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Abstract

This paper introduces the class ofmean de�ned supermodular games.

The characteristic feature of these games is that, given an order on the

strategy sets of the players, the payo� to each player depends on his

own strategy and the average of the population play. We characterise

the set of the Nash equilibria and analyse their dynamic properties un-

der payo� monotonic selection dynamics. Weak Nash equilibria, both

in pure and mixed strategies, are unstable. The only asymptotically

stable equilibria of the game are symmetric strict equilibria where

each player uses the same strategy. We show that the strategies that

do not survive the process of iterated deletion of strictly dominated

strategies vanish in the long run. As a corollary to this latter result,

we show that if the game is dominance solvable then the dynamics

converges from any initial interior state.
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1 Introduction

In recent years strategic complementarities have received growing attention in
the economic as well the game theoretic literature. The de�nition of strategic
complementarity is due to Bulow et al. (1985) and identi�es situations in
which for each player the marginal bene�t to an increase in his action is
increasing in the level of other players' actions. A number of interactions
among individuals or �rms share this characteristic.

In macroeconomics, the vast literature on coordination failures (Diamond,
1982; Howitt, 1985; Kiyotaki, 1988; Cooper and John, 1988, among the oth-
ers) focuses on the presence of strategic complementarities to explain the
inability of macroeconomic systems to achieve the Pareto-dominant equilib-
rium, in the presence of multiple equilibria. The complementarity between
the actions independently undertaken by the agents is not accounted for
and the system can get stuck at an ine�cient equilibrium which is Pareto-
dominated by another equilibrium. More recently Matsusaka and Sbordone
(1995) found evidence that, in the presence of strategic complementarities,
if consumers are pessimistic about the state of the economy, there can be a
slowdown in output even if their beliefs are not based on economic funda-
mentals. Redding (1996) explores the macroeconomic consequences of strate-
gic complementarities between investment in human capital and R&D. He
shows that for certain parametrisations multiple Pareto-rankable equilibria
may occur. In this case a governmental policy coordinating agents expec-
tations may be welfare improving. Support for macroeconomic models with
complementarities is further provided by Cooper and Haltinwanger (1996),
whereas the role of strategic complementarities in shaping the business cycle
is discussed in Cooper (1998). In the IO literature Bertrand oligopoly with
di�erentiated products exhibits strategic complementarities: when competi-
tors increase their prices, the marginal pro�ts from the own price increase
rise. Network externalities can be modelled as strategic complementarities,
as more �rms, for example, adopt the same technological standard or use the
same telecommunication network, the marginal bene�t to other �rms doing
the same increases (Katz and Shapiro, 1986; Farrell and Saloner, 1986). The
relevance of strategic complementarities in modern manufacturing and re-
tail �rms is emphasised in Bagwell and Ramey (1994); Milgrom and Roberts
(1990a, 1995). Matsuyama (1995) presents a review of models of monopo-
listic competition used in macroeconomics, international economics as well
as growth and development theory with di�erent kinds of complementarities
that can generate multiplier e�ects, business cycles, underdevelopment traps
etc.

The crucial characteristic of the models with strategic complementari-
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ties discussed above is the possible presence of Pareto-rankable equilibria.
The existence of Pareto-rankable equilibria, especially in macroeconomic or
general equilibrium models, generates mixed reactions. According to many
authors this feature is what makes such models interesting creating the pos-
sibility for coordination failures. According to others coordination failures
will rarely occur in practice. Because of the large gains to be made from co-
ordination, the agents will eventually �nd ways of coordinating their actions.
Moreover, according to these critics, coordination failures are logically incon-
sistent with equilibrium analysis. The validity of equilibrium analysis rests
on the assumption that agents are able to coordinate, in some unspeci�ed
way, their expectations and actions so that a speci�c equilibrium is played. If
agents are able to coordinate their expectations, they should be able to coor-
dinate a change in their expectation so that a Pareto-dominant equilibrium
will be played.

One obvious answer to the �rst objection is that in many cases the num-
ber of individuals involved and the number of activities to be coordinated
is so large that even in the long run coordination may fail to be achieved
notwithstanding the potential gains. Turning to the second objection, as
Matsuyama(1995,p. 724) argues:

One possible response is that coordinating expectations is much
easier than coordinating changes in expectations. The former can
be achieved historically through conventions, customs, cultural
beliefs, ideologies, or other processes of learning..... These argu-
ments, of course, have to be represented in an explicit dynamic
setting..

In this paper we present a family of games encompassing most of the models
with complementarities referred above and we analyse the issues of coordina-
tion, equilibrium selection and stability of the equilibria within an evolution-
ary framework using a general class of selection dynamics known as payo�
monotonic dynamics.

Strategic complementarity �nds a more general and formal mathemati-
cal representation in terms of supermodularity of the objective function and
restrictions on the structure of the action space. All the models referred
above can infact be represented as supermodular games. These were intro-
duced by Topkis (1979) and later developed by Vives (1990); Milgrom and
Roberts (1990b); Milgrom and Shannon (1994). We introduce a family of
such games that we call mean-de�ned supermodular games. The character-
istic feature of this class of games is that the payo� to each player depends
on his own strategy and the average of the population play. This feature re-
stricts the realm of application of mean-de�ned supermodular games to the
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cases where an average strategy is meaningful. This restriction however is
not so severe; supermodular games have in fact (partially) ordered strategy
sets which requires a quantitative dimension that makes the computation of
average strategy possible. In addition, the type of interaction we are inter-
ested in often involves large numbers of players interacting simultaneously
and the assumption that the payo�s are determined by the player's strategy
and the average of the population play makes the dynamics of the model
analytically tractable.

The paper is organised as follows. Section 2 summarises de�nitions, prop-
erties and results of supermodular games that are relevant for the subsequent
analysis. In section 3 the class of mean-de�ned supermodular games is intro-
duced and the set of the Nash equilibria is characterised. As a �rst result we
show that the property of monotonicity of best replies applies to this class
of games. Furthermore, we show that the greatest and least pure strategy
Nash equilibria are also the greatest and the least element of the set of pure
strategies that survive the process of iterated deletion of strictly dominated
strategies. This same result is presented in Milgrom and Roberts (1990b)
but needs to be proved for this class of games as the payo� to the players
depends on a statistic of the strategy pro�le rather than the pro�le itself. Sec-
tion 4 studies the issues of coordination, equilibrium selection and dynamical
properties of the equilibria for this class of games under payo� monotonic
selection dynamics. The main conclusion is that weak Nash equilibria, both
in pure and mixed strategies, are unstable. The only asymptotically stable
equilibria of the game are symmetric strict equilibria where each player uses
the same strategy. Finally, we extend the results of Samuelson and Zhang
(1992) concerning the long run survival of serially dominated strategies. We
show that the strategies that do not survive the process of iterated deletion
of strictly dominated strategies vanish in the long run. As a corollary to
this latter result, we show that if the game is dominance solvable then the
dynamics converges from any initial interior state. Section 5 presents an ap-
plication of the analysis carried out in the previous sections to a model of
decentralised trading resembling the "coconut economy" of Diamond (1982)
using a speci�c type of payo� monotone dynamics known as replicator dy-
namics.

2 Supermodular games

Supermodular games are games in which, given a partial order on the strategy
set of each player, the marginal returns from an increase in one's strategy are
increasing in the strategy played by the rivals. In many applications, where
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the strategy space is one-dimensional this is simply the result of strategic
complementarity between players' strategies. More generally, if the strategy
sets of players are multidimensional, supermodularity is an assumption of
complementarity among the components of each player's strategy that ensure
that these components move in the same direction when the rivals' strategies
change.

