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ABSTRACT. We consider the links between the health structure of the popula-
tion and the productive system of an economy that is subject to infectious disease,
in particular tuberculosis. Reviewing the models of tuberculosis suggests that a
Lotka-Volterra type system can capture the dynamics of epidemics. We combine
this with a Solow-Swan growth model: output is produced from capital and healthy
labour; the demographic parameters of the Lotka- Volterra type system are functions
of the capital healthy labour ratio. We find three stationary states, two of which
are extensions of population equilibria and the third of which has a positive capital
healthy labour ratio. There is also a partial balanced growth path in which there is
no disease and the healthy population and capital stock grow at a common rate but
this path is unstable. We analyse the local dynamics and, in the context of global
analysis of two examples, find that the epidemiological-economic stationary state is
locally stable and an attractor for a wide range of initial conditions. The way in
which the net birth rate of susceptibles responds to prosperity determines the level
of the stationary state prevalence of the disease. The interaction between the disease
and the economy can also decrease the amplitude of epidemic cycles.

1. INTRODUCTION
There is good evidence that the implementation of tuberculosis (TB) control programmes
based on the use of antitubercular drugs and BCG vaccinations has failed to prevent recent
TB epidemics in many developing countries®>. However, in most developed countries TB
is no longer endemic yet was controlled before the development of comprehensive health
care facilities.

!Two main forms of TB in humans exist: pulmonary TB and extra-pulmonary TB, the former is
most common and is the only infectious form. TB develops in the human body in two stages. The first
stage occurs when an individual who is exposed to micro-organisms from an infectious case of TB becomes
infected (tuberculous infection). This stage is referred to as the passive TB infectious case. An individual’s
risk of infection depends on the extent of exposure to droplet nuclei and his/her susceptibility to infection.
The risk of transmission of infection from a person with sputum smear-negative pulmonary TB is relatively
low and with extra-pulmonary TB is even lower. The risk of infection of a susceptible individual is high
with close, prolonged, indoor exposure to a person with sputum smear-positive pulmonary TB. The
degree of crowding and of intimacy of exposure are therefore important factors. This suggests that the
population dynamics of TB is extremely sensitive to urbanization. Subsequently, at a second stage,
some of the individuals who have become infected develop the disease from this infection; the active TB
infectious case. Individuals are most likely to develop disease in the period immediately following infection
but they continue to be exposed to risk of TB throughout the remainder of their lives. The development
of TB following infection with tuberculosis micro-organisms is usually prevented by the immunosystem.
Only a relatively low proportion of those individuals who have been infected with TB develop the disease.
Once infected, the likelihood of developing active TB is 10% in a lifetime. When the protection provided
by the immunosystem is reduced, the TB micro-organisms which are dormant begin to multiply, causing
TB disease. Comstock (1982); TUATLD (1996); Nardell et al. (1986); Sepkowitz (1996); Weatherall
(1996); WHO (1998a).

2 Alvi et al. (1998); De Cock, Chaisson (1999); Keynon et al. (1999); Kimerling et al. (1999); Madras
Tuberculosis Institute Bangalore (1980); Netto et al. (1999); Sumartojo (1993); Zumla (1998).
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In this paper, recognising that medical innovation and health targeted policies have
limits in controlling TB, we explore whether economic growth can control the spread of
the disease. In particular we examine the links between TB and rising economic prosper-
ity which strengthens the basic immune system of individuals and improves the general
infrastructure of the economy (in housing, diet, working conditions, transport and health
infrastructures). Rising prosperity can slow the disease transmission process both through
increasing TB resistance, reducing involuntary interpersonal contact arising from conges-
tion and providing a better access to health care and services in urban as well as in rural
areas.

Historically, the impact of changes in social and economic factors on the disease trans-
mission process is observable in the TB epidemics in Europe and America from the late
18th century to the early 20th century. The industrial revolution, both in Europe and
America and part of Africa, provided the ideal conditions for the establishment of TB that
rapidly became the primary cause of death. The growth of industrial and urban centres,
long working hours and poor working conditions, low wages, overcrowded living quarters,
poor hygiene standards and inadequate diet caused a sharp increase in TB mortality?.
The rise of TB in Europe and America was followed by a long period of decline in the
prevalence of the disease which was largely independent of medical intervention (which
remained appalling through most of the century); the control of TB was more related to
improvements in housing, working conditions and nutrition*. Contemporary evidence is
that poverty, malnutrition, overcrowded housing and poor hygienic conditions are the key
factors behind the recent spread of TB®. This is particularly true in the context of de-
veloping countries (sub-Saharan Africa, Asia and Latin America) where there are similar
bursts of economic growth and increases in inequality associated with rapidly increasing
urbanisation®. Geographical extensions of urban areas are often associated with deterio-
rating and crowded living/working conditions, such as lack of transport, water, drainage
and health care delivery, that have favoured the spread of communicable diseases (shanty
towns). Health status has been therefore considered to be inversely correlated with the
degree of urbanization’.

Conversely, the health status of the population affects the productivity of the labour
force and hence the prosperity of the economy. There are several historical examples: the
import of smallpox to Mid-America in the 16th century amongst the local population who
had no immune resistance to the disease led to their decimation which in turn eliminated
the local labour force for working the silver mines; the plague in the Middle East had the
effects of reducing the productive work force so heavily that localised famines emerged®.

3Stephens (1995).

4Packard (1989).

5Together with the emergence of multidrug-resistant strains of TB (MDR-TB) and the growth of
endemic HIV/AIDS infection which compromises the immune system’s ability to control dormant TB
mycobacteria. As stated by Weatherall et al. (1996) patients with congenital or acquired immunosup-
pression are particularly prone to TB. HIV infection considerably enhances the reactivation rate of TB in
the infected person: about 10% of doubly infected (infected with both HIV and TB) susceptibles develop
active TB each year. As reported by WHO (1999a, 1999b), a HIV-positive individual who is also passively
TB infected is 30 times more likely to become sick with TB than a TB infected individual who is HIV
negative. Barnhoorn, Adriaanse (1992), Chan-Yeung et al. (1971), Chaulet (1987); De Cock, Chaisson
(1999), Farmer et al. (1992), Mata (1985), Menzies et al. (1993), Nightingale et al. (1990), Pilheu (1998),
Reichman (1997), Rubel, Gallo (1992), Wallace, Wallace (1997), WHO (1998b, 1999a).

