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Abstract

Basing insurance prices on the results of an imperfect screening test
to identify risk types can reduce or increase aggregate discrimination
across insureds. We present a powerful and general new framework of
analysis to examine this issue, drawing upon recent work which uses
decomposable inequality indices to measure vertical and horizontal in-
equity in taxation. We find that, whilst improved test performance
inevitably reduces vertical discrimination (in the average prices faced
by different risk types), even very accurate tests can lead to substan-
tial horizontal discrimination (within risk types) and enhanced overall
discrimination. These conclusions are shown to be robust to a range of
different value judgements about how to aggregate individual discrim-
inatory effects and to be particularly relevant to the case of genetic
screening.
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1 Introduction

There is substantial debate about the fairness of insurance companies using
results from genetic screening tests to determine the price of insurance. On
the one hand are those who feel individuals should not be charged different
rates for health, life or disability insurance on the basis of unalterable and
inherited genes!, while others note that insurers should not be required to
carry substantially higher risks at what would effectively be subsidized rates.
If one adopts a standard economic view of price discrimination, it may seem
clear that prices should reflect differences in expected costs of insureds. For
example, consider the following standard definition of price discrimination:

“Discrimination may be said to occur in a market where individ-
uals face terms of trade that are determined by personal charac-
teristics which do not appear directly relevant to the transaction.”

(our italics)... Mueser, (1989, p. 856)

Since insurance prices are based on actuarial principles the following def-
inition seems natural:

“An insurance rate structure will be considered to be unfairly
discriminatory .... if, allowing for practical limitations, there are
premium differences that do not correspond to expected losses
and average expenses or if there are expected average cost differ-
ences that are not reflected in premium differences”.

(our italics)... Williams (1969, pp. 211-212)

Thus, it might seem that the use of genetic testing, which provides finer
information on expected cost differences for providing insurance to different
individuals, would be clearly justified on the grounds of reducing unfair price
discrimination.

We will argue in this paper that such a conclusion is not obvious if one
considers carefully how to measure the impact on discrimination from using
imperfect information to classify insureds. By adapting standard indices of

IFor a breadth of views on this controversial issue, see Hook (1992), Lapham (1996),
Lowden (1992), Murray (1992), Pokorski (1995), van Leeuwen and Hertogh (1992) and the
background statement on genetic testing and insurance by the ASHG Ad Hoc Committee
on Genetic Testing/Insurance Issues (1995).



inequality to measure the dispersion in price-cost differentials and applying
recent concepts from the literature on vertical and horizontal equity within
taxation,? we show that an improvement in the quality of information used
to assign individuals to risk classes does not necessarily reduce the aggregate
amount of discrimination. If one presumes that the elemental measure of the
degree of discrimination resulting from charging a price different from (ex-
pected) cost should be convex in the price/cost ratio, then a more informative
signal of risk type may increase the aggregate amount of price discrimination.

The essence of the analysis in this paper stems from the fact that, al-
though using a more informative (yet not perfect) signal to assign individuals
to their true risk classes improves the accuracy of the assignments, it also
means that those who are misclassified face a greater price-cost differential in
insurance. Average price differences between different risk classes better re-
flect actual expected cost differences when a more informative signal is used.
However, since a more informative signal leads to a greater price differen-
tial between risk classes, those individuals who are assigned to inappropriate
risk classes face a higher degree of price discrimination than they would if a
less informative signal were used. There is some previous research that has
addressed the relationship between imperfect classification and price discrim-
ination.®> Our contribution to this research stems from the way we separate
horizontal and vertical components of fairness and treat more explicitly the
issue of how to aggregate over individuals to obtain an overall measure of
price discrimination.

2 The Anatomy of Price Discrimination: A
General Model

First we present our general characterization for measuring and decomposing
the extent of price discrimination under imperfect categorization. In the
following sections we will apply this general theory to the particular case of
a genetic screening test for a single disease gene.

According to our basic concept of price discrimination, as outlined in the
introduction of the paper, the elemental measure of price discrimination faced
by an individual of a given risk type is founded on the relationship between

2In particular, see Lambert and Ramos (1997).
3For example, see Schmalensee (1984) and Tryfos (1987).



the price that person is charged and the expected cost of coverage the person
imposes on the insurer. Let C; be the expected cost to the insurance company
from insuring individuals of risk type i. In particular, this will reflect the
cost of standard health care for an individual and will be higher for those
who possess a particular disease gene. Let test outcomes be indexed by j
and let P;; be the prices charged to persons whose true type is ¢« and who
receive test result j. We will assume a competitive insurance market in which
firms charge actuarially fair prices conditional on the information available.*
Thus, summing over individuals of each risk type i as they are assigned to
each risk category j, the following overall constraint is ensured by actuarial
fairness of premiums across test outcomes:

SR, - NG g

where NN; is the number of persons of type 7 in the population. In order that
total discrimination (henceforth 7'D) be zero, each person should be charged
her risk-type specific price, so that

Horizontal discrimination (henceforth H D) occurs if like individuals are treated
differently. For horizontal discrimination to be zero, we require that

HD =0: P;; be independent of j, Vi (3)

Vertical discrimination (henceforth V D) occurs between groups if the aver-
age price charged to members of a particular risk type ¢ deviates from the
expected cost of insuring members of that group. For vertical discrimination
to be zero, we require that

J

This says that members of each risk type pay premiums which, in total, cover
the cost of providing their risk group with insurance.

