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ABSTRACT. We use a simple Lotka-Volterra model of the disease transmission
process to analyse the dynamic population structure when a vaccine is available
at a constant price through time which gives partial immunity to the disease. In
contrast to earlier results for the full immunity case, we find that there may be
multiple stationary states and instability. In contrast to earlier work which has
only considered policies in steady states, we consider the dynamic effects of different
dynamic vaccination policies on any solution path for the case of publicly subsidised
vaccines. We find that in the partial immunity case a procyclical policy is desirable
but for the full immunity case a countercyclical policy is desirable.

Infectious diseases have been and are undoubtedly economically and socially costly;
e.g. in the UK in the 19th century 30% of deaths were caused by typhoid, tuberculosis
(TB) and typhus; the World Health Organisation [17] estimates now that tuberculosis
causes 3 million deaths and 8 million new infections per annum. Vaccination against
such diseases can either work to give virtually certain immunity immediately following
vaccination or can work to reduce the chance of infection. For example vaccines against
polio, tetanus and diptheria appear to give certain immunity, although as with most
vaccines, the degree of protection falls with time since vaccination. However, vaccination
against cholera or malaria is problematic and vaccination against hepatitis B leaves 10-
15% of middle aged males unprotected [5]. For analytical clarity, in this paper we classify
vaccines as either giving certain and permanent immunity or as providing a reduction in
the chance of infection.

If vaccines are provided in a market system then the individual incentive to purchase
the vaccine is driven by the trade-off between its cost and the better life chances that
vaccination offers. The higher the chance of infection and the greater the cost of being
infected, the greater the willingness. However, to pay for the vaccine. It follows that the
market demand for vaccination is sensitive to the risk of infection which itself is generally
modelled as increasing with the prevalence of the disease in the population. With a
heterogeneous population e.g. in incomes the aggregate demand for the vaccine will
generally be a continuous function of the prevalence of the disease. However, a publicly
provided vaccine will have effects on control of the disease which depend on the form of
the vaccination programme. Is the vaccine offered in unlimited supply at every instant
or is it offered in limited amounts either in time varying or time constant quantities? If
the vaccine offers permanent immunity, is offered free to all and is taken up by all those
at risk, then the disease can be most speedily eliminated. Typically the vaccine cost and
the opportunity cost of public funds prevent this. The question is: with finite resources
to fund vaccination, what time profile of its application is best?

In this paper we analyse the effects of market provided vaccines which offer partial
immunity to the disease through decreasing the chance of infection. In this scenario we
look at the stationary equilibria and also at the dynamics of the population structure.
We also analyse the dynamic effects of dynamic public vaccination policies for both the
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cases of vaccines giving sure, immediate immunity and vaccines giving partial immunity.
Throughout, the dynamic population structure is governed by a variant of the Lotka-
Volterra type predator-prey model.

Geoffard and Philipson [§] give a seminal analysis of the interaction between market
provided vaccination programmes and a Lotka-Volterra type predator prey model of the
population dynamics. Their paper focuses only on steady states in a model where vacci-
nation gives permanent and certain immunity and in this context looks at the limits of
private market solutions as compared with public subsidies for vaccination. They show
that eradication of the disease is unlikely to be achieved either under a market system for
delivering vaccination or under a public subsidy system.

By contrast we look at the behaviour of the population structure along nonstationary
paths, mainly emphasising the case where vaccination changes the chance of subsequent
infection. As we discuss in the sequel, the sort of disease we have in mind is TB where the
effects of vaccination are quite uncertain depending on the nature of the disease and the
social infrastructure'. This view of the uncertainty of the effects of preventive activity
is closer to Geoffard and Philipson [7] although in that paper the emphasis is not on
preventive policy.

The aim of this paper is to extend the steady state policy analysis to allow for dynamic
policy in contexts that include both partial and full immunity; in addition, we explore
how the dynamics of the disease varies with variations in the specification of the disease
transmission process.

In Section 1 we outline the disease model; we use a slightly different demographic
characterisation than Geoffard and Philipson [§] (in particular distinguishing only two
health states) partly to avoid the curse of dimensionality in analysing the dynamics; in
Section 2 we analyse the dynamics of the disease in a market setting; in Section 3 we look
at regulatory solutions to disease control including targeted regulatory action.