6 As reported by UN, nearly two-thirds of the world’s current urban population live in the developing
world. UN(1996a, 1996b, 1997, 1998), UNU/WIDER (1998a, 1998b).

"TMutatkar (1995); Phillips (1993); WHO (1993, 1996).

$Watts (1997).
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In more contemporary times there is evidence that health status affects labour force par-
ticipation and labour income®. Dasgupta (1997) finds that early nutrition and morbidity
have significant effects on long term work capacity.

From this we can analyse the two-way interaction between the economy and TB. On
the one hand, poverty and low prosperity generate conditions in which the disease can
flourish. On the other hand, with high prevalence of the disease the work force is reduced
so that prosperity falls.

In this paper we look at the dynamics of this basic two way interaction by combining
a simple Solow-Swan growth model with a simple representation of the epidemiology of
TB. We call this the epidemiological-economic growth system and find that generally it
has a partial balanced growth solution in which there is no disease and capital and healthy
labour grow at a common rate. We find that an arbitrary path will not converge to the
disease-free path so that economic forces cannot eliminate TB. However, they can control
its prevalence, reducing to an endemic level. In addition there are three stationary states
of the system. One is the origin leading to extinction of both healthy and sick; one is
an epidemiological-economic stationary state in which there are constant nonzero levels
of capital stock and of sick and healthy individuals; one is a pure epidemiological state
in which the economy fails to function at all (capital stock and output are zero) and
healthy and sick individuals coexist. Since we have a three dimensional dynamic system
(the variables are the capital stock and the numbers of healthy and sick, respectively)
with three stationary states, the dynamics of the system are quite rich. The origin is
one stationary point; global analysis reveals that it is unstable. We find that locally the
epidemiological-economic equilibrium, where all variables are positive, can display a wide
variety of local dynamic patterns depending on parameter values. Linearising around the
equilibrium, there may be: three real roots (two positive and one negative, an unstable
saddle-node or three negative, a stable node) or a pair of complex conjugate together
with a negative real root. The equilibrium in which the economy plays no role (zero
capital) is locally a 3D centre: two pure imaginary eigenvalues and one real eigenvalue.
The stationary state involving zero capital stock and positive population replicates the
two-dimensional dynamic properties of the Lotka-Volterra model and adds a third real
eigenvalue (and so gives a direction of either monotone convergence or divergence to the
corresponding pure demographic equilibrium).

To explore the global dynamics of how solution paths behave between these three sta-
tionary states we select functional forms for the way in which demographic parameters
respond to economic prosperity (essentially based on logistic functions) and for the pro-
duction function (a CES with elasticity of substitution less than one between capital and
labour) and numerically integrate solution paths. The results indicate that whether the
net birth rate of susceptibles is increasing or decreasing in prosperity is important in de-
termining the stationary state prevalence of the disease. However, the dynamic properties
of the system are very similar whether « is increasing or decreasing with prosperity.

Numerical simulations for two examples indicate that the stationary state with a non-
zero level of productive capital is locally stable and an attractor for a wide set of initial
conditions. In the long run the two-way interaction between the population and the
economic structure results in an epidemiological-economic equilibrium.

The paper is organized to outline alternative epidemiological models of TB in Section 2;
to present the general analytics of the epidemiological-economic growth system structure
in Section 3; to give numerical simulations in Section 4 and to conclude in Section 5.

9Bartel and Taubman (1979), Ettner (1996), Lee (1982), Luft (1995).
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2. THE DISEASE PROCESS
We think of a population Ny of individuals in a given area at instant t. Generally indi-
viduals can be in one of four states: susceptible but healthy; latently infected and not
infectious; actively infected and infectious; recovered from the disease'®. Some of the
epidemiological models distinguish more states than this e.g. in the case of various strains
of TB which differ in the time gap between first infection and becoming actively infected
and infectious (so called fast and slow TB)!!.

The population changes through time due to the births of susceptibles and to deaths
either from causes other than TB or from the disease. Historically outbreaks of disease
have generally followed an epidemic pattern. For example a common pattern in medieval
England was for a geographical area to succumb to an outburst of plague over a period
of five months or so, often concentrated at particular times of year, but then the disease
would die away, subsequently breaking out again. This type of dynamic evolution is seen
in predator-prey models; so a very common paradigm for modelling the disease dynamics

is some version of the Lotka-Volterra system'?:

Ne=X;+ Y+ L+ Ry (1)

Xt = aX;+ Ry —B(X¢, Le, Y) XYy

Ly = B(Xe, L, Vi) Xe Ve — (A + A2 + A3) Ly @)
Y, = Aol — wY; — pY;

Ri= pYy + 3Ly

where X is the stock of susceptibles; L; is the stock of latently infected; Y; is the stock of
actively infected; R; is the stock of recovered individuals; all at instant ¢. Furthermore,
« is the net birth rate of susceptibles (birth rate minus death rate due to non-disease
causes); B(Xy, L;,Y;) is the probability that on meeting an actively infected person, a
susceptible person becomes latently infected; A; is the natural death rate of latently
infected individuals from non-disease causes; A2 the proportion of the latently infected
stock who become actively infected; A3 the proportion of latently infected who recover;
p the proportion of actively infected who recover and w the death rate of the actively
infected either through the disease or natural causes. Assuming that the various rates
of movement between groups are constant proportions (@, A;, p,w with ¢ = 1,2,3) is a
simplification, particularly so for \; where the assumption is that the length of time that
one has been latently infected has no effect on the chances of recovery, developing active
infection or death'®. Obviously this system refers to the case in which the recovered do
not gain immunity from the disease but rejoin the pool of susceptibles.

A major issue is the interpretation of the infection process 3(X, L, ;) X, Y;. Usually
this is in terms of 3(.)Y; giving the probability of a given susceptible becoming infected
and then multiplying this by X; gives the number of newly infected susceptibles:

New infections = Pr (susceptible and infected meet) Pr (infection arising|meeting)X,.