Let K be the �nite or in�nite set of players. The strategy set for each
player k 2 K is denoted as Ik and it is assumed to be completely ordered with
generic element i. If the strategy set is �nite, the cardinality of Ik is denoted
by mk. The strategy space is � = �k2KIk whose elements s = (ik; i�k) 2 �
de�ne a strategy pro�le; the payo� function is given by � : � 7�! <.

De�nition 2.1. A game G is supermodular (strictly supermodular) if the
following conditions are satis�ed for each k 2 K:

(C1) Ik is a compact subset of <;

(C2) � is upper semi-continuous in ik (for �xed i�k);

(C3) � has increasing (strictly increasing) di�erences 1 , i.e. �(ik; i�k) �
�(i0k; i�k) � �(ik; {̂�k) � �(i0k; {̂�k) for all (ik; i

0
k) 2 Ik and (i�k; {̂�k) 2

I�k such that ik > i0k and i�k > {̂�k

We study games with strategy sets in <; in more general cases, condition
(C1) requires that the strategy set for each player is a complete lattice. The
real line is a lattice and every compact subset of it is a complete lattice.

As it is well known, (in strictly) supermodular games:

(i) No asymmetric NE in pure strategies exist;

(ii) If i is a best response to i0 and {̂ is a best response to ~{, where ~{ > i0,
then {̂ � i;

(iii) The set of pure-strategy Nash equilibria is non empty and possesses
greatest and least equilibria s; s;

(iv) For a generically selected supermodular game all pure strategy Nash
equilibria are strict;

1In general, supermodularity is a property stronger than (C3), however, the two con-
cepts coincides when the strategy set in singledimensional and/or the function � is de�ned
on a product of ordered sets.
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(v) Let � and �0 be two probability distributions de�ned over the strategy
set Ik Assume � � �0, where � refers to �rst-order stochastic domi-
nance. Then we have:

minBR (�0) � maxBR(�):

Properties (i) and (ii) are standard results, (iv) and (v) are due to Kan-
dori and Rob (1995, Prop. 6 and 7 respectively). Property (v) extends the
monotonicity property (ii) to comparison across mixed strategies when these
are partially ordered according to �rst-order stochastic-dominance.

Property (v) is based on the fact that the expected value of any increasing
function under probability distribution �0 is no smaller than its expected
value under a stochastically dominated probability distribution �.

3 Mean-de�ned supermodular games

The objects of our study are symmetric N -person games in "ordered normal
form" in which the payo� to a player is determined by his strategy and the
average of the population play. K denotes the set of players, � = �k2KIk is
the strategy space. The strategy sets can be continuous or discrete, we as-
sume that they have least upper bound and greatest lower bound in the
set. Given a strategy pro�le s, the average strategy is simply given by
�(s) =

P
k2K ik=jKj. Finally the payo� function maps a player's strategy

and the current value of the statistic to his payo�: � : fik; �(s)g 7�! <
and it is assumed to satisfy condition (C2) and strictly (C3). The game
� = fK;�; �(s)g is then the mathematical object we call mean-de�ned su-
permodular game. Due to the particular features of the game properties (i)
to (v) need not to hold. Some of them will be holding in general whereas
others will depend on additional assumptions about the payo� function.

Proposition 3.1 (Monotonicity of best replies). Let � = fK;�; �(s)g
be a mean-de�ned supermodular game. If i is a best response to � and ~{ is a
best response to ~�, where ~� > �, then ~{ > i.

Proof. Assume the contrary; i.e. let i > ~{. By construction �(i; �)��(~{; �) �
0. Strictly increasing di�erences will then imply that �(i; ~�) � �(~{; ~�) > 0.
A contradiction.

Next we show that the set of pure strategy Nash equilibria is non empty.
The largest and smallest elements of the set are the largest and smallest
strategies surviving the iterative elimination of strictly dominated strategies.

6



This is a standard property of N -player supermodular games, (see Milgrom
and Roberts, 1990b). This need to be proved here as the payo� to player
k depends on a summary statistic of the strategy pro�le s rather than the
pro�le itself. Let H � Ik be any subset of the entire strategy set of player
k. If all players are restricted to H then � 2 [iH ; {H ] the smallest and largest
elements of H. Let RH = [�; �] de�ne the possible range of � given H. A
pure strategy i for player k is said to be strictly dominated by another pure
strategy {̂ if it is the case that for all � �(i; �) < �(̂{; �). Given any subset
H of Ik, we de�ne the set of undominated responses to RH by:

U(RH) = fi 2 Ik j (8~{ 2 Ik)(9� 2 RH) j �(i; �) � �(~{; �)g

Let U(RH) de�ne the interval [inf(U(RH)); sup(U(RH))] We use U to rep-
resent the process of iterative elimination of strictly dominated strategies as
follows. De�ne I0k = Ik the full strategy set for player k, for � � 1 de�ne
I�k = U ��1(Ik). A strategy i is serially undominated if i 2 U(I�k ) for all � . U
is a monotone nondecreasing function, that is ifH 0 � H then U(H 0) � U(H).

Proposition 3.2. Let � = fK;�; �(s)g be a mean-de�ned supermodular
game. The set of pure strategy Nash equilibria is non-empty and it contains
the largest and smallest serially undominated strategies { and i.

Proof. First we need to show that the smallest and the largest best replies
to � and � respectively are the smallest and largest undominated responses

to RH . Consider any subset H of the strategy set of player k. The average
� 2 [�H ; �H ]. Let �(�H) be the set of best replies to the smallest element

in RH and similarly for �(�H). All strategies {̂ < �(�H), where �(�H) is
the smallest element in the set of best replies, are strictly dominated by this
latter; infact for each player k we know that increasing di�erences imply that
for any H � Ik

�(�(�H); �H)� �(̂{; �H) < �(�(�H); �)� �(̂{; �)

for all {̂ < �(�H) and � > �H . The left hand side of the inequality is positive
by construction and so will be the right hand side for all �. Similarly all
strategies ~{ > �(�H) are strictly dominated by this latter. We conclude that
U(RH) = [�(�H); �(�H)]. De�ne the largest and smallest elements in the

strategy set I0k as {0 and i0. For r � 1 let {r = �({r�1) and ir = �(ir�1). We
now show that U r(Ik) � [ir; {r]. This is true for r = 0; assume it is true for
r � k. Then

Uk+1(Ik) � U([ik; {k]) � [ik+1; {k+1]

the �rst inclusion follows from the observation made earlier that U in non-
decreasing, and the second follows from the �rst part of the proof. It follows
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that firg is nondecreasing and f{rg is nonincreasing. These sequences have
limits i and { respectively. Finally we show that these are best replies to
themselves. We have proved that for all r � 0; �(�r) � �r and �(�r) � �r.
Suppose i is not a best reply to itself, then there exists some i 2 [i; {] such
that

�(i; i)� �(i; i) > 0

Increasing di�erences imply that

�(i; {̂)� �(i; {̂) > 0 8{̂

and hence i is strictly dominated by i, which contradicts i being the limit of
the sequence. The same argument works for {.