The results indicate that when vaccination only offers partial immunity to infection,
a market provided vaccine at a constant price will lead to choices of vaccination by in-
dividuals which may generate an additional stationary state for the population structure
instead of the two stationary states which exist without vaccination. We give an example
which has three stationary points, two of which are saddle points and the third a stable
focus. The global phase space reveals that in this example the population structure will
tend to settle down to either a stable low healthy/low disease level or will involve growth
in both the numbers of healthy and sick.

However, if a dynamic subsidy policy is used to regulate vaccination then we find
that in the case of partial immunity, a procyclical policy, vaccinating at instants when
prevalence is high, is preferable to either a low prevalence policy or a constant vaccination
policy. In the case of vaccination giving permanent immunity to infection and again
considering dynamic subsidy policies, we find that a low prevalence subsidy policy is best.
This result holds both in demographic dynamics used in the bulk of our analysis and in
the demographic dynamics used by Geoflfard and Philipson.

1. THE DISEASE PROCESS
We think of a population Ny of individuals in a given area at instant t. Individuals can
be in one of two health states: susceptible but healthy, actively infected and infectious.
Some epidemiological models distinguish many more states than this e.g. Geoffard and
Philipson [8] allow for four states (susceptible, infected, recovered and out of the system);

HUATLD [9], Weatherall [14], WHO [15],[16].
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in the case of various strains of TB which differ in the time gap between first infection and
becoming actively infected and infectious (so called fast and slow TB), there may be five
states (susceptible, latent slow infected, latent fast infected, active infected, recovered).
The nature of recovery can also be heterogeneous: infected individuals who have recovered
either may have permanent immunity from the disease forming a class of their own or may
immediately become susceptible to a new attack of the disease joining the existing group of
susceptibles?. The population changes through time due to the births of susceptibles (one
cannot be born either a latent or active infected individual; nor as a recovered individual)
and to deaths either from natural old age or from the disease. Historically outbreaks of
disease have generally followed an epidemic pattern. For example a common pattern in
medieval England was for a geographical area to succumb to an outburst of plague over
a period of five months or so, often concentrated at particular times of year, but then the
disease would die away, subsequently breaking out again. To some extent this was due
to the particular parasitic transmission mechanism; but partly it was due to the type of
dynamic interaction seen in the very simplest predator-prey models which we use here.
So a very common paradigm for modelling the disease dynamics is a simple version of the
Lotka-Volterra system which ignores latents and the recovered:

Nt:Xt—F)/t (1)

{ Xy = aX, - B(X:, V) XY, @)
Y= B(X0, V) X,V — wY,

where X; is the stock of susceptibles at time t and Y; is the stock of actively infected
at t. Furthermore, « is the net birth rate of susceptibles (birth rate minus death rate due
to non-disease causes); 3(X;,Y;) is the probability that on meeting an actively infected
person, a susceptible person becomes latently infected; and w is the death rate of the
actively infected whether through the disease or natural causes. Assuming that (o, w) are
constant proportions is a simplification.

A major issue is the interpretation of the infection process 3(X;,Y;)X,Y;. Usually this
is in terms of ((.)Y; giving the probability of a given susceptible becoming infected and
then multiplying this by X; gives the number of newly infected susceptibles at instant ¢:

New infections = Pr (susceptible and infected meet) Pr (infection arising|meeting)X,.

To model this we have to represent the meeting process and then the infection process
arising from any meeting. For the latter the most common assumption is that the chance
of infection out of any meeting between a susceptible and an infected is constant. The main
exception to this is a form of density dependence where (e.g. with a high prevalence of the
disease - high ¥;/X;) individual behaviour may adjust to reduce the chance of infection
in a meeting e.g. by wearing protective clothing or otherwise altering the nature of the
meeting. For the former usually there is a model of social interaction and then, within
that, some view of whether the interaction is between two susceptibles or a susceptible and
an actively infected. It is plausible, under random matching, that the chance of a meeting
being between a susceptible and an actively infected, given that there is a meeting, is
Y;/N;. If the chance of a given susceptible meeting anyone else at all is proportional to
Ny (i.e. a more densely populated region generates a higher number of meetings between
people than a lower density area) then the probability that a given susceptible meets an
infected is indeed Y;. Alternatively, if IV; were constant so that only the structure of the

2Chan-Yeung [3], Comstock [4], IUATLD [9], Weatherall, D. J. et al. [14].
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population but not its size were changing then Y; would be the proportion of infected; with
a randomly mixing population, where each person meets one other person every instant,
this would be the probability of meeting an infected person®. In the sequel we discuss the
robustness of our conclusions to different epidemiological characterisations.