10The nature of recovery can also be heterogeneous: infected individuals who have recovered may
have permanent immunity from the disease in which case they form a class on their own; or they may
immediately become susceptible to a new attack of the disease in which case they join the existing group
of susceptibles; for TB the latter is the case.

1vyynnycky and Fine(1997).

12TLotka (1925); Volterra (1926).

13Fxamples when the length of the latent period influences the probability of TB reactivation are in
Chan-Yeung et al. (1971) and Grzybowski et al. (1965).
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To model this we have to represent the meeting process and then the infection process
arising from any meeting. For the latter the most common assumption is that the chance
of infection out of any meeting between a susceptible and an infected is constant. The main
exception to this is a form of density dependence where (e.g. with a high prevalence of the
disease - high ¥;/X;) individual behaviour may adjust to reduce the chance of infection
in a meeting e.g. by wearing protective clothing or otherwise altering the nature of the
meeting. For the former usually there is a model of social interaction and then, within
that, some view of whether the interaction is between two susceptibles or a susceptible
and an actively infected. It is plausible that the chance of a meeting being between a
susceptible and an actively infected, given that there is a meeting, is Yi/N;. If the chance
of a given susceptible meeting anyone else at all is proportional to Ny (i.e. a more densely
populated region generates a higher number of meetings between people than a lower
density area) then the probability that a given susceptible meets an infected is indeed ;.
Alternatively if N; were constant so that only the structure of the population but not its
size were changing then Y; would be the proportion of infected; with a randomly mixing
population, where each person meets one other person every instant, this would be the
probability of meeting an infected person.

If we adopt any of these assumptions, then § is a constant and the number of new
latent infections is SXY. The equations (2) are then equivalent to

X; = aX; + pY; + AsL; — BXY;
L= BX:Y: — (M + A2 + A3)L¢ (3)
Yt: )\th — wYt — p}ft

From these equations it follows that total population changes according to

Ne=X¢ + Y + Li= aX¢ — M Ly — Y, (4)

that is, the difference between the net birth rate of the susceptibles and the combined
deaths of the latent and actively infected individuals. This system has two stationary
points:

X*=Y"=L"=0 (5)

X' = (A + X2+ 23)(w+p)/ (M)
Y* =a(w+p) (M + A2+ A3)/[Aofw + B (w + p)] (6)
LT = a(w +p)* (M 4+ A2 + A3)/ N3 Bw + BAide(w + )]

The first corresponds to extinction and the second to a constant population level and
structure. There are no steady growth paths of the system. To investigate the local
dynamics, around the origin we linearise and find that locally there are three real roots
of the Jacobian!*:

a, —(M+X+2N3), —(w+p) (8)

1T inearisation around any stationary point gives a Jacobian of

[e-pY X p-pxX ]
BY —(A1+2r2+23) —-BX (7)
L o Ao @+ |
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two of these roots are negative and one of them is positive, so we have a 3D saddlepoint
with an additional stable direction'®.

Around the nonzero stationary point simple expressions for the roots are unavailable.
However, as the determinant of the Jacobian is

—a(w~+p) (A + A2 +A3) <0 (9)

and the trace is
—{afwAs +p(A2+ A3)]/ Pew + M (w+ )]+ (AL +de+A3) + (w+p)]} <0 (10)

the possible patterns of real parts of eigenvalues are either three negative real roots (3D
node with positive attractor) or one negative and two positive real roots (focus sink with
negative attractor or 3D saddlepoint with an additional unstable direction).

Many writers have applied this type of structure to analyse the dynamic transmission
of TB. The microdynamics of TB is very complex. Interest centres on whether simple
population interaction models can capture the main empirical trends in prevalence. A
recent study is in Blower et al. (1995), who consider a population divided into three
different classes: susceptible (defined as uninfected individuals), latent (infectious and
non-infectious cases) and recovered. TB is described as having two pathogenic mecha-
nisms: direct progression (when the disease develops soon after infection) and endogenous
reactivation (when the disease can develop many years after infection). These two mecha-
nisms are modelled by assuming that a constant proportion of the newly infected develop
TB directly and a constant proportion of the newly infected enter the latent class.

The dynamic of the TB epidemic is described by a system of three differential equa-
tions. In Blower et al.’s notation,

X(t) = 7 — BT() X (1) — p X (1)
L(t) = (1 —p) BT() X (1) — v L(t) = u L (1) (1)

)
T(t) = v L(t) +p BT(t) X(t) — (u+ pr) T(1)

where X (t), L(t) and T'(t) represent the susceptible, latent and active infectious TB indi-
viduals, 7 the constant rate of recruitment to the susceptible population, 3 the probability
that an infectious case successfully transmits the infection to a susceptible. Here, i is the
per capita average non-TB mortality rate, iy the per capita average TB mortality rate,
v the rate at which the latent individuals develop active TB, p the proportion of newly
infected who develop tuberculosis directly and, therefore, (1 — p) the proportion of the
newly infected who enter the latent class. Individuals who recover from the disease are not
modelled. Blower et al. simulate an epidemic arising from the introduction of one infec-
tious individual into an uninfected population. They also analyse the epidemic doubling
time as a function of the average number of secondary infections produced per infectious
case per year and the threshold population-size (as the minimum number of susceptibles
that have to be present before a TB epidemic can occur) for different transmission co-
efficients. The main outcome obtained in the analysis is that TB epidemics have slow
intrinsic dynamics. Given this view the recent declining prevalence of TB infection over
the past century in developed countries is the natural decline in a long epidemic which
first increased during the 1600s. They do not examine the analytical properties of the

15 We use the classification of Verhulst (1990).
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dynamics; but actually the system has two stationary points at

wtpmlptpr) . @@+ = plvd et pr))E=p) g

X = Bv+pp) (v+ ) (v +pp)p ’
e TBWHpp) - pv 4wt pr)
v+ ) (e +pr)B
and
T =L"=0, X*'=7/u (13)

The stationary state with some disease typically has one real root and a pair of complex
conjugate roots (focus sink/source with an additional positive/negative attractor). Locally
the stationary state in which disease is eliminated has eigenvalues

—pty =0.5{ g pupug—pBr+24 £ (o —v)? =287 p(p (g +v) —20)+p* 677"} e (14)

so that there may be either three real roots (3D node positive/negative attractor) or a
negative real root and a pair of complex conjugate roots (focus sink with an additional
positive/negative attractor) 16,

Blower et al.’s approach is intermediate between a completely descriptively realistic
treatment of the disease and a stylised paradigm. For example, the transition between
passive and active infection is not governed by proportionality in reality; similarly, most
population models would use geometric rather than arithmetic growth in the number of
susceptibles; the recovered class are not analysed. Nevertheless, as the authors demon-
strate, this level of complexity of modelling is appropriate to capture the salient long-run
trends. Both (3) and (11) also demonstrate the tradeofl between descriptive realism and
analytical generality; either one has a high dimensional descriptively accurate system
whose dynamic behaviour can only be numerically simulated for a sample of initial con-
ditions; or some of the realism is sacrificed to permit global analysis of the dynamics. For
the latter the most that we can realistically manage is three dimensions.