Our elemental measure of price discrimination is the extent to which
price differs from expected cost to the insurer in ratio form. Thus we use the

4We also implicitly assume no administrative costs. However, loading factors could be
included in the pricing equations without loss of generality.
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variable r;; = P;;/C; to capture the extent of price discrimination when an
individual of type ¢ is assigned to risk category j and charged the relevant
price. Under actuarially fair risk-type specific pricing, we have r;; = 1, Vi, Vj.
This is the condition for zero total price discrimination. Our equations (1)
to (4) above can now be rewritten as follows:

D2 ri/Ni— 17 Ci=0 (5)

i

TDZOI’I“ijzl,VZ.,Vj (6)
HD = 0: r;; independent of j,Vi (7)
J

The variable r;; is the ratio of price to expected cost to the insurer for
an individual who is of risk type ¢ with test result j. This is a sensible
value in terms of which to measure the extent to which an individual is
assessed a fair or nondiscriminatory price.” However, it is less clear how
one ought to aggregate over individuals to determine an overall measure of
price discrimination. Taking an intuition from the measurement of income
inequality, one may wish to apply increasing weight to greater differences in
this ratio.® In general terms then, defining r;; as the vector of all r;; values
for all individuals in the population, we can aggregate the extent to which
the P;;/C; values vary (from 1) by using an inequality index I[r;;] which is
convex in the arguments r;;.

Let r;; | ¢ represent the vector of price/cost ratios faced by individuals
of a given type but assigned (possibly) to different risk categories. So, for
example, if there were five individuals of a given risk type (say type #1),
with three of them assigned to risk category one and the remaining two
assigned to risk category two, then the vector r;; | ¢,¢ = 1, would be the

5One could use the difference P;; — C; as an individual measure of price discrimination.
However, this would imply, for example, that an individual charged $10 more than the cost
of providing him with either an automobile or a litre of milk would feel equally aggrieved
or discriminated against in each case, which seems unlikely. Such an approach is used by
Schmalensee (1984).

6That is, the degree of discrimination created by a person facing a price which exceeds
expected cost by 20% should be deemed worse by a factor somewhat greater than two
than the degree of discrimination created by a person who faces a price which exceeds
expected cost by 10%.



vector (ri1,711, 711,712, '12). Furthermore, let > Tij /N; be the vector formed
by averaging price/cost ratios for a given risk type i over the various risk
categories to which they are assigned. This vector will then be composed of
the average price-cost ratios for each risk type. Thus, following the intuition
from the inequality measurement literature, it is natural to define total and
vertical price discrimination as

TD = I[ry)] (9)
and
VD=1 [Z r; /Nz-] (10)
J
respectively. Horizontal discrimination locally (within type 7) is defined as
HD; = I[r;; | ] (11)
and horizontal discrimination globally as

HD = w,HD, (12)

where wj; is the proportion of the population which is of type i (w; = N;/N
where N =3, V;).

The natural inequality indices I[-] to use in such an analysis come from the
so-called generalized entropy (GE) family, because of their decomposability
properties (Bourguignon (1979), Cowell (1980), Shorrocks (1980, 1984)). In
fact these - and monotonic transformations of them - are the only indices of
relative inequality to enjoy a ‘subgroup consistency’ property, according to
which overall inequality necessarily falls if it does so in a subgroup (Shorrocks
(1984)), and this will be an essential property for our analysis. All such
transformations satisfy the principle of tranfers and scale invariance. The
GE family itself, uniquely, has the decomposability property according to
which overall inequality can be decomposed additively into between-groups
inequality and a weighted sum of within-group inequalities. The weights are
independent of group income levels, or price/cost ratios in our case, only in
the case of the mean logarithmic deviation. First, however, we argue that all
of the above mentioned properties of an inequality measure are desirable for
a measure of price discrimination.

The principle of transfers requires that, for any pair of values u, v where
u < v, if u (the lower value) is reduced by some amount while v (the higher
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value) is increased by an equal amount, then the index I[-] must increase.”

This is an intuitively pleasing property when measuring the dispersion of
price/cost ratios. Scale invariance requires that the relative degree of dis-
persion in price/cost ratios is not changed if one multiplies the entries of
the vector by any postive constant. This implies, for example, that if the
price faced by all individuals were to rise by the same percent, the aggregate
relative dispersion in price/cost ratios would remain unchanged.® Subgroup
consistency would record a higher total discrimination if, hypothetically, for
one type the degree of discrimination were increased and no change were
made elsewhere.

The advantage of full decomposability is that it permits an additional
subdivision of overall discrimination into vertical and aggregate (global) hor-
izontal components, the latter itself a weighted sum of local horizontal dis-
criminations. To see this, just note that inequality in the vector r;; used to
measure discrimination is made up of the inequalities in the vectors r;; | ¢
and ), ry;/N; , when the groups are defined by the index ¢, and that the
between groups contribution is defined by inequality in the distribution of
within-group averages. For the GE family, then, a decomposition of total
discrimination of the form T'D = V D+ Y, 0, HD; is achieved, where the set
of 0; values are aggregation weights. We state these results formally below.”

Theorem 1 A continuous inequality measure I[r;;| satisfies the principle of
transfers, scale invariance and decomposability, if and only if it is a member
of the generalized entropy family; i.e.,

Ml = (=) (5) [ZZT” ) 1]

for some a € (—o0,+00),a # 1,0 (see on for other formulae for a = 1,0).
The formulae for decomposing the measures into horizontal and vertical com-

"For example, the pair (r1,72) = (1.3, 1.7) should be deemed overall less discriminatory
than the pair (r1,72) = (1.2,1.8).

8Thus, for example, charging every individual an equal multiplicative loading would
leave overall discrimination unchanged. Alternatively, one could remove any loading fac-
tors from the price and consider discrimination in terms of the relationship between the
pure premium and the actuarial cost of the indemnities.

9For proofs see Bourguignon (1979), Cowell (1980), and Shorrocks (1980, 1984). Since
prices are actuarially fair the overall mean of the 7;;’s is 1; otherwise, one should divide
7;; by its mean in the formulae in Theorem 1.
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ponents is TD =V D + HD where

VD= 18 s/N) = () [S 1]

o? — o

HD; = Ifry; | i] = (a21_a> (%) [Zr;; - 1] Vi
HD = S (uf )0} D,

where T; is the average price/cost ratio faced by individuals of risk type 1,

w; = % and v; = ﬁ”ﬂj In the case of a = 1 the functional form for
i 2

I[r;;] becomes
1

)= (5) S5 (3

and aggregation for HD is performed using population weights (w;). In the
case of o =0 the functional form for I[r;;] becomes

I[r;;] = (%) > rigIn(ri;)

i

and aggregation for HD is performed using the weights v; (i.e., the average
rate of the price/cost ratios within each group).'’