It is clear from the proof of Proposition 3.2 that the largest and smallest
serially undominated strategies are symmetric Nash equilibria. Asymmetric
pure strategy equilibria are also possible as well as mixed strategy equilibria.
Since players are playing the �eld, the mixed strategy equilibria require that
positive probabilities are attached only to the best replies to the expected
average �. For this reason, as the next proposition shows, mixed strategy
equilibria and asymmetric pure strategy equilibria are intimately linked. Let
� = (�k; ��k) be a mixed strategy pro�le with support C(�) and denote the
expected average as �(�) = 1

jKj

P
k �kIk. A strategy pro�le � = (�k; ��k) is a

Nash equilibrium if for all players k 2 K C(�k) � �(�(�)). In equilibrium
therefore �(�k; �(�)) = �(ik; �(�)) for all ik 2 C(�k).

Proposition 3.3. A mixed strategy pro�le � = (�k; ��k) is a Nash equilib-
rium of � = fK;�; �(s)g i� there exists a pure strategy Nash equilibrium of
the game s such that C(�) = C(s).

Proof. We �rst prove the if part. If s is a Nash equilibrium of the game
C(s) � �(�(s)). Any randomization on C(s) such that the expected average
is equal to �(s) is then a mixed strategy equilibrium. Necessity is proved
by contradiction. Let � be a mixed strategy Nash equilibrium and assume
that there is no s j C(s) = C(�) that is a pure strategy asymmetric Nash
equilibrium. This implies that there is no � 2 [i; {] j C(�) � �(�), where
i and { are the smallest and largest pure strategies in C(�). Therefore there
are i 2 C(�) =2 �(�). An obvious contradiction.

4 The evolutionary analysis

In this section we study the issues of stability and selection of the equilib-
ria of mean-de�ned supermodular games under a speci�c class of dynamics
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known as payo� monotonic dynamics. This type of dynamics may be used to
represent at an aggregate level a learning mechanism in an economy popu-
lated by a large, but �nite, population of boundedly rational agents who play
repeatedly the same game. Speci�cally we envisage an economy where the
entire population plays at each time t the same mean-de�ned supermodular
game. The assumption of large populations is necessary for a strategic and
a technical reason. Large populations allow us to disregard the possibility
for any single player to alter future play of his opponents. Technically, large
populations are needed for the smoothness of the vector �eld associated with
the dynamics.

To represent a model of social evolution we need to make the strategy
set of each player �nite. In the evolutionary metaphor strategies represent
phenotypes, i.e. agents type characterised by the use of a particular strategy.
Moreover we assume that the game is symmetric. For this reason we will
not be interested in which strategy is played by each individual player but
rather we will focus on the fraction of the population of players playing
each strategy. Finally we assume that players play pure strategies only.
Adopting the same notation of previous sections, the �nite strategy set of the
representative agent is I, with cardinality m; � denotes the strategy space.
The con�guration of strategies in the economy is summarised by the state
vector x in <m whose element xi denotes the population share associated
with strategy i. 2 All elements of x are nonnegative and add up to one. The
set of all such vectors de�ne the simplex �. For each state vector we de�ne
the support C(x) = fi 2 I : xi > 0g as the set of existing strategies in x. Let
�(x) = x0I denote the average strategy induced by x. This de�nition of the
average strategy is equivalent to the one adopted previously �(s). To each
strategy pro�le s corresponds a unique state vector x; since the identity of
players does not matter �(x) is easier to work with. The payo� to a player
posting strategy i in state x is denoted as �(i; �(x)).

The dynamics is de�ned over the mixed-strategy simplex � in terms of
the growth rates of the populations shares associated with each pure strategy
i 2 I of the game. The dynamic process takes the following general form

_xi = gi(x)xi (1)

The function gi indicates the growth rate of the population share attached
to strategy i. Recall the following de�nition:

De�nition 4.1. A regular growth-rate function g is payo� monotonic if, for

2Being the game symmetric we drop the subscript from the strategy sets of players.
Henceforth subscripts refer to strategies.
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all x 2 �
�(i; �(x)) > �(~{; �(x)) () gi(x) > g~{(x)

Regularity of the growth function ensures that the dynamics is well be-
haved in the sense of inducing a unique solution to the system through any
initial condition, a solution that never leaves the simplex �. According to
the Picard-Lindelof theorem a solution to the system _x = g(x)x exists and is
unique if the vector �eld of the system is Lipschitz continuous. The popula-
tion state remains in the simplex � if the weighted sum of the growth ratesPm

i=1 gi(x)xi is constantly equal to zero. We assume that the conditions
ensuring regularity are satis�ed.

We are interested in identifying equilibrium population pro�les. As it is
clear from the de�nition, monomorphic population states in which only one
strategy is played are stationary points of the dynamics. In other words the
dynamic process (1) comes to rest whenever all strategies in the support of x
earn the same payo�. For the sake of predictions one is generally interested
in equilibria that are stable. Two concepts of stability are employed: i) Lya-
punov stability and ii) asymptotic stability. Broadly speaking, a population
state x 2 � is Lyapunov stable if all solutions that start su�ciently close to
x stay close; a state x 2 � is asymptotically stable if it is Lyapunov stable
and if trajectories starting su�ciently close to x eventually approach x as
t!1.

One can derive implications from payo� monotonicity and payo� positiv-
ity to aggregate Nash equilibrium behaviour. In particular it has been shown
that (Nachbar, 1990; Bomze, 1986)

(a) If x 2 int(�) is stationary in (1), then x is a Nash equilibrium of the
stage game.

(b) If x 2 � is Lyapunov stable in (1), then x is a Nash equilibrium of the
stage game.

(c) If x 2 � is the limit to some interior solution to (1), then x is a Nash
equilibrium of the stage game.

(d) If x 2 � is a strict Nash equilibrium then x is asymptotically stable.

By virtue of these results limit states as well as Lyapunov and/or asymptot-
ically stable states are to be found in the set of Nash equilibria of the stage
game.
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As the following proposition shows, instability characterises all weak Nash
equilibria, both symmetric and asymmetric. Let �(t;x�) de�ne the solution
through a point x� 2 � to the system (1).

Proposition 4.1. Let x and z be respectively an asymmetric and a sym-
metric weak Nash equilibrium of � = fK;�; �(x)g. Then under any regular
payo� monotonic dynamics both x and z are not Lyapunov stable.

Proof. A state x 2 � is Lyapunov stable if every neighbourhood B of x
contains a neighbourhood B� of x such that the ow �(t;x�) 2 B for all
x� 2 B� \� and t � 0. In other words all forward orbits from B� \� are
contained in B:

+(x�) = fx 2 � j x = �(t;x�) for some t � 0g � B 8x� 2 B� \�

We �rst show that asymmetric equilibria are unstable. Let �(x) be the
average e�ort associated to x. Consider a forward orbit +(y) emanating
from a state y in a small neighbourhood of x with C(x) = C(y), i.e. the
two states have the same support. In particular assume that yi > xi 8i 2
C(x) such that i < �(x) and let �(y) < �(x). By assumption in x

�(~{; �(x))� �(i; �(x)) = 0

for all i;~{ 2 C(x). Strictly increasing di�erences imply that

�(~{; �(y))� �(i; �(y)) < 0

for all i < ~{ 2 C(y). Payo� monotonicity of the dynamics ensures then that
the growth rates of each strategy obey the order:

gi(y) > g~{(y) for all i < ~{ 2 C(y)

The regularity of the dynamics ensures that C(y) is invariant for all t. We
show that y0 = �(t;y) � y 8t > 0 where � refers to �rst-order stochastic
dominance; y0 � y implies that the cumulative distribution of y0 lies every-
where above the cumulative distribution of y. Suppose that this was not the
case, i.e. let X

k�i

y0k �
X
k�i

yk for some i 2 C(y)

then  
1�

X
k�i

y0k

!
�

 
1�

X
k�i

yk

!
=
X
k>i

y0k �
X
k>i

yk
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which contradicts strictly increasing di�erences and payo� monotonicity. The
expected value of any increasing function y is larger than the expected value
of the same function under y0. Thus the average e�ort �(y0) < �(y). As
t ! 1 the average e�ort reduces monotonically and �(t;y) ! y� whose
support C(y�) is a singleton. Hence x is not Lyapunov stable for all t. Next
we show that weak symmetric equilibria are unstable. In a symmetric weak
equilibrium all players adopt the same strategy i� which is a weak best reply
to itself. There exists some other strategy ~{ such that �(i�; i�)��(~{; i�) = 0.
Consider a state ~z with support over ~{ and i� and let � be the population share
of ~{. Assume that ~{ < i�; clearly �(~z) < �(z) and by the usual argument of
strictly increasing di�erences �(i�; �(~z))� �(~{; �(~z)) < 0 The dynamics will
then lead the system away from z towards an equilibrium state where only ~{
is played. Mutatis mutandis the same applies to the case where ~{ > i�.