For TB infectious diseases where there are no latents or where the latent class is
negligible and infection switches susceptibles directly into active infection (e.g. p = 1) (3)
or (11) collapses, in our notation, to

Xt = aX; - fX:Y; (16)

Y. = BXiY: — wYl

in which case there are again two stationary points
X"'=Y*"=0 (17)
X"=w/B8, Y=o/ (18)

As is well known the latter stationary point has two pure imaginary roots so long
as a > 0 so that there are closed cycles about this stationary point'”. Notice that if

16T inearisation around any stationary point gives a Jacobian of

—BT—p O _BX
{ A-p)BT —(u+v) (1-p)BX } (15)
pBT v —(p+pr) +p8X

17Linearisation around any stationary point gives a Jacobian of

a— gy —BX
ey (19)
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a < 0 then we lose the centre as a viable stationary state; in this case the healthy just
decay to zero through the combined effects of natural death and infection by the sick.
Throughout this paper we assume that o > 0. It is less well known that the origin is
locally a saddlepoint. A typical phase diagram is shown in Fig. 2.1.
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Figure 2.1
In similar vein to Blower et al., for the subsequent analysis we concentrate on the sys-
tem without latents since our primary purpose is to analyse how the productive economy
will impact on the dynamics of the system; having more extreme dynamics (closed cycles)
will allow us to make the effects of economic structures more stark.

3. GROWTH AND PROSPERITY

As we noted in the introduction, general prosperity brings with it improvements in diet,
housing and somewhat less directly the socioeconomic infrastructure which have effects
on the infection process and also possibly on the birth and death rates of the different
population groups. In terms of the epidemiological model «, # and w are in general
functions of economic prosperity; there are a variety of ways of measuring this. We take
the epidemiological parameters to be functions of the capital/productive labour ratio.
This will be consistent with a variety of interpretations e.g. epidemiological parameters
depending on per capita consumption of the healthy. However, we also want to model
the causes of economic growth; there is some evidence that there are feedback effects of
infectious disease on the ability of the economy to provide growth through debilitating
the labour force'®. A natural economic approach is to assume that infected individuals
cannot work; the production possibilities of the economy depend on the productive labour
force inter alia. Hence, if there is a high proportion of infected then output and economic
prosperity is low ceteris paribus. Since economic prosperity aflects demographics, with
low prosperity, the net birth rate of susceptibles falls; the death rate of the infected rises
and the infection rate rises. This leads to a fall in the productive labour force which in
turn leads to a fall in consumption per capita. A vicious cycle emerges. Hence, it would
appear that if output depends on susceptible labour alone the system with endogenous
economic effects reinforces instability. However, this ignores the possibility of investment
in capital.

18Bartel and Taubman (1979), Ettner (1996), Lee (1982), Luft (1995).
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To model the economic system we assume there is a single good which can be consumed
or invested: at any instant ¢, output of the single good is given by F(K, X;) where K is
the existing capital stock. The production function satisfies the usual neoclassical prop-
erties (F(Ky, X;) is increasing, homogenous of degree one and has diminishing marginal
productivity of each input). In addition we assume that each input is essential in that
F(0,X,) = F(K;,0) = F(0,0) = 0 but that the marginal product of each input remains
finite as its quantity tends to zero i.e. that limyx_,q %%2 and limg_,q %%2 each
exist as finite positive numbers. For example we might think of a CES production function
with elasticity of substitution less than unity'®.

Capital stock is owned equally by the healthy and infected individuals. A healthy indi-
vidual receives labour income equal to the wage, W, for an inelastically supplied amount
of work, and capital income equal to the product of the rental rate and his/her share of
the capital stock. The wage and rental rate are set in competitive markets by the marginal
productivity of inputs. The aggregate labour income is W X4, all accruing to the healthy
individuals. The aggregate capital income of the healthy is p, Kx: where p, is the rental
rate on capital and Kx; = KtXt/(Xt + Yt) Income of the infected individual is purely
capital income p,Ky; where Ky, = Kth/(Xt + Yt) FEach period, as population changes,
capital is redistributed amongst the healthy and infected individual of that period. Cap-
ital depreciates linearly at a constant rate, ¢. Fach individual has a proportional saving
function with saving rate s. Hence, in the aggregate, capital accumulates according to

K, = sWX,+p(Kx +Ky)] — ¢K, (20)
= SF(Kt7Xt) — ¢Kt (21)

from the constant returns to scale. The demographic parameters «, 3 and w are functions
of K;/X;. In Section 4 we select functional forms for the production function and «, 5 and

w. Initially we just assume 6/ (.) <0and w (.) <0 in line with the predominant empirical
findings?® and that 5(0) and w(0) are nonzero. The sign of a'(.) is less obvious; there is
evidence that Oé/(.) < 0 both because the birth rate may fall’! and infant mortality may
rise’® with prosperity although the mortality rate generally falls*>. However, the balance
between movements in fertility and mortality may make Oé/(.) > 0. It is also natural to
assume that «, 3 and w are bounded above by &, 3 and @.