If we adopt any of these assumptions, then 3 is a constant. From these equations it
follows that total population changes according to

Nt:Xt + Yt: aX; —wY; (3)

that is, the difference between the net birth rate of the susceptibles and the combined
deaths of the latent and actively infected individuals. This system has two stationary
points:

X'=Y"=0 (4)

X' =w/8,Y" = a/8 5)

The first corresponds to extinction and the second to a constant population level and
structure. There are no steady growth paths of the system i.e. no paths along which
total population is growing at a constant rate but the population structure is constant.
Essentially this is because the differential equations are not homogeneous of degree one
in the levels of the variables due to the product term X:Y;. Another way of putting
it is that if the population initially doubles in each class (X;,Y;) the number of new
infections quadruples; there is a built in tendency for more populous societies to face
larger fluctuations in the health structure of the population.

As is well known, the latter stationary point (6) has two pure imaginary roots so long
as a > 0 so that there are closed cycles about this stationary point.

Notice that if o < 0 then we lose the centre as a viable stationary state; in this case
the healthy just decay to zero through the combined effects of natural death and infection
by the sick. It is less well known that the origin is locally a saddle point. A typical phase
diagram is shown in Fig. 1.

2. DECENTRALISED CONTROL: MARKET SOLUTIONS

Vaccination is a key preventive device. With market provision, a preventive device is
available at a price p at time £. Such devices may either give permanent immunity to the
disease in which case protected individuals drop out of the susceptible class; or may work
by reducing (3, the risk of infection. Geoffard and Philipson [8] analyse the situation in
which vaccination of a susceptible gives certain and permanent immunity to the disease; in
the absence of regulation there is a private demand for vaccination D(p, Y;) which depends
on the constant price of the vaccine and the number of infected individuals in the economy.
Their basic demographic system includes immune individuals who have been vaccinated
and also a version of recovery in which some of the actively infected develop immunity.
In contrast to our approach, the immune are no longer susceptible to the disease. They
examine the stationary state of the system (unique in their model) with an exogenously
given constant path of prices; they find that their system exhibits local stability of the
nonzero stationary state rather than cycles.

3@eoffard and Philipson [8] treat X¢,Y: as proportions of a varying population through having an
extra nonmodelled class - those out of the system - which is another way of handling the issue.
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Figure 1:

The Geoffard-Philipson model [8] works through preventive action (vaccination) giving
permanent immunity to susceptibles; in many cases this is fairly extreme. For example
TB does not seem to fit this pattern. Two main forms of TB exist: pulmonary TB
and extra-pulmonary TB, the former is most common and is the only infectious form.
In the case of TB, BCG vaccination has only a limited effect on controlling the spread
of infectious TB since, firstly, it prevents the non-infectious extra-pulmonary TB rather
than infectious TB (IUALTLD [9]) and secondly, in developing countries environmental
conditions may prohibit its efficacy (Madras Tuberculosis Institute Bangalore[11]).

So instead we take vaccination to reduce but not eliminate the chance of infection. In
this case for each susceptible there would be a different level of 8 depending on whether
that susceptible has been vaccinated. There are two levels of 3, 85 and 85, (85 > 81).
Individual choice of vaccination or not is based on utility maximisation: each susceptible
individual ¢ has income m; that can be spent on consumption ¢; or on vaccination at
a relative price of p. For the ith susceptible if u(h;,¢;) represents utility with health
state h; (h; is either infection I or susceptibility S) and is assumed strictly concave and
increasing in ¢;, vaccination expected utility of a susceptible ¢ who has constant income
m; and has vaccinated is