Aggregation using population weights is perhaps the most appealing on
intuitive grounds. However, by insisting on such a weighting scheme, along
with the other requirements mentioned in the theorem, we effectively adopt
the logarithmic function as our particular normative standard for compar-
ing deviations of price/cost ratios among individuals. By admitting weights
which are not the population weights, we allow ourselves a wider range of
relative sensitivities concerning the impact of deviations of price/cost ratios
on our aggregate assessment of price discrimination. In particular, a choice of

10Tf o = 1, the inequality measure is often referred to as the mean logarithmic deviation
(MLD) while if a = 0, it is often referred to as the Theil entropy measure. In both cases,
the method of computing HD;, HD, and VD are the same as for the general case, just
making the substitution of the appropriate function. The case a = 2 provides an index
which is ordinally equivalent to the coefficient of variation as the measure of inequality.



a < 2 places more emphasis on lower values of price/cost ratios while o > 2
places more emphasis on higher values of price/cost ratios.!! When mea-
suring the overall inequality of incomes it is natural to place more emphasis
on lower incomes. However, it is perhaps more compelling in the present
context to express increasing concern with higher price/cost ratios since the
higher is the ratio r;; = P;;/C;, the greater is the degree of unfavourable price
discrimination. We will explore this issue in Section 6.

3 An Application to Genetic Testing

Consider the implications of genetic testing for a simple, single gene disorder.
We will model a stylized view of the relationship between genes and a disease,
or risk of a person incurring the disease, which applies in a strict sense to
only a few diseases.'?> However, expanding the perspective on the relationship
between genes and susceptibility to disease to better reflect the reality of
many diseases will only strengthen our argument; we discuss this aspect
later in the paper.

Let ¢« = h, [ indicate the true risk type of a person, with a person of type h
(high risk) possessing the disease gene and a person of type [ (low risk) having
the “normal or healthy” gene. Let j = p,n denote the test result: p for a
positive result and n for a negative result. A person who tests positive for the
gene is placed into the high risk category and charged price P, and a person
who tests negative is placed into the low risk category and charged price P,.
We presume that the expected cost imposed on an insurer by a person of risk
type i is C;, with C), > C}, and so with actuarially fair pricing based on test
results we have P, > P,. Imperfect testing (i.e., the presence of false negative
and false positive test results) implies C}, > P, > P,, > C;. Thus, we need to
consider four situations for individuals: (i) high risk types who test positive
and face price/cost ratio P,/C}, ii) high risk types who test (false) negative
and face price/cost ratio B, /C}, iii) low risk types who test (false) positive
and face price/cost ratio P,/C, and iv) low risk types who test negative and

1 For more discussion on this and other properties of this family of inequality measures,
see Jenkins (1991).

12Huntington’s Chorea is a disease which fits this stylized view very well. If an individual
possesses the “Huntington’s gene” then it is effectively certain that person will eventually
succumb to the disease. Many diseases, however, are multifactoral in nature in that the
risk of incurring the disease depends on many environmental factors and possibly other
genes as well.



face price/cost ratio B,/C;, where P,/C; > B,/C, > 1 > P,/C}y, > P, /C).
Recall that zero price discrimination would require P;/C; = 1 for each i and
J.

If an individual possesses the disease gene then her probability of incurring
the disease in the insurance period is higher than it otherwise would be. For
now, we presume that the only determinant of the disease, given current
knowledge, is whether the individual possesses the gene or not. A genetic
test provides imperfect information. The degree of infomativeness of the test
can be summarized by the false positive and false negative rates inherent
in the test. The higher either the false positive or false negative rate, the
less is the information value of the test. The following variables describe the
relevant parameters in the population and for the genetic test:

€fn , €fp are the rates of false negatives and positives, respectively, asso-
ciated with the test;

7;; is the probability that a person of risk type ¢ = h, [ would receive test
result 7 = p, n;

7% is the probability that a person who receives test result j = p,n is of
risk type i = h, ;'3

qn,q are the proportions of the population that are of risk types h,l
respectively.

It is presumed that high risk types impose higher average or expected
costs on the insurance company than do low risk types. Depending on the
disease, this cost differential could exist for one or all of the areas of health,
life and disability insurance. We will assume, for the sake of discussion, that
the application concerns health insurance.

As noted earlier, we assume that the insurance industry is competitive
and that insurers are risk neutral: they price according to the actuarial costs
of providing insurance.

Thus, we have the following relationships among these variables:

7Tph:1_5fn, 7Tnh:5fn, 7'('1,‘,128]0},7 7Tnl:1_5fp (13)

and since the 7’s are the complementary probabilities of the 7;;’s, we can

13Note that m;; = Pr(j | i), the probability that a person receives test result j given
that she is of risk type ¢, while 7% = Pr(¢ | j), the probability that an individual is of risk
type ¢ given that she has received test result j.
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use Bayes’ theorem to derive:

L pp—L (14)
ArTph + QT

ﬂ_hn _ Qhﬂ—nh (15)
AnTnh + QT

7Tlp = —anpl (16)
AnTph + QTpl

7Tl’n, _ QiTni (17)

GnhTnh + QiTy

In generating our pricing equations we assume all individuals purchase
the same amount of insurance regardless of whether genetic testing is used
in setting prices. If individuals have better information concerning their
risk type than do insurers, then one would expect adverse selection to arise,
with high risk types purchasing more insurance than low risk types.'* For
now, we assume all individuals purchase full insurance coverage regardless of
their information set and price they face. In a pooling equilibrium, in which
individuals with different information sets facing the same price purchase
different amounts of insurance, the same qualitative aspects of our results
would still apply. We return to this issue in Section 6 also. Under the
condition of equal insurance purchases, the actuarially fair price of insurance
with no ratemaking using results from genetic testing will be Py where

Py = ¢.Ch + qC; (18)

If genetic testing prevails and insurers are allowed to charge prices ac-
cording to test results, then (pooled) actuarially fair pricing leads to

P, = 7""C), + 7' C, (19)

P, = "C), + n'"C, (20)

where P, and P, are the prices for those who test positive and negative
respectively.