It is easy to see that there is no balanced growth path along which X, Y; and K,
each grow at a nonzero rate g>*. However, there is a partial balanced growth path with
Y: = 0 and X;/K; constant solving o(K/X) = sf(X/K) — ¢ where for Z, = X,/ K,

197f we write the production function as F(K¢, X¢) = (rK™ + qun)# where the elasticity of sub-
stitution is 1/(1 — m) then for m < 0, F(0,X:) = F(0,0) = F(K:,0) = 0 and since g—IF( =
(r + (e ym) 7, 2EQXD — p5p ang 2EUL0) g,

20Ehrlich, Lui (1997); Lincoln (1993).

21 Lee (1997); Robinson, Srinivasan (1997).

22Waldmann (1992).

23 Anderson et al. (1997); Chapman and Hariharan (1993); Ehrlich, Lui (1997); Feinstein (1993);
Mackenbach and Looman (1994).

247 there were a balanced growth path ¢ then (16) would require

g=a— Y
{g:ﬁxtw (22)

where along the balanced growth path o, 8 and w would be constants. But then setting Yy = Yo exp9?,
the only value of g that satisfied (16) for all ¢ is g = 0.
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we define f(Z,) = F(1,%;). Along this path X, and K; both grow at the rate a(K/X)
and there is no disease in the system. If initially the variables start on this path then
disease cannot break out. A central question is if we start with arbitrary initial conditions
involving some infection, then under what circumstances will the time path of the system
approach this disease free balanced growth time profile? A necessary condition for this
is that ultimately Y, /Y; eventually becomes and remains negative. Since Y; is bounded
below by zero and Yy > 0,lim Y; = 0 implies Y; < 0 for sufficiently large t. But as

t— 00

Y, — 0, Xt/Xt — «a > 0. It follows that X, will grow asymptotically at a positive rate
lim; o (K;/Xy), but Y,/Y; = 3X; — w where w and 3 are finite and positive. Hence it
is impossible for Y, /Y; to ultimately remain negative as ¢ — oo and so it cannot be that
Y; — 0. The result is that the system cannot eradicate the disease; interest then focuses
on how the interaction of the economic growth system with the epidemiological process
controls the dynamics of the population structure and economic prosperity.

To analyse the general dynamics we look at stationary states of the full system and

behaviour around them: equating the LHS’s of (16) and (21) to zero:

0=aX; — XY,
0=0X,Y; —wY; (23)
0= .9}7‘(I(1§7 Xt) — QSKt

and noting that «, 8 and w are constant if X; and K; are, there are generally three
stationary states?:

c_ W (KN (¢
wegr=5(x) = (%) 2
X*:%; y*:%; K'=0 (25)
X*=Y*=K'=0 (26)

The first of these has a nontrivial economic process with a stationary state capital healthy
labour ratio that is independent of the behaviour of the epidemiological parameters; but
in the other two the economy is irrelevant. In the stationary states that do not involve
extinction, prevalence of the disease (Y;/X; or equivalently Y;/N; = (1 + X;/Y;)™!) is
given by a/w. There is a lot of evidence that w falls with rising prosperity?®. Hence if
the net birth rate of susceptibles increases with prosperity the effect of productive capital
is to increase the stationary state disease prevalence. Conversely if the net birth rate
of susceptibles falls with prosperity, whether economic effects increase or decrease the
stationary state prevalence is ambiguous.

To see the local dynamics around these stationary states we use linearisations and
then compute the relevant eigenvalues. Expanding around any stationary state to the
first order gives the linearised system

25 Whether the origin is an admissible stationary state depends on whether the demographic parameters
have well defined values at Ky = X¢ = 0.

26 Anderson et al. (1997); Chapman and Hariharan (1993); Feinstein (1993); Mackenbach and Looman
(1994).
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¥ a— gy — (o/ _ 5’Y) K _gx (o/ _ 5’Y) X
Y |=| vg-v (5’X—w’) £ BX —w (5’X—w’) r||Y (27)
K sFx 0 sFg — ¢ K

where X, Y and K are now measured as deviations from a particular stationary point
and derivatives in the Jacobian are evaluated at that stationary point.

Summarising the results for the first stationary point (24) a wide variety of local
dynamic patterns are possible. There may be a single real negative root with a pair
of complex conjugate roots if the production function is not too concave relative to the
marginal effects of prosperity on the epidemiological parameters (focus sink with either
positive or negative attractor); or there may be three negative real roots (3D node positive
attractor) or two positive and one negative real root (3D saddlepoint with an additional
unstable direction) if the system is "very concave”; the appendix provides the technical
conditions dividing these cases. It is easy to see that there are no roots with zero real
part at this stationary state.

At the second stationary point (25) we have eigenvalues s Fj — ¢ and +i/aw where the
sign of sF — ¢ is ambiguous at this stationary point. This replicates the roots of the pure
Lotka-Volterra type system but adds the real root sFx — ¢. There are then two possible
dynamic patterns around (25); there is a two dimensional surface in (X,Y, K) space (in
fact in the XY plane with K = 0) tangent to the complex eigenvector corresponding to
the pure imaginary root. If the real root is negative then paths starting away from this
surface spiral in a stable way towards the manifold except for a unique path through the
”centre” of all such spirals which converges monotonely to the surface. Paths that start
on the surface itself remain there and form pure cycles on the surface. If the real root
is positive then there is the same pattern of paths but now they diverge away from the
centre manifold.

At the third stationary point (26) we have F(K,X) = 0. To perform linearisations
in a neighbourhood of the origin requires that Fx and Fx remain finite. In the case of
a CES production function with elasticity of substitution less than unity whether this is
so depends on the speed of convergence of Ky, X; and Y; to zero. The appendix gives
details of the roots when such linearisations are possible; but in general we turn to global
analysis to see how the origin relates to the other two stationary points.

There are various special cases of this structure (16) and (21) which are of interest:

(1) If 8 = 0 identically and « is constant then the system reduces to the Solow-Swan
single sector growth model in (X, K;) with the infected dying out gradually through time
and effectively being segregated. This is analogous to the partial steady state with Y; =0
in that X;, K; grow at a common rate but there is disease in the economy.

(ii) If o, 8 and w are all nonzero constants then we still have three stationary states.
The variation from the Solow Swan model is that X;, the productive labour force, displays
cycles. For this reason there is no steady state growth path. In fact in this case there
are still three stationary states; the first of these has one negative real and two purely
complex conjugate roots like the second whilst the third still has three real roots.