BrYu(I,m; —p) + (1 — BrY:)u(S, m; — p) (6)

without vaccination at t or earlier it is

BuYeull,mi) + (1 = B Ye)u(S,mi) (7)

Vaccination costs forgone consumption but gives more favourable odds between the
good and bad state. Susceptible ¢ will vaccinate if he gains expected utility from doing
so; if all susceptibles are very poor (m; < p for all i) then none can afford vaccination
anyway. If p were close to zero then all would vaccinate since it would have a negligible
cost in terms of consumption but would improve the chance of the good state. Also the
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difference in expected utilities between vaccination or not is monotone in p. Hence there
exists a critical price of the vaccine p = P(Y;,m;) which makes ¢ just indifferent between
vaccination or not. At p < P(Y;,m;) ¢ vaccinates and faces (1 ; otherwise he does not
vaccinate and faces 3. Similarly if ¥; = O then no one will vaccinate since there is no
risk of infection (so for p > 0, 3(p,0) = By). Let v(p, Y;) be the proportion of susceptibles
whose income is high enough to choose vaccination. This will be decreasing in p and
increasing in Y;. The average level of 3 is

B, Yy) = Bu(1 = ~(p,Ye) + Brv(p, V) (8)

The number of new infections is then G(p,Y;)X,Y; where 3(p,Y;) is decreasing in Y;
and increasing in p. The population structure evolves according to

{ Xy = aX; — B(pe, Y XoYy ()
Y= B(pe, Y1) XiYi - w

If prices and incomes are constant through time then effectively we can write § =
B(Y:)*. The origin is one stationary state of (9). There will generally be other station-
ary states; If the elasticity of J is globally less than —1 then 3(Y;)Y; is monotonically
decreasing and so there is at most a single nonzero stationary point solving

a=g3p, YY" w=p5(pY" )X

However since at Y = 0, 8(p,Y)Y = 0 whilst at Y = N — 1, 8(p,Y)Y > 0O, it is
unlikely that 3(Y)Y will be decreasing. Otherwise, there may be more than one non-zero
stationary state each solving a = B(p,Y )Y *(yielding Y*) and w = B(p,Y*)X* (which
then gives X*)°. Generally the prevalence dependence of 3 will affect the stability of the
system. If 98/0Y < 0 in the neighbourhood of non-zero stationary state, then locally
the stationary state has at least one direction of stability (the trace of the Jacobian of
the dynamical system evaluated at the nonzero-stationary point is wdln3/3InY < 0).
If locally the elasticity of 3 with respect to Y is less than —1, then locally it also
has a direction of instability and is a saddle (the sign of the determinant is that of
[0In3/0InY +1]). This is in contrast to the Geoffard and Phillipson [8] model® in which
the unique non-zero stationary state is locally stable. Since each individual neglects the
risk of future infection which he imposes on other susceptibles through not vaccinating,

4 Alternatively we could derive the price and prevalence dependence of 3 from a dynamic programming
approach as Geoffard and Philipson [8] do. If vaccination at any t gives a permanent change in risks of
infection then we can interpret the utilities in lifetime terms; from ¢ onwards let

Vi(Ye,v) = BrYeu(I, ms — p) + (1 — BrY)u(S, ms — p) + Ver1(Yer1,v) (10)

Vi(Yt,nv) = By Yeu(l,ms) + (1 - BpYe)u(S, mi) + max{Vi11(Yey1,v), Vi1 (Yeq1,mo)} - (11)

be the value functions of a susceptible who has not vaccinated prior to ¢ and who respectively decides to
either vaccinate V;(Y%,v) or not vaccinate V;(Yz,nv) in t. Here % vaccinates in ¢ if V3 (Yz, v) > Vi(Ye, nv).
This comparison will again give us a critical income level defined in terms of the vaccine price and the
current prevalence, together with expected future prevalences and future economic variables at which a
susceptible is just indifferent between vaccination or not.

5There may be several solutions to the equation o = F(Y)Y. If B(0) > 0 and the elasticity of 3(Y)
with respect to Y < —1 then there is a unique solution since then G(Y)Y is decreasing. It is plausible
that 8(Y)Y has a minimum in which case there are likely to be at least two interior solutions for Y.