At this stage we are not able to rule out the presence of limit cycles for the
general case. However if the game is dominance solvable all strategies but the
equilibrium one are iteratively strictly dominated. A well known result, due
to Samuelson and Zhang (1992), holds that if a pure strategy does not survive
the iterative elimination of strategies that are strictly dominated by another
pure strategy, then the strategy does not survive under a payo� monotonic
selection dynamics. This result was originally stated for multipopulation
games with random matching (see Theorem 1 in Samuelson and Zhang, 1992,
p.371). Here we extend their theorem to mean-de�ned supermodular games.
The result need to be proved here as their proof expressly uses the linearity
of the expected payo�s in the population shares and this is a property that
our model lacks.

Theorem 4.1. Suppose that strategy i does not survive the process of elimi-
nation of iteratively strictly dominated strategies of � = fK;�; �(x)g. Then
for every payo� monotonic dynamics given an interior initial state x0 we
have

lim
t!1

�i(t;x
0) = 0

Proof. Let �(x0; t) be the average strategy at time t given an interior initial
state x0. Clearly �(x0; t) 2 [i; {] where i and { are the smallest and the largest
strategies in I respectively. De�ne Dk as the set of strategies that do not
survive the kth round of elimination of strictly dominated strategies. Let

Dk (D
k
) be the set of strategies in Dk such that ik < ik+1 (ik > {k+1)

where ik+1 ({k+1) is the smallest (largest) strategy to survive round k+1 of
deletion. For k = 0, all strategies in D0 are strictly dominated by i1 which
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implies that

d

dt

�
�i0(t;x

0)

�i1(t;x
0)

�
=
�
gi0(x)� gi1(x)

� �i0(t;x0)
�i1(t;x

0)
< 0

for all t � 0 and all i0 2 D0.
By continuity of g, there exists a " > 0 such that

�
gi0(x)� gi1(x)

�
< �" 8t �

0 hence
d

dt

�i0(t;x
0)

�i1(t;x0)
< �"

�i0(t;x
0)

�i1(t;x0)

and therefore
�i0(t;x

0)

�i1(t;x
0)
<

x0i
x0
i1

exp(�"t) 8t � 0

Being �i1(t;x
0) < 1 8t, it follows that �i0(t;x

0)! 0. This shows that there
exists a � > 0 and time T 0 such that

�i0(t;x
0) < � 8i0 2 D0 and all t � T 0

The same sort of argument applies to strategies in D
0
. Let � 0 be the time

such that �i0(t;x
0) < � 8i0 2 D

0
and all t � � 0.

Without loss of generality assume that T 0 > � 0. For all t > T 0 the population
shares attached to the strategies in D0 are small enough for us to consider
the reduced game with strategy set I1 = fi : i 62 D0g for each player. For
t � T 0 the average strategy �(x0; t) is contained in a small neighbourhood of
the interval

�
i1; {1

�
. The same process will take place for all strategies in D1;

the share of the population playing those strategies will become negligible
at some �nite time T 1 and � 1. Since the process of iteration ends in a �nite
number of rounds in �nite games, only a �nite number of iterations of the
argument are required and we conclude that there is a �nite time T � after
which the shares of all serially dominated strategies converge to zero.

A payo� monotonic selection dynamics removes all serially dominated strate-
gies irrespective of whether the dynamics converges or not. If the game is
dominance solvable then the set of serially undominated strategies is a sin-
gleton and the dynamics must converge. We state this formally in the next
corollary.

Corollary 4.2. Consider � = fK;�; �(x)g. If the process of elimination
of iteratively strictly dominated strategies yields one strategy for each player
then the system converges from any interior initial state under any regular
payo� monotonic selection dynamics.
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5 An application: The coconut economy

In this �nal section we apply the analysis developed above to a model of
search inspired to the coconut economy of Diamond (1982). The model ex-
hibits, under opportune parametrisations, multiple Pareto-ranked equilibria
and coordination failures. Whereas in a Walrasian economy these cannot
occur, once the perfectly competitive paradigm is abandoned, the causes of
such phenomena are numerous. In the Diamond (1982) coconut model the
auctioneer is replaced by a random matching mechanism; in Howitt (1985)
the cost of transactions are made dependent on the level of economic activ-
ity; Kiyotaki (1988) analyses a monopolistically competitive market with a
multiplicity of equilibria; Cooper and John (1988) discuss the conditions for
coordination failures in models of imperfect competition.

Consider an economy populated by a large number K of individuals.
Each individual starts with one unit of a perishable good in each period
("coconuts"), and there may be some coconuts lying around loose for anyone
to pick up. Each agent wishes to consume one and only one coconut per
period, and there is a taboo against eating your own coconuts 3. To consume
a coconut he/she must either trade with another agent, or pick up a loose
coconut. Individuals are scattered around the economy and a search must
be undertaken in order to �nd a trading partner: search is costly and the
probability of agent k trading is a function of his search e�ort ik and the
average search e�ort of the rest of the population. The model is closely
related to Diamond (1982), except that here individuals do not choose the
level of production, but only the search intensity. We will analyse �rst the
constituent search model with continuous strategy sets so that e�ort levels i
come from a compact, convex subset of the real line, I � <+.

Once individuals have chosen their search e�ort the actual search takes
place. Should two agents meet, the gross utility from trade is L. The match-
ing function P gives the probability of individual i meeting someone to trade
with as a function of individual and collective search e�ort:

Pr[trade] = P (i; �) (2)

where

� =
1

K

KX
k=1

ik (3)

3"but there is a taboo against eating (coco-)nuts one has picked oneself", (Diamond,
1982, page 893).
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is the average e�ort, and ik is the individual e�ort. As it is standard, we
assume that P is increasing in both i and � (Pi > 0 and P� > 0), and
most importantly that the cross derivative Pi� > 0. Furthermore, we assume
P (0; �) = 0 and Pii � 0, and that the matching function is the same for
all agents k. The expected payo� from search to the representative agent is
(dropping the k subscript):

�(i; �) = L � P (i; �)� 1=2i2 + k (4)

Where L is the gross bene�t from trade, and k > 0 is a normalisation chosen
to ensure that all payo�s are non-negative. We assume that agents are risk
neutral, and choose search e�ort to maximize (4).

We can therefore de�ne the best-response function for the representative
agent (dropping the subscript) �(�) : � 7�! i:

�(�) = argmax
i2I

�(i; �) (5)

It is a fundamental assumption of search models that the best response is
increasing in �: this is ensured by the assumption that Pi� > 0.