1n such circumstances differential insurance purchases by risk type are predicted under
models with both linear and nonlinear pricing. For examples of the former, see Villeneuve
(1996) and Hoy and Polborn (1998), while for examples of the latter, see Rothschild and
Stiglitz (1976)

11



To examine the issue of vertical price discrimination we need to determine
the average price faced by individuals of each risk type, which includes both
individuals who are properly classified and those who are not. The average
prices faced by individuals of risk types i = h,l ,P;, are given in the two
equations below:

Py, = mpn By + moun P (21)

]Dl = 7Tple + 7Tann (22)

Turning to the measurement of discrimination, for the mean logarithmic
deviation (henceforth MLD), which is the case of & = 1 in Theorem 1, total
discrimination (or inequality in price/cost ratios) is:

TD = In(E[r]) — E[ln(r)] (23)
where r refers to a generic price/cost ratio and expectations are taken over
the entire population. Since the joint probability that a person is of risk type
i (i = h,l) and assigned to risk category j (i.e., receives test result j = p,n)
is g; - mj;, we have

E[r] = qaTpnThp + GhTrbThn + QT + QT (24)

and
Eln(r)] = gnmpn In(rap) + qnmnn (1) + @ In(riy) + @ In(ry,)  (25)

Vertical discrimination measures the extent to which the average price to
cost ratio varies between groups:

VD =1n E[f] — E[ln(7)] (26)
where 7; is the average price/cost ratio for individuals of type i. We have
P, P
BT = q— — 27
il = a7 + 1)
and . o
P P
Bln()] = avtn (1) +an (7 (28)
Horizontal discrimination for risk type i is the amount of discrimination
for that population subgroup; one measures it just as one measures total
discrimination:

HD; =In(E[r;]) — E[ln(r;)],i = h,l (29)

12



where r; is the price faced by risk type i individuals (depending on which
risk category they are assigned to), hence:

E[’I“@] :ijé—i—ﬂ'm'a,lzh,l (30)
and P P
Eln(r)] = 7 In (ﬁ) +mln (ﬁ) i=hl (31)

Globally, horizontal discrimination is the population weighted average of
horizontal discrimination within each risk group:

HD = qhHDh + quDl (32)
From Theorem 1 we know that
TD=VD+ HD (33)

We are interested to explore how all components of total discrimination
(i.e., VD, HD and its constituents H D), and H D), as well as the total itself,
are affected by changing the quality of the screening test. We do this in the
next section, where, first, we show that for any of the family of measures
that appear in Theorem 1, a higher quality test (i.e., a test with a lower false
positive and/or false negative rate) always reduces vertical discrimination.
Then we examine the question of the effect of the quality of the test on
horizontal discrimination, which is more complex.

For the other measures of the GE family specified in Theorem 1, expres-
sions corresponding to (23), (26) and (29) (for a # 1) generate T D, V D and
the HD;,i = h,l whilst (32) needs modified weights, and then (33) again
holds. The same questions as for the MLD can be explored in this more
general context, concerning the effect of test quality changes.

4 Test Quality and Price Discrimination

From equations (19) through (22) it is straightforward to see that Cj, > P, >
P, > C;. That is, on average high risk types pay a price which is less than
the expected cost they impose on the insurer but more than do low risk types
who in turn pay a price which is greater than the price they impose on the

insurer. So vertical discrimination occurs due to the fact that % < 1 and

13



B
C
an increase in P, and a decrease in P, then vertical discrimination will be
reduced for any of the inequality measures with properties as described in
Theorem 1.'> To show that this is indeed the case, we need to investigate
how the values of the probabilities 7 and 7;; and the prices P, and P, are
affected by changes in the false positive and false negative rates €y, and .
From equation (13) the following are obvious:

> 1. If a higher quality test (i.e., lower value of €, and/or e,) leads to

Ompn % B O Omp . Omy  Omp  Ompn  Ompp 0
aﬁfn_aéffp_ 7a€fn _aéffp_ ’aafn_aafn_ (‘%fp N aéffp N
(34)

Using these results and equations (14) through (17), a little algebra gives
the following comparative statics results for the complementary probabilities
7'd (actual values of the derivatives appear in the Appendix):

o or o orln orhr grhr onlr orlp
) ) ) < 0; b ) )
aafn aéffp aéffn aéffp aéffn aéffp c%fn aéffp

>0 (35)

The comparative statics results for the effects of changes of the false pos-
titive and false negative rates on the prices paid by those who test positive
and negative for the disease gene can also be derived. Again, see the Ap-
pendix for the values of these partial derivatives. These results are required
to understand the effects of changes in the accuracy of the screening test on
average prices paid by memebers of each risk type, but also they will be of
use later in the paper when we consider horizontal discrimimination:

oF, 0B, _, 9P, 9P,

0 36
&sfn’&sfp ’85fn’8sfp> ( )

These results indicate that a test with a higher rate of false negatives
leads to (i) an increase in the price paid by those who test negative, since
that group will have a higher proportion of individuals who are actually high
risk types, and (ii) a decrease in the price paid by those who do test positive
since more individuals who are high risk types are in fact being placed in the
other category (i.e., the “negative” category).'® Also, a test with a higher

5That is, if a lower value of €4, and/or €, leads to an increase in P, and a decrease

in P, then the dispersion in the values of (%’", %’) falls unambiguously.

P

16This latter result, 63—61’— < 0, in fact requires that there exist low risk types among
fn

14



rate of false positives leads to (i) a decrease in the price paid by those who
test positive, since that group will have a higher proportion of individuals
who are actually low risk types, and (ii) an increase in the price paid by those
who test negative since more individuals who are low risk types are in fact
being placed in the other category (i.e., the “positive” category).!”