61t follows that the dynamic pattern is not robust to the epidemiological model. If for example we
used the Geoffard and Philipson [8] model of demographics we would have
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Figure 2:

the results are not Pareto optimal. Issues of market failure arising from this externality
are discussed in Brito et al. [2].

To illustrate some of the dynamic possibilities with multiple stationary points we
present an example which numerically integrates the nonlinear differential equations; this
means the phase spaces are globally accurate; the linear approximations would just give
us the local dynamics in the vicinity of the different stationary states.

To show this, in (9) we select @ = 0.05, 85 = 0.2, 8, = 0.18y, 7(p,Yz) = ¥; "and
w = 0.05. This has three stationary points at X* = Y* = 0 which is a saddle point,
X* =Y* =0.38 (which has a stationary state level 3(p,Y) = 0.13), which is a convergent
focal point and X* = Y* = 0.73 (which has a stationary state level 3(p, Y *) = 0.07) which
is also a saddle point. The eigenvalues corresponding to the stable focus are —0.13+£0.321;
around the saddle point with X* = Y* positive, the eigenvalues are 0.02, —0.12.

The global view of the phase space for these parameter values is in Fig. 2.

In this example the effect of marketed vaccination is to yield a system with three
stationary states rather than the two stationary states in the basic Lotka-Volterra demo-
graphic system. In the vaccination model, there are asymptotically five types of behaviour
for the population structure. It may tend to the stable focus or converge along the stable
separatrix to the higher saddle point (if the initial conditions are on the stable separa-
trix). It may diverge away from the higher saddle point with both X; and Y; growing
or travel down the vertical axis (the stable separatrix of the origin) or move outwards
from the origin along the horizontal axis (the unstable separatrix of the origin). Which of

-y —(B'Y +8)X
8y AXY (12)

for the Jacobian of the dynamic system. The determinant of this is BQX Y which will generally be
positive.

7Taking B(p,Y) linear in Y is an approximation; the actual form used is consistent with various
relations between Bg, 87, and the locally linear prevalence dependence.
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these events occurs depends on the initial conditions. The effect is that either there will
ultimately be a stable population with a constant structure or total population will be
growing but with the numbers of healthy rising faster than the numbers of sick. In this
last case the system follows an approximately linear path in the X — Y plane.

3. REGULATORY PoLicy
Policy can act either through targeted programmes on cure or prevention of the disease or
indirectly through seeking to raise the level of prosperity of the economy. The historical
evidence is that for some diseases where the risk of infection varies with the general
level of health of susceptibles, raising general economic prosperity may be important
(of course it gives other benefits as well). However, most contemporary interest is in
targeted programmes of prevention either through education (e.g. for sexually transmitted
diseases) or through vaccination. If there is an effective vaccine providing permanent and
sure immunity then providing vaccine free to all, and ensuring that it is taken up by
all, will eliminate the disease as susceptibles will always choose to take a vaccine offered
at zero cost. Doing this may be prohibitively costly in which case the question of the
most effective vaccination policy arises. Geoffard and Philipson [8] consider the effect
on the steady state of their model of a continuous constant price subsidy to the vaccine.
In contrast we examine the dynamic effects of dynamic rules for applying a subsidy on
any solution path. Here, the issue we wish to focus on is the optimal timing of the
vaccine. In the scenarios we envisage above, all susceptibles are medically identical so on
medical grounds there is no reason to distinguish them. However, a given public budget
for vaccination may have quite different effects if it is all spent at once either in a period
with high prevalence giving a shift in the aggregate risk of infection in the period in which
it is administered or in a period with low prevalence or if it is spent at a constant rate

through time.

We continue to assume )
{ Xy =aX, - 0XY, (13)
Yt: BX:Y; —wY;

and think of the partial immunity case as that in which vaccination works to give
a step change in § when it is applied and (similarly to Geoffard and Phillipson [§]) the
permanent immunity case where vaccination works by reducing the number of susceptibles
at any instant where it is applied.

As examples we take three cases:

(1) the vaccine is administered along any path satisfying (13) only in periods of low
prevalence when Y; < (o/w)Xy;

(ii) the vaccine is administered along any path satisfying (13) only in periods of high
prevalence when Y; > (oz/w)th;

(iii) the vaccine is administered at a constant rate independently of prevalence.