Whilst we are interested in looking at matching functions P which yield
multiple equilibria, it is useful to consider at �rst properties of matching
functions that usually yield unique equilibria. For example, a common as-
sumption about the matching function is that it is homogeneous of degree
0 in (i; �), so that it can be written as a function P̂ of the relative search
intensity i=�, yielding the payo� function:

� = L � P̂ (
i

�
)� 1=2i2 + k

Where P̂ is strictly increasing in i
�
when � > 0. Let us consider the game

G = fK; I; �(s)g. All equilibria are symmetric, so that i = �. Let {̂ be
the set of Nash-equilibria: then it is easy to show that there is at most one
{̂� 2 {̂ where {̂� > 0.

For the search technology to be represented by P̂ , it requires that the
matching probabilities are scale independent, so that the levels of i and � do
not matter. This is a strong assumption. In this paper, we assume that the
matching function is a logistic function of the following form for each agent
k:

P (ik; �) =
i�k

c+ exp(a� b �)
8k 2 (1; : : : ; K) and ik; � 2 I (6)

where � 2 (0; 2); c > 0; b > 0; c > 0 with the joint restriction on (�; a; c; b)
that P (i; �) 2 [0; 1]. This function has the property that the marginal e�ect
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e

µ

p

Figure 2: The matching function

of individual search on P given � is constant if � = 1, decreasing if � < 1
and increasing if � > 1. However, the e�ect of � on P is sigmoidal. Note
that if � = 0 then P (i; 0) > 0 for i > 0. This reects the fact that there is
still a probability of �nding a coconut even if no one else is searching, due to
the possibility of picking up loose coconuts or �nding a non searching agent.
The function (6) is depicted in �gure 1 and 2 with the parameter values
� = 0:9; a = 4; b = 2 and c = 3.

In traditional search models, there are usually two sides to the market
(for example �rms and workers): trades depend on inputs from both sides
of the market (see for example Pissarides (1990) Chapter 4). In our context
there is only one sort of agent: total possible trades are �xed (P (trade) 2
[0; 1]). This follows the Diamond (1982) setup. In the standard model the
issue of returns to scale in the matching process is crucial for the existence
of multiple equilibria. In general, increasing returns to scale are required
for the game to exhibit multiple equilibria. In our setting this is not the
case, although the matching function presents varying return to scale under
opportune parametrisation, the presence of multiple equilibria does not hinge
upon increasing returns to search. 4. In particular the nature of the returns
depends on the value of the parameter �. When � < 1 the matching function
initially has increasing returns for low levels of search and then decreasing,

4This contrasts the �ndings of Diamond (1984).
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whereas for � � 1 we obtain initially decreasing and then increasing returns
to search.

The payo� function is (dropping the k subscript):

� =
Li�

c+ exp(a� b�)
� 1=2i2 + k (7)

This function is strictly concave in i, and strictly supermodular. It can
give rise to multiple equilibria. From (7) the best response function is 5

�(�) =

�
�L

c+ exp(a� b�)

� 1

2��

(8)

We depict the best-response function in �gure 3 for the same parameter
values used in �gure 1. In this case there are 3 pure strategy equilibria; these
are Pareto-ranked, so that A is the worst and C the best. A is a low level
equilibrium where everyone is undertaking a low level of search and so the
consumption of the population is low: at C there is high search and high
consumption.

It is easy to verify that payo� function (7) has strictly increasing di�er-
ences in its two arguments i and � 6 and hence the game is strictly super-
modular.

5.1 The equilibrium analysis of the search game

In this section we briey describe the set of Nash equilibria of the search
game for both the continuous and discrete version. As we have seen in the
�rst part of the paper, for the subsequent evolutionary analysis we need to
consider �nite strategy sets for each player. Using the same notation adopted
in section 2 Let I and ; � = �k2KIk denote the strategy set and the strategy
space respectively for the discrete case. We write the discrete search game
formally as G = fK;�; �(s)g where � : fI � �g 7�! < is given by (7). The
pure strategy Nash equilibria of the game fall into two categories. Symmetric
equilibria where each player adopts the same strategy that is then equal to
the population average strategy, and asymmetric equilibria where di�erent
players adopts di�erent strategies. Let �(�(s)) be the set of best replies
to the population average e�ort �(s). A strategy pro�le s de�nes a Nash

5In the derivation of the best response we have set the derivative ��
�i

= 0. Due to the
assumption of a large population the e�ect of a change in the level of e�ort exerted by one
player on the average population e�ort is negligible.

6Note that this is equivalent to the condition that �(i; �)��(i; �0) is nondecreasing in
i for all � � �0.
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Figure 3: The best reply function

equilibrium if each player is taking best responses to �(s), where �(s) is the
population average e�ort implied by s. Consider the pair (s; �(s)) and let
C(s) be the support of s. Obviously �(s) need not belong to C(s). Consider
�rst the case where �(s) 2 C(s), then (s; �(s)) is a Nash equilibrium only if
�(s) 2 �(�(s)). From strict concavity of the payo� function in i it follows
that �(�(s)) = f�(s)g, i.e. the set of best replies is a singleton. Each player is
playing the same strategy i = �(s) and the pair (s; �(s)) is a symmetric strict
Nash equilibrium where all players exert the same level of e�ort. Suppose
instead that �(s) =2 C(s). Again (s; �(s)) is a Nash equilibrium only if i 2
�(�(s)) 8 i 2 C(s) and this implies that (s; �(s)) is a weak Nash equilibrium.
From strict concavity of the payo� function it is immediately clear that �(s)
must not belong to I either, and that there are at most two best replies to any
given �(s). These are asymmetric equilibria, di�erent players exert di�erent
levels of e�ort that are optimal given the population average. Moreover there
is a whole set of strategy pro�les compatible with �(s) and the requirement
that i 2 �(�(s)) 8 i 2 C(s). Because of the symmetry of the game the
identity of the players does not matter and we do not need to consider such
strategy pro�les separately.

In the continuous version of the game, all pure strategy NE are symmet-
ric because of strict concavity of the payo� function in i given �. Only when
the strategy sets are discretised, asymmetric equilibria can occur. The obser-
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vation that for any given � the payo� function (7) is strictly concave makes it
easier to compute the asymmetric Nash equilibria of the game. These infact
can only occur near the symmetric equilibria of the continuous game. For
� = 1 the payo� function is also symmetric around its maximum for any
given � 7. More precisely two consecutive strategies (i < {̂) 2 I can form an
asymmetric NE i� �; ~�(�) =2 C(s) and i; {̂ are such that:���~�(�)� i

��� = ���~�(�)� {̂
��� = min(

���~�(�)� i0
���) = �=2 8 i0 2 I

where � de�nes is the distance between i and {̂, ~�(�) is the best reply to
� de�ned over the continuous strategy set I. The symmetry of the payo�
function coupled with strict concavity implies infact that strategies equally
apart from ~�(�) earn the same payo� against �. The condition reported

above implies that ~�(�) = (i+{̂)=2 = i+�=2 hence whenever
��� ~�(�)� �

��� > �=2

we cannot observe an asymmetric NE since this will imply that {̂ > i > �
an obvious contradiction. The range of values that need to be considered to
check for the existence of asymmetric equilibria is centred around the strict
NE of the continuous game. The size of this interval is rather small and is a
decreasing function of �. In particular the interval is given by the following:

�

�
L b exp(a� bi�)

[c+ exp(a� bi�)]2
� 1

��1

where i� are the NE of the continuous game.

