ¯0

s 6= ¯ 0
uv;j:

In the right-hand side of (A.3), we have k A0
i(L) polynomials and 1

2k(k ¡1) A0
uv(L) polynomials.

Each A0
i(L) is of order p0

i = ~p ¡ p¤
i + pi and each A0

uv(L) is of order p0
uv = ~p ¡ p¤

uv + puv. In

other words, the right-hand side of (A.3) is equal to the sum of k MA(p0
i) parts and 1

2k(k ¡ 1)

MA(p0
uv) parts. Hence, it can be expressed as an MA of order ¹p = maxfp0

i; p0
uvg;

B(L)ht = ®¤
0 + A¤(L)´t; (A.4)

where ´t = "2
t ¡ ht and A¤(L) =

P¹p
i=1 ®¤

i Li. Denoting the right-hand side expressions in (A.3)

and (A.4) by ½t and ¹t, respectively, we have

cov(½t; ½t¡j) =

p0
i¡jX
l=1

kX
r=1

kX
i=1

®0
i;l®

0
r;l+jw

2
i w2

rcov(´it; ´rt)

+ 2

p0
uv¡jX
l=1

kX
v=u+1

k¡1X
u=1

kX
i=1

®0
i;l®

0
uv;l+jw2

i wuwvcov(´it; ´uv;t)

+ 4

p0
ms¡jX
l=1

kX
s=m+1

k¡1X
m=1

kX
v=u+1

k¡1X
u=1

®0
uv;l®

0
ms;l+jwuwvwmwscov(´uv;t; ´ms;t);

cov(¹t; ¹t¡j) = 2

¹p¡jX
i=1

®¤
i ®¤

i+jf2; f2 ´ E(h2
t ):

11



But since cov(½t; ½t¡j) = cov(¹t; ¹t¡j), the ®¤
i ’s can be obtained by equating the right-hand sides

of the above two equations for j = 0; : : : ; ¹p ¡ 1 and solving the resulting system of ¹p equations.

Next, from (A.4) we have

B¤(L)ht = ®¤
0 + A¤(L)"2

t ; B¤(L) = ¡
p̂X

i=0

¯¤
i Li (¯¤

0 = ¡1);

where p̂ = maxf¹p; ~pg and

¯¤
i =

8>><>>:
®¤

i + ¯i if ¹p; ~p > i

®¤
i if i; ¹p > ~p

¯i if i; ~p > ¹p:

Now, consider the polynomial

©(L) =
~rY

i=1

(1 ¡ Á0
iL) = ¡

~rX
i=0

ÁiL
i (Á0 = ¡1); (A.5)

where Á0
i are all the ~r di¤erent inverse zeros of the k ©i(z) polynomials (each of which has ri

zeros). Clearly, maxfr1; : : : ; rkg 6 ~r 6
Pk

i=1 ri. Multiplying (1) by (A.5), and using (2) and

(6), we obtain

©(L)yt = { +
kX

i=1

£0
i(L)wi"it; (A.6)

where

£0
i(L) =

¹riX
j=0

µ0
ijL

j =

~r¡riY
l=1

(1 ¡ Á0
lL)£i(L):

In the right-hand side of (A.6), we have k £0
i(L) polynomials, each of which is of order ¹ri =

~r ¡ ri + si. In other words, the right-hand side of (A.6) is equal to the sum of k MA(¹ri) parts.

Hence, it can be expressed as an MA term of order ¹r = maxf¹r1; : : : ; ¹rkg;

©(L)yt = "t + £(L)("¤
t + "t); (A.7)

where

£(L) = ¡
¹rX

i=1

µiL
i; ("tjFt¡1) s N (0; ht); "¤

t s N (0; ¾2
"¤):

Denoting the right-hand sides of (A.6) and (A.7) by ¹½t and ¹¹t, respectively, we have

cov(¹½t; ¹½t¡j) =

¹rv¡jX
l=0

kX
v=1

kX
u=1

wuwvµ0
u;lµ

0
v;l+jf1;uv¤ (j = 0; ¢ ¢ ¢ ; ¹r);

cov(¹¹t; ¹¹t¡j) =

¹r¡jX
l=1

µlµl+jf1 +

¹r¡jX
l=1

µlµl+j¾
2
"¤ (j = 0; ¢ ¢ ¢ ; ¹r);
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where f1 ´ E(h2
t ) and

f1;uv¤ =

(
E(huv;t) if v 6= u

E(hut) if v = u:

Setting cov(¹½t; ¹½t¡j) = cov(¹¹t; ¹¹t¡j) we obtain a system of ¹r + 1 equations which can be solved

for the µi’s and ¾2
"¤ . ¥

Proof of Theorem 2. Observe …rst that, under the assumption of conditional normality, we

may write

"ut = eut

p
hut (u = 1; : : : ; k);

where feutg iids N (0; 1). It follows, therefore, that

Et¡1(eutevt) ´ ¿uv = huv;t=
p

huthvt; Et¡1(e2
ute

2
vt) = 1 + 2¿2

uv ; Et¡1(e3
utevt) = 3¿uv;

Et¡1(e2
utevtemt) = ¿vm + 2¿um¿uv; Et¡1(eutevtemtest) = ¿uv¿ms + ¿um¿vs + ¿us¿vm:

Also note that, from the de…nition of ´it, ´uv;t and "ut, we have

cov(´ut; ´vt) = 2E(h2
uv;t) ´ f2;uv ; 1

2var(´ut) = E(h2
ut) ´ f2;u; (A.8)

var(´uv;t) = E(huthvt) + E(h2
uv;t) ´ f2;uv + f2;uv ; (A.9)