3.1. The Partial Immunity Case. With the vaccine giving partial immunity, the
effect is to alter 8. The idea is that susceptibles may either be vaccinated in which case
they face B;, or not in which case the infection risk is 8. If X, and X, are respectively
the numbers of vaccinated and nonvaccinated susceptibles, we can define the average
infection rate 3 by

8As will be clear from the subsequent dynamic analysis, this particular definition of high and low
prevalence is not crucial to the results; what matters is that the degree of prevalence is defined in terms

of Y/X.
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To define an idea of equivalent shifts in 8 we assume there is a fixed lump sum budget
of M and an interest rate of . The budget can either be spent all in one period: if spent
in period ¢, €"*M is available; if spent at a constant rate, then per period M/r can be
spent; if spent at a constant rate, K over the interval [T7,75] e.g. corresponding to a
sequence of periods of high prevalence an amount

(14)

K= (" =) /(T2 — Th)] (15)

is available. Generally 3, is some decreasing function of my, vaccine spending in instant

For given funds continuous vaccination gives a lower effect on 3 at each instant than
intermittent bouts of vaccination at the instants of vaccination. So if we can show that
a given change in @ at instants of vaccination is preferable if 8 is adjusted intermittently
rather than continuously, then we are sure that intermittent is better than continuous
vaccination. Any vaccination policy of this form shifts the nonzero stationary point along
the ray Y = a/wX increasing both X* and Y* by shifting from § to a lower value 3.

To analyse intermittent vaccination consider a "high prevalence” vaccination policy
where vaccination is undertaken whenever Y; > a/wX;. The effect is that, in some parts
of the region where Y; > a/wX;, the gradient field changes when the policy switches on.
In the region defined by a/3 > Y; > a/8 and w/8 < X; < w/ the direction switches
from one of rising Y; and falling X; In the region defined by /3 > ¥; > a/3 and
X < w/p the direction of movement switches from one of falling X; and Y; to one of
falling Y; and rising X;. When w/3 < X, < w/B and Y; > a/3 the direction switches
from increasing Y; and falling X; to one of falling Y; and falling X;. Combining these
changes with the direction of movement in other areas of the phase space gives the final
result of the high prevalence policy (Fig. 3). The effects are that the ray ¥ = a/wX
develops some stability properties; on a path which approaches the ray at a point between
w/B and w/B the policy switches force the path to oscillate in a small neighbourhood of
the ray with the policy continuously being switched on and off. Effectively the policy has
eliminated the epidemic cycle in the original path. However, on a path which approaches
the ray at X; < w/ there may initially be an oscillatory period before the path again
settles down in a small neighbourhood of the ray. So depending on the initial conditions
the high prevalence policy leads to a nearly stationary population structure in the long
run with a ratio a/w of sick.

A constant policy for the same cost will give a constant B with 3 > B > (3. For the same
initial condition the permanent fall in 3 switches the system from a low amplitude cycle
around the original stationary point to a new high amplitude cycle around the new higher
population level stationary point. The policy has actually increased the fluctuations in
the system. Fig. 4 shows a closed cycle in the pre-policy phase together with a closed
cycle in the post-policy phase; if the policy is introduced when the system is at a point
like A, then for ever after the system follows the new closed cycle starting at A.

We could also consider a low prevalence policy; this might be thought sensible if a big
push when the disease is unimportant can actually eliminate it. The idea is to vaccinate
when Y; < a/wX;. Similar consideration of the gradient field shows that this policy will
be destabilising leading to an unstable spiral that is outside both stationary points. Fig.
5 portrays such an unstable path.
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So for the same economic cost the high prevalence policy appears preferable: it elimi-
nates fluctuations leading to a near constant population structure and the system settles
down to a population level that depends on the initial conditions. That is with vacci-
nation working through 8 the procyclical policy affects the whole dynamic path of the
population favourably.