The relationships between the rates of false negatives and false positives
and the average price paid by individuals of a given risk type, however, are
less clear intuitively. Consider, for example, the impact of an increased rate
of false negatives on the average price paid by high risk types. Since P, > P,,
the fact that more h-types are assigned to the “negative category” and fewer
to the “positive category” implies a reduction in the average price paid by
h-types. Similarly, an increased rate of false positives implies a reduction in
the average price paid by those who are assigned to the “positive category”.
However, there is also an increase in the price of insurance paid by those
in the “negative category” and this, in conjunction with the fact that the
likelihood of being assigned to this category is higher, has an opposite effect
on P,.

It turns out, though, that the overall effect of an increase in the rate
of false negatives is a reduction in the average price of insurance paid by
high risk types, which implies a greater degree of price discrimination for
this group. Similar results apply with respect to the relationships between
the average price paid by individuals of either risk group and the rates of
false positives and negatives. All of these results are stated in the following
theorem. Due to the amount of algebra required, they are proved in the
Appendix.

Theorem 2 A more accurate screening test reduces the average price paid
by members of the low risk group and increases the average price paid by
members of the high risk group, thus reducing the overall degree of vertical
price discrimination.

We now turn our attention to the relationship between the accuracy of the
screening test and the degree of horizontal discrimination. If no screening

those who test positive (i.e., mp > 0, see the Appendix) since otherwise an increased false
negative rate would just mean fewer h-types in the group testing positive but not a smaller
fraction of h-types in the group that tests positive, and then P, would not change.

17As in the previous footnote, a caveat is required here: gg—]jf; < 0 requires that there

are high risk types among those who test negative (w,, > 0).
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test or equivalently a completely uninformative one is used, then all indi-
viduals are treated the same and so there is no horizontal discrimination.
Alternatively, if a perfectly informative screening test is available and used
for pricing insurance, then individuals of any risk type 7 are charged the same
price (i.e., their risk-type specific actuarially fair price, P, = C;) and so in
this case again there is no horizontal discrimination. Hence, in between, any
imperfect screening test leads to some horizontal discrimination even if the
test is almost perfectly accurate. An improvement in the accuracy of an im-
perfect screening test will in some cases increase and in other cases decrease
the degree of horizontal discrimination. The effects of increased accuracy of
a screening test on the components affecting the degree of horizontal dis-
crimination are multifaceted and so, not surprisingly, the overall directional
effect on HD cannot be predicted unambiguously.

Consider, for example, the low risk types. Some are misclassified (i.e.,
receive false positive tests) and pay the price P,, while others are properly
classified (i.e., receive true negatives) and pay the price P, ; the range of price-
cost ratios for this group is (ry,,ry,) = (g—';, %) Increasing the accuracy of
the test leads to an increase in P, and a decrease in P,, widening this range,
implying greater inequality or price discrimination for this group. However,
this increase in accuracy also reduces the fraction of [-types who pay price
P, and increases the fraction who pay price F, and reduces the average price

to cost ratio for this group (i.e., %) too. Thus, the net result of an increase
in the accurancy of the test can either increase or decrease horizontal equity
for the low risk group. Similar arguments apply to the high risk group. Our
simulations in the next section confirm this and provide us with insight on
how the accuracy of a screening test is related to the degree of horizontal and
overall discrimination. Of particular interest is the relationship between pa-
rameter values, which should reflect the reality of genetic testing and genetic
diseases, and the effect of changing the parameter «, which reflects one’s
values about the degree of horizontal discrimination for the various groups
of individuals in society.

16



5 Simulation Results for Changes in Test Ac-
curacy

In our simulations we consider a number of different measures of discrimina-
tion based on the entropy family presented in sections 2 and 3 of this paper.
But first we further develop some intuition concerning the relationship be-
tween the amount of horizontal discrimination and the accuracy of genetic
tests.

Consider the situation of low risk types facing an imperfect screening
test. The degree of horizontal discrimination for [-types is represented by
the inequality in their price-cost ratios as follows:

P.[l] P,
=1 (P ) — 1)
The arrows indicate the direction of the change in price or price-cost ratios
resulting from an increase in the degree of accuracy of a screening test. This
results in increased dispersion in prices paid by [-types who are properly clas-
sified versus those who are misclassified. This aspect of increased accuracy
of a test that increases horizontal discrimination. One must remember, how-
ever, that the proportion of those [-types who are misclassified falls, while the
proportion of properly classified [-types rises, with increased test accuracy
(i.e., mpy falls while 7, rises). In the limit, as the test becomes perfectly accu-
rate m,; — 0 and 7m,; — 1 and horizontal discrimination for [-types vanishes
altogether.
A similar analysis applies to the high risk types, with:

HD, =1 <Pg[u, Pgm> = I(runll], 72 [1])

As the accuracy of a test improves, the proportion of those h-types who are

mis-classified falls, while the proportion properly classified rises, (i.e., T,

falls while 7, rises) and in the limit, as the test becomes perfectly accurate

Tnp — 0 and 7wy, — 1 and so horizontal discrimination for h-types vanishes.
Overall horizontal price discrimination is

HD = qhHDh+quDl

By noting the relative values of the price-cost ratios for both types, we can
better understand the overall implications for horizontal price discrimination

17



as it relates to the accuracy of the test and the choice of measure I(-); that
is:

Thn[“ < Thp[ﬂ < T [H < Tlp[ﬂ

Again, the arrows indicate the direction of changes resulting from a more
accurate test. A given Mendelian or purely genetic disease tends to afflict a
very small fraction of the population and so ¢; is generally much larger than
qn, leading to a substantially higher weight being place on [-types. Moreover,
in the context of a genetic testing scenario, the difference r;, — ry, is likely
to be large and increasing in the accuracy of the test and so it is this differ-
ence which will tend to dominate the overall horizontal equity implications
of imperfect categorization. From a normative standpoint as well, it makes
sense to place concern more towards individuals most heavily penalized by
being misclassified. These are are the low risk types who face the highest
price-cost ratio. In choosing a specific member of the entropy family of in-
equality measures, the larger is the value of the parameter «, the greater is
the emphasis on horizontal discrimination within the I-types (i.e., the more
sensitive is the measure to variability in the higher end of the vector of price-
cost ratios). Thus, both the facts about genetic diseases and our normative
concerns about misclassification arising from imperfect categorization lead
to a conclusion that, even though vertical price discrimination is always re-
duced by using a more accurate genetic test for pricing insurance, horizontal
price discrimination generated by misclassification of low risk types will be
a greater concern. This is borne out by our simulation results which we now
describe.