(iii) If # =0 and « is a function of economic prosperity then we have an endogenous
growth model in which the net birth rate of the work force varies with economic conditions.

(iii) If ¢ = O then there are no stationary points and no steady state growth paths.



INFECTIOUS DISEASE AND ECONOMIC GROWTH: THE CASE OF TUBERCULOSIS. 12

The results that we get here depend on the demographic structure assumed. In a
related paper?” we show that if we allow for capital and savings with the same sort of
links between the demographic and economic structure as here but with homogenous
demographics as in May and Anderson (1989) then the economy may settle down at a
steady state.

4. A NUMERICAL EXAMPLE
As we have seen, the Lotka-Volterra demographic system combined with the Solow-Swan
growth model gives us a new stationary state in which the prevalence of the disease is
higher in the presence of growth than without growth if the net birth rate of susceptibles
increases with the capital labour ratio; but prevalence is lower in this stationary state if the
net birth rate of susceptibles falls with the capital labour ratio. In this section, we simulate
the quantitative nature of the dynamics for each of these two cases by selecting particular
functional forms. For the population dynamics there are quite strong arguments to select
functional forms that give a bounded effect to economic prosperity on net population
growth or the spread of disease. A simple form that will do this is related to logistic
functions so we take
alZ) =ap — oy exp 2/ %
B(Z:) = By + By exp™ P2/ % (28)
w(Z;) = wo 4 wy exp w2/ %

(remember Z; = X;/K;). Here with zero capital, the baseline net growth of the healthy is
oy — aq; the baseline infection rate is 5, + 3, and the baseline death rate of the infected
is wo+wi. As consumption per capita tends to infinity the net growth rate of the healthy
is a; the infection rate G, and the death rate of the infected wg. Consequently if oy
is negative, the birth rate falls with the capital labour ratio; conversely, if a; is positive.
The speed with which the upper bounds are reached is determined by the coeflicients with
subscript 2.

As a production function we take a CES with elasticity of substitution less than unity:

F(K,X) = (rK™ 4+ ¢X™)7 (29)

where m < 0 and r,q > 0.
With these choices we have

The three stationary states are, respectively, at

2" Delfino, Simmons (1999).
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ey ([

w
3 3 (34)
X'=Y"=K"=0 (35)
For the case in which the net birth rate increases with prosperity we select m = —1;

g=07r=03;5=02; ¢ =01 ay=0.06; oy :=0.02 ag =1; B, =0.1; 5, := 0.3
Ba =1; wg =0.2; wy =0.2; wg =1. This implies that when capital stock is zero the net
birth rate is 4%; the death rate of infected individuals is 40%; the infection rate is 40%.
But when the capital labour ratio tends to infinity the net birth rate rises to 6%, the
death rate of the infected falls to 20% and the infection rate falls to 10%. The elasticity
of substitution is 0.5, the savings rate is 20% and the depreciation rate 10%.

With these parameter values the three stationary states are:

X*=1.721; Y* =0461; K* =4.180 (36)
X* =1.000; Y* =.100; K* = 0; (37)
X*=0,Y"=0; K*=0; (38)

We can calculate the eigenvalues corresponding to a linear approximation around the
first two of these stationary states. Since the marginal products are not defined at K; =
X; = 0 we do not attempt to explore the local stability of the origin. For the first
stationary state (33) this gives us eigenvalues of:

€ = —.019 — .114%; €2 = —.019+ .114%; ez = —0.080 (39)

which corresponds to the case of a pair of complex conjugates and one negative real root
(focus sink positive attractor). Different parameter values would have generated the other
combinations of eigenvalues near this stationary state. Around the second stationary state
(37) the eigenvalues are:

€; = 0.1262; eg = —0.1267; €3 = 0.567 (40)

which reflects the analytical results above. In the pure epidemiological equilibrium when
capital stock is zero, the stationary state prevalence of the disease is Y/ X = 10% whereas
in the epidemiological-economic equilibrium, the prevalence is more than twice as high at
27%; however, total population almost doubles.

We can then explore the local dynamics around each stationary state and the way
these patch together to form a global phase space; to derive these we have numerically
integrated the non-linear differential equations and not their linear approximations. So
the phase spaces are globally accurate.

The results are given in Figures 4.1-4.2.
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Fig. 4.1

Fig. 4.1 shows the global phase space with the three stationary states. Fig 4.2 shows
small regions around the stationary states; the local dynamics of the stationary state
with K* > 0 shown in the top panel of Fig. 4.2 is a focus sink positive attractor and the
dynamics around the stationary state with K* = 0 in the middle panel is a 3D centre
with an additional negative attractor. The stationary point at the origin has the dynamics
described in bottom panel where paths start with a very low but positive value of K;. The
direction of movement is in terms of decreasing Y;, increasing K; and depending on initial
conditions either increasing or approximately constant X;. It is like the two dimensional
saddlepoint of the pure Lotka-Volterra type system augmented by a direction of rapid
growth in K.

The results indicate that the first stationary state is an attractor for paths which start
near the other stationary points, and the paths rapidly converge to the first state. At the
second and third stationary points the unstable direction in K; seems to dominate the
dynamics so that so long as initially Ky # 0 even though it is small, economic growth takes
over and the path converges in an oscillatory fashion to the first stationary state. However,
for paths which start with relatively high values of Ky , there is a three dimensional cycle
in the variables with relatively rapid movement in K;. If a path starts with Kg actually
equal to zero, then the system follows a closed Lotka-Volterra type cycle in the X — Y
plane; but for even small initial values of Ky, after some early cycles in X; and Yz, the path
diverges to the first stationary state. From Figs 4.1-4.2 it is clear that there is virtually
a linear direction of growth in K; and X;, and decay in Y; as the effects of the economy
take over until there is a cycle around the new epidemiological-economic stationary state.
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We can also compare the amplitude of cycles in X;,Y; with and without economic
growth by integrating paths that start with identical values of Xp,Yy but in one case
with K9 = 0 and in the second case with Ky # 0 over the same time horizon. Fig 4.3
demonstrates such a case where the paths start with Xy = 2.0, Yy = 0.4 and with varying
values of Kg. The result indicates that the cycles in X; and Y; have much lower amplitude
when Koy # 0.