Figure 3:

3.2. The Full Immunity Case. Where the vaccine gives permanent immunity Ge-
offard and Phillipson examine the steady state effect of a public subsidy on the price of a
market provided vaccine. They find that since the steady state prevalence of the disease
is increasing with the price, an increase in the steady state subsidy (and so a decrease
in the price) will have a direct effect in raising steady state demand for the vaccine but,
since it reduces steady state prevalence, an indirect effect in reducing demand via preva-
lence. In our framework a relatively simple way of modelling the permanent immunity
case is to assume that, when vaccination policy is in force, some of the net growth of
susceptibles is diverted into immune individuals i.e. the policy works through reducing
«. Without the policy the net growth of susceptibles is a; with the vaccination policy it
is @ < a. The effect is that when the vaccination programme is active, the system has
a stationary state that is vertically below that corresponding to inactive vaccination (i.e.
Y= &/B < a/B =Y*) as in Fig. 6. When the policy is active the system is following
orbits around the lower stationary state; when inactive it follows orbits around the higher
stationary state.

If we apply this policy in periods of high prevalence, again defined as Y; > a/wX,, the
effect is to create an unstable spiral. Starting from a path with the policy off, as soon as
the ray Y; = a/wX; is reached, the path switches to an orbit around the new stationary
point. The new orbit intersects the a/w ray closer to the origin than the original orbit
thus increasing the amplitude of movement®. On reaching the ray again from above, the

9By defining w(7) = B/wa(at), z(7) = B/cy(at) and using primes to denote differentiation wrt 7, (2)
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policy is turned off and the path switches on to a new orbit about the original stationary
point which lies outside the starting orbit. Continuing in this way produces an asymmetric
unstable spiral. If we look at the phase diagram combining the two switches we get Fig.
7; here we can only see the no vaccination stationary state. The lower stationary state
and orbits close to it and below the ray never occur because the policy is switched off
there.

However, a low prevalence policy will generate quite complex dynamics with two
nonzero stationary states and also the part of the ray ¥ = a/wX will become a re-
gion of attraction so that once in the vicinity of this part of the ray the system oscillates
between the vaccination policy being on and off. Fig. 8 shows simultaneous operations
of the two systems. Note that there is an orbit around the lower vaccination stationary
point that is just tangent to the a/w ray, say where Y = Y *. If the system ever reaches
a point on the ray between ¥ = Y* and Y = a/f then it remains at that point. Again
because orbits around the vaccination stationary state cross the ray closer to the origin
than orbits around the no vaccination stationary state for the same initial conditions,
there is a generic pattern of a stable cycle which will converge to some point in the region
of attraction of the ray. Typically, the low prevalence policy will leave roughly the same
amplitude fluctuations in X; but will pass through a region of values of Y; lower than
without the policy ( Fig. 9).

The low prevalence vaccination policy can also be considered preferable within the
Geoffard and Phillipson demographic structure. For given demographic parameters there
is a unique stable stationary state to the system

{ Xt = — B(Xth)Xth (16)
Y: = B(Xe, Yo) XiYs — wYy

at X* =w/B,Y* = a/w (see Fig. 10). Vaccination works again to reduce o to & so
that in the system with vaccination there is again a unique stable stationary state at the
same level of susceptibles but a lower level of infected. An example of the two systems
together is shown in Fig. 11. If a high prevalence policy is used (vaccinate whenever
Y, > apfX;/ w2) then the system cannot converge to the lower vaccination stationary state
since in an open region about this stationary point the system is following the dynamics of
the no vaccination system. The high prevalence policy system will thus either converge to
the no vaccination stationary state or will follow a closed cycle that includes this stationary
state in its interior (Fig. 12). However, a low prevalence policy gives the opportunity of
converging to the vaccination policy stationary state. Indeed paths must converge to one
of the two stationary states since both dynamic systems are stable and trajectories always
diminish in amplitude (they “point inwards”). If eventually a trajectory enters a with
vaccination phase that keeps the path below the ray Y; = a8X;/w?, then the dynamics

becomes w'(7) = w(7)(1 — 2z(7)) and z'(7) = (w/a)z(7)(w(7T) — 1). This system has an interior stationary
point at w* = 2* = 1. For any initial condition, the equation for the closed orbit in phase space is
w — In(w) + a/w(z — In(z)) = C where C is a constant determined by initial conditions. High prevalence
is defined by z > w. On any given orbit, the two points of the orbit that are on the 45° line are the roots
of w—In(w) = wC/(a+w). Now take two systems: the no vaccination system with o and the vaccination
system with & < a. Select an arbitrary orbit from the no vaccination system and find the higher root
where this orbit crosses the 45° line; say at wo. At wo start travelling along the orbit of the vaccination
system; this new orbit will cross the 45° line at points wy which satisfy [w1 — In(w1)][1 + &/w] =C

= [wo — In(wo)][1 + a/w].