5.2 The evolution of search behaviour

Next we describe the evolutionary model of search. We assume that at the
aggregate level in the economy operates a selection mechanism which rewards
those strategies that on average have proved to be more pro�table. This
process is analytically described by the replicator dynamics.

The replicator dynamics is a special case of payo� monotonic dynamics
and it assumes that the subpopulation playing a particular strategy grows
in proportion to the di�erence between the payo� it secures and the average
population payo�. We think that the choice of the replicator as a description
of the dynamic adjustment toward the equilibrium is justi�ed by its relative
exibility. This type of dynamics can in fact result from di�erent assump-
tions about individual behaviour 8. The economy-wide learning mechanism

7Note that d2�
di2

= �1.
8We overlook the details which can be found in (Weibull, 1995, chapter 4) and Schlag

(1998) among the others.
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is represented by the following continuous time replicator dynamics:

_xi = gi(x)xi (9)

where gi(x) = [�(i; �(s))�
P

xi�(i; �(s))] and

X
xi�(i; �(s)) =

Lx0I�

c + exp (a� b�)
� 1=2x0I2 + k (10)

is the population average payo�. Again this formulation di�ers from the
standard replicator dynamics since here the growth rate is not linear in the
population shares xi and we need to check that the dynamic system given
in (9) has a Lipschitz continuous vector �eld. That this is the case is proved
by noting that the vector �eld has continuous partial derivative with respect
to x. It is easily veri�ed that the solution remains in the simplex if the
sum of growth rates is equal to zero, something which visual inspection of
expressions (9) and (10) proves to be the case.

As discussed above, the Nash equilibria of G = fK;�; �(s)g falls in two
categories, symmetric and asymmetric equilibria. Symmetric Nash equilibria
are strict and therefore represent asymptotically stable states of the dynam-
ics. Asymmetric equilibria are weak and do not share this stability property
as they do not satisfy the weaker concept of Lyapunov stability. Let �(t;x�)
de�ne the solution through a point x� 2 � to the system (9).

Proposition 5.1. Let x = (xi; x( {̂) be an asymmetric Nash equilibrium of
G = fK;�; �(s)g. Then x is not Lyapunov stable.

Proof. See the proof of Proposition (4.1)

Instability of the asymmetric Nash equilibria does not imply that these can-
not be limit points to some interior solution. However an (unmodeled) shock
can lead the population away from these Nash equilibrium states.

Robust predictions require asymptotic rather than Lyapunov stability.
Asymptotic stability is a robust property in the sense that small perturba-
tions to the vector �eld of the dynamics do not destroy it. If we allow for
unmodeled drift and/or for the possibility that the model do not capture fea-
tures that are likely to perturb the system then we should rely on asymptotic
stability. This latter holds for the symmetric equilibria of G = fK;�; �(s)g
only. For this reason we characterise for the game at hand a set-valued
generalisation of asymptotically stable state due to Ritzberger and Weibull
(1995).

Consider a subset H of the strategy set I of the game and de�ne a sur-
viving set H � I as follows:

20



De�nition 5.1. H � I is a long run surviving set if its simplex �(H) is
asymptotically stable andH does not contain a non empty subset L for which
�(L) is asymptotically stable.

The above de�nition can be found in Weibull (1995, p.118)9 and requires
the surviving setH to be minimal with respect to the property that if initially
all pure strategies not in H are present in su�ciently small proportions, then
they will vanish over time. Proposition 4.10 in Weibull (1995, p.149) gives
a necessary condition for the asymptotic stability of H under any payo�
positive dynamics. In the next proposition we show that the same necessary
condition holds for our game. Using Weibull's notation let

�0(H) = fi 2 I : �(i; {̂) > �(̂{; {̂) for some {̂ 2 Hg

Proposition 5.2. Consider the game G = fK;�; �(s)g. If �(H) is Lya-
punov stable under the replicator dynamics (9) then �0(H) � H.

Proof. The proof of is similar in structure to that of Proposition 4.10 in
Weibull (1995) the only di�erence being that in our case we have to allow
for the dependence of the payo�s on the average strategy. Suppose that
�0(H) 6� H. Then there exists some i =2 H and some {̂ 2 H such that

�(i; {̂) > �(̂{; {̂)

Recall that the second argument in the pro�t function �(�) represents the
average e�ort. Consider a subset M = fi; {̂g � I. A solution orbit starting
in �(M) remains in the simplex forever. Consider now a state y 2 �(M)
arbitrarily close to a state x which put weight 1 to= {̂ 2 �(H). The average
e�ort �(y) ' �(x) = {̂ and so the continuity of the growth rates g0is ensures
that gi < 0; g{̂ > 0. The ow �i(t;y) > yi for any t > 0, thus moving the
average nearer to i. Increasing di�erences ensure that the solution orbit will
forever move away from �(H) and hence �(H) is not Lyapunov stable.

Then �0(H) � H requires that H contains the strictly better replies to all
strategies in H. We show that if this necessary condition is met, then the
set H does not respect the de�nition (5.1) as it contains a proper subset
spanning an asymptotically stable face of the simplex �.

Proposition 5.3. The only long run survivor sets of G = fK;�; �(s)g are
singletons and correspond to the strict Nash equilibria of the game.

9This de�nition was �rst introduced in Ritzberger and Weibull (1995) within a more
complex multipopulation model.
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Proof. Consider a set H � I and let i and { be the smallest and largest
elements in H. H is a long run survivor set only if, from Proposition (5.2),
�0(H) � H. This requires the reversal of the sign of the di�erence �(i)� i.
This di�erence must be positive for i, i.e. �(i) > i, and nonpositive for {, i.e.
�({) < {. This reversal does not violate the monotonicity of best responses, i�
at least one i 2 H is a symmetric Nash equilibrium, which in turn makes the
set H not minimal with the respect to the property of being asymptotically
stable.

We are not able to rule out the possibility of limit cycles for all parametri-
sation of the payo� function (4). However we can prove that if the game
G = fK;�; �(s)g exhibits a unique pure strategy NE and given any interior
initial state the dynamics will converge to the unique NE. The proof is given
in Corollary (4.2).

5.3 The relevance of initial conditions

In the analysis carried out so far we have been able to characterise the equi-
libria of the dynamics and their stability properties. We also ruled out the
existence of limit cycles in the special case of dominance solvability of the
stage game. In all other cases the game typically has a number of asymmet-
ric (weak) and symmetric (strict) Nash equilibria. The asymmetric equilibria
are unstable whereas the strict equilibria are asymptotically stable.

One last issue that so far de�es analytical characterisation is the e�ect
that the initial distribution has on the resulting equilibrium.

We are not able to pinpoint which initial conditions will prompt a speci�c
equilibrium. We can safely dismiss unstable equilibria as these will never be
observed unless the initial state of the system happens to be at the unsta-
ble equilibrium. The question then really is: what can be said about the
asymptotically stable equilibria? Each of these has a basin of attraction but
a characterisation is very di�cult to obtain. The addition of a drift term
to the replicator equation (9) will not alter the asymptotic properties of the
asymptotically stable states and therefore it not useful for equilibrium selec-
tion.

The issue of equilibrium selection is of particular interest when the game
exhibits multiple strict Nash equilibria and especially when, as in our model,
these are Pareto-rankable. The types of dynamics analysed in this work are
deterministic and therefore cannot select one strict equilibrium from the set
of strict Nash equilibria. With deterministic dynamics we can only perform
what some authors (Binmore et al., 1995; Binmore and Samuelson, 1997)
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refer to as long-run analysis as opposed to the ultralong-run analysis. The
long run refers to a time span su�cient for the sample path of the dynamics
to reach an equilibrium in the vicinity of which it will spend a long time. The
ultralong run, instead refers to "the length of time required for mutations
and other rare events to occur with su�cient frequency to make a stationary
distribution relevant." Samuelson (1998).