Our first simulation result, depicted in Figure 1, was computed using the
MLD (mean logarithmic deviation) measure of discrimination. Recall that
this is equivalent to a choice of parameter value @ = 1 for the generalized
entropy family of inequality measurement and such a choice implies relatively
greater emphasis on dispersion between smaller values of price-cost ratios.
Thus, this represents relatively less concern with misclassification among
[-types than among h-types. The parameter values chosen for population
proportions are g, = 0.001 and ¢ = 0.999, also reflecting a conservative
view of the relative importance of low-risk types in the population.'® The
relative expected costs of insurance are ¢, = 50,000 and ¢; = 2,000. In the
context of health insurance this would represent a situtation in which those

18 As noted in Strachan and Reid (1997), Mendelian diseases typically affect less than 1
person in 1000.
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with the genetic disease will face substantial costs for medical treatement In
the context of disability insurance these parameter values reflect a very high
probability of loss of income. Since the range of genetic diseases generates
a wide range of costs there is no natural choice for such parameters. In a
later simulation we consider a case with much more similar costs for the two
types.

To simplify the graphical analysis, we represent the accuracy of the test
by a choice of false positive and negative rates which are equal (ie., g7, =
€fn), thus allowing us to use a two dimensional graph. The top graph in
Figure 1 represents the relationship between horizontal discrimination and
the accuracy of the genetic test. A decrease in €, the rate of false positives,
represents an increase in the accuracy of the test. As previously noted, if the
test is either completely uninformative (g7, = 0.5) or perfectly informative
(e/p = 0), there is zero horizontal price discrimination. Consideration of
increasingly accurate genetic screening tests is represented by movement from
the value €7, = 0.5 to €5, = 0. As we can see, both groups face increasing
horizontal discrimination as a result of increasing the accuracy of the test over
much of the range of values for 4,. Since the relative population proportion
of [-types dominates that of h-types, not surprisingly the overall amount of
horizontal discrimination, H D, virtually coincides coincides with H D; in this
graph (but see on for some cases where this does not happen).

In the bottom graph of Figure 1 we compare the size of vertical discrim-
ination to overall horizontal discrimination. One can see that vertical dis-
crimination always falls as the accuracy of the test improves. This conforms
to the result of Theorem 2. Beginning with a completely uninformative test,
HD rises more quickly than does V' D fall as one considers tests of greater
accuracy and so increasing the accuracy of testing increases total discrimi-
nation up to the point where the test is almost perfectly accurate.!” This
means that unless the screening test is almost perfect, there will be lower
overall discrimination if all insureds are charged the same price instead of
using the results of screening tests for price setting.

<<INSERT FIGURE 1 HERE>>

19 Computation indicates that T'D is increasing in the accuracy of the test up to a
false negative/positive rate of 0.00340 while HD is increasing in accuracy up to a false
negative/positive rate of 0.00385.
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This result follows despite the fact that the choice of the MLD as inequal-
ity measure is not particularly sensitive to the dispersion of price-cost ratios
for low-risk types, the group which includes those individuals most heavily
discriminated against as a result of imperfect categorization (i.e., misclassi-
fied low-risk types). In Figure 2 we adopt all of the same parameters as for
the example in Figure 1, except we choose parameter value o = 5 for the gen-
eralized entropy inequality index. As previously discussed, any value for this
index in excess of 2 places greater weight on dispersion of higher price-cost
ratios than lower ones and the higher is o, the greater is such emphasis.?’ In
the top graph?! we see that the relative contribution of horizontal discrim-
ination among the [-types completely dominates that for A-types even on a
per capita basis and so, a fortiori, overall horizontal discrimination is dom-
inated by the HD; component. Also, the relative importance of horizontal
discrimination compared to vertical discrimination is greater in this case and
the accuracy of testing must be even higher before improved accuracy leads
to a reduction in total discrimination.??

<<INSERT FIGURE 2 HERE>>

In the example illustrated in Figure 3, one can observe the important
role played in the choice of the parameter o for the generalized entropy in-
equality index. Here we perform the simulations for the case of @ = —3, a
value which implies subtantially greater emphasis on the dispersion of rel-
atively smaller price-cost ratios, which in our context means the difference
in prices paid by high risk types who are properly or misproperly classified.
If one’s principal emphasis on discrimination is within the group who re-
cieve favourable discrimination (i.e., the values rp, < rp, < 1) then, in per
capita terms, H D, becomes the more important term in the consideration
of horizontal discrimination. Since h-types represent only a small fraction of
the population, however, overall horizontal discrimination is influenced sub-
stantially by H D, as can be seen in Figure 3. Overall discrimination, 7D,
is in this case dominated by vertical discrimination. It is only horizontal

20We performed the same simulations for the cases of & = 2 and a = 3 and obtained
very similar results.

21 The functions are relatively flat for values of €, greater than 0.006 and so only that
part of each function near the origin is graphed.

22Computation indicates that 7D is increasing in the accuracy of the test up to a false
negative/positive rate of 0.000271 and essentially the same result applies to HD.
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discrimination among h-types that is deemed very relevant according to the
choice of parameter a = —3 and with so few h-types in the population over-
all horizontal discrimination becomes relatively less important. Thus, since
vertical discrimination is always less when a more informative screening test
is used for pricing insurance, we have that total discrimination is reduced by
any increase in accuracy of the screening test. We do not, however, think
that this is a relevant result from an ethical or policy perspective since it
seems natural when concerned about price discrimination to focus at least as
much on those who are penalized by discrimination (i.e., those facing a price
greater than costs) as on those who benefit from it (i.e., those facing a price
less than costs).