T8 gt
2 0.4
yit) 0.2

Fig. 4.3
For the case in which the net birth rate decreases with prosperity we select m = —1;
q=0.7,r=03; s=0.2; ¢ =0.1; ag =0.02; oy := —0.02; g = 1; By = 0.1; 3, :=0.3;
Ba =1; wo = 0.2; wy :=0.2; wg = 1. The net birth rate parameters are selected for
comparison with the « increasing case to give a net birth rate when capital stock is zero of
4%. From (24)-(26) it is evident that only the stationary state level of the sick is affected
by variation in the form of «; this is shown in the new stationary states which become

a
1412

X*=1.721;Y* =0.1721; K* = 4.180 (41)
X*=1.000; Y* =0.100; K* =0; (42)
X*=0,Y"=0; K*=0; (43)

There is also little change in the eigenvalues of the linearisations: around the first sta-
tionary state (41) the roots are:

¢, = —.007 +.007i; 3 = —.007 — .007i; ¢35 = —0.078 (44)

which corresponds to the case of a pair of complex conjugates and one negative real
root (focus sink with positive attractor). Around the second stationary state (42) the
eigenvalues are:

6 = 0.126i; €y = —0.126i; €3 = 0.567 (45)



INFECTIOUS DISEASE AND ECONOMIC GROWTH: THE CASE OF TUBERCULOSIS. 17

Again since the derivatives of the production function are not uniquely defined as K; —
0,X; — 0, we do not attempt to linearise around the origin. Here the epidemiological-
economic stationary state prevalence of the disease is identical to that where there are
no economic effects on the epidemiological parameters; as stated above, in this case the
prevalence may either rise or fall under the influence of economic effects. Total population
has again increased by about 65% and in the epidemiological-economic equilibrium the
net growth rate of susceptibles is 0.022. Partly these results are driven by the economic
parameters; the savings rate, the depreciation rate and the elasticity of substitution are
all important.

For this case where the net birth rate is a decreasing function of economic prosperity
numerical integration of the nonlinear differential equations gives Fig. 4.4-4.5.

05 1 15
. 2
i) 25

Fig. 4.4

Figure 4.4 shows the global phase space with the three stationary states; Figure 4.5
shows small regions around the stationary states other than the origin; the higher of these
is a focus sink with positive attractor and the lower one is a 3D centre with an additional
negative attractor. The interpretation of the dynamics is similar to the case in which the
net birth rate rises with prosperity; the main difference between the two cases being that
the prevalence of the disease in the first stationary state is lower here.

If we set =0 and ae = 0 the system (23) reduces to a Solow-Swan growth model in
which the healthy susceptibles grow at the exogenous rate ag — a7 and the sick die out
at the rate w and have no infectious effect on the economy. If only 3 = 0 we have an
endogenous growth model in which there is no interaction between the infected and the
healthy people (i.e. segregation) and the sick again die out but the growth rate of the
healthy susceptibles is endogenous with a varying with the capital healthy labour ratio.
The effect of the two way interaction between the productive capacity of the economy
and the epidemiological structure can be easily analysed by comparing these special cases
with the epidemiological-economic stationary states. The Solow-Swan model with 8 =0
and ag = 0 where the healthy work force grows at a constant rate of 0.04 has a unique

steady state capital labour ratio of 1.61 for the parameter values corresponding to Figure
m 1/m
4.1 (this solves K/X = H(%‘é) —q} /7“] ). By contrast, when only 5 = 0
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the steady state K/X ratio is 1.413 and the common growth rate of capital and healthy
labour is 0.055. The impact of rising prosperity on the net healthy growth rate leads to an
increase in the steady state growth rate and a reduction in the steady state capital healthy
labour ratio. In the epidemiological-economic stationary state the capital healthy labour
ratio is 2.43 so that the infection process has a sufficiently strong effect in reducing the
healthy work force to sharply increase the capital healthy labour ratio. Note that in the
endogenous growth and Solow-Swan specialization, where 3 = 0 and there is segregation,
in the long-run the TB prevalence is zero.
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Overall the impact of adding economic structure to the epidemiological process leads
to:

(1) a new epidemiological-economic equilibrium with generally a higher healthy work
force but with either a higher or lower prevalence of the disease depending on the behaviour
of the epidemiological parameters;

(ii) the new equilibrium being an attractor for a wide range of initial conditions and
whose dynamics pushes the system away from the epidemiological states with K; = 0
towards the epidemiological-economic equilibrium;

(iii) shocks which displace the epidemiological-economic system away from its station-
ary state that may lead to cycles of much lower amplitude in the population structure
than we would observe in the equivalent epidemiological model where K; = 0.

The epidemiological equilibrium reappears in the epidemiological-economic model but
as an unstable equilibrium; as well as this, the presence of disease eliminates the possibility
of steady growth. However, compared with the pure epidemiological system, presence of
the economy allows the system to settle down at a stationary state after some initial
cyclical dynamics, thus avoiding perpetual epidemic cycles.

5. CONCLUSIONS

Much of the earlier literature on the dynamics of infectious diseases uses predator-prey
type models; these are mechanistic but they allow us to understand the basic infection
process. By surveying recent contributions to the analysis of TB, we show that, although
there is a tension between descriptive realism and analytical tractability, the models are
sufficiently flexible to accommodate some of the major interactions. Furthermore, by
highlighting crucial steps in the chain of infection they allow us to focus on points at
which economic forces can have an impact on the dynamics of the disease. Given this
approach, our central purpose has been to lay out a framework of the two-way interac-
tions between the disease, population structure and the economy. In an economic model
with a productive capacity that depends on human inputs, the TB epidemic affects the
productivity of the economic system. However, TB is partly controlled by the general
level of economic prosperity; as such, even without any conscious policy initiative there
are economic effects to control its spread.