With deterministic dynamics, the issue of equilibrium selection can only
be addressed somewhat informally by restricting the attention to stable equi-
libria since the dynamics is carried away from unstable equilibria by (gen-
erally unmodeled) shocks or mutations. Any further analysis of equilibrium
selection requires the modeling of an explicitly and truly stochastic dynamic
and the study of the properties of its sample path as time goes to in�nity and
either the population size grows to in�nity and/or the mutation rate goes to
zero. The adoption of a truly stochastic dynamic allows for the analysis of
robustness of the equilibria against sequences of small shocks or simultane-
ous small shocks that together form a big perturbation that can move the
path away from stable equilibria. No matter how small or infrequent, these
shocks alter the nature of the dynamic process. Instead of being dependent
on the initial population state the process may become ergodic and have an
asymptotic stationary distribution that is history independent. This type of
ultralong run analysis was pioneered by Foster and Young (1990); Fudenberg
and Harris (1992); Young (1993); Kandori et al. (1993); Samuelson (1994);
Binmore et al. (1995); Cabrales (1996); Binmore and Samuelson (1997) and
develops along two main di�erent lines. The papers by Foster and Young
(1990); Fudenberg and Harris (1992); Cabrales (1996) study continuous time
stochastic systems based on the replicator dynamics where the stochastic
term is represented by a Wiener process. Foster and Young (1990) consider
a single-population replicator dynamic and add a Wiener process with no
cross-variance and a state-dependent variance. Their system of stochastic
di�erential equations takes the general form:

dxi;t = xi;tgi(xt) + �(ijxi)dWt(i)

where �(ijxi) is the variance function and W is a standard Wiener process.
They compute the limit of the long run distributions, letting the variances
of the Wiener process go to zero and they show that in 2 X 2 coordination
games the distributions converge to the Pareto-e�cient and risk-dominant
equilibrium.

The approach followed by Fudenberg and Harris (1992) di�ers from the
one just described in that a stochastic term is added directly to the payo�s to
each strategy i and then the equations for the evolution of population shares
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are derived. The advantage in using payo� shocks is that of being consistent
with a nonnegligible level of noise in models with a continuum of agents. As
the population grows large, i.i.d. shocks to individual agents tend to become
deterministic and some form of correlation between shocks is necessary to
explain aggregate noise with a continuum of agents. 10 Fudenberg and Harris
(1992) then analyse 2 X 2 games and show that if the game has 2 strict Nash
equilibria, the system is not ergodic and converges with probability 1 to
one of the two equilibria with relative probabilities depending on the initial
conditions. By adding a ow of deterministic mutations, the system becomes
ergodic as it can never reach the boundary and they show that the limit of the
ergodic distributions, computed by taking both the payo� variances and the
deterministic mutation ow to zero, converges to the risk-dominant strategy.
11 This result, however, does not carry over to N -player games as shown in
Cabrales (1996).

Alternatively, the papers by Young (1993); Kandori et al. (1993); Samuel-
son (1994); Binmore et al. (1995); Binmore and Samuelson (1997) study
discrete time, autonomous, �nite-population stochastic adjustment models.
The analysis carried out in these papers relies heavily on the results in the
theory of Markov chains. Common to the abovementioned papers is the pro-
cedure with which the limiting ultralong run distributions are derived. The
procedure typically entails 4 steps:

1. Speci�cation of the state space. This is generally given by the number of
agents in each player population playing each strategy and can include
also some information about actions played in a number of previous
periods;

2. Speci�cation of the deterministic dynamics (best-response dynamics or
other type of dynamics such as payo� monotone dynamics etc.) and
derivation of the Markov transition matrix;

3. Introduction of a noise term which a�ects the Markov transition matrix
(some technical assumptions are needed to make the Markov matrix
ergodic which ensures that the process has a unique invariant distribu-
tion);

10Other authors, notably Binmore et al. (1995), employ a stochastic di�erential equation
to approximate the limit of the ultralong run distribution of discrete-time �nite population
model. By taking limits appropriately, they derive a stochastic di�erential equation which
is then used to compute the ultralong run limit of the system as the noise goes to zero
and not to model a system with nonnegligible noise level.

11In 2 X 2 games the risk-dominant equilibrium need not be the Pareto-dominant equi-
librium unless the game is a coordination game.
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4. Derivation of the limiting distribution as the noise goes to zero.

The main result in Young (1993); Kandori et al. (1993)is that in 2 X 2 games,
the risk-dominant equilibrium is selected as the unique steady state.

In general games the risk-dominant equilibria may fail to be Pareto ef-
�cient and the quite robust conclusion from the analysis of stochastic ad-
justment models is that selection dynamics tend to select equilibria that
are relatively resistant to mutations (risk-dominant equilibria) and this may
conict with the criterion of Pareto e�ciency.

This result, however, is partly questioned by Binmore et al. (1995) who
show that, incorporating sources of noise intrinsic to the selection process12

in 2X2 games, the limiting distribution may select the pay-o� dominant
equilibrium.

The authors also derive a link between a continuous time version of the
replicator dynamics and the long-run behaviour of the Markov process they
study by showing that if the population is su�ciently large and the length of
each time period is su�ciently short then the sample path of their model can
be approximated arbitrarily closely by a solution of the replicator dynamics
which incorporates a deterministic noise term. However, in the ultralong
run the replicator is not a good approximation and the ultralong run sta-
tionary distributions are derived form the original Markov process adopting
the methods of Freidlin and Wentzell (1984).

The ultralong run analysis of the models presented is well beyond the
scope of this work and would require a new speci�cation of the model. How-
ever, we think that the e�ect that the initial distribution has on the resulting
equilibrium is an important issue since the equilibria are Pareto-rankable. To
address this issue further we resort to simulations.

In our stylised economy the level of activity is summarised by the average
search e�ort put forth by the population of agents. It is the level of activity
that drives the dynamics. The higher the average e�ort the higher being the
marginal payo� to an increase in the individual search e�ort.

The questions we ask are: Which initial conditions will prompt the econ-
omy to reach the Pareto dominant equilibrium? Will the level of activity in
the economy uctuate along the evolutionary path or will it monotonically
reach its equilibrium value?

From an analytical point of view the fact that the average e�ort will in-
crease or decrease along the evolution path to equilibrium depends not only

12This form of noise di�ers in a fundamental way from the one considered in Kandori
et al. (1993). In this latter, the only source of randomness is represented by mutations.
In Binmore et al. (1995) even in the absence of mutations, the selection process is noisy
since agents need not always adjust their strategy towards the current best reply.
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on its initial value but on the details of the distribution of the population
of players across strategies as well. What emerges from the simulations is
that for a wide set of initial distributions the system will converge to the
equilibrium with an average e�ort above (below) the initial average if the
best reply to it is above (below) it. Moreover the time pro�le of the aver-
age e�ort converges monotonically to its equilibrium value. For some initial
distributions this does not happen. Two e�ects interacts in a complex way
to a�ect the time pattern of the level of activity in the economy. In each
period the strategies closer to the best reply to the current average enjoy
the highest growth rates and the agents tend to group around the best reply.
The distance between this latter and the current average though needs not
to decrease monotonically since the average e�ort is determined not by the
growth rates but by the growth of the strategies in absolute terms. The new
average results infact from the combined e�ect produced by agents increasing
their search e�ort and agents reducing theirs as the population groups around
the current best reply. The exact details of the distribution are brought to
bear and hence it is very di�cult to derive analytical su�cient conditions
for monotonicity of the average population e�ort in the economy to hold.
Nevertheless, for su�ciently uniform initial distributions, i.e. distributions
where the population is not clustered around few strategies, the outcome of
the dynamics can be predicted comparing the initial average e�ort with the
best response to it. If the di�erence between the two is positive, then the sys-
tem converges toward the higher equilibrium, whereas if it is negative, the
economy converges to the low level equilibrium. The simulations strongly
corroborate this intuition; we generated infact over one hundred random ini-
tial distributions and constantly obtained this result. The next picture shows
the evolution of the population average e�ort for randomly generated initial
distributions.