As & < o and w — In(w) is a convex function with a minimum, the two roots in the vaccination system
are each below the corresponding root in the no vaccination system.
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of the vaccination system are in force at every instant and so the system converges to
the stationary state of the vaccination system. Otherwise, the path will converge to the
no vaccination stationary state (Fig. 13). Thus with the demographic dynamics of (16)
the low prevalence policy gives preferable in that there is no risk of a closed cycle and a
positive chance of attaining the with vaccination stationary state with a lower prevalence
of the disease.
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We conclude that generally the emphasis on procyclical vaccination policy has desirable
effects when the vaccination does not give permanent immunity but that countercyclical
policy is better if the vaccine does give permanent immunity, in both of the demographic
systems considered. This is also in contrast to Geoffard and Phillipson’s steady state anal-
ysis. Obviously the desirability of any of these policies also depends on the opportunity
cost of the public funds.

4. CONCLUSIONS
We use a similar demographic structure to that of Geoffard-Phillipson [8] and start by
analysing the stationary states and dynamic paths of market provided vaccines that offer
a reduction in the chance of infection from the disease. The economic incentive for the
individual to take vaccination is similar to that of the permanent immunity case analysed
by Geoffard-Phillipson. But in the partial immunity case we find that there may be more
stationary states and that the "extra” stationary state is locally a saddlepoint. This is in
addition to the stationary states of extinction and of a low level of the population which,
like Geoffard-Phillipson, gives a stable focus. The effect is that in more populous societies
with a fair proportion of infection the population may grow, with both the healthy and
sick groups growing. This can also happen if initially there is a low population with a
high proportion of infected and infectious individuals. We conclude that in our framework
vaccines offering partial immunity and provided through a market system can control the
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Figure 13:

disease sufliciently to prevent extinction but have elements of instability. The dynamic
pattern is more complex than in the case of vaccines offering permanent immunity.

When vaccines are publicly provided through possibly time varying policies we find
that the effects of different policies varies a lot with the form of the vaccine. Firstly, we
compare alternative policies in the context of vaccination that gives partial immunity. We
find that if the criterion function depends mainly on control of the absolute number of
infected or on the system being stable and not exhibiting epidemics, then a high prevalence
policy (i.e. vaccinate when prevalence is high) is generally more efficient than vaccination
at a steady rate which is more efficient in turn than vaccination when prevalence of the
disease is low. Secondly, in the full immunity case where vaccination works to control
the net growth rate of the susceptible population, we find that a high prevalence policy
generates instability whereas it is now the low prevalence policy that leads to reduced
fluctuations in the population structure. This conclusion extends to the demographic
dynamics used by Geoffard and Phillipson [8].

Much of the earlier epidemiological literature uses predator-prey type models; these
are mechanistic but by highlighting crucial steps in the chain of infection they allow us
to focus on points at which the disease can be controlled. Vaccination is obviously rele-
vant but the way in which it affects the disease process depends on whether the vaccine
gives partial or full immunity. There is also the question of whether intervention policy
is necessary to ensure eflicient vaccination policy, and if so what form this policy should
take. Some reasons for intervention are to correct the dynamic externalities between indi-
viduals (especially with infectious disease the individual is motivated by his own chances
of infection and the cost of changing this; he ignores the costs on others in the future
if he becomes infected); and also to correct for distributional considerations (with many
market provided vaccines there is a body of empirical evidence that in the early stages
of vaccination the cost of the vaccine is so high that only high percentiles of the income
distribution use it). There are also potential monopoly supply problems. Of course vac-
cination is not the only means of disease control; historically, segregation/quarantine and
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also the effects of economic growth on the social infrastructure have been important. In
a related paper [6], we look at the interaction between economic growth and the health
structure of the population.
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