We outline a model of the interaction between TB infectious disease and a dynamic
economic growth model which uses capital stock and uninfected labour as inputs. We find
that the dynamics are very rich: there are three stationary states, and whilst local dynam-
ics around one of these is relatively straightforward, around the other two there is a pos-
sible diversity of behaviour. Two of the stationary states involve zero productive capital
and replicate the basic predator-prey stationary states; the third is an epidemiological-
economic equilibrium in which the economy and the disease coexist. When the local
dynamics of the different stationary states are pasted together to give a global view of the
phase space, there may be different types of transition between the different equilibria.
Economic growth cannot drive the disease prevalence to zero but can make it settle down
to an endemic level in the population. Using plausible parameter values in this model
we find that the presence of productive capital generally pushes the system away from
a pure epidemic cycle model towards the epidemiological-economic stationary state; that
initially just a small injection of capital leads to a rapid rise in prosperity and shift of
regime towards this new stationary state and that along the way the amplitude of cycles in
the prevalence of the disease falls. At the new epidemiological-economic stationary state
the prevalence of the disease may be higher or lower than in the absence of productive
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capital depending on the behaviour of the epidemiological parameters.

Our initial concern was to explore the control of disease through economic growth in
view of the evidence that targeted control programmes (e.g. vaccination) have limited
success and the long term historical evidence that where TB has been largely eliminated,
it was not achieved through targeted policy. We find that growth does have an impact
but is unlikely itself to eliminate the disease. Of course the models here are stylised sim-
plifications; in particular there is no spatial dimension so that the segregation/quarantine
policies that have been historically important are not analysed.
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Appendix
We can take the stationary states in turn: around (33) where X* = %; Y* = %;
(%)* =f1 (3‘52), we have
b'e - (a - B/Y) % —w (o/ - B/Y) X
Y | = a-Y(ﬁ’X—w’)% 0 (HX_M’)% Y (46)
K sFyx 0 sFi — & K
Using the fact that Fxy = % — g (%) in steady state sFx can be written as

8 (% — Fg (%)) in steady state. We can use a similarity transformation to deduce that
the matrix in (46) has the same eigenvalues as B = C~ ' AC where

Y (g x_.
0 —aw —wi <6X/ w) 0 —ow b
B=| 1 0 (o/— 5Y) —| 1 0 b (47)
K K g £ 0 by
50 sFk—o-(§) (o =0Y)
and
0 1 0 0 —w 0
C=|- 0 of|,c'=] 1 0 0 (48)
K K
0o £ 1 —E 0 1

Note that under our sign assumptions on the effects of growth on demographic func-
tions, if &’ > 0, b3 is of ambiguous sign; bag > 0 and b3z < 0. The characteristic equation
of B has the form

3 9 K K
f(/L) = —pu° + b3zu” — <?b13 + aw) Hn+ aw <b33 + ?b%) (49)

It is somewhat more convenient to change sign and consider the cubic equation g(u) =
—f(r) = 0. Since aw(bss + %bgg) = sF, — ¢ < 0, there are no zero real roots. If
b35/3 — (%blg + aw) < 0, this cubic has no turning points and since it tends to £00 as 4
does, it must then be always increasing hence giving a single real root. Moreover at u = 0,
the cubic has a positive value; hence this single real root must be negative. Exploring this
a bit further,

b2, /3— <§b13 +aw> = [sFK—gb—g <%, - %) a]?/3+aw [% <% - %) - 1} (50)

so if
K /3 o
$(5-2) G

is sufficiently negative then we are sure there is a single negative real root.
However, if b§3/3 — (%blg + aw) > 0, then there are two turning points, p, and pu_ ,
with gy > p_. If o/ > 0 we know that ;1 < O (since the derivative of the cubic is a
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quadratic with a minimum at g = b33/3 < 0). We also know that the cubic is decreasing
between its turning points g(u,) < g(p_). Then if g(p,) g(p_) > 0 so that the cubic
does not change sign between its turning points we know that there is also a single real
root which must be negative (Fig. A.1).

For o’ > 0 the condition for g(u,) g(e_) > 0 is that

2 3
K K K
[bgg <—2b§3 + 9b13§> -9 <2b33 + 37923) aw} > <b§3 -3 (Xblg + aw)) (52)

But if the cubic does change sign between its turning points from positive at p_
to negative at u_, then there are three negative real roots if p, < 0 and two positive
and one negative real root if i, > 0 (Fig. A.2). The condition for x> 0 is that
b13K/ X + aw < 0.

&0

Figure A.1

60
40

r20

r-20

Figure A.2
If o’ < 0 then we may have bgz > 0; then when there are two turning points we know
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that p. > 0 since i is above the value of 1 which minimises the slope of the cubic (at
b33/3). It then again follows that there is either a single negative real root or two positive
and one negative real roots. A summary is given in Table 1.

At the secondary stationary point (34) we have F(K,X) = 0 since K* = 0 but X*

F(K.X
and Y* are nonzero; hence %

= 0 and Fx has a finite value under our assumptions.
From homogeneity of degree one we have F' = Fx X + Fx K and so at the stationary point
we have Fx = 0 (since K* = F' = 0 but X* is nonzero). Hence the linearised system

becomes

X 0 —w o — B/Y) X
Y =]a o0 (5’)( _ w’) x Y (53)
K 0 0 sFi — ¢ K

which has eigenvalues sFy — ¢ and +i/aw

At the third stationary point (35) when X* =Y* = K* = 0 we have F(K,X) = 0
and we assume that both Fy and Fx have large but finite values. Taking X; Y; and
K; — 0 along the 45° ray, then by L’Hépitals rule % approaches Fx; % approaches unity
and so F % approaches F,. Hence the linearised system has the form

’

X o 0 o X
Y | = R ' Y (54)
K SFX 0 SFK — gb K
and this matrix has eigenvalues
—w (55)
0.5 {[sFK —¢o+a]+ \/[a — $Fx — ¢]> +4sFx o' — 4sFg —0—40ng} (56)
These are real roots if
[ — sFx + ¢> +4sFxa’ — 4sFxé + dad > 0 (57)
When o > 0 and sFx —¢ >0 at K* =0,
[ — sFx — gb]2 +4sFxa' —4sFg ¢+ dad > [a — sFx + gb]2 >0 (58)

This gives us a lower bound on the upper root of (56) (@ —¢) and a nonnegative upper
bound on the lower root of sIx. Hence, if @ < ¢ both roots are negative but for a > ¢
we only know that one root is positive. Overall, the third stationary point has a wide
variety of local dynamic patterns shown in Table 2.
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