[Fig. 6.4 here]

In cases a), the di�erence between the initial average and the best reply is
positive and the system converges to the high level equilibrium; in cases b)
the di�erence is negative and the low level equilibrium is attained.

To test further our conjecture we ran four hundred additional simulations.
To improve our control over the characteristics of the initial states we adopted
the following procedure to generate the di�erent x0s. We start by noting that
a population state is formally equivalent to the probability mass function
(PMF) of a discrete distribution de�ned over a �nite domain. A very broad
and exible class of such distributions is that of the generalised power series
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Figure 4: The evolution of the population average e�ort for random initial
states
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distributions. The PMF can be written in the form:

Pr[X = x] =
ax�

xP1
x=0 ax�

x
; x = 0; 1; : : : ; � > 0

By choosing � and ax appropriately we can generate all sorts of initial distri-
butions with di�erent average and variance, unimodal or multimodal. The re-
sults obtained seem to reinforce our conjecture. Whenever the initial average
was below (above) the smallest (largest) of the NE, the system converged to
this latter. Figure 5 shows nine initial states generated as generalised power
series distributions and �gure 6 shows the evolution of the average search
e�ort. Again in cases a), the di�erence between the initial average and the
best reply is positive and the system converges to the high level equilibrium
whereas in cases b) the di�erence is negative and the low level equilibrium is
attained.

We also employed a binomial distribution to generate initial states. Mean
and variance are controlled by a single parameter. The shape of the distribu-
tions obtainable is unimodal and in over one hundred simulations, allowing
for di�erent values of the parameter and for di�erent strategy sets we ob-
tained the same result.
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Figure 5: Nine initial bimodal distributions
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Figure 6: The evolution of the population average e�ort for the initial bi-
modal distributions
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6 Conclusions

In this paper we have introduced the class of mean-de�ned supermodular
games and analysed the issues of selection and dynamic stability of the equi-
libria of this type of games under a general class of evolutionary selection
dynamics known as payo� monotonic dynamics.

Two features characterise this class of games: the payo� function is su-
permodular and the payo� to each player depends on his own strategy and
the average of the population play.

Supermodularity of the payo� function implies the existence of strategic
complementarities between players' strategies. These in turn may led to the
existence of multiple Pareto-rankable equilibria and eventually to coordina-
tion failures.

The assumption that the payo� of each player depends on a summary
statistic of the population strategy pro�le and not directly on the pro�le
itself makes this class of games particularly suitable for evolutionary analysis
of N -player games where the usual random matching mechanism cannot be
justi�ed. Evolutionary models generally assume large populations of players
that are randomly matched to play a two-person game. This scenario cannot
be usefully employed to describe situations in which the entire population of
players interacts simultaneously in a N -player game. Models of monopolistic
competition, network games as well as search models of the type presented
in the paper exemplify such instances.

As for the analysis of the Nash equilibria of the mean-de�ned supermodu-
lar games, we have shown that these games share two fundamental properties
of supermodular games. Namely the property of monotonicity of best replies
and the property according to which the greatest and least pure strategy
Nash equilibria are also the greatest and the least element of the set of pure
strategies that survive the process of iterated deletion of strictly dominated
strategies. This same result is presented in Milgrom and Roberts (1990b)
but needs to be proved for this class of games as the payo� to the players
depends on a statistic of the strategy pro�le rather than the pro�le itself.

As for the issues of coordination, equilibrium selection and dynamical
properties of the equilibria for this class of games under payo� monotonic
selection dynamics, the main conclusion is that weak Nash equilibria, both
in pure and mixed strategies, are unstable. The only asymptotically stable
equilibria of the game are symmetric strict equilibria where each player uses
the same strategy. Finally, we extend the results of Samuelson and Zhang
(1992) concerning the long run survival of serially dominated strategies. We
show that the strategies that do not survive the process of iterated deletion
of strictly dominated strategies vanish in the long run. As a corollary to
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this latter result, we show that if the game is dominance solvable then the
dynamics converges from any initial interior state.

In the second part of the paper we present an application of the analy-
sis carried out in the previous sections to a model of decentralised trading
resembling the "coconut economy" of Diamond (1982) using a speci�c type
of payo� monotone dynamics known as replicator dynamics. Agents are en-
dowed each period with one unit of perishable good (coconut) that they have
to trade with another agent before consumption. Agents are scattered around
and a search must be undertaken to �nd a trading partner. The return to
individual search is increasing in the population average search e�ort and the
level of activity in the economy coincides with total consumption which in
turn is increasing in the average level of search activity. This type of economy
may be characterised by coordination failures in that the system may fail to
achieve the Pareto-dominant equilibrium. In our model the potential causes
for such failures are the presence of a random matching mechanism replac-
ing the auctioneer and the bounded rationality of the agents. The dynamic
analysis of such economies is interesting in that it provides, at least partially,
an answer to the two often cited criticisms to this literature on coordination
failures about the static nature of the models and the lack of a selection
mechanism that helps to forecast which equilibrium will be selected. In the
choice of the dynamic process we opted for a particular process known as
replicator dynamics. If the game is dominance solvable, the dynamics con-
verges to the pure strategy Nash equilibrium from any given interior initial
distribution. This result is important in that it rules out the possibility of
limit cycles where the economy perpetually uctuates along states charac-
terised by changing levels of consumption. The weak Nash equilibria are
unstable. This in turn has relevant consequences for the sake of predictions.
If we concede that the deterministic model employed is in fact missing some
aspects of the problem under analysis, robust predictions call for stability
or better asymptotic stability. In addition we show that the only long run
survivor sets (in the sense of Ritzberger and Weibull (1995)) are singletons
and correspond to the strict Nash equilibria of the game. In the presence
of multiple equilibria the dynamics exhibits strong path dependence. For a
large number of initial distributions the convergence towards a high or low
equilibrium can be predicted just by looking at the di�erence between the ini-
tial average population search e�ort and the best reply to it. Whenever this
is positive, the system converges towards the Pareto-dominated equilibrium
characterised by a low level of consumption; when the best reply is larger
than the initial average the system converges to the Pareto-dominant equi-
librium. This result does not carry over to all possible initial distributions
and for these it is not possible to forecast the �nal equilibrium.
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We believe that the framework adopted in this paper is particularly suited
to analyse the dynamics of this type of economies with agents interacting
repetitively and in an uncoordinated fashion. The model presented is simple
and more fundamental questions may be addressed allowing for additional
complications. In a possible extension we might introduce a spatial dimension
to the model so that agents can choose to realise a directed search and return
to the place where they had previously encountered a trading partner. Trade
will cluster in certain locations and a process of endogenous formation of a
market will then emerge.
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