1
2cov(´ut; ´uv;t) = E(huthuv;t) ´ f2;u;uv ; (A.10)

cov(´ut; ´vm;t) = E(huv;thum;t) ´ f 2;uv;um; (A.11)

cov(´uv;t; ´um;t) = f2;u;vm + f2;uv;um; (A.12)

cov(´uv;t; ´ms;t) = f2;um;vs + f2;us;vm: (A.13)

Furthermore, there exist constants °u0, °v0, °uv0, °uv;0 and °u;uv;0 such that

var(hut) = °u0var(´ut); var(hvt) = °v0var(´vt); var(huv;t) = °uv0var(´uv;t);

cov(hut; hvt) = °uv;0cov(´ut; ´vt); cov(hut; huv;t) = °u;uv;0cov(´ut; ´uv;t);

so we may write

f2;uv =
[E(huv;t)]2 + °uv;0E(hut)E(hvt)

1 ¡ °uv;0(1 + 2°uv;0)
; f2;u =

[E(hut)]
2

1 ¡ 2°u;0

; (A.14)

f2;u;uv =
E(hut)E(huv;t)

1 ¡ 2°u;uv;0
; f 2;u;vm =

E(hut)E(hvm;t)

1 ¡ °u;vm;0
; (A.15)

f2;uv;um =
E(huv;t)E(hum;t) + °uv;um;0E(huthvm;t)

1 ¡ °uv;um;0
; (A.16)
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and2664
E(huv;thms;t)

E(hum;thvs;t)

E(hus;thvm;t)

3775 =

2664
1 ¡°uv;ms;0 ¡°uv;ms;0

¡°um;vs;0 1 ¡°um;vs;0

¡°us;vm;0 ¡°us;vm;0 1

3775
2664

E(huv;t)E(hms;t)

E(hum;t)E(hvs;t)

E(hus;t)E(hvm;t)

3775 : (A.17)

Finally, notice that

f1i ´ E(hit) =
®ic

Bi(1) ¡ Ai(1)
; (A.18)

and

f1;uv ´ E(huv;t) =
®uv;c

Buv(1) ¡ Auv(1)
: (A.19)

Now, from (A.1), using (A.18)-(A.19) and taking into account all the common zeros of the

autoregressive polynomials, we obtain (15). Moreover, squaring (A.1), taking expectations and

using (A.8)-(A.13),we get (16), where the f2’s and f2’s are given by (A.14)-(A.17). ¥

Proof of Proposition 1. From (A.1) it follows that

ht = w2
1h1t + w2

2h2t + 2¸w1w2:

Multiplying the above equation by (1 ¡ ®0
11L)(1 ¡ ®0

21L) and noticing that

(1 ¡ ®0
i1L)hit = ®ic + ®i1´i;t¡1; ´it = "2

it ¡ hit;

we obtain

(1 ¡ ®0
11L)(1 ¡ ®0

21L)ht = ®¤
0 + w2

1®11(1 ¡ ®0
21L)´1t¡1 + w2

2®21(1 ¡ ®0
11L)´2t¡1:

Therefore, writing Ãt = (1 ¡ ®0
11L)(1 ¡ ®0

21L)ht ¡ ®¤
0, we have

var(Ãt) = 2w4
1®2

11(1 + ®02
21)f2;1 + 2w4

2®2
21(1 + ®02

11)f2;2 + 4w2
1w2

2®11®21(1 + ®0
21®0

11)¸2;

cov(Ãt; Ãt¡1) = ¡2w4
1®2

11®0
21f2;1 ¡ 2w4

2®2
21®0

11f2;2 ¡ 2w2
1w2

2®11®21(®0
11 + ®0

21)¸2;

where ®¤
0 = 2w1w2¸(1 ¡ ®11)(1 ¡ ®21) + w2

1®10(1 ¡ ®21) + w2
2®20(1 ¡ ®11). Also, since ht may

be expressed as

(1 ¡ ®0
11L)(1 ¡ ®0

21L)ht = ®¤
0 + ®¤

1´t¡1 + ®¤
2´t¡2;

where ´t = "2
t ¡ ht, we have

var(Ã¤
t ) = 2(®¤

1
2 + ®¤

2
2)f2; and cov(Ã¤

t ; Ã¤
t¡1) = 2a¤

1®¤
2f2;

where Ã¤
t = ®¤

1´t¡1 + ®¤
2´t¡2. Setting var(Ãt) = var(Ã¤

t ) and cov(Ãt; Ãt¡1) = cov(Ã¤
t ; Ã¤

t¡1) and

solving for ®¤
1 and ®¤

2 yields the results in (17)-(18). ¥
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Proof of Proposition 2. From (1), it follows that

var(yt) =
kX

i=1

w2
i (1 + µ2

i )f1i + 2
kX

v=u+1

k¡1X
u=1

wuwv(1 + µuµv)f1;uv ; (A.20)

cov(yt; yt¡1) = ¡
kX

i=1

w2
i µif1i ¡

kX
v=u+1

k¡1X
u=1

wuwv(µu + µv)f1;uv: (A.21)

Moreover, (19) implies that

var(yt) = (1 + µ2)f1 + µ2¾2
"¤ ; (A.22)

cov(yt; yt¡1) = ¡µf1: (A.23)

The derided results are obtained by equating the right-hand sides of (A.20) and (A.22) and

(A.21) and (A.23) and solving for ¾2
"¤ and µ. ¥
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