<<INSERT FIGURE 3 HERE>>

In Figure 4 we illustrate the results of simulations which are based on a
case with less difference in costs between high and low risk types. Results
similar to the first two cases are obtained. In Figure 5 we illustrate a case
in which the population proportions are more balanced relative to scenarios
consistent with genetic screening. In this case 25% of the population is
of the high risk type. The importance of horizontal discrimination in the
two types is similar and the contribution of vertical discrimination to total
discrimination is similar to that of overall horizontal discrimination. The
result is that total discrimination is falling in the accuracy of the test for any
initial test with accuracy ey, < 0.19. This case illustrates the importance
of the context in which one considers the issue of price discrimination and
the degree of misclassification associated with imperfect categorization. In
a case, unlike genetic diseases, in which the relative proportion of high risk
types in the population is not so small, using imperfect screening to assign
individuals to risk categories can more easily be justified on the grounds of
reducing overall price discrimination.

<<INSERT FIGURE 4 HERE>>
<<INSERT FIGURE 5 HERE>>

6 Generalizations

In our formal analysis in Sections 3 and 4 we have taken a simplistic view
of the relationship between genes and health risks. Although a few genetic
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diseases are quite well represented by the straightforward mapping between
geno-type and risk-type,?® that we have employed, most relationships be-
tween genes and health risks are more complex. For the majority of genetic
diseases, the propensity to sustain the disease depends on a combination
of several genetic determinants as well as environmental influences.?* These
cases are referred to as multifactoral genetic diseases. Recognizing this aspect
of genetic diseases strengthens the conclusion that basing insurance prices on
genetic screening tests is likely to increase, rather than reduce, the extent of
price discrimination.

In the case of multifactoral genetic diseases, knowing whether an individ-
ual possesses a given gene does not provide a precise assessment of risk type
and so the link between a given, identified gene and its associated disease(s)
may be quite weak. This implies that even if a particular gene of interest
is always correctly identified by the screening test, there will be substantial
misclassification of individuals to risk categories. Not only must one know
that a given gene is “defective” in order to correctly ascertain an individu-
als future health risks, one must also know the particular mutation for that
gene, the status of other related genes, and also the environmental factors
involved with that disease for the particular individual. The last of these fac-
tors would include lifestyle choices, not all of which are likely to be perfectly
observable to the insurer.

Not only is accurate classification of risks by genetic screening tests un-
likely in the context of multifactoral genetic diseases, the use of only two risk
classes does not properly reflect the true degree of complexity. As our analysis
in Section 2 of this paper readily demonstrates, however, one can introduce
as many risk factors and classification groups as one likes without changing
the qualitative nature of the analysis. The importance of being able to do so
is even more evident when one considers that it is not possible to treat in a di-
chotomous fashion even those diseases which appear to be entirely dependent
on a single gene and no other genetic or environmental factors. The disease
cystic fibrosis, for example, has been identified with a single gene. However,
as of 1997, more than six hundred different mutations of the gene responsi-
ble for this disease had been discovered (see Casey, 1997). The severity of
the disease depends on which of the mutations is responsible and testing for

23Familial retinoblastoma is such an example with a single, short gene being the indi-
cator.
24See Strachan and Read (1997, chapter 3) for a full discussion.
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these is imperfect. Other illustative examples are represented by the so-called
breast cancer genes (BRCA-1,2), which are contributors to the multifactoral
genetic diseases of breast cancer, ovarian cancer, and others. BRCA-1,2 are
very long genes with many possible different variations/mutations creating
many different scenarios concerning penetrance of the diseases and, hence,
relative health risks.?> Such complexities represent the standard, rather than
the exception, and so scientific or technological accuracy in relating genes to
health risks is likely to remain less than perfect.

Besides generalizing the context of genetic diseases, we can also apply our
analysis to study insurance pricing enviroments which are more complex. In
our analysis we base the price of insurance, as determined by test results
(i.e., positive or negative), on the implicit assumption that both risk types
purchase the same amount of insurance. Thus, recalling equations (19) and
(20), the unit price for those receiving test result j = p, n, is

Pj = WhjCh—i-?leCl

As noted earlier, many models of the insurance market take account of the
fact that, in the presence of asymmetric information, high risk types will typ-
ically purchase greater amounts of insurance than will low risk types when
the two types are faced with the same price of insurance. Thus, the actual
price of insurance will be a demand-weighted average of the risk-type spe-
cific actuarial costs. If we let L;; represent the demand for insurance by an
individual of risk type i with test result j, and let L; be the average amount
of insurance purchased by individuals with test result j, then the pooled
actuarially fair price of insurance would be?%

Ly L

Py =20, 4720
L; L;

The qualitative nature of our results concerning price discrimination and the

accuracy of the screening test would persist under these conditions. In fact,

25The BRCA-1 gene spans almost 100,000 bases of the genome and encodes a protein
of 1,863 amino acids. As of 1996, 235 known sequence variations had been identified. The
BRCA-2 gene is more complex and less well studied but is even longer and is known to
contain a large range of sequence variations as well. (See Science, 1996, October issue.)

26In Villeneuve (1996), for example, this formula is referred to as the average clientele
risk. Other formulae would be relevant if nonlinear pricing persists but the essence of the
argument remains.
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the extent of horizontal price discrimination faced by misclassified low risk
types, which we saw in the previous section tends to dominate the overall
degree of price discrimination in the context of genetic screening, is even
greater given this consideration. This follows because, with Ly, > L, > Ly,
the extent to which low risk types who are misclassified face unfavourable
discrimination is exacerbated by adverse selection considerations.

Thus, natural generalizations in regards to the reality of both genetic dis-
eases and insurance market pricing reinforces our conclusions that improved
accuracy of genetic screening is likely to lead to an increase in the overall
amount of price discrimination.

7 Conclusions

In this paper we have exploited the relationship between decomposable in-
equality measures and the concepts of horizontal and vertical equity in order
to provide a powerful and general framework within which to address the
issue of price discrimination arising from the use of imperfect categorization
in insurance pricing. We developed a particular application to determine
whether using results from screening tests for geno-type to risk-rate insur-
ance premiums is more or less discriminatory than charging all heterogeneous
individuals the same average price. We conclude that the use of such infor-
mation leads to more, rather than less, aggregrate discrimination. The rea-
sons for this conclusion revolve around the realities associated with genetic
diseases as well as compelling normative concerns.

Any single Mendelian disease affects only a small fraction of the popu-
lation but many such diseases have extrememly detrimental health implica-
tions. Even very accurate genetic tests, which lead to a small fraction of
individuals being misclassified, can generate substantial horizontal inequity
within either risk class due to the significant differences in the costs of in-
surance provision. Although vertical discrimination is always reduced by the
introduction of a more accurate screening test, the fact that most individuals
are of the low risk type means that use of population weights by risk type
de-emphasises the importance of vertical discrimination relative to horizontal
discrimination.

Price discrimination persists when individuals face different price-cost ra-
tios for a product. From a normative perspective, it is compelling to place
increased concern on the dispersion in price-cost ratios between individuals
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for whom the levels of those ratios are higher. The reason for doing so is
that those with the highest price-cost ratios resulting from imperfect catego-
rization are those who are most heavily discriminated against. Using simula-
tions we found that, even with a conservative value judgement regarding the
relative importance of price-cost ratios across different groups,?” increased
accuracy of a screening test leads to an overall increase in price discrimina-
tion up to very high degrees of accuracy. This conclusion follows because,
even though increased accuracy in screening reduces the number of individu-
als who are misclassified, at the same time improved test accuracy increases
the dispersion in price-cost ratios between individuals properly classified and
misclassified.

Two further considerations reinforce our conclusions. Firstly, the fact that
most genetic diseases are multifactoral weakens the potential to use genetic
testing to predict health risks with perfect accuracy. Thus, the limiting case
of perfect testing, in which discrimination would be eliminated, is unlikely
for most genetic diseases. Second, adverse selection considerations exacer-
bate the importance of penalizing those low risk types who are misclassified
and it is this aspect of imperfect testing which naturally arises as the most
prominent one in our analysis and conclusions.

Finally, we emphasise that considerations of discrimination from using, or
not using, available imperfect information to categorize risks in an insurance
market is not the only relevant issue when deciding on whether or not insurers
should be allowed to use such information.?® It is also important to address
efficiency and distributional implications. However, concern over equity in
the context of discriminatory pricing will undoubtedly remain a legal and
regulatory concern for policy-makers and so having a firm foundation for
measurement, of discrimination is and will remain important.

2"Namely, using the MLD measure (for which o = 1), which actually places relatively
more concern on lower price-cost ratios, and also a = 2, which places equal weight on the
dispersion of price-cost ratios for all values.

28Quch considerations are addressed, for example, in Crocker and Snow (1986), Doherty
and Thistle (1996), Ligon and Thistle (1996), Doherty and Posey (1998), Hoy (1982, 1984),
Hoy and Polborn (1998), Tabarrock (1994).
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Appendix

1. Values of Partial Derivatives
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2. Proof of Theorem 2

By a more accurate screening test we mean one in which either the rate of
false negatives or postives (or both) is lower. We show that a higher rate of
either false negatives or positives implies a higher average price for low risk
types and a lower average price for higher risk types. This implies an increase
in the ratio I—CD’; and an decrease in the ratio % which means an unambiguous
increase in the overall degree of price discrimination.

Recalling equations (21) and (22), and using the results from part 1 of
the Appendix,we have
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This expression will be positive provided the term in the bracketts {-} is
positive; i.e., provided
Tl Tpl
>
[gnTnn + @]~ [@aTpn + @]

or
T [GhTph + QTp1] > Tpi[qnTnn + Q]

or
Tl T ph > TplTnh

and this is so since for any informative test e, ep, < %, which implies

Tt > Tpp, and 7y, > . Using similar steps, we can show that

0P, 2 2
- :(Ch_Cl)QhQI{ P - 2}
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which is negative provided the term in brackets {-} is negative, which, after
a few algebraic steps, is equivalent to requiring that

Tl T ph > TnhTpl
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which we saw above is so for any informative test (£, &7, < 3).
Thus, we have established the following two results:

0B
. >0 (A1)
P,
5o, <0 (A2)

Due to our assumption of pooled actuarially fair pricing we have that
an P + @B = ¢.Ch + G

in which the right side is independent of ¢, and €, (as are g, and ¢;). Thus,
we have the following two results.

0P, 0P,
=0

an 9 1m +q e m
o Om

-+ =
n 86 fp @ 86 fp

which, in conjunction with equations (A1) and (A2) imply

oh (A3)
Oe fp
ob,
Depm <0 (A4)

Thus, an increase in either or both of the rates of false positives and negatives
increases P, and decreases P, increasing the dispersion in the values % < g’l
, proving Theorem 2.
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Figure 1

Parameters: g, = 0.001; ¢,=0.999; C, = 50,000; C, = 2,000; Inequality index: MLD

Notes: HD attains its maximum value at e, = 0.00340
TD attains its maximum value at e, = 0.00385
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Figure 2

Parameters: g, = 0.001; q,=0.999; C, = 50,000; C,=2,000; Inequality index: GE, @ = 5

Notes: HD atta_ins jts maximum value at e, = 0.000271
TD attains its maximum value at eg, = 0.000271 (same as for HD up to 7th significant digit)
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Figure 3

Parameters: g, = 0.001; g, = 0.999; C, = 50,000; C, = 2,000; Inequality index: GE, @ = —3

Notes: HD attains its maximum value at ep = 0.0389
- TD attains its maximum value at e, =0.50
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Figure 4

Parameters: g, = 0.001; ¢, = 0.999; C,=35,000; C, =

Notes: HD attains its maximum value at e, = 0.0014
TD attains its maximum value at e,,, = 0.0072
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Figure 5

Parameters: g, = 0.25; q,=0.75; C, = 50,000; C, = 2,000; Inequality index: MLD

Notes: HD attains its maximum value at e, = 0.085
TD attains its maximum value at e, =0